JP3304243B2 - Blast impeller - Google Patents

Blast impeller

Info

Publication number
JP3304243B2
JP3304243B2 JP26262395A JP26262395A JP3304243B2 JP 3304243 B2 JP3304243 B2 JP 3304243B2 JP 26262395 A JP26262395 A JP 26262395A JP 26262395 A JP26262395 A JP 26262395A JP 3304243 B2 JP3304243 B2 JP 3304243B2
Authority
JP
Japan
Prior art keywords
blade
section
wing
chord
center point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26262395A
Other languages
Japanese (ja)
Other versions
JPH09105396A (en
Inventor
務 加藤
孝昭 中曽根
Original Assignee
松下精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下精工株式会社 filed Critical 松下精工株式会社
Priority to JP26262395A priority Critical patent/JP3304243B2/en
Publication of JPH09105396A publication Critical patent/JPH09105396A/en
Application granted granted Critical
Publication of JP3304243B2 publication Critical patent/JP3304243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、換気送風機器や空
気調和機器等使用される送風装置において、特にその高
静圧時での発生騒音を低減し、効率を上昇することを可
能にした送風羽根車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blower used for a ventilation blower, an air conditioner, or the like, and more particularly to a blower capable of reducing noise generated at a high static pressure and increasing efficiency. Regarding the impeller.

【0002】[0002]

【従来の技術】近年、居住および非居住空間で使用され
る換気送風装置および空気調和機器に使用される送風羽
根車は、静圧をあまり必要としない中低静圧で大風量の
換気送風機器および空気調和機器として使用され、これ
までの種々の設計手法により低騒音の軸流送風羽根車が
設計されてきた。しかし、機器性能の使用範囲の拡大
化、さらには用途の幅広い展開がさらに求められ、高静
圧で大風量の換気送風装置および空気調和機器が必要と
なってきたが、これまでの送風羽根車では、高静圧時に
は不安定領域があり、騒音が急上昇し、また効率も急下
降するという問題点があった。そこで従来は、軸流送風
羽根車よりも高静圧の送風羽根車として斜流送風羽根車
を用いられてきたが、低静圧時では騒音が増大し、かつ
効率も低いという問題があり、低静圧から高静圧までを
大風量および低騒音で使用したいという社会のすべての
ニーズに応えられなかった。そこで運転時の不安定が無
く、騒音が低く、性能的に使用範囲が広く、さらに効率
がよく省電力である送風羽根車が必要であり、送風羽根
車の設計手法および展開が求められている。
2. Description of the Related Art In recent years, a ventilation impeller used for ventilation and air conditioning equipment and air conditioning equipment used in living and non-living spaces is a medium-to-low static pressure ventilating blower that does not require much static pressure. In addition, low-noise axial-flow impellers have been designed by various design techniques used as air conditioners. However, expanding the range of use of equipment performance and further expanding the range of applications are required, and ventilation and air conditioning equipment and air conditioning equipment with high static pressure and large air volume have been required. However, there is a problem in that there is an unstable region at high static pressure, the noise rises sharply, and the efficiency also falls sharply. Therefore, in the past, a mixed flow blow impeller has been used as a blow impeller having a higher static pressure than an axial flow impeller, but at a low static pressure, there is a problem that noise increases and efficiency is low, It could not meet all the needs of society that wanted to use low static pressure to high static pressure with large air volume and low noise. Therefore, there is a need for a blower impeller that has no instability during operation, has low noise, has a wide range of use in performance, is more efficient and consumes less power, and a design method and development of the blower impeller are required. .

【0003】従来、この種の送風羽根車は、図19〜図
23に示す構成が一般的であった。以下、その構成につ
いて図を参照しながら説明する。
Conventionally, this type of blower impeller generally has a configuration shown in FIGS. Hereinafter, the configuration will be described with reference to the drawings.

【0004】図に示すように、軸流羽根車101の翼1
02の形状は、回転軸103の軸方向投影図において、
翼102の回転方向104に前進した形状であり、ま
た、回転軸103を含む平面に映し出される投影図にお
いて、吸込側105に一様に傾斜した形状であり、ま
た、軸流羽根車101の翼102の翼内周部106から
翼外周部107までの仕事量を一定とする自由渦、翼1
02の翼内周部106から翼外周部107までの取付角
Cθ’をほぼ一定とする強制渦という流れ分布で設計さ
れ、翼102の翼断面108における中心線109は略
円弧形状で翼断面108の翼弦長L’とそりD’でそり
率Q’は、Q’=D’/L’で与えられ、翼外周部10
7より翼内周部106のそり率Q’が大きくなる形状で
あり、また、翼外周部107より翼内周部106の取付
角Cθ’が大きくなるかあるいは、取付角Cθ’が翼内
周部106から翼外周部107までほぼ一定である構成
をしている。
As shown in FIG. 1, a blade 1 of an axial impeller 101 is provided.
02 in the axial projection of the rotating shaft 103,
The blade 102 has a shape that is advanced in the rotation direction 104 of the blade 102, and has a shape that is uniformly inclined to the suction side 105 in a projection view projected on a plane including the rotation axis 103. A free vortex that keeps the work from the inner peripheral portion 106 of the blade 102 to the outer peripheral portion 107 of the blade 102 constant.
02 is designed with a flow distribution of forced vortex that makes the attachment angle Cθ ′ from the inner peripheral portion 106 to the outer peripheral portion 107 substantially constant, and the center line 109 of the wing section 108 of the wing 102 has a substantially circular arc shape and the wing section 108 Is given by Q ′ = D ′ / L ′, and the chord length L ′ and the warp D ′ are given by Q ′ = D ′ / L ′.
7, the warp rate Q ′ of the blade inner peripheral portion 106 is larger than that of the blade inner peripheral portion 106, and the mounting angle Cθ ′ of the blade inner peripheral portion 106 is larger than the blade outer peripheral portion 107 or the mounting angle Cθ ′ is The configuration is substantially constant from the portion 106 to the blade outer peripheral portion 107.

【0005】上記構成において、機器の小型化、機器性
能の使用範囲の拡大をするために非常に大きな風量およ
び高い静圧を必要とし、小型で高静圧、大風量を得るた
めには、翼が回転方向に前進した形状で、吸込側105
に傾斜した形状の軸流羽根車101を高回転する必要が
ある。しかし回転数が上昇すると翼入口における相対速
度w1が上昇し、渦放出を伴う騒音の音響出力Eに対し
て6乗の乗数で依存するため、騒音は急激に上昇する。
また、使用範囲を拡大する場合には、翼102の設計に
おいて理想とされる抗揚比が最小となる迎え角113の
前後において設計した使用範囲より大きくなるため、迎
え角113が有る限度以上大きくなり、揚力Clが極大
値に達し、迎え角113がそれ以上大きくなるとむしろ
減少し、それとともに抗力Cdが急増する現象が発生す
る。これは翼の上面に沿う境界層114が大きな迎え角
113となるとはがれてしまい乱流110を促進し失速
と呼ばれる現象が発生するためである。このとき最初に
動翼先端111の付近の失速に起因して、動翼先端11
1の吸込側105に最初に逆流112が生じる。また動
翼先端111が失速すると相対流れの転向角は減少する
が、軸流速度が減少するので、絶対流れの流出旋回速度
は増大する。そのため逆流112が広がるにつれて、吐
出側オリフィス付近の圧力が上昇し、吸込側先端付近に
逆流112が発達し、流れはハブ側へ押しやられ、ハブ
側の軸流速度比が増加するため、翼根元では失速しにく
くなるが、遠心効果が働かないので送風機の吐き出し圧
力は流量の減少とともに降下する。吸込側105の逆流
112が広がると、ハブ側115へ押し下げられた翼間
流路内の流体は遠心力の作用によりオリフィス側116
へ押し上げられ、翼根本付近の軸流速度が減少し始め、
吐出側に逆流118が現れ、ハブ側115からオリフィ
ス側116上がりの流れ117が生じ、吐き出し圧力が
上昇する。このような現象をサージング現象といい、送
風羽根車101の不安定を生じさせる原因となってい
た。またサージング現象発生以降は騒音が急激に増大
し、効率が低いという問題があった。
In the above configuration, a very large air flow and a high static pressure are required to reduce the size of the equipment and expand the range of use of the performance of the equipment. Are advanced in the rotation direction, and the suction side 105
It is necessary to rotate the axial flow impeller 101 having a shape inclined at a high speed. However, when the rotation speed increases, the relative speed w1 at the blade inlet increases, and the sound power E depends on the sound output E of the noise accompanied by the vortex emission by a sixth power.
Further, when the use range is expanded, since the lift range idealized in the design of the wing 102 becomes larger than the use range designed before and after the angle of attack 113 at which the minimum lift ratio is minimum, the angle of attack 113 is larger than a certain limit. That is, when the lift Cl reaches a maximum value and the angle of attack 113 further increases, the drag C R rather decreases, and a phenomenon in which the drag Cd rapidly increases occurs. This is because the boundary layer 114 along the upper surface of the wing separates at a large angle of attack 113, promotes the turbulent flow 110, and a phenomenon called stall occurs. At this time, first due to the stall near the bucket tip 111, the bucket tip 11
A backflow 112 first occurs on the suction side 105 of one. When the rotor blade tip 111 stalls, the turning angle of the relative flow decreases, but the axial flow speed decreases, so the outflow turning speed of the absolute flow increases. Therefore, as the backflow 112 spreads, the pressure near the discharge-side orifice increases, the backflow 112 develops near the suction-side tip, the flow is pushed to the hub side, and the axial flow velocity ratio on the hub side increases, so that the blade root However, the centrifugal effect does not work, so that the discharge pressure of the blower decreases as the flow rate decreases. When the backflow 112 on the suction side 105 spreads, the fluid in the inter-blade flow path pushed down to the hub side 115 causes the orifice side 116 to flow due to the action of centrifugal force.
, The axial velocity near the blade root begins to decrease,
A backflow 118 appears on the discharge side, and a flow 117 rises from the hub side 115 to the orifice side 116, and the discharge pressure increases. Such a phenomenon is called a surging phenomenon, and has caused the blower impeller 101 to become unstable. Also, after the occurrence of the surging phenomenon, there is a problem that the noise rapidly increases and the efficiency is low.

【0006】[0006]

【発明が解決しようとする課題】このような従来の送風
羽根車では、小型化で高静圧、低騒音を得る際の動翼羽
根の高回転による騒音の上昇が非常に大きく、また使用
範囲を大きくすることによる騒音の急上昇と効率が低い
という問題があり、またこれらの問題をすべて解決する
羽根設計手法が確立されていないという問題があった。
In such a conventional blower impeller, when obtaining high static pressure and low noise by miniaturization, the noise rise due to high rotation of the moving blade is very large, and the range of use is large. However, there is a problem that the noise rises sharply and the efficiency is low due to an increase in the size, and there is a problem that a blade design method for solving all these problems has not been established.

【0007】本発明は上記課題を解決するもので、小型
化で高静圧、大風量を得るための動翼羽根の高回転化に
よる騒音の上昇を抑制することが可能で、その設計方法
を確立した送風羽根車を提供することを第1の目的とす
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and it is possible to suppress an increase in noise due to a high rotation speed of a moving blade in order to obtain a high static pressure and a large air flow with a small size. A first object is to provide an established blower impeller.

【0008】第2の目的は、軸流送風機特有のサージン
グ現象の発生を最小限にし、使用範囲を大きくすること
が可能であり、その設計手法を確立した送風羽根車を提
供することにある。
A second object of the present invention is to provide a blower impeller capable of minimizing the occurrence of a surging phenomenon peculiar to an axial blower and expanding its use range, and having established a design method for the same.

【0009】第3の目的は、同一の回転数において、締
切静圧を上昇することを目的としている。
A third object is to increase the static closing pressure at the same rotational speed.

【0010】[0010]

【課題を解決するための手段】本発明の送風羽根車は上
記第1の目的および第2の目的を達成するために、第1
の手段は、ハブの外周に複数枚の動翼羽根を備え、この
動翼羽根を回転軸で支持するモータを設け、前記動翼羽
根の形状は前記回転軸の軸方向に投影した投影図におい
て、前記回転軸を原点Oとし、前記ハブと前記動翼羽根
の接触部における翼内周弦投影線を2等分する点を翼内
周弦投影中心点Pbとし、前記動翼羽根の翼外周弦投影
線を2等分する点を翼外周弦投影中心点Ptとし、か
つ、前記原点Oを中心とする任意の半径Rを持つ円を描
き、この円が前記動翼羽根の投影において交わる交点と
半径Rに示される円弧を2等分する点を任意断面翼弦投
影中心点Prとし、かつ、前記回転軸を含む平面に映し
出される投影図において、前記翼内周弦投影中心点Pb
と前記翼外周弦投影中心点Ptとを結ぶ直線Pとし、こ
の直線Pより流体の吸込側にあるものを正方向とし、吐
き出し側にあるものを負方向とすると、前記任意断面翼
弦投影中心点Prが前記翼内周弦投影中心点Pb付近で
は正方向にあり、任意の場所で前記直線Pと交わり、前
記翼外周弦投影中心点Pt付近では負方向となる、前記
任意断面翼弦投影中心点Prの軌跡がS字か、または、
前記翼外周弦投影中心点Pt付近では直線P上を通る軌
跡を描く構成とする。
According to the present invention, there is provided a blower impeller for achieving the first and second objects.
Means comprises a plurality of moving blades on the outer periphery of the hub, and a motor for supporting the moving blades on a rotating shaft is provided.The shape of the moving blade is projected in the axial direction of the rotating shaft. The rotation axis is defined as the origin O, the point at which the hub inner blade chord projection line at the contact portion between the hub and the rotor blade is bisected is defined as the blade inner chord projection center point Pb, and the blade outer circumference of the rotor blade is A point dividing the chord projection line into two equal parts is defined as a blade outer periphery chord projection center point Pt, and a circle having an arbitrary radius R centered on the origin O is drawn. An intersection point where the circle intersects in the projection of the rotor blade is described. And the point at which the arc shown by the radius R is bisected as an arbitrary cross-section chord projection center point Pr, and in the projection view projected on a plane including the rotation axis, the blade inner chord projection center point Pb
And a straight line P connecting the wing outer circumference chord projection center point Pt, a fluid suction side from the straight line P is defined as a positive direction, and a fluid discharge side on the discharge side is defined as a negative direction. The arbitrary cross-section chord projection in which the point Pr is in the positive direction near the wing inner chord projection center point Pb, intersects the straight line P at an arbitrary position, and becomes a negative direction near the wing outer chord projection center point Pt. The locus of the center point Pr is S-shaped , or
A gauge passing on a straight line P near the wing outer peripheral chord projection center point Pt.
It is configured to draw a trace .

【0011】また、第1の目的および第2の目的を達成
するために第2の手段は、前記第1の手段の構成に、回
転軸の原点Oと翼内周弦投影中心点Pbを結ぶ線分をX
b、前記原点Oと翼内周弦投影中心点Ptを結ぶ線分を
Xtとすると、前記線分Xbと前記線分Xtのなす角度
をAθtとしたとき、このAθtは動翼羽根の回転方向
を正方向として30゜〜60゜の範囲であり、前記原点
Oと任意断面翼弦投影中心点Prを結ぶ線分と前記線分
Xbがなす任意の角度をAθとすると、AθはAθtよ
りも小さい値をとり、かつ、前記翼内周弦投影中心点P
bを通り、回転軸と直行する平面を基準面Aとすると、
前記基準面Aから前記任意断面翼弦投影中心点Prまで
の距離をKとした時、Kの半径方向分布はRb<R<
0.46Rtの範囲では0<K<0.125Rtの範囲
であり、0.46Rt<R<0.70Rtの範囲では、
0.12Rt<K<0.17Rtの範囲であり、0.7
0Rt<R<Rtの範囲では、0.16Rt<K<0.
34Rtの範囲をとり、(Rt:羽根外周半径、Rb:
羽根内周半径)、かつ、前記原点Oを中心とする任意の
半径Rの円筒面で切断して、断面を2次元に展開してで
きる翼断面で、前記翼断面における中心線は略円弧形状
とし、前記翼断面の翼弦長LとそりDでそり率Qは、Q
=D/Lで与え、前記翼外周部の翼断面における外周部
そり率Qtは0.05〜0.09の範囲の値をとり、前
記翼内周部の翼断面における内周部そり率Qtは0.0
3〜0.06の範囲の値をとり、外周部より内周部のそ
り率Qの方が小さくなる構成とする。
Further, in order to achieve the first object and the second object, the second means connects the origin O of the rotation axis and the projection center point Pb of the blade inner circumference to the structure of the first means. X for line segment
b, assuming that a line segment connecting the origin O and the blade inner chord projection center point Pt is Xt, when an angle formed by the line segment Xb and the line segment Xt is Aθt, this Aθt is a rotation direction of the moving blade. Is in the range of 30 ° to 60 °, and Aθ is larger than Aθt, where Aθ is an arbitrary angle formed by a line segment connecting the origin O and the arbitrary cross-section chord projection center point Pr and the line segment Xb. Take a small value and set the projection center point P of the wing inner circumference chord
Assuming that a plane passing through b and perpendicular to the rotation axis is a reference plane A,
When the distance from the reference plane A to the arbitrary cross-section chord projection center point Pr is K, the radial distribution of K is Rb <R <
In the range of 0.46Rt, 0 <K <0.125Rt, and in the range of 0.46Rt <R <0.70Rt,
0.12Rt <K <0.17Rt, and 0.7
In the range of 0Rt <R <Rt, 0.16Rt <K <0.
Taking a range of 34 Rt, (Rt: blade outer radius, Rb:
A blade cross section formed by cutting a cylindrical surface having an arbitrary radius R centered on the origin O and cutting the cross section two-dimensionally, and the center line in the blade cross section is substantially arc-shaped. The chord length L and the warp D of the wing section are given by
= D / L, the outer peripheral warpage ratio Qt in the blade cross section of the outer peripheral portion of the blade takes a value in the range of 0.05 to 0.09, and the inner peripheral warp ratio Qt in the blade inner peripheral portion of the blade cross section. Is 0.0
The value is in the range of 3 to 0.06, and the warp ratio Q of the inner peripheral portion is smaller than that of the outer peripheral portion.

【0012】また、第1の目的および第2の目的を達成
するために第3の手段は、前記第1の手段の構成に、回
転軸の原点Oと翼内周弦投影中心点Pbを結ぶ線分をX
b、前記原点Oと翼内周弦投影中心点Ptを結ぶ線分を
Xtとすると、前記線分Xbと前記線分Xtのなす角度
をAθtとしたとき、このAθtは動翼羽根の回転方向
を正方向として30゜〜60゜の範囲であり、前記原点
Oと任意断面翼弦投影中心点Prを結ぶ線分と前記線分
Xbがなす任意の角度をAθとすると、AθはAθtよ
りも小さい値をとり、かつ、前記翼内周弦投影中心点P
bを通り、回転軸と直行する平面を基準面Aとすると、
前記基準面Aから前記任意断面翼弦投影中心点Prまで
の距離をKとした時、Kの半径方向分布はRb<R<
0.46Rtの範囲では0<K<0.125Rtの範囲
であり、0.46Rt<R<0.70Rtの範囲では、
0.12Rt<K<0.17Rtの範囲であり、0.7
0Rt<R<Rtの範囲では、0.16Rt<K<0.
34Rtの範囲をとり、(Rt:羽根外周半径、Rb:
羽根内周半径)、かつ、前記原点Oを中心とする前記任
意の半径Rの円筒面で切断して、断面を2次元に展開し
てできる翼断面で、翼弦と前記回転軸と垂直で前記翼断
面の翼前縁を通る直線である翼列線とのなす角を取付角
Cθとし、前記翼外周部の翼断面における外周部取付角
Cθtは20゜〜35゜の範囲であり、前記翼内周部の
翼断面における内周部取付角Cθbは30゜〜40゜の
範囲である構成とする。
In order to achieve the first object and the second object, the third means connects the origin O of the rotation axis and the projection center point Pb of the blade inner circumference to the structure of the first means. X for line segment
b, assuming that a line segment connecting the origin O and the blade inner chord projection center point Pt is Xt, when an angle formed by the line segment Xb and the line segment Xt is Aθt, this Aθt is a rotation direction of the moving blade. Is in the range of 30 ° to 60 °, and Aθ is larger than Aθt, where Aθ is an arbitrary angle formed by a line segment connecting the origin O and the arbitrary cross-section chord projection center point Pr and the line segment Xb. Take a small value and set the projection center point P of the wing inner circumference chord
Assuming that a plane passing through b and perpendicular to the rotation axis is a reference plane A,
When the distance from the reference plane A to the arbitrary cross-section chord projection center point Pr is K, the radial distribution of K is Rb <R <
In the range of 0.46Rt, 0 <K <0.125Rt, and in the range of 0.46Rt <R <0.70Rt,
0.12Rt <K <0.17Rt, and 0.7
In the range of 0Rt <R <Rt, 0.16Rt <K <0.
Taking a range of 34 Rt, (Rt: blade outer radius, Rb:
Blade inner circumference radius) and a blade section formed by cutting the cylindrical surface of the arbitrary radius R centered on the origin O and expanding the cross section two-dimensionally, perpendicular to the chord and the rotation axis. The angle formed by a straight line passing through the leading edge of the wing section and the cascade line is referred to as a mounting angle Cθ, and the outer peripheral mounting angle Cθt in the wing cross section of the outer peripheral portion of the wing is in a range of 20 ° to 35 °. The inner peripheral portion mounting angle Cθb in the blade cross section of the inner peripheral portion of the blade is in a range of 30 ° to 40 °.

【0013】また、第1の目的および第2の目的を達成
するために第4の手段は、前記第3の手段の構成に、回
転軸の原点Oを中心とする任意の半径Rの円筒面で切断
して、断面を2次元に展開してできる翼断面で、翼の前
記翼断面における中心線は略円弧形状とし、前記翼断面
の翼弦長LとそりDでそり率QはQ=D/Lで与え、前
記翼外周部の翼断面における外周部そり率Qtは0.0
5〜0.09の範囲の値をとり、前記翼内周部の翼断面
における内周部そり率Qtは0.03〜0.06の範囲
の値をとり、外周部より内周部のそり率Qが小さくなる
構成とする。
In order to achieve the first object and the second object, the fourth means comprises a cylindrical surface having an arbitrary radius R centered on the origin O of the rotating shaft. In the blade cross section formed by expanding the cross section two-dimensionally, the center line of the blade in the blade cross section has a substantially arc shape, and the chord length Q of the blade cross section and the warp D are Q = D / L, the outer peripheral portion warpage rate Qt in the blade cross section of the outer peripheral portion of the blade is 0.0
The value in the range of 5 to 0.09 takes a value in the range of 0.03 to 0.06 in the inner peripheral portion warp rate Qt in the blade cross section of the inner peripheral portion of the wing, and the curvature of the inner peripheral portion is higher than the outer peripheral portion. The configuration is such that the rate Q is small.

【0014】また、第1の目的および第2の目的を達成
するために第5の手段は、前記第4の手段の構成に、回
転軸の原点Oを中心とする前記任意の半径Rの円筒面で
切断して、断面を2次元に展開してできる翼断面で翼弦
長Lと、回転軸と垂直で翼の翼前縁を通る直線である翼
列線上で、前記翼の前記翼前縁と前記翼と隣り合う翼の
翼前縁との距離をピッチTとしたとき、節弦比SはS=
L/Tで与え、前記節弦比Sは0.6〜1.0の範囲と
なる構成とする。
In order to achieve the first object and the second object, the fifth means may include a cylinder having the arbitrary radius R centered on the origin O of the rotating shaft. A wing cross section formed by expanding the cross section in a two-dimensional manner, and a cascade line L that is a straight line that is perpendicular to the rotation axis and passes through the wing leading edge of the wing. When the distance between the edge and the leading edge of the wing adjacent to the wing is a pitch T, the chord ratio S is S =
L / T, and the chord ratio S is in the range of 0.6 to 1.0.

【0015】また、第1の目的および第2の目的を達成
するために第6の手段は、前記第2、3、4および第5
の手段に、中心軸を、外周径Dtを有する動翼羽根の回
転軸と同一とし、吸込口側の断面が半径Orで最小内径
Drを示す中心軸に直行する平面上の半径Orの中心か
ら吸込口側に角度Oθだけ伸ばした円弧状の円環であ
り、断面が直線であり長さがLrのダクト部と一体に作
られたオリフィスを有し、前記半径Orは0.15Dt
〜0.4Dtであり、前記最小内径Drは1.02Dt
〜1.03Dtであり、前記角度Oθは30゜〜90゜
であり、前記長さLrは0.05Dt〜0.10Dtで
ある構成とする。
In order to achieve the first object and the second object, the sixth means comprises the second, third, fourth and fifth means.
In the means, the center axis is the same as the rotation axis of the moving blade having the outer diameter Dt, and the cross section on the suction port side is the radius Or and the center of the radius Or on a plane perpendicular to the center axis indicating the minimum inner diameter Dr. An arc-shaped ring extending to the suction port side by an angle Oθ, having an orifice integrally formed with a duct part having a straight section and a length of Lr, and the radius Or being 0.15 Dt.
0.4Dt, and the minimum inner diameter Dr is 1.02Dt.
1.03 Dt, the angle Oθ is 30 ° to 90 °, and the length Lr is 0.05 Dt to 0.10 Dt.

【0016】また、第1の目的および第2の目的を達成
するために第7の手段は、前記第2、3、4および第5
の手段に、中心軸を、外周径Dtを有する動翼羽根の回
転軸と同一とし、吸込口および出口側の断面が半径Or
で最小内径Drを示す中心軸に直行する平面上の半径O
rの中心から吸込口側に角度Oθだけ伸ばした円弧状の
円環であり、断面が直線であり長さがLrのダクト部を
挟み込み一体に作られたオリフィスを有し、前記半径O
rは0.05Dt〜0.2Dtであり、前記最小内径D
rは1.02Dt〜1.03Dtであり、前記角度Oθ
は30゜〜90゜であり、前記長さLrは0.01Dt
〜0.02Dtである構成とする。
In order to achieve the first object and the second object, the seventh means comprises the second, third, fourth and fifth means.
Means, the center axis is the same as the rotation axis of the rotor blade having an outer diameter Dt, and the inlet and outlet sections have a radius Or.
The radius O on a plane perpendicular to the central axis indicating the minimum inner diameter Dr
r is an arc-shaped ring extending from the center to the suction port side by an angle Oθ, having a straight cross section, and having an orifice formed integrally with a duct portion having a length of Lr and having the radius O
r is 0.05 Dt to 0.2 Dt, and the minimum inner diameter D
r is 1.02 Dt to 1.03 Dt, and the angle Oθ
Is 30 ° to 90 °, and the length Lr is 0.01 Dt.
0.00.02 Dt.

【0017】また、第1の目的および第2の目的を達成
するために第8の手段は、前記第1の手段の構成に、回
転軸の原点Oと翼内周弦投影中心点Pbを結ぶ線分をX
b、前記原点Oと前記翼内周弦投影中心点Ptを結ぶ線
分をXtとすると、前記線分Xbと前記線分Xtのなす
角度をAθtとしたとき、このAθtは動翼羽根の回転
方向を正方向として30゜〜60゜の範囲であり、前記
原点Oと任意断面翼弦投影中心点Prを結ぶ線分と前記
線分Xbがなす任意の角度をAθとすると、AθはAθ
tよりも小さい値をとり、かつ、前記翼内周弦投影中心
点Pbを通り、前記回転軸と直行する平面を基準面Aと
すると、前記基準面Aから前記任意断面翼弦投影中心点
Prまでの距離をKとした時、Kの半径方向分布はRb
<R<0.46Rtの範囲では0<K<0.14Rtの
範囲であり、0.46Rt<R<0.70Rtの範囲で
は、0.13Rt<K<0.17Rtの範囲であり、
0.70Rt<R<Rtの範囲では、0.16Rt<K
<0.265Rtの範囲をとり、(Rt:羽根外周半
径、Rb:羽根内周半径)、かつ、前記原点Oを中心と
する任意の半径Rの円筒面で切断して、断面を2次元に
展開してできる翼断面で、前記翼の前記翼断面における
中心線は略円弧形状とし、前記翼断面の翼弦長Lとそり
Dでそり率QはQ=D/Lで与え、前記翼外周部の翼断
面における外周部そり率Qtは0.05〜0.09の範
囲の値をとり、前記翼内周部の翼断面における内周部そ
り率Qtは0.03〜0.06の範囲の値をとり、外周
部より内周部のそり率Qが小さくなる構成とする。
In order to achieve the first and second objects, an eighth means connects the origin O of the rotation axis and the projection center point Pb of the wing inner circumference to the structure of the first means. X for line segment
b, assuming that a line segment connecting the origin O and the blade inner chord projection center point Pt is Xt, when an angle formed by the line segment Xb and the line segment Xt is Aθt, this Aθt is the rotation of the moving blade. If the direction is a positive direction and it is in the range of 30 ° to 60 °, and if an arbitrary angle formed by a line segment connecting the origin O and the arbitrary cross-section chord projection center point Pr and the line segment Xb is Aθ, Aθ is Aθ
Assuming that a plane that takes a value smaller than t and passes through the wing inner circumference chord projection center point Pb and is orthogonal to the rotation axis is a reference plane A, the arbitrary cross-section chord projection center point Pr from the reference plane A When the distance to K is K, the radial distribution of K is Rb
0 <K <0.14Rt in the range of <R <0.46Rt, and 0.13Rt <K <0.17Rt in the range of 0.46Rt <R <0.70Rt;
In the range of 0.70Rt <R <Rt, 0.16Rt <K
Taking a range of <0.265 Rt, (Rt: outer radius of blade, Rb: inner radius of blade), and cut at a cylindrical surface of an arbitrary radius R centered on the origin O, the cross section is two-dimensional. In the wing section that can be developed, the center line of the wing section in the wing section has a substantially arc shape, the chord length L and the sleigh D of the wing section, the warp rate Q is given by Q = D / L, and the wing outer periphery The outer peripheral warpage rate Qt in the blade cross section of the portion takes a value in the range of 0.05 to 0.09, and the inner peripheral warp rate Qt in the blade cross section of the inner peripheral part of the blade ranges from 0.03 to 0.06. And the warp rate Q of the inner peripheral portion is smaller than that of the outer peripheral portion.

【0018】また、第1の目的および第2の目的を達成
するために第9の手段は、前記第1の手段の構成に、回
転軸の原点Oと翼内周弦投影中心点Pbを結ぶ線分をX
b、前記原点Oと翼内周弦投影中心点Ptを結ぶ線分を
Xtとすると、前記線分Xbと前記線分Xtのなす角度
をAθtとしたとき、このAθtは動翼羽根の回転方向
を正方向として30゜〜60゜の範囲であり、前記原点
Oと前記任意断面翼弦投影中心点Prを結ぶ線分と前記
線分Xbがなす任意の角度をAθとすると、AθはAθ
tよりも小さい値をとり、かつ、前記翼内周弦投影中心
点Pbを通り、前記回転軸と直行する平面を基準面Aと
すると、前記基準面Aから前記任意断面翼弦投影中心点
Prまでの距離をKとした時、Kの半径方向分布はRb
<R<0.46Rtの範囲では0<K<0.14Rtの
範囲であり、0.46Rt<R<0.70Rtの範囲で
は、0.13Rt<K<0.17Rtの範囲であり、
0.70Rt<R<Rtの範囲では、0.16Rt<K
<0.265Rtの範囲をとり、(Rt:羽根外周半
径、Rb:羽根内周半径)、かつ、前記原点Oを中心と
する前記任意の半径Rの円筒面で切断して、断面を2次
元に展開してできる翼断面で、翼弦と前記回転軸と垂直
で前記翼断面の翼前縁を通る直線である翼列線とのなす
角を取付角Cθとし、前記翼外周部の翼断面における外
周部取付角Cθtは20゜〜35゜の範囲であり、前記
翼内周部の翼断面における内周部取付角Cθbは30゜
〜40゜の範囲であり、外周部より内周部の取付角Cθ
が大きくなる構成とする。
In order to achieve the first and second objects, the ninth means connects the origin O of the rotation axis and the projection center point Pb of the blade inner circumference to the structure of the first means. X for line segment
b, assuming that a line segment connecting the origin O and the blade inner chord projection center point Pt is Xt, when an angle formed by the line segment Xb and the line segment Xt is Aθt, this Aθt is a rotation direction of the moving blade. Is in the range of 30 ° to 60 °, where Aθ is Aθ, where Aθ is an arbitrary angle formed by a line segment connecting the origin O and the center point Pr of arbitrary cross-section chord projection and the line segment Xb.
Assuming that a plane that takes a value smaller than t and passes through the wing inner circumference chord projection center point Pb and is orthogonal to the rotation axis is a reference plane A, the arbitrary cross-section chord projection center point Pr from the reference plane A When the distance to K is K, the radial distribution of K is Rb
0 <K <0.14Rt in the range of <R <0.46Rt, and 0.13Rt <K <0.17Rt in the range of 0.46Rt <R <0.70Rt;
In the range of 0.70Rt <R <Rt, 0.16Rt <K
Taking a range of <0.265 Rt, (Rt: outer circumference radius of the blade, Rb: inner circumference radius of the blade), and cutting at a cylindrical surface of the arbitrary radius R centered on the origin O, the cross section is two-dimensional. The angle formed between the chord and a cascade line, which is a straight line perpendicular to the rotation axis and passing through the blade leading edge of the wing cross section, is referred to as an attachment angle Cθ, and the wing cross section of the outer periphery of the wing is formed. The outer peripheral portion mounting angle Cθt is in the range of 20 ° to 35 °, the inner peripheral portion mounting angle Cθb in the blade cross section of the inner peripheral portion of the blade is in the range of 30 ° to 40 °, and Mounting angle Cθ
Is increased.

【0019】また、第1の目的および第2の目的を達成
するために第10の手段は、前記第9の手段の構成に、
回転軸の原点Oを中心とする任意の半径Rの円筒面で切
断して、断面を2次元に展開してできる翼断面で、翼の
前記翼断面における中心線は略円弧形状とし、前記翼断
面の翼弦長LとそりDでそり率QはQ=D/Lで与え、
前記翼外周部の翼断面における外周部そり率Qtは0.
05〜0.09の範囲の値をとり、前記翼内周部の翼断
面における内周部そり率Qtは0.03〜0.06の範
囲の値をとり、外周部より内周部のそり率Qが小さくな
る構成とする。
In order to achieve the first object and the second object, the tenth means comprises the configuration of the ninth means,
A wing section formed by cutting a cylindrical surface having an arbitrary radius R centered on the origin O of the rotation axis and expanding the section in two dimensions, the center line of the wing section in the wing section has a substantially arc shape. With the chord length L and the sled D of the cross section, the sled rate Q is given by Q = D / L,
The outer peripheral portion warpage rate Qt in the blade cross section of the outer peripheral portion of the blade is 0.
The value of the inner peripheral portion warp Qt in the blade cross section of the inner peripheral portion of the blade takes a value in the range of 0.03 to 0.06. The configuration is such that the rate Q is small.

【0020】また、第1の目的および第2の目的を達成
するために第11の手段は、前記第10の手段の構成
に、回転軸の原点Oを中心とする任意の半径Rの円筒面
で切断して、断面を2次元に展開してできる翼断面で翼
弦長Lと、回転軸と垂直で翼の翼前縁を通る直線である
翼列線上で、前記翼の前記翼前縁と前記翼と隣り合う翼
の翼前縁との距離をピッチTとしたとき、節弦比SはS
=L/Tで与え、前記節弦比Sは0.6〜1.0の範囲
となる構成とする。
In order to achieve the first object and the second object, the eleventh means includes a cylindrical surface having an arbitrary radius R centered on the origin O of the rotating shaft. And a chord length L in a wing cross section formed by expanding the cross section two-dimensionally, and the wing leading edge of the wing on a cascade line that is a straight line perpendicular to the rotation axis and passing through the wing leading edge of the wing. When the distance between the wing and the leading edge of the adjacent wing is pitch T, the chord ratio S is S
= L / T, and the chord ratio S is in the range of 0.6 to 1.0.

【0021】また、第1の目的および第2の目的を達成
するために第12の手段は、前記第8、9、10または
第11の手段に、中心軸を、外周径Dtを有する動翼羽
根の回転軸と同一とし、吸込口側の断面が半径Orで最
小内径Drを示す中心軸に直行する平面上の半径Orの
中心から吸込口側に角度Oθだけ伸ばした円弧状の円環
であり、断面が直線であり長さがLrのダクト部と一体
に作られたオリフィスを有し、前記半径Orは0.15
Dt〜0.4Dtであり、前記最小内径Drは1.02
Dt〜1.03Dtであり、前記角度Oθは30゜〜9
0゜であり、前記長さLrは0.05Dt〜0.10D
tである構成とする。
In order to achieve the first object and the second object, a twelfth means is provided in the eighth, ninth, tenth or eleventh means, wherein a moving blade having a central axis and an outer diameter Dt is provided. An arcuate ring extending from the center of a radius Or on a plane perpendicular to the central axis showing the minimum diameter Dr and having a cross section on the suction port side extending from the center of the suction port side to the suction port side by the angle Oθ. And has an orifice integrally formed with a duct portion having a straight section and a length of Lr, and the radius Or is 0.15.
Dt to 0.4 Dt, and the minimum inner diameter Dr is 1.02.
Dt to 1.03 Dt, and the angle Oθ is 30 ° to 9
0 °, and the length Lr is 0.05 Dt to 0.10 D
t.

【0022】また、第1の目的および第2の目的を達成
するために第13の手段は、前記第8、9、10または
第11の手段に、中心軸を、外周径Dtを有する動翼羽
根の回転軸と同一とし、吸込口および出口側の断面が半
径Orで最小内径Drを示す中心軸に直行する平面上の
半径Orの中心から吸込口側に角度Oθだけ伸ばした円
弧状の円環であり、断面が直線であり長さがLrのダク
ト部を挟み込み一体に作られたオリフィスを有し、前記
半径Orは0.05Dt〜0.2Dtであり、前記最小
内径Drは1.02Dt〜1.03Dtであり、前記角
度Oθは30゜〜90゜であり、前記長さLrは0.0
1Dt〜0.02Dtである構成とする。
In order to achieve the first object and the second object, a thirteenth means is provided in the eighth, ninth, tenth or eleventh means, in which An arc-shaped circle extending from the center of a radius Or on a plane perpendicular to the center axis showing the minimum inner diameter Dr and having a cross section on the suction port and the outlet side extending from the center of the suction port and the outlet side by an angle Oθ toward the suction port with the same rotation axis as the blade. An orifice formed by sandwiching a duct section having a length of Lr and having a straight section, the radius Or being 0.05 Dt to 0.2 Dt, and the minimum inner diameter Dr being 1.02 Dt. 1.03 Dt, the angle Oθ is 30 ° to 90 °, and the length Lr is 0.0
The configuration is 1Dt to 0.02Dt.

【0023】また、第1、第2および第3の目的を達成
するために第14の手段は、ハブの外周に複数枚の動翼
羽根を備え、この動翼羽根を回転軸で支持するモータを
設け、前記動翼羽根の形状は前記回転軸の軸方向に前記
動翼羽根を投影したときに、前記回転軸に垂直な平面に
映し出される投影図において、前記回転軸を原点Oと
し、前記ハブと前記動翼羽根の接触部における翼内周弦
投影線を2等分する点を翼内周弦投影中心点Pbとし、
前記動翼羽根の翼外周弦投影線を2等分する点を翼外周
弦投影中心点Ptとし、かつ、前記投影図において、前
記原点Oを中心とする任意の半径Rを持つ円を描き、前
記円が前記動翼羽根の投影において交わる交点と半径R
において示される円弧を2等分する点を任意断面翼弦投
影中心点Prとし、かつ、前記回転軸を含む平面に映し
出される投影図において、前記翼内周弦投影中心点Pb
と前記翼外周弦中心点Ptとを結ぶ直線Pを考え、前記
直線Pよりも流体の吸込側にあるものを正方向とし、吐
き出し側にあるものを負方向にあるとすると、前記任意
断面翼弦投影中心点Prが前記翼内周弦投影中心点Pb
付近では正方向にあり、任意の場所で前記直線Pと交わ
り、前記翼外周弦投影中心点Pt付近では直線P上を通
る軌跡を描く構成とする。
In order to achieve the first, second and third objects, a fourteenth means comprises a motor having a plurality of moving blades on the outer periphery of a hub and supporting the moving blades on a rotating shaft. The shape of the bucket blade is projected on the plane perpendicular to the rotation axis when the bucket blade is projected in the axial direction of the rotation axis. The point at which the projection line of the blade inner circumference chord at the contact portion between the hub and the rotor blade is bisected is the blade inner circumference chord projection center point Pb,
A point that bisects the blade outer peripheral chord projection line of the rotor blade is set as a blade outer peripheral chord projection center point Pt, and, in the projection, a circle having an arbitrary radius R centered on the origin O is drawn, The intersection point where the circle intersects in the projection of the bucket blade and the radius R
In the projection view projected on a plane including the rotation axis, a point at which the circular arc shown in FIG.
Considering a straight line P connecting the blade outer peripheral chord center point Pt to a blade on the fluid suction side of the straight line P and a negative direction on the discharge side, The chord projection center point Pr is the wing inner circumference chord projection center point Pb.
In the vicinity, the trajectory is in the positive direction, intersects the straight line P at an arbitrary position, and draws a locus passing on the straight line P near the wing outer peripheral chord projection center point Pt.

【0024】また、第1、第2および第3の目的を達成
するために第15の手段は、前記第14の手段の構成
に、回転軸の原点Oと翼内周弦投影中心点Pbを結ぶ線
分をXb、前記原点Oと翼内周弦投影中心点Ptを結ぶ
線分をXtとすると、前記線分Xbと前記線分Xtのな
す角度をAθtとしたとき、このAθtは動翼羽根の回
転方向を正方向として30゜〜60゜の範囲であり、前
記原点Oと前記任意断面翼弦投影中心点Prを結ぶ線分
と前記線分Xbがなす任意の角度をAθとすると、Aθ
はAθtよりも小さい値をとり、かつ、前記翼内周弦投
影中心点Pbを通り、前記回転軸と直行する平面を基準
面Aとすると、前記基準面Aから前記任意断面翼弦投影
中心点Prまでの距離をKとした時、Kの半径方向分布
はRb<R<0.46Rtの範囲では0<K<0.12
5Rtの範囲であり、0.46Rt<R<0.70Rt
の範囲では、0.12Rt<K<0.17Rtの範囲で
あり、0.70Rt<R<Rtの範囲では、0.16R
t<K<0.265Rtの範囲をとり、(Rt:羽根外
周半径、Rb:羽根内周半径)、かつ、前記原点Oを中
心とする任意の半径Rの円筒面で切断して、断面を2次
元に展開してできる翼断面で、前記翼断面における中心
線は円弧形状とし、前記翼断面の翼弦長LとそりDでそ
り率QはQ=D/Lで与え、前記翼外周部の翼断面にお
ける外周部そり率Qtは0.05〜0.09の範囲の値
をとり、前記翼内周部の翼断面における内周部そり率Q
tは0.03〜0.06の範囲の値をとり、外周部より
内周部のそり率Qが小さくなる構成とする。
Further, in order to achieve the first, second and third objects, a fifteenth means is arranged such that the origin O of the rotation axis and the wing inner circumference chord projection center point Pb are added to the structure of the fourteenth means. Assuming that a connecting line segment is Xb and a connecting line between the origin O and the wing inner chord projection center point Pt is Xt, when an angle formed by the line segment Xb and the line segment Xt is Aθt, this Aθt is When the rotation direction of the blade is a positive direction and the angle is in the range of 30 ° to 60 °, and an arbitrary angle formed by a line segment connecting the origin O and the arbitrary cross-section chord projection center point Pr and the line segment Xb is Aθ, Aθ
Takes a value smaller than Aθt, and assuming that a plane passing through the wing inner chord projection center point Pb and orthogonal to the rotation axis is a reference plane A, the arbitrary cross-section chord projection center point from the reference plane A When the distance to Pr is K, the radial distribution of K is 0 <K <0.12 in the range of Rb <R <0.46Rt.
5Rt, 0.46Rt <R <0.70Rt
Is in the range of 0.12Rt <K <0.17Rt, and in the range of 0.70Rt <R <Rt, it is 0.16Rt.
In the range of t <K <0.265Rt, (Rt: outer circumference radius of the blade, Rb: inner circumference radius of the blade), and cut at a cylindrical surface of an arbitrary radius R centered on the origin O, the cross section is cut. A blade section formed in a two-dimensional manner, the center line of the blade section is formed in an arc shape, the chord length L and the warp D of the blade section, and the warp rate Q is given by Q = D / L. Takes a value in the range of 0.05 to 0.09 in the cross section of the wing, and the warp ratio Qt of the inner periphery in the wing cross section of the inner periphery of the wing.
t takes a value in the range of 0.03 to 0.06, and the warp ratio Q of the inner peripheral portion is smaller than that of the outer peripheral portion.

【0025】また、第1、第2および第3の目的を達成
するために第16の手段は、前記第14の手段の構成
に、回転軸の原点Oと翼内周弦投影中心点Pbを結ぶ線
分をXb、前記原点Oと翼内周弦投影中心点Ptを結ぶ
線分をXtとすると、前記線分Xbと前記線分Xtのな
す角度をAθtとしたとき、このAθtは動翼羽根の回
転方向を正方向として30゜〜60゜の範囲であり、前
記原点Oと前記任意断面翼弦投影中心点Prを結ぶ線分
と前記線分Xbがなす任意の角度をAθとすると、Aθ
はAθtよりも小さい値をとり、かつ、前記翼内周弦投
影中心点Pbを通り、前記回転軸と直行する平面を基準
面Aとすると、前記基準面Aから前記任意断面翼弦投影
中心点Prまでの距離をKとした時、Kの半径方向分布
はRb<R<0.46Rtの範囲では0<K<0.12
5Rtの範囲であり、0.46Rt<R<0.70Rt
の範囲では、0.12Rt<K<0.17Rtの範囲で
あり、0.70Rt<R<Rtの範囲では、0.16R
t<K<0.265Rtの範囲をとり、(Rt:羽根外
周半径、Rb:羽根内周半径)、かつ、前記原点Oを中
心とする前記任意の半径Rの円筒面で切断して、断面を
2次元に展開してできる翼断面で、翼弦と前記回転軸と
垂直で前記翼断面の翼前縁を通る直線である翼列線との
なす角を取付角Cθとし、前記翼外周部の翼断面におけ
る外周部取付角Cθtは20゜〜35゜の範囲であり、
前記翼内周部の翼断面における内周部取付角Cθbは3
0゜〜40゜の範囲であり、外周部より内周部のそり率
Qが小さくなる構成とする。
In order to achieve the first, second, and third objects, the sixteenth means is characterized in that the configuration of the fourteenth means is such that the origin O of the rotation axis and the center point Pb of the wing inner circumference chord are projected. Assuming that a connecting line segment is Xb and a connecting line between the origin O and the wing inner chord projection center point Pt is Xt, when an angle formed by the line segment Xb and the line segment Xt is Aθt, this Aθt is When the rotation direction of the blade is a positive direction and the angle is in the range of 30 ° to 60 °, and an arbitrary angle formed by a line segment connecting the origin O and the arbitrary cross-section chord projection center point Pr and the line segment Xb is Aθ, Aθ
Takes a value smaller than Aθt, and assuming that a plane passing through the wing inner chord projection center point Pb and orthogonal to the rotation axis is a reference plane A, the arbitrary cross-section chord projection center point from the reference plane A When the distance to Pr is K, the radial distribution of K is 0 <K <0.12 in the range of Rb <R <0.46Rt.
5Rt, 0.46Rt <R <0.70Rt
Is in the range of 0.12Rt <K <0.17Rt, and in the range of 0.70Rt <R <Rt, it is 0.16Rt.
A section of t <K <0.265Rt is taken, (Rt: outer circumference radius of the blade, Rb: inner circumference radius of the blade), and cut at a cylindrical surface of the arbitrary radius R centered on the origin O, and a cross section is formed. In a blade section formed by expanding the blade in two dimensions, an angle formed between a chord and a row of cascade lines that is perpendicular to the rotation axis and passes through a leading edge of the blade section is defined as a mounting angle Cθ, The outer peripheral portion mounting angle Cθt in the wing cross section is in the range of 20 ° to 35 °,
The inner peripheral portion mounting angle Cθb in the blade cross section of the inner peripheral portion of the blade is 3
The angle is in the range of 0 ° to 40 °, and the warp rate Q of the inner peripheral portion is smaller than that of the outer peripheral portion.

【0026】また、第1、第2および第3の目的を達成
するために第17の手段は、前記第16の手段の構成
に、回転軸の原点Oを中心とする任意の半径Rの円筒面
で切断して、断面を2次元に展開してできる翼断面で、
翼の前記翼断面における中心線は略円弧形状とし、前記
翼断面の翼弦長LとそりDでそり率QはQ=D/Lで与
え、前記翼外周部の翼断面における外周部そり率Qtは
0.05〜0.09の範囲の値をとり、前記翼内周部の
翼断面における内周部そり率Qtは0.03〜0.06
の範囲の値をとり、外周部より内周部のそり率Qが小さ
くなる構成とする。
In order to achieve the first, second, and third objects, the seventeenth means is characterized in that the sixteenth means comprises a cylinder having an arbitrary radius R centered on the origin O of the rotating shaft. A wing cross section that can be cut in planes and expanded in two dimensions
The center line of the wing section in the wing section is substantially arc-shaped, and the chord length L and the slewing D of the wing section are given by Q = D / L. Qt takes a value in the range of 0.05 to 0.09, and the inner peripheral portion warp rate Qt in the blade section of the inner peripheral portion of the blade is 0.03 to 0.06.
And the warp ratio Q of the inner peripheral portion is smaller than that of the outer peripheral portion.

【0027】また、第1、第2および第3の目的を達成
するために第18の手段は、前記第17の手段の構成
に、原点Oを中心とする任意の半径Rの円筒面で切断し
て、断面を2次元に展開してできる翼断面で翼弦長L
と、回転軸と垂直で翼の翼前縁を通る直線である翼列線
上で、前記翼の前記翼前縁と前記翼と隣り合う翼の翼前
縁との距離をピッチTとしたとき、節弦比SはS=L/
Tで与え、前記節弦比Sは0.6〜1.0の範囲となる
構成とする。
In order to achieve the first, second, and third objects, the eighteenth means may have a configuration in which the seventeenth means is formed by cutting a cylindrical surface having an arbitrary radius R centered on the origin O. And the chord length L
And, on a cascade line that is perpendicular to the rotation axis and passes through the wing leading edge of the wing, when the distance between the wing leading edge of the wing and the wing leading edge of an adjacent wing is a pitch T, The string ratio S is S = L /
T, the string ratio S is in the range of 0.6 to 1.0.

【0028】また、第1、第2および第3の目的を達成
するために第19の手段は、前記第15、16、17ま
たは第18の手段に、中心軸を、外周径Dtを有する動
翼羽根の回転軸と同一とし、吸込口側の断面が半径Or
で最小内径Drを示す中心軸に直行する平面上の半径O
rの中心から吸込口側に角度Oθだけ伸ばした円弧状の
円環であり、断面が直線であり長さがLrのダクト部と
一体に作られたオリフィスを有し、前記半径Orは0.
15Dt〜0.4Dtであり、前記最小内径Drは1.
02Dt〜1.03Dtであり、前記角度Oθは30゜
〜90゜であり、前記長さLrは0.05Dt〜0.1
0Dtである構成とする。
In order to achieve the first, second, and third objects, the nineteenth means may be configured so that the fifteenth, sixteenth, seventeenth, or eighteenth means has a dynamic axis having an outer diameter Dt. The rotation axis of the blade is the same, and the cross section on the suction port side has a radius of Or.
The radius O on a plane perpendicular to the central axis indicating the minimum inner diameter Dr
r is an arc-shaped ring extending from the center to the suction port side by an angle Oθ, and has an orifice integrally formed with a duct portion having a straight cross section and a length of Lr.
15Dt to 0.4Dt, and the minimum inner diameter Dr is 1.Dt.
02Dt to 1.03Dt, the angle Oθ is 30 ° to 90 °, and the length Lr is 0.05Dt to 0.1Dt.
0Dt.

【0029】また、第1、第2および第3の目的を達成
するために第20の手段は、前記第15、16、17ま
たは第18の手段に、中心軸を、外周径Dtを有する動
翼羽根の回転軸と同一とし、吸込口および出口側の断面
が半径Orで最小内径Drを示す中心軸に直行する平面
上の半径Orの中心から吸込口側に角度Oθだけ伸ばし
た円弧状の円環であり、断面が直線であり長さがLrの
ダクト部を挟み込み一体に作られたオリフィスを有し、
前記半径Orは0.05Dt〜0.2Dtであり、前記
最小内径Drは1.02Dt〜1.03Dtであり、前
記角度Oθは30゜〜90゜であり、前記長さLrは
0.01Dt〜0.02Dtである構成とする。
In order to achieve the first, second, and third objects, a twentieth means is characterized in that the fifteenth, sixteenth, seventeenth, or eighteenth means has a dynamic shaft having a central axis and an outer diameter Dt. A circular arc extending from the center of a radius Or on a plane perpendicular to the central axis indicating the minimum inner diameter Dr with a cross section on the suction port and the outlet side extending from the center of the suction port to the suction port side by the same angle as the rotation axis of the blade blade. It has an orifice that is annular, has a straight cross section, and is formed integrally with a duct portion with a length of Lr.
The radius Or is 0.05 Dt to 0.2 Dt, the minimum inner diameter Dr is 1.02 Dt to 1.03 Dt, the angle Oθ is 30 ° to 90 °, and the length Lr is 0.01 Dt to 0.01 Dt. 0.02Dt.

【0030】[0030]

【発明の実施の形態】本発明は上記した第1の手段の構
成により、回転軸を含む平面に映し出される投影図にお
いて、動翼羽根の弦中心点の軌跡がS字を示す形状で設
計しているために、小型化で高静圧、大風量を得るため
の動翼羽根の高回転化による騒音の上昇を抑制すること
が可能で、軸流送風機特有のサージング現象の発生を最
小限にし、使用範囲を大きくすることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the first aspect of the present invention, a locus of a chord center point of a moving blade is designed so as to show an S-shape in a projection view projected on a plane including a rotation axis. As a result, it is possible to suppress the rise in noise due to the high rotation of the moving blades to obtain high static pressure and large air flow with miniaturization, and minimize the occurrence of surging phenomena peculiar to axial blowers. , The use range can be enlarged.

【0031】また、第2、3、4、5、6、7、8、
9、10、11、12または第13の手段の構成によ
り、動翼羽根の回転方向に前進した形状であり、回転軸
を含む平面に映し出される投影図において、動翼羽根の
弦中心点の軌跡がS字または特定した形状であり、また
外周部より内周部のそり率が小さくなり、外周部より内
周部の取付角が大きくなり、また節弦比の範囲を特定
し、オリフィス形状の寸法を特定し、要因の水準を最適
化することにより動翼羽根を設計しているため、小型化
で高静圧、大風量を得るための動翼羽根の高回転化によ
る騒音の上昇を抑制することが可能で、軸流送風機特有
のサージング現象の発生を最小限にし、使用範囲を大き
くすることができる。
Further, the second, third, fourth, fifth, sixth, seventh, eighth,
According to the configuration of the ninth, tenth, twelfth, or thirteenth means, the locus of the chord center point of the moving blade is in a projected shape projected on a plane including the rotation axis in a shape advanced in the rotating direction of the moving blade. Is an S shape or a specified shape, and the warp rate of the inner peripheral portion is smaller than the outer peripheral portion, the mounting angle of the inner peripheral portion is larger than the outer peripheral portion, and the range of the chord ratio is specified, and the orifice shape is Since the blades are designed by specifying dimensions and optimizing the level of factors, the rise in noise due to high rotation of the blades to achieve high static pressure and large airflow with small size is suppressed. It is possible to minimize the occurrence of a surging phenomenon peculiar to an axial blower, and to enlarge the range of use.

【0032】また、第14の手段の構成により、回転軸
を含む平面に映し出される投影図において、動翼羽根の
弦中心点の軌跡を特定する形状で設計しているために、
小型化で高静圧、大風量を得るための動翼羽根の高回転
化による騒音の上昇を抑制することが可能で、軸流送風
機特有のサージング現象の発生を最小限にし、使用範囲
を大きくすることができ、また同一の回転数で締切静圧
を上昇することができる。
Further, according to the structure of the fourteenth means, in the projection view projected on the plane including the rotation axis, it is designed in a shape that specifies the locus of the chord center point of the moving blade,
It is possible to suppress the rise of noise due to high rotation of the moving blade to obtain high static pressure and large air volume by miniaturization, minimize the occurrence of surging phenomenon peculiar to axial blowers, and widen the range of use And the static shutoff pressure can be increased at the same rotational speed.

【0033】また、第15、16、17、18、19お
よび第20の手段の構成により、動翼羽根の回転方向に
前進した形状であり、回転軸を含む平面に映し出される
投影図において、動翼羽根の弦中心点の軌跡を特定する
形状であり、また外周部より内周部のそり率が小さくな
り、外周部より内周部の取付角が大きくなり、また節弦
比の範囲を特定し、オリフィス形状の寸法を特定し、要
因の水準を最適化することにより動翼羽根を設計してい
るため、小型化で高静圧、大風量を得るための動翼羽根
の高回転化による騒音の上昇を抑制することが可能で、
軸流送風機特有のサージング現象の発生を最小限にし、
使用範囲を大きくすることができ、また同一の回転数で
締切静圧を上昇することができる。
Further, with the configuration of the fifteenth, fifteenth, sixteenth, eighteenth, nineteenth and twentieth means, the moving blade has a shape advanced in the rotating direction of the moving blade, and in the projection view projected on a plane including the rotation axis, A shape that specifies the locus of the chord center point of the wing blade.The warpage rate of the inner circumference is smaller than the outer circumference, the mounting angle of the inner circumference is larger than the outer circumference, and the range of the chord ratio is specified. The blades are designed by specifying the dimensions of the orifice shape and optimizing the level of the factors, and by increasing the rotation speed of the blades to obtain high static pressure and large air flow with miniaturization. It is possible to suppress the rise of noise,
Minimize the occurrence of surging phenomena peculiar to axial blowers,
The working range can be increased, and the static shutoff pressure can be increased at the same rotation speed.

【0034】[0034]

【実施例】 以下、本発明の第1実施例について、図1〜
図8を参照しながら説明する。図に示すように、ハブ2
の外周に複数枚の動翼羽根1を備え、動翼羽根1を回転
軸3で支持するモータ4があり、動翼羽根1の形状にお
いて回転軸3の軸方向に動翼羽根1を投影したときに、
回転軸3に垂直な平面に映し出される投影図において、
回転軸3を原点Oとし、ハブ2と動翼羽根1の接触部に
おける翼内周弦投影線5を2等分する点を翼内周弦投影
中心点Pbとし、動翼羽根1の翼外周弦投影線6を2等
分する点を翼外周弦投影中心点Ptとし、かつ、投影図
において、原点Oを中心とする任意の半径Rを持つ円を
描き、円が動翼羽根1の投影において交わる交点7が存
在し、交点7と半径Rにおいて示される円弧8を2等分
する点を任意断面翼弦投影中心点Prとし、かつ、回転
軸3を含む平面に映し出される投影図において、翼内周
弦投影中心点Pbと翼外周弦投影中心点Ptとを結ぶ直
線Pを考え、直線Pよりも流体の吸込側9にあるものを
正方向とし、吐き出し側10にあるものを負方向にある
とすると、任意断面翼弦投影中心点Prが翼内周弦投影
中心点Pb付近では正方向にあり、任意の場所で直線P
と交わり、翼外周弦投影中心点Pt付近では負方向とな
り、任意断面翼弦投影中心点Prの軌跡11がS字を示
す構成となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS.
This will be described with reference to FIG. As shown in the figure, hub 2
A plurality of moving blades 1 are provided on the outer periphery of the motor, and there is a motor 4 that supports the moving blades 1 on a rotating shaft 3. The moving blades 1 are projected in the axial direction of the rotating shaft 3 in the shape of the moving blades 1. sometimes,
In a projection projected on a plane perpendicular to the rotation axis 3,
The rotation axis 3 is defined as the origin O, the point at which the hub 2 and the blade 1 are bisected at the contact point between the blade inner circumference projection line 5 is defined as the blade inner circumference projection center point Pb, and the blade outer circumference of the blade 1 The point at which the chord projection line 6 is bisected is defined as the blade outer peripheral chord projection center point Pt, and a circle having an arbitrary radius R centered on the origin O is drawn in the projection view. In the projection view projected on a plane including the rotation axis 3, there is an intersection 7 that intersects with each other, and a point bisecting the arc 8 indicated by the intersection 7 and the radius R is defined as an arbitrary cross-section chord projection center point Pr. Consider a straight line P connecting the wing inner chord projection center point Pb and the wing outer chord projection center point Pt. A straight line P on the fluid suction side 9 is defined as a positive direction, and a straight line on the discharge side 10 is defined as a negative direction. , The center point Pr of arbitrary cross-section chord projection is located near the center point Pb of wing inner chord projection. There is in the positive direction, the straight line P at any location
, The trajectory 11 of the arbitrary cross-section chord projection center point Pr shows an S shape in the negative direction near the blade outer chord projection center point Pt.

【0035】上記構成により、動翼羽根1がモータ4に
より回転し、機器の小型化、機器性能の使用範囲の拡大
をするために非常に大きな風量および高い静圧を必要と
し、小型で高静圧、大風量を得るためには、動翼羽根1
を高回転する必要がある。回転数を大きくすると、周速
uが上昇するため、翼入口における相対速度w1が上昇
し、渦放出を伴う騒音の音響出力Eに対して6乗の乗数
で依存するため、騒音は急激に上昇する傾向を示す。
With the above structure, the moving blade 1 is rotated by the motor 4, and requires a very large air volume and a high static pressure in order to reduce the size of the equipment and expand the range of use of the equipment performance. In order to obtain pressure and large air volume, the blade 1
Need to rotate at high speed. When the rotation speed is increased, the peripheral speed u increases, so that the relative speed w1 at the blade inlet increases, and the sound output E depends on the sound output E of the noise accompanied with the vortex emission by a sixth power, so that the noise rapidly increases. Show a tendency to.

【0036】また、図6および図7に示すように、低静
圧時には流体は軸方向に平行な流れ方向20となってい
るため従来の設計方法で問題がないが、高静圧時には吸
込側9の逆流21が広がり流体への遠心力の作用により
流れ方向22は動翼羽根1の内周側から外周側への方向
に傾斜することから、従来のような径方向の形状を意識
しない軸流送風機の設計では、十分な設計が行えない
為、翼弦中心点をS字形状とすることで径方向の形状を
与えることにより動翼羽根1の内周側から外周側への傾
斜断面23での形状を決定することができ、この傾斜断
面23では、従来では略円弧形状となり、理論的な出口
流れ24と実際に流れる出口流れ25との角度差は大と
なるが、図8に示すように傾斜断面23でS字形状を示
し、理論的な出口流れ24と実際に流れる出口流れ25
との角度差が小となり、渦放出が減少し効率が上昇す
る。
As shown in FIGS. 6 and 7, at low static pressure, the fluid has a flow direction 20 parallel to the axial direction, so that there is no problem in the conventional design method. 9, the flow direction 22 is inclined from the inner peripheral side to the outer peripheral side of the moving blade 1 by the action of the centrifugal force on the fluid. In the design of the blower, sufficient design cannot be performed. Therefore, by giving a radial shape by making the chord center point an S-shape, the inclined section 23 from the inner peripheral side to the outer peripheral side of the moving blade 1 is provided. In this inclined cross section 23, the shape becomes a substantially arc shape in the past, and the angle difference between the theoretical outlet flow 24 and the actual outlet flow 25 becomes large, but as shown in FIG. As shown in FIG. Exit stream 25 actually flowing and 24
And the angle difference between them becomes smaller, the vortex shedding decreases, and the efficiency increases.

【0037】このため、周速uが小さくても、静圧上昇
をすることができ、高静圧時にも、従来より回転数を低
減でき、騒音を低減することができる。また従来と同一
回転数としたときにも、より高静圧、大風量となるとと
もに、渦放出低減による騒音低減が可能である。
For this reason, even if the peripheral speed u is small, the static pressure can be increased, and even at a high static pressure, the number of revolutions can be reduced and noise can be reduced as compared with the conventional case. Also, when the number of revolutions is the same as that of the related art, a higher static pressure and a larger air volume can be obtained, and noise can be reduced by reducing eddy discharge.

【0038】このように本発明の第1実施例の送風装置
によれば、回転軸3を含む平面に映し出される投影図に
おいて、動翼羽根1の弦中心点の軌跡11がS字を示す
形状で設計しているために、小型化で高静圧、大風量を
得るための動翼羽根1の高回転化による騒音の上昇を抑
制することが可能で、軸流送風機特有のサージング現象
の発生を最小限にし、使用範囲を大きくすることができ
る。
As described above, according to the blower of the first embodiment of the present invention, the locus 11 of the chord center point of the moving blade 1 shows an S-shape in the projected view projected on the plane including the rotating shaft 3. In order to obtain high static pressure and large air flow by miniaturization, it is possible to suppress the rise of noise due to the high rotation speed of the moving blade 1, and a surging phenomenon peculiar to the axial blower is generated. And the range of use can be increased.

【0039】つぎに本発明の第2実施例について図1〜
図12を参照しながら説明する。なお、第1実施例と同
一箇所には同一番号を付けて詳細な説明は省略する。
Next, a second embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0040】図に示すように、ハブ2の外周に複数枚の
動翼羽根1を備え、動翼羽根1の形状において動翼羽根
1の回転軸3の軸方向に動翼羽根1を投影したときに、
回転軸3に垂直な平面に映し出される投影図において、
回転軸3を原点Oとし、ハブ2と動翼羽根1の接触部に
おける翼内周弦投影線5を2等分する点を翼内周弦投影
中心点Pbとし、動翼羽根1の翼外周弦投影線6を2等
分する点を翼外周弦投影中心点Ptとし、かつ、投影図
において、原点Oを中心とする任意の半径Rを持つ円を
描き、円が動翼羽根1の投影において交わる交点7が存
在し、交点7と半径Rにおいて示される円弧8を2等分
する点を任意断面翼弦投影中心点Prとし、原点Oと翼
内周弦投影中心点Pbを結ぶ線分をXb、原点Oと翼内
周弦投影中心点Ptを結ぶ線分をXtとすると、線分X
bと線分Xtのなす角度をAθtとしたとき、Aθtは
動翼羽根1の回転方向を正方向として30゜〜60゜の
範囲であり、原点Oと任意断面翼弦投影中心点Prを結
ぶ線分と線分Xbがなす任意の角度をAθとすると、A
θはAθtよりも小さい値をとり、かつ、回転軸3を含
む平面に映し出される投影図において、翼内周弦投影中
心点Pbと翼外周弦中心点Ptとを結ぶ直線Pを考え、
直線Pよりも流体の吸込側9にあるものを正方向とし、
吐き出し側10にあるものを負方向に有るとすると、任
意断面翼弦投影中心点Prが正方向にあり、任意の場所
で直線Pと交わり、翼外周弦投影中心点Pt付近では負
方向となり、任意断面翼弦投影中心点Prの軌跡11が
S字を示すようにし、かつ、翼内周弦投影中心点Pbを
通り、回転軸3と直行する平面を基準面Aとすると、基
準面Aから任意断面翼弦投影中心点Prまでの距離をK
とした時、Kの半径方向分布はRb<R<0.46Rt
の範囲では0<K<0.125Rtの範囲であり、0.
46Rt<R<0.70Rtの範囲では、0.12Rt
<K<0.17Rtの範囲であり、0.70Rt<R<
Rtの範囲では、0.16Rt<K<0.34Rtの範
囲をとり、 (Rt:羽根外周半径、Rb:羽根内周半
径)、かつ、原点Oを中心とする任意の半径Rの円筒面
で切断して、断面を2次元に展開してできる翼断面13
で、翼断面13における中心線は円弧8形状とし、翼断
面13の翼弦長LとそりDでそり率Qは、Q=D/Lで
与え、翼外周部の翼断面13における外周部そり率Qt
は0.05〜0.09の範囲の値をとり、翼内周部の翼
断面13における内周部そり率Qtは0.03〜0.0
6の範囲の値をとり、外周部より内周部のそり率Qの方
が小さくなる構成にされている。
As shown in the figure, a plurality of moving blades 1 are provided on the outer periphery of a hub 2, and the moving blade 1 is projected in the axial direction of the rotating shaft 3 of the moving blade 1 in the shape of the moving blade 1. sometimes,
In a projection projected on a plane perpendicular to the rotation axis 3,
The rotation axis 3 is defined as the origin O, and the point at which the hub inner chord projected line 5 is bisected at the contact portion between the hub 2 and the blade 1 is designated as the blade inner chord projection center point Pb. A point at which the chord projection line 6 is bisected is defined as a blade outer peripheral chord projection center point Pt, and a circle having an arbitrary radius R centered on the origin O is drawn in the projection view. , A point dividing the arc 8 indicated by the radius R with the intersection 7 into two equal parts is a arbitrarily-sectioned chord projection center point Pr, and a line segment connecting the origin O and the wing inner chord projection center point Pb. Let Xb be a line segment connecting the origin O and the wing inner circumference projection center point Pt, and let Xt be a line segment X
Assuming that the angle between b and the line segment Xt is Aθt, Aθt is in the range of 30 ° to 60 ° with the rotation direction of the bucket blade 1 being the positive direction, and connects the origin O and the arbitrary cross-section chord projection center point Pr. If an arbitrary angle formed by the line segment and the line segment Xb is Aθ, A
θ takes a value smaller than Aθt, and in a projection projected on a plane including the rotation axis 3, consider a straight line P connecting the wing inner chord projection center point Pb and the wing outer chord center point Pt,
An object on the fluid suction side 9 with respect to the straight line P is defined as a positive direction,
If the thing on the discharge side 10 is in the negative direction, the arbitrary cross-section chord projection center point Pr is in the positive direction, intersects the straight line P at any place, and becomes negative in the vicinity of the blade outer chord projection center point Pt, Assuming that the locus 11 of the arbitrary cross-section chord projection center point Pr shows an S shape and that a plane passing through the wing inner circumference chord projection center point Pb and orthogonal to the rotation axis 3 is a reference plane A, the reference plane A The distance to the arbitrary cross-section chord projection center point Pr is K
, The radial distribution of K is Rb <R <0.46Rt
Is in the range of 0 <K <0.125Rt.
In the range of 46Rt <R <0.70Rt, 0.12Rt
<K <0.17Rt, and 0.70Rt <R <
In the range of Rt, a range of 0.16Rt <K <0.34Rt is taken, (Rt: blade outer radius, Rb: blade inner radius), and a cylindrical surface having an arbitrary radius R centered on the origin O. Wing section 13 formed by cutting and expanding the section in two dimensions
The center line of the wing section 13 is formed into an arc shape 8, and the chord length L and the skew D of the wing section 13 are given by Q = D / L. Rate Qt
Takes a value in the range of 0.05 to 0.09, and the inner peripheral portion warpage rate Qt in the wing section 13 of the inner peripheral portion of the wing is 0.03 to 0.09.
6, the warp rate Q of the inner peripheral part is smaller than that of the outer peripheral part.

【0041】上記構成により、動翼羽根1はモータ4に
よって回転し、質量をm、回転半径をr、角速度をωと
したとき遠心力fは、 f=m・r・ω2で与えられる。
With the above configuration, the rotor blade 1 is rotated by the motor 4, and the centrifugal force f is given by f = m · r · ω2 when the mass is m, the radius of rotation is r, and the angular velocity is ω.

【0042】機器の小型化、機器性能の使用範囲の拡大
をするために非常に大きな風量および高い静圧を必要と
し、小型で高静圧、大風量を得るためには、動翼羽根1
を高回転する必要がある。回転数が上昇すると角速度ω
が大きくなり同時に遠心力fも上昇する。
An extremely large air flow and a high static pressure are required to reduce the size of the equipment and expand the range of use of the equipment performance.
Need to rotate at high speed. When the rotation speed increases, the angular velocity ω
And the centrifugal force f also increases.

【0043】したがって高回転時には低回転時よりも、
翼表面における境界層内の流体が内周部から外周部に向
かう流れを生じ、境界層は外周部付近の方が厚くなり、
失速しやすくなるため、サージング現象を起こしやすく
なる、このことから、従来の設計方法では、内周部のそ
り率を外周部のそり率よりも大きくしていた。
Therefore, at the time of high rotation, compared with the time of low rotation,
The fluid in the boundary layer on the wing surface causes a flow from the inner circumference to the outer circumference, and the boundary layer becomes thicker near the outer circumference,
Since the stall is likely to occur, the surging phenomenon is likely to occur. For this reason, in the conventional design method, the warp rate of the inner peripheral portion is set to be larger than that of the outer peripheral portion.

【0044】しかし、図9に示すように、回転方向に前
進角を設けることにより前縁外周部での境界層の集中を
防止することができるので、前縁での失速を遅らせるこ
とができ、サージング現象を起こしにくくし、低静圧時
での騒音を低減することができるとともに、外周部のそ
り率を内周部のそり率よりも大きくすることができるた
め、外周部での仕事量を増加することができる。
However, as shown in FIG. 9, by providing the advance angle in the rotation direction, the concentration of the boundary layer at the outer peripheral portion of the leading edge can be prevented, so that the stall at the leading edge can be delayed. The surging phenomenon is less likely to occur, noise at low static pressure can be reduced, and the warpage rate of the outer peripheral part can be made larger than that of the inner peripheral part. Can be increased.

【0045】また、回転数を大きくすると、周速uが上
昇するため、翼入口における相対速度w1が上昇し、渦
放出を伴う騒音の音響出力Eに対して6乗の乗数で依存
するため、騒音は急激に上昇する傾向を示す。
When the rotational speed is increased, the peripheral speed u increases, so that the relative speed w1 at the blade entrance increases, and the acoustic output E of the noise accompanied with the vortex emission depends on the sixth power multiplier. Noise tends to rise sharply.

【0046】また、低静圧時には流体は軸方向に平行な
流れ方向20となっているため従来の設計方法で問題が
ないが、高静圧時には吸込側9の逆流21が広がり流体
への遠心力の作用により流れ方向22は動翼羽根1の内
周側から外周側への方向に傾斜することから、従来のよ
うな径方向の形状を意識しない軸流送風機の設計では、
十分な設計が行えない為、翼弦中心点をS字形状とする
ことで径方向の形状を与えることにより動翼羽根1の内
周側から外周側への傾斜断面23での形状を決定するこ
とができ、この傾斜断面23では、従来では略円弧形状
となり、理論的な出口流れ24と実際に流れる出口流れ
25との角度差は大となるが、図8に示すように傾斜断
面23でS字形状を示し、理論的な出口流れ24と実際
に流れる出口流れ25との角度差が小となり、渦放出が
減少し効率が上昇する。
At low static pressure, the fluid has a flow direction 20 parallel to the axial direction, so that there is no problem in the conventional design method. However, at high static pressure, the backflow 21 on the suction side 9 expands and centrifugation to the fluid occurs. Since the flow direction 22 is inclined from the inner peripheral side to the outer peripheral side of the moving blade 1 by the action of the force, in the design of the axial flow fan which is not aware of the radial shape as in the related art,
Since sufficient design cannot be performed, the shape of the rotating blade 1 at the inclined cross section 23 from the inner circumferential side to the outer circumferential side is determined by giving the chord center point an S-shape to give a radial shape. Conventionally, the inclined cross section 23 has a substantially arc shape, and the angle difference between the theoretical outlet flow 24 and the actual outlet flow 25 is large. However, as shown in FIG. It shows an S-shape, and the angular difference between the theoretical outlet flow 24 and the actual outlet flow 25 becomes smaller, so that vortex shedding is reduced and efficiency is increased.

【0047】このため、周速uが小さくても、静圧上昇
をすることができ、高静圧時にも、従来より回転数を低
減でき、騒音を低減することができる。また従来と同一
回転数としたときにも、より高静圧、大風量となるとと
もに、渦放出低減による騒音低減が可能である、ここ
で、比騒音レベルKs(dB(A))を、Ks=SPL
−10・Log((Ps+Pv)2・Q)のように定義
する。 (SPL:騒音レベル、Q:風量、Ps:静
圧、 Pv:動圧)。
For this reason, even if the peripheral speed u is small, the static pressure can be increased, and even at a high static pressure, the number of revolutions can be reduced and noise can be reduced. Even when the rotation speed is the same as the conventional one, a higher static pressure and a larger air volume can be obtained, and the noise can be reduced by reducing the vortex emission. Here, the specific noise level Ks (dB (A)) is represented by Ks = SPL
Defined as −10 · Log ((Ps + Pv) 2 · Q). (SPL: noise level, Q: air volume, Ps: static pressure, Pv: dynamic pressure).

【0048】図10に示すように、動翼羽根1の回転方
向を正方向とした外周前進角Aθtは、30゜以上90
゜以下が比騒音レベルKsが小さくなっていることがわ
かるが、強度上の問題から30゜以上60゜以下を最適
値とする。
As shown in FIG. 10, the outer peripheral advance angle Aθt when the rotating direction of the moving blade 1 is the positive direction is 30 ° or more and 90 ° or more.
It can be seen that the specific noise level Ks is smaller when the angle is less than ゜, but the optimum value is 30 ° or more and 60 ° or less from the viewpoint of strength.

【0049】また、図11に示すように、外周部そり率
Qtが0.05以上0.09以下で最適となり、図12
に示すように、内周部そり率Qbが0.03以上0.0
6以下で最適となる。
Further, as shown in FIG. 11, when the outer peripheral portion warp rate Qt is not less than 0.05 and not more than 0.09, it becomes optimum.
As shown in FIG.
Optimum at 6 or less.

【0050】このように本発明の第2実施例の送風装置
によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11がS字を示す形状
で設計し、外周部そり率Qtを内周部そり率Qbよりも
大きくし、それぞれの要因の水準を最適化することで、
小型化で高静圧、大風量を得るための動翼羽根1の高回
転化による騒音の上昇を抑制することが可能で、軸流送
風機特有のサージング現象の発生を最小限にし、使用範
囲を大きくすることができる。
As described above, according to the air blower of the second embodiment of the present invention, the moving blade 1 is advanced in the rotational direction, and the moving blade is shown in a projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the chord center point of 1 is designed so as to show an S shape, the outer peripheral warpage rate Qt is made larger than the inner peripheral warp rate Qb, and the level of each factor is optimized.
It is possible to suppress an increase in noise due to high rotation of the moving blade 1 to obtain a high static pressure and a large air volume by miniaturization, minimize the occurrence of a surging phenomenon peculiar to the axial blower, and reduce a use range. Can be bigger.

【0051】つぎに本発明の第3実施例について図1〜
図10、図13および図14を参照しながら説明する。
なお、第1実施例と同一箇所には同一番号を付けて詳細
な説明は省略する。
Next, a third embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIGS. 10, 13 and 14.
The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0052】図に示すように、ハブ2の外周に複数枚の
動翼羽根1を備え、動翼羽根1の形状において動翼羽根
1の回転軸3の軸方向に動翼羽根1を投影したときに、
回転軸3に垂直な平面に映し出される投影図において、
回転軸3を原点Oとし、ハブ2と動翼羽根1の接触部に
おける翼内周弦投影線5を2等分する点を翼内周弦投影
中心点Pbとし、動翼羽根1の翼外周弦投影線6を2等
分する点を翼外周弦投影中心点Ptとし、かつ、投影図
において、原点Oを中心とする任意の半径Rを持つ円を
描き、円が動翼羽根1の投影において交わる交点7が存
在し、交点7と半径Rにおいて示される円弧8を2等分
する点を任意断面翼弦投影中心点Prとし、原点Oと翼
内周弦投影中心点Pbを結ぶ線分をXb、原点Oと翼内
周弦投影中心点Ptを結ぶ線分をXtとすると、線分X
bと線分Xtのなす角度をAθtとしたとき、Aθtは
動翼羽根1の回転方向を正方向として30゜〜60゜の
範囲であり、原点Oと任意断面翼弦投影中心点Prを結
ぶ線分と線分Xbがなす任意の角度をAθとすると、A
θはAθtよりも小さい値をとり、任意の場所で直線P
と交わり、翼外周弦投影中心点Pt付近では負方向とな
り、任意断面翼弦投影中心点Prの軌跡11がS字を示
し、かつ、回転軸3を含む平面に映し出される投影図に
おいて、翼内周弦投影中心点Pbと翼外周部中心点Pt
とを結ぶ直線Pを考え、直線Pよりも流体の吸込側9に
あるものを正方向とし、吐き出し側10にあるものを負
方向に有るとすると、任意断面翼弦投影中心点Prが正
方向にあり、かつ、翼内周弦投影中心点Pbを通り、回
転軸3と直行する平面を基準面Aとすると、基準面Aか
ら任意断面翼弦投影中心点Prまでの距離をKとした
時、Kの半径方向分布はRb<R<0.46Rtの範囲
では0<K<0.125Rtの範囲であり、0.46R
t<R<0.70Rtの範囲では、0.12Rt<K<
0.17Rtの範囲であり、0.70Rt<R<Rtの
範囲では、0.16Rt<K<0.34Rtの範囲をと
り、(Rt:羽根外周半径、Rb:羽根内周半径)、か
つ、原点Oを中心とする任意の半径Rの円筒面で切断し
て、断面を2次元に展開してできる翼断面13で、翼弦
と回転軸3と垂直で翼断面13の翼前縁を通る直線であ
る翼列線18とのなす角を取付角Cθとし、翼外周部の
翼断面13における外周部取付角Cθtは20゜〜35
゜の範囲であり、翼内周部の翼断面13における内周部
取付角Cθbは30゜〜40゜の範囲である構成とす
る。
As shown in the figure, a plurality of moving blades 1 are provided on the outer periphery of the hub 2, and the moving blades 1 are projected in the axial direction of the rotating shaft 3 of the moving blade 1 in the shape of the moving blade 1. sometimes,
In a projection projected on a plane perpendicular to the rotation axis 3,
The rotation axis 3 is defined as the origin O, and the point at which the hub inner chord projected line 5 is bisected at the contact portion between the hub 2 and the blade 1 is designated as the blade inner chord projection center point Pb. A point at which the chord projection line 6 is bisected is defined as a blade outer peripheral chord projection center point Pt, and a circle having an arbitrary radius R centered on the origin O is drawn in the projection view. , A point dividing the arc 8 indicated by the radius R with the intersection 7 into two equal parts is a arbitrarily-sectioned chord projection center point Pr, and a line segment connecting the origin O and the wing inner chord projection center point Pb. Let Xb be a line segment connecting the origin O and the wing inner circumference projection center point Pt, and let Xt be a line segment X
Assuming that the angle between b and the line segment Xt is Aθt, Aθt is in the range of 30 ° to 60 ° with the rotation direction of the bucket blade 1 being the positive direction, and connects the origin O and the arbitrary cross-section chord projection center point Pr. If an arbitrary angle formed by the line segment and the line segment Xb is Aθ, A
θ is smaller than Aθt, and the straight line P
In the vicinity of the wing outer peripheral chord projection center point Pt, the trajectory 11 of the arbitrary cross-section chord projection center point Pr shows an S shape and is projected on a plane including the rotation axis 3. Chord projection center point Pb and wing outer periphery center point Pt
Considering the straight line P connecting the straight line P to the one on the fluid suction side 9 as the positive direction and the one on the discharge side 10 in the negative direction, the arbitrary cross-section chord projection center point Pr is in the positive direction. And a plane passing through the wing inner circumference chord projection center point Pb and orthogonal to the rotation axis 3 is defined as a reference plane A, the distance from the reference plane A to the arbitrary cross-section chord projection center point Pr is K , K in the radial direction are in the range of 0 <K <0.125Rt in the range of Rb <R <0.46Rt, and 0.46R
In the range of t <R <0.70Rt, 0.12Rt <K <
0.17Rt, in the range of 0.70Rt <R <Rt, 0.16Rt <K <0.34Rt, (Rt: blade outer radius, Rb: blade inner radius), and A wing cross section 13 formed by cutting a cylindrical surface of an arbitrary radius R centered on the origin O and expanding the cross section in two dimensions, passing through the leading edge of the wing cross section 13 perpendicular to the chord and the rotation axis 3. An angle between the straight line and the cascade line 18 is referred to as a mounting angle Cθ, and an outer peripheral portion mounting angle Cθt in the blade cross section 13 of the outer peripheral portion of the blade is 20 ° to 35 °.
、, and the inner peripheral portion mounting angle Cθb in the wing section 13 of the inner peripheral portion of the blade is in the range of 30 ° to 40 °.

【0053】上記構成により、動翼羽根1はモータ4に
よって回転し、質量をm、回転半径をr、角速度をωと
したとき遠心力fは、 f=m・r・ω2で与えられる。
With the above configuration, the rotor blade 1 is rotated by the motor 4, and the centrifugal force f is given by f = m · r · ω2 when the mass is m, the radius of rotation is r, and the angular velocity is ω.

【0054】機器の小型化、機器性能の使用範囲の拡大
をするために非常に大きな風量および高い静圧を必要と
し、小型で高静圧、大風量を得るためには、動翼羽根1
を高回転する必要がある。回転数が上昇すると角速度ω
が大きくなり同時に遠心力fも上昇する。したがって高
回転時には低回転時よりも、翼表面における境界層内の
流体が内周部から外周部に向かう流れを生じ、境界層は
外周部付近の方が厚くなり、失速しやすくなるため、サ
ージング現象を起こしやすくなる。
An extremely large air flow and a high static pressure are required to reduce the size of the equipment and expand the range of use of the equipment performance.
Need to rotate at high speed. When the rotation speed increases, the angular velocity ω
And the centrifugal force f also increases. Therefore, the fluid in the boundary layer on the wing surface flows from the inner circumference to the outer circumference at high rotation more than at low rotation, and the boundary layer becomes thicker near the outer circumference and stalls more easily. Phenomenon is likely to occur.

【0055】しかし、図9に示すように、回転方向に前
進角を設けることにより前縁外周部での境界層の集中を
防止することができるので、前縁での失速を遅らせるこ
とができ、サージング現象を起こしにくくし、低静圧時
での騒音を低減することができる。
However, as shown in FIG. 9, by providing the advancing angle in the rotational direction, the concentration of the boundary layer at the outer peripheral portion of the leading edge can be prevented, so that the stall at the leading edge can be delayed. It is possible to make the surging phenomenon less likely to occur and reduce noise at low static pressure.

【0056】また外周部取付角Cθtが内周部取付角C
θbよりも小さくすることで外周部での仕事の負担を軽
減し、前縁での失速を遅らせることができる。
The outer peripheral mounting angle Cθt is equal to the inner peripheral mounting angle C.
By making it smaller than θb, the work load on the outer peripheral portion can be reduced, and stall at the leading edge can be delayed.

【0057】また、回転数を大きくすると、周速uが上
昇するため、翼入口における相対速度w1が上昇し、渦
放出を伴う騒音の音響出力Eに対して6乗の乗数で依存
するため、騒音は急激に上昇する傾向を示す。
Further, when the rotation speed is increased, the peripheral speed u increases, and the relative speed w1 at the blade inlet increases, and depends on the sound power E of the noise accompanied by the vortex emission by a sixth power multiplier. Noise tends to rise sharply.

【0058】また、低静圧時には流体は軸方向に平行な
流れ方向20となっているため従来の設計方法で問題が
ないが、高静圧時には吸込側9の逆流21が広がり流体
への遠心力の作用により流れ方向22は動翼羽根1の内
周側から外周側への方向に傾斜することから、従来のよ
うな径方向の形状を意識しない軸流送風機の設計では、
十分な設計が行えない為、翼弦中心点をS字形状とする
ことで径方向の形状を与えることにより動翼羽根1の内
周側から外周側への傾斜断面23での形状を決定するこ
とができ、この傾斜断面23では、従来では略円弧形状
となり、理論的な出口流れ24と実際に流れる出口流れ
25との角度差は大となるが、図8に示すように傾斜断
面23でS字形状を示し、理論的な出口流れ24と実際
に流れる出口流れ25との角度差が小となり、渦放出が
減少し効率が上昇する。
At low static pressure, the fluid has a flow direction 20 parallel to the axial direction, so that there is no problem in the conventional design method. The flow direction 22 is inclined from the inner peripheral side to the outer peripheral side of the bucket blade 1 by the action of the force.
Since sufficient design cannot be performed, the shape of the rotating blade 1 at the inclined cross section 23 from the inner circumferential side to the outer circumferential side is determined by giving the chord center point an S-shape to give a radial shape. Conventionally, the inclined cross section 23 has a substantially arc shape, and the angle difference between the theoretical outlet flow 24 and the actual outlet flow 25 is large. However, as shown in FIG. It shows an S-shape, and the angular difference between the theoretical outlet flow 24 and the actual outlet flow 25 becomes smaller, so that vortex shedding is reduced and efficiency is increased.

【0059】このため、周速uが小さくても、静圧上昇
をすることができ、高静圧時にも、従来より回転数を低
減でき、騒音を低減することができる。また従来と同一
回転数としたときにも、より高静圧、大風量となるとと
もに、渦放出低減による騒音低減が可能である。
For this reason, even if the peripheral speed u is small, the static pressure can be increased, and even at a high static pressure, the number of revolutions can be reduced and noise can be reduced. Also, when the number of revolutions is the same as that of the related art, a higher static pressure and a larger air volume can be obtained, and noise can be reduced by reducing eddy discharge.

【0060】ここで、比騒音レベルKs(dB(A))
を、Ks=SPL−10・Log((Ps+Pv)2・
Q)のように定義する。(SPL:騒音レベル、Q:風
量、Ps:静圧、Pv:動圧) 図10示すように、動翼羽根1の回転方向を正方向とし
た外周前進角Aθtは、30゜以上90゜以下が比騒音
レベルKsが小さくなっていることがわかるが、強度上
の問題から30゜以上60゜以下を最適値とする。
Here, the specific noise level Ks (dB (A))
Is calculated as Ks = SPL-10 · Log ((Ps + Pv) 2 ·
Q). (SPL: noise level, Q: air volume, Ps: static pressure, Pv: dynamic pressure) As shown in FIG. 10, the outer peripheral advance angle Aθt when the rotating direction of the moving blade 1 is the positive direction is 30 ° or more and 90 ° or less. It can be seen that the specific noise level Ks is small, but the optimum value is 30 ° or more and 60 ° or less from the problem of strength.

【0061】また、図13に示すように、外周部取付角
Cθtが20゜以上35゜以下で最適となり、図14に
示すように、内周部取付角Cθbが30゜以上40゜以
下で最適となる。
Further, as shown in FIG. 13, the optimum is obtained when the outer peripheral portion mounting angle Cθt is between 20 ° and 35 °, and as shown in FIG. 14, the optimal when the inner peripheral portion mounting angle Cθb is between 30 ° and 40 °. Becomes

【0062】このように本発明の第3実施例の送風装置
によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11がS字を示す形状
で設計し、外周部取付角Cθtを内周部取付角Cθbよ
り小さく、それぞれの要因の水準を最適化することで、
小型化で高静圧、大風量を得るための動翼羽根1の高回
転化による騒音の上昇を抑制することが可能で、軸流送
風機特有のサージング現象の発生を最小限にし、使用範
囲を大きくすることができる。
As described above, according to the air blower of the third embodiment of the present invention, the moving blade 1 is advanced in the rotational direction, and the moving blade is shown in a projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the chord center point of 1 is designed so as to show an S shape, the outer peripheral mounting angle Cθt is smaller than the inner peripheral mounting angle Cθb, and the level of each factor is optimized.
It is possible to suppress an increase in noise due to high rotation of the moving blade 1 to obtain a high static pressure and a large air volume by miniaturization, minimize the occurrence of a surging phenomenon peculiar to the axial blower, and reduce a use range. Can be bigger.

【0063】つぎに本発明の第4実施例について図1〜
図14を参照しながら説明する。なお、第1実施例と同
一箇所には同一番号を付けて詳細な説明は省略する。
Next, a fourth embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0064】図に示すように、ハブ2の外周に複数枚の
動翼羽根1を備え、動翼羽根1の形状において動翼羽根
1の回転軸3の軸方向に動翼羽根1を投影したときに、
回転軸3に垂直な平面に映し出される投影図において、
回転軸3を原点Oとし、ハブ2と動翼羽根1の接触部に
おける翼内周弦投影線5を2等分する点を翼内周弦投影
中心点Pbとし、動翼羽根1の翼外周弦投影線6を2等
分する点を翼外周弦投影中心点Ptとし、かつ、投影図
において、原点Oを中心とする任意の半径Rを持つ円を
描き、円が動翼羽根1の投影において交わる交点7が存
在し、交点7と半径Rにおいて示される円弧8を2等分
する点を任意断面翼弦投影中心点Prとし、原点Oと翼
内周弦投影中心点Pbを結ぶ線分をXb、原点Oと翼内
周弦投影中心点Ptを結ぶ線分をXtとすると、線分X
bと線分Xtのなす角度をAθtとしたとき、Aθtは
動翼羽根1の回転方向を正方向として30゜〜60゜の
範囲であり、原点Oと任意断面翼弦投影中心点Prを結
ぶ線分と線分Xbがなす任意の角度をAθとすると、A
θはAθtよりも小さい値をとり、任意の場所で直線P
と交わり、翼外周弦投影中心点Pt付近では負方向とな
り、任意断面翼弦投影中心点Prの軌跡11がS字を示
し、かつ、回転軸3を含む平面に映し出される投影図に
おいて、翼内周弦投影中心点Pbと翼外周部中心点Pt
とを結ぶ直線Pを考え、直線Pよりも流体の吸込側9に
あるものを正方向とし、吐き出し側10にあるものを負
方向に有るとすると、任意断面翼弦投影中心点Prが正
方向にあり、かつ、翼内周弦投影中心点Pbを通り、回
転軸3と直行する平面を基準面Aとすると、基準面Aか
ら任意断面翼弦投影中心点Prまでの距離をKとした
時、Kの半径方向分布はRb<R<0.46Rtの範囲
では0<K<0.125Rtの範囲であり、0.46R
t<R<0.70Rtの範囲では、0.12Rt<K<
0.17Rtの範囲であり、0.70Rt<R<Rtの
範囲では、0.16Rt<K<0.34Rtの範囲をと
り、(Rt:羽根外周半径、Rb:羽根内周半径)、か
つ、原点Oを中心とする任意の半径Rの円筒面で切断し
て、断面を2次元に展開してできる翼断面13で、翼弦
と回転軸3と垂直で翼断面13の翼前縁を通る直線であ
る翼列線18とのなす角を取付角Cθとし、翼外周部の
翼断面13における外周部取付角Cθtは20゜〜35
゜の範囲であり、翼内周部の翼断面13における内周部
取付角Cθbは30゜〜40゜の範囲である構成とす
る。
As shown in the figure, a plurality of moving blades 1 are provided on the outer periphery of the hub 2, and the moving blades 1 are projected in the axial direction of the rotating shaft 3 of the moving blade 1 in the shape of the moving blade 1. sometimes,
In a projection projected on a plane perpendicular to the rotation axis 3,
The rotation axis 3 is defined as the origin O, and the point at which the hub inner chord projected line 5 is bisected at the contact portion between the hub 2 and the blade 1 is designated as the blade inner chord projection center point Pb. A point at which the chord projection line 6 is bisected is defined as a blade outer peripheral chord projection center point Pt, and a circle having an arbitrary radius R centered on the origin O is drawn in the projection view. , A point dividing the arc 8 indicated by the radius R with the intersection 7 into two equal parts is a arbitrarily-sectioned chord projection center point Pr, and a line segment connecting the origin O and the wing inner chord projection center point Pb. Let Xb be a line segment connecting the origin O and the wing inner circumference projection center point Pt, and let Xt be a line segment X
Assuming that the angle between b and the line segment Xt is Aθt, Aθt is in the range of 30 ° to 60 ° with the rotation direction of the bucket blade 1 being the positive direction, and connects the origin O and the arbitrary cross-section chord projection center point Pr. If an arbitrary angle formed by the line segment and the line segment Xb is Aθ, A
θ is smaller than Aθt, and the straight line P
In the vicinity of the wing outer peripheral chord projection center point Pt, the trajectory 11 of the arbitrary cross-section chord projection center point Pr shows an S shape and is projected on a plane including the rotation axis 3. Chord projection center point Pb and wing outer periphery center point Pt
Considering the straight line P connecting the straight line P to the one on the fluid suction side 9 as the positive direction and the one on the discharge side 10 in the negative direction, the arbitrary cross-section chord projection center point Pr is in the positive direction. And a plane passing through the wing inner circumference chord projection center point Pb and orthogonal to the rotation axis 3 is defined as a reference plane A, the distance from the reference plane A to the arbitrary cross-section chord projection center point Pr is K , K in the radial direction are in the range of 0 <K <0.125Rt in the range of Rb <R <0.46Rt, and 0.46R
In the range of t <R <0.70Rt, 0.12Rt <K <
0.17Rt, in the range of 0.70Rt <R <Rt, 0.16Rt <K <0.34Rt, (Rt: blade outer radius, Rb: blade inner radius), and A wing cross section 13 formed by cutting a cylindrical surface of an arbitrary radius R centered on the origin O and expanding the cross section in two dimensions, passing through the leading edge of the wing cross section 13 perpendicular to the chord and the rotation axis 3. An angle between the straight line and the cascade line 18 is referred to as a mounting angle Cθ, and an outer peripheral portion mounting angle Cθt in the blade cross section 13 of the outer peripheral portion of the blade is 20 ° to 35 °.
、, and the inner peripheral portion mounting angle Cθb in the wing section 13 of the inner peripheral portion of the blade is in the range of 30 ° to 40 °.

【0065】上記構成により、動翼羽根1はモータ4に
よって回転し、質量をm、回転半径をr、角速度をωと
したとき遠心力fは、f=m・r・ω2で与えられる。
With the above configuration, the rotor blade 1 is rotated by the motor 4, and the centrifugal force f is given by f = m · r · ω 2 when the mass is m, the radius of rotation is r, and the angular velocity is ω.

【0066】機器の小型化、機器性能の使用範囲の拡大
をするために非常に大きな風量および高い静圧を必要と
し、小型で高静圧、大風量を得るためには、動翼羽根1
を高回転する必要がある。回転数が上昇すると角速度ω
が大きくなり同時に遠心力fも上昇する。したがって高
回転時には低回転時よりも、翼表面における境界層内の
流体が内周部から外周部に向かう流れを生じ、境界層は
外周部付近の方が厚くなり、失速しやすくなるため、サ
ージング現象を起こしやすくなる。
An extremely large air flow and a high static pressure are required to reduce the size of the equipment and to expand the range of use of the performance of the equipment.
Need to rotate at high speed. When the rotation speed increases, the angular velocity ω
And the centrifugal force f also increases. Therefore, the fluid in the boundary layer on the wing surface flows from the inner circumference to the outer circumference at high rotation more than at low rotation, and the boundary layer becomes thicker near the outer circumference and stalls more easily. Phenomenon is likely to occur.

【0067】このことから、従来の設計方法では、内周
部のそり率を外周部のそり率よりも大きくしていた。し
かし、図9に示すように、回転方向に前進角を設けるこ
とにより前縁外周部での境界層の集中を防止することが
できるので、前縁での失速を遅らせることができ、サー
ジング現象を起こしにくくし、低静圧時での騒音を低減
することができるとともに、外周部のそり率を内周部の
そり率よりも大きくすることができるため、外周部での
仕事量を増加することができる。
For this reason, in the conventional design method, the warp ratio of the inner peripheral portion is set larger than that of the outer peripheral portion. However, as shown in FIG. 9, by providing the advancing angle in the rotation direction, the concentration of the boundary layer at the outer peripheral portion of the leading edge can be prevented, so that the stall at the leading edge can be delayed, and the surging phenomenon can be prevented. In addition to reducing the noise at low static pressure, it is possible to increase the amount of work in the outer peripheral part because the outer peripheral part can have a larger warp rate than the inner peripheral part. Can be.

【0068】また外周部取付角Cθtが内周部取付角C
θbよりも小さくすることで外周部での仕事の負担を軽
減し、前縁での失速を遅らせることができる。
The outer peripheral portion mounting angle Cθt is equal to the inner peripheral portion mounting angle C
By making it smaller than θb, the work load on the outer peripheral portion can be reduced, and stall at the leading edge can be delayed.

【0069】また、回転数を大きくすると、周速uが上
昇するため、翼入口における相対速度w1が上昇し、渦
放出を伴う騒音の音響出力Eに対して6乗の乗数で依存
するため、騒音は急激に上昇する傾向を示す。
When the rotational speed is increased, the peripheral speed u increases, so that the relative speed w1 at the blade inlet increases, and the acoustic output E of the noise accompanied with the vortex emission depends on the sixth power multiplier. Noise tends to rise sharply.

【0070】また、低静圧時には流体は軸方向に平行な
流れ方向20となっているため従来の設計方法で問題が
ないが、高静圧時には吸込側9の逆流21が広がり流体
への遠心力の作用により流れ方向22は動翼羽根1の内
周側から外周側への方向に傾斜することから、従来のよ
うな径方向の形状を意識しない軸流送風機の設計では、
十分な設計が行えない為、翼弦中心点をS字形状とする
ことで径方向の形状を与えることにより動翼羽根1の内
周側から外周側への傾斜断面23での形状を決定するこ
とができ、この傾斜断面23では、従来では略円弧形状
となり、理論的な出口流れ24と実際に流れる出口流れ
25との角度差は大となるが、図8に示すように傾斜断
面23でS字形状を示し、理論的な出口流れ24と実際
に流れる出口流れ25との角度差は小の関係となり、渦
放出が減少し効率が上昇する。
At low static pressure, the fluid has a flow direction 20 parallel to the axial direction, so there is no problem in the conventional design method. However, at high static pressure, the backflow 21 on the suction side 9 expands and centrifugation to the fluid occurs. Since the flow direction 22 is inclined from the inner peripheral side to the outer peripheral side of the moving blade 1 by the action of the force, in the design of the axial flow fan which is not aware of the radial shape as in the related art,
Since sufficient design cannot be performed, the shape of the rotating blade 1 at the inclined cross section 23 from the inner circumferential side to the outer circumferential side is determined by giving the chord center point an S-shape to give a radial shape. Conventionally, the inclined cross section 23 has a substantially arc shape, and the angle difference between the theoretical outlet flow 24 and the actual outlet flow 25 is large. However, as shown in FIG. It shows an S-shape, and the angular difference between the theoretical outlet flow 24 and the actual outlet flow 25 has a small relationship, reducing vortex shedding and increasing efficiency.

【0071】このため、周速uが小さくても、静圧上昇
をすることができ、高静圧時にも、従来より回転数を低
減でき、騒音を低減することができる。また従来と同一
回転数としたときにも、より高静圧、大風量となるとと
もに、渦放出低減による騒音低減が可能である。
For this reason, even if the peripheral speed u is small, the static pressure can be increased, and even at a high static pressure, the number of revolutions can be reduced as compared with the conventional case, and the noise can be reduced. Also, when the number of revolutions is the same as that of the related art, a higher static pressure and a larger air volume can be obtained, and noise can be reduced by reducing eddy discharge.

【0072】ここで、比騒音レベルKs(dB(A))
を、Ks=SPL−10・Log((Ps+Pv)2・
Q)のように定義する。(SPL:騒音レベル、Q:風
量、Ps:静圧、Pv:動圧) 図10に示すように、動翼羽根1の回転方向を正方向と
した外周前進角Aθtは、30゜以上90゜以下が比騒
音レベルKsが小さくなっていることがわかるが、強度
上の問題から30゜以上60゜以下を最適値とする。
Here, the specific noise level Ks (dB (A))
Is calculated as Ks = SPL-10 · Log ((Ps + Pv) 2 ·
Q). (SPL: noise level, Q: air volume, Ps: static pressure, Pv: dynamic pressure) As shown in FIG. 10, the outer peripheral advance angle Aθt when the rotating direction of the moving blade 1 is the positive direction is 30 ° or more and 90 ° or more. The following shows that the specific noise level Ks is small. However, from the problem of strength, the optimum value is 30 ° or more and 60 ° or less.

【0073】また、図11に示すように、外周部そり率
Qtが0.05以上0.09以下で最適となり、図12
に示すように、内周部そり率Qbが0.03以上0.0
6以下で最適となる。
Further, as shown in FIG. 11, when the outer peripheral portion warp rate Qt is 0.05 or more and 0.09 or less, it becomes optimum.
As shown in FIG.
Optimum at 6 or less.

【0074】また、図13に示すように、外周部取付角
Cθtが20゜以上35゜以下で最適となり、図14に
示すように、内周部取付角Cθbが30゜以上40゜以
下で最適となる。
Further, as shown in FIG. 13, the optimum is obtained when the outer peripheral portion mounting angle Cθt is 20 ° or more and 35 ° or less, and as shown in FIG. 14, the optimal when the inner peripheral portion mounting angle Cθb is 30 ° or more and 40 ° or less. Becomes

【0075】このように本発明の第4実施例の送風装置
によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11がS字を示す形状
で設計し、外周部そり率Qtを内周部そり率Qbよりも
大きくし、それぞれの要因の水準を最適化し、外周部取
付角Cθtを内周部取付角Cθbより小さく、それぞれ
の要因の水準を最適化することで、小型化で高静圧、大
風量を得るための動翼羽根1の高回転化による騒音の上
昇を抑制することが可能で、軸流送風機特有のサージン
グ現象の発生を最小限にし、使用範囲を大きくすること
ができる。
As described above, according to the blower of the fourth embodiment of the present invention, the moving blade 1 has a shape advanced in the rotational direction, and is shown in a projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the chord center point of 1 is designed in a shape showing an S-shape, the outer peripheral part warpage rate Qt is made larger than the inner peripheral part warp rate Qb, the level of each factor is optimized, and the outer peripheral part mounting angle Cθt is It is smaller than the inner peripheral part mounting angle Cθb, and by optimizing the levels of the respective factors, it is possible to suppress an increase in noise due to a high rotation speed of the moving blade 1 in order to obtain a high static pressure and a large air flow with a small size. It is possible to minimize the occurrence of a surging phenomenon peculiar to the axial blower, and to enlarge the use range.

【0076】つぎに本発明の第5実施例について図1〜
図15を参照しながら説明する。なお、第1実施例と同
一箇所には同一番号を付けて詳細な説明は省略する。
Next, a fifth embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0077】図に示すように、第4実施例の構成に、原
点Oを中心とする任意の半径Rの円筒面で切断して、断
面を2次元に展開してできる翼断面13で翼弦長Lと、
回転軸3と垂直で翼14の翼前縁17を通る直線である
翼列線18上で、翼14の翼前縁17と隣り合う翼15
の翼前縁19との距離をピッチTとしたとき、節弦比S
は、S=L/Tで与え、節弦比Sは0.6〜1.0の範
囲となる構成としている。
As shown in the figure, the configuration of the fourth embodiment has a wing cross section 13 formed by cutting a cylindrical surface having an arbitrary radius R centered on the origin O and expanding the cross section two-dimensionally. Length L,
A blade 15 adjacent to the blade leading edge 17 of the blade 14 on a cascade line 18 which is a straight line perpendicular to the rotation axis 3 and passing through the blade leading edge 17 of the blade 14.
When the pitch T is the distance from the wing leading edge 19, the chord ratio S
Is given by S = L / T, and the chord ratio S is in the range of 0.6 to 1.0.

【0078】上記構成により、翼弦長Lが変化しない場
合、ピッチTを小さくする、つまり翼の枚数を増加する
ことで高静圧時でも流れを翼に沿いやすくし、境界層の
厚みを小さくすることで騒音の低減をはかれるが、翼枚
数を増加すると翼から発生する音源が増加してしまうた
め低静圧時には反対に騒音が上昇する傾向にある。した
がって低静圧時および高静圧時のバランスをとりながら
低騒音化するために節弦比Sを限定した。
According to the above configuration, when the chord length L does not change, the pitch T is reduced, that is, the number of blades is increased, so that the flow can easily follow the blade even at high static pressure, and the thickness of the boundary layer is reduced. However, when the number of blades is increased, the number of sound sources generated from the blades increases, so that the noise tends to increase when the static pressure is low. Therefore, in order to reduce noise while maintaining a balance between low static pressure and high static pressure, the stringing ratio S is limited.

【0079】また、図15に示すように、節弦比Sが
0.6以上1.0以下で最適となる。このように本発明
の第5実施例の送風装置によれば、動翼羽根1が回転方
向に前進した形状であり、回転軸3を含む平面に映し出
される投影図において、動翼羽根1の弦中心点の軌跡1
1がS字を示す形状で設計し、外周部そり率Qtを内周
部そり率Qbよりも大きくし、節弦比Sを限定し、それ
ぞれの要因の水準を最適化し、外周部取付角Cθtを内
周部取付角Cθbより小さく、それぞれの要因の水準を
最適化することで、小型化で高静圧、大風量を得るため
の動翼羽根1の高回転化による騒音の上昇を抑制するこ
とが可能で、軸流送風機特有のサージング現象の発生を
最小限にし、使用範囲を大きくすることができる。
Further, as shown in FIG. 15, the optimum value is obtained when the chord ratio S is 0.6 or more and 1.0 or less. As described above, according to the blower of the fifth embodiment of the present invention, the moving blade 1 has a shape advanced in the rotational direction, and the chord of the moving blade 1 is shown in a projection view projected on a plane including the rotating shaft 3. Locus 1 of the center point
1 is designed to have an S-shape, the outer peripheral warpage rate Qt is made larger than the inner peripheral warp rate Qb, the chord ratio S is limited, the level of each factor is optimized, and the outer peripheral part mounting angle Cθt Is smaller than the inner peripheral portion mounting angle Cθb, and the level of each factor is optimized to suppress an increase in noise due to high rotation of the moving blade 1 in order to obtain a high static pressure and a large air flow with a small size. It is possible to minimize the occurrence of a surging phenomenon peculiar to an axial blower, and to enlarge a use range.

【0080】つぎに本発明の第6実施例について図1〜
図16を参照しながら説明する。なお、第1実施例と同
一箇所には同一番号を付けて詳細な説明は省略する。
Next, a sixth embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0081】図に示すように、第2、3、4および5実
施例の構成に、中心軸を外周径Dtを有する動翼羽根1
の回転軸3と同一とし、吸込口側の断面が半径Orで最
小内径Drを示す中心軸に直行する平面上の半径Orの
中心から吸込口側に角度Oθだけ伸ばした円弧状の円環
であり、断面が直線であり長さがLrのダクト部と一体
に作られたオリフィスを有し、半径Orは0.15Dt
〜0.4Dtであり、最小内径Drは1.02Dt〜
1.03Dtであり、角度Oθは30゜〜90゜であ
り、長さLrは0.05Dt〜0.10Dtである構成
としている。
As shown in the drawing, the rotor blade 1 having a central axis having an outer diameter Dt is added to the structure of the second, third, fourth and fifth embodiments.
And an arc-shaped ring extending from the center of the radius Or on a plane perpendicular to the central axis showing the minimum inner diameter Dr and having a cross section on the suction port side with a radius Or and extending by an angle Oθ to the suction port side. The orifice has an orifice integrally formed with a duct portion having a straight section and a length of Lr, and has a radius Or of 0.15 Dt.
0.4Dt, and the minimum inner diameter Dr is 1.02Dt.
1.03 Dt, the angle Oθ is 30 ° to 90 °, and the length Lr is 0.05 Dt to 0.10 Dt.

【0082】上記構成により、吸込口側の断面を円弧状
の円管とし、出口側をダクト部とすることで、低静圧時
に翼に沿った流れが中心軸と平行になり、出口での流れ
も乱れにくくなり、騒音が低下する。
With the above configuration, the cross section on the suction port side is an arc-shaped circular pipe, and the outlet side is a duct, so that the flow along the blade at low static pressure becomes parallel to the central axis, and The flow is also less turbulent and noise is reduced.

【0083】このように本発明の第6実施例の送風装置
によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11がS字を示す形状
で設計し、外周部そり率Qtを内周部そり率Qbよりも
大きくし、節弦比Sを限定し、それぞれの要因の水準を
最適化し、外周部取付角Cθtを内周部取付角Cθbよ
り小さくし、また、オリフィスの形状を特定し、それぞ
れの要因の水準を最適化することで、小型化で高静圧、
大風量を得るための動翼羽根1の高回転化による騒音の
上昇を抑制することが可能で、軸流送風機特有のサージ
ング現象の発生を最小限にし、使用範囲を大きくするこ
とができる。
As described above, according to the blower of the sixth embodiment of the present invention, the moving blade 1 has a shape advanced in the rotating direction, and is shown in the projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the chord center point of 1 is designed in a shape showing an S shape, the outer peripheral warpage rate Qt is made larger than the inner peripheral warp rate Qb, the chord ratio S is limited, and the level of each factor is optimized. The outer peripheral portion mounting angle Cθt is made smaller than the inner peripheral portion mounting angle Cθb, and the shape of the orifice is specified, and the level of each factor is optimized.
It is possible to suppress an increase in noise due to an increase in the rotation speed of the rotor blades 1 for obtaining a large air volume, minimize the occurrence of a surging phenomenon peculiar to the axial blower, and increase the range of use.

【0084】つぎに本発明の第7実施例について図1〜
図15および図17を参照しながら説明する。なお、第
1実施例と同一箇所には同一番号を付けて詳細な説明は
省略する。
Next, a seventh embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0085】図に示すように、第2、3、4および5実
施例の構成に、中心軸を外周径Dtを有する動翼羽根1
の回転軸3と同一とし、吸込口および出口側の断面が半
径Orで最小内径Drを示す中心軸に直行する平面上の
半径Orの中心から吸込口側に角度Oθだけ伸ばした円
弧状の円環であり、断面が直線であり長さがLrのダク
ト部を挟み込み一体に作られたオリフィスを有し、半径
Orは0.05Dt〜0.2Dtであり、最小内径Dr
は1.02Dt〜1.03Dtであり、角度Oθは30
゜〜90゜であり、長さLrは0.01Dt〜0.02
Dtである構成としている。
As shown in the drawing, the rotor blade 1 having the outer diameter Dt as the center axis is added to the structure of the second, third, fourth and fifth embodiments.
And an arc-shaped circle extending from the center of a radius Or on a plane perpendicular to the central axis showing the minimum inner diameter Dr and having a cross section on the suction port and the outlet side with a radius Or toward the suction port side by an angle Oθ. It is a ring, has a straight orifice, and has an orifice integrally formed by sandwiching a duct portion having a length of Lr, the radius Or is 0.05 Dt to 0.2 Dt, and the minimum inner diameter Dr is
Is 1.02 Dt to 1.03 Dt, and the angle Oθ is 30
{90}, and the length Lr is 0.01 Dt to 0.02.
Dt.

【0086】上記構成より、吸込口側および出口側の断
面を円弧状の円管とし、ダクト部により接合すること
で、高静圧時には吸込側9の逆流21が広がり流体への
遠心力の作用により動翼羽根1の内周側から外周側への
方向に傾斜することから出口側がダクト部の形状で流体
の出口流れを妨げ、乱れを発生させる原因を排除するこ
とができる。
With the above configuration, the cross sections of the suction port side and the outlet side are arc-shaped circular pipes and are joined by ducts, so that at high static pressure, the backflow 21 on the suction side 9 expands and the action of centrifugal force on the fluid is exerted. As a result, the blade is inclined in the direction from the inner peripheral side to the outer peripheral side of the bucket blade 1, so that the outlet side obstructs the outlet flow of the fluid in the form of a duct portion, and the cause of turbulence can be eliminated.

【0087】このように本発明の第7実施例の送風装置
によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11がS字を示す形状
で設計し、外周部そり率Qtを内周部そり率Qbよりも
大きくし、節弦比Sを限定し、それぞれの要因の水準を
最適化し、外周部取付角Cθtを内周部取付角Cθbよ
り小さくし、またオリフィスの形状を特定し、それぞれ
の要因の水準を最適化することで、小型化で高静圧、大
風量を得るための動翼羽根1の高回転化による騒音の上
昇を抑制することが可能で、軸流送風機特有のサージン
グ現象の発生を最小限にし、使用範囲を大きくすること
ができる。
As described above, according to the air blower of the seventh embodiment of the present invention, the moving blade 1 is advanced in the rotational direction, and the moving blade is shown in a projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the chord center point of 1 is designed in a shape showing an S shape, the outer peripheral warpage rate Qt is made larger than the inner peripheral warp rate Qb, the chord ratio S is limited, and the level of each factor is optimized. In order to obtain a high static pressure and a large air volume by downsizing by making the outer part mounting angle Cθt smaller than the inner part mounting angle Cθb, specifying the shape of the orifice, and optimizing the level of each factor. It is possible to suppress an increase in noise due to the high rotation of the moving blade 1, minimize the occurrence of a surging phenomenon peculiar to the axial blower, and increase the range of use.

【0088】つぎに本発明の第8実施例について図1〜
図12を参照しながら説明する。なお、第1実施例と同
一箇所には同一番号を付けて詳細な説明は省略する。
Next, an eighth embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0089】図に示すように、ハブ2の外周に複数枚の
動翼羽根1を備え、動翼羽根1の形状において動翼羽根
1の回転軸3の軸方向に動翼羽根1を投影したときに、
回転軸3に垂直な平面に映し出される投影図において、
回転軸3を原点Oとし、ハブ2と動翼羽根1の接触部に
おける翼内周弦投影線5を2等分する点を翼内周弦投影
中心点Pbとし、動翼羽根1の翼外周弦投影線6を2等
分する点を翼外周弦投影中心点Ptとし、かつ、投影図
において、原点Oを中心とする任意の半径Rを持つ円を
描き、円が動翼羽根1の投影において交わる交点7が存
在し、交点7と半径Rにおいて示される円弧8を2等分
する点を任意断面翼弦投影中心点Prとし、原点Oと翼
内周弦投影中心点Pbを結ぶ線分をXb、原点Oと翼内
周弦投影中心点Ptを結ぶ線分をXtとすると、線分X
bと線分Xtのなす角度をAθtとしたとき、Aθtは
動翼羽根1の回転方向を正方向として30゜〜60゜の
範囲であり、原点Oと任意断面翼弦投影中心点Prを結
ぶ線分と線分Xbがなす任意の角度をAθとすると、A
θはAθtよりも小さい値をとり、かつ、回転軸3を含
む平面に映し出される投影図において、翼内周弦投影中
心点Pbと翼外周弦中心点Ptとを結ぶ直線Pを考え、
直線Pよりも流体の吸込側9にあるものを正方向とし、
吐き出し側10にあるものを負方向に有るとすると、任
意断面翼弦投影中心点Prが正方向にあり、任意の場所
で直線Pと交わり、翼外周弦投影中心点Pt付近では負
方向となり、任意断面翼弦投影中心点Prの軌跡11が
S字を示すようにし、かつ、翼内周弦投影中心点Pbを
通り、回転軸3と直行する平面を基準面Aとすると、基
準面Aから任意断面翼弦投影中心点Prまでの距離をK
とした時、Kの半径方向分布はRb<R<0.46Rt
の範囲では0<K<0.14Rtの範囲であり、0.4
6Rt<R<0.70Rtの範囲では、0.13Rt<
K<0.17Rtの範囲であり、0.70Rt<R<R
tの範囲では、0.16Rt<K<0.265Rtの範
囲をとり、(Rt:羽根外周半径、Rb:羽根内周半
径)、かつ、原点Oを中心とする任意の半径Rの円筒面
で切断して、断面を2次元に展開してできる翼断面13
で、翼断面13における中心線は円弧8形状とし、翼断
面13の翼弦長LとそりDでそり率Qは、Q=D/Lで
与え、翼外周部の翼断面13における外周部そり率Qt
は0.05〜0.09の範囲の値をとり、翼内周部の翼
断面13における内周部そり率Qtは0.03〜0.0
6の範囲の値をとり、外周部より内周部のそり率Qの方
が小さくなる構成にされている。
As shown in the figure, a plurality of moving blades 1 are provided on the outer periphery of the hub 2, and the moving blade 1 is projected in the axial direction of the rotating shaft 3 of the moving blade 1 in the shape of the moving blade 1. sometimes,
In a projection projected on a plane perpendicular to the rotation axis 3,
The rotation axis 3 is defined as the origin O, and the point at which the hub inner chord projected line 5 is bisected at the contact portion between the hub 2 and the blade 1 is designated as the blade inner chord projection center point Pb. A point at which the chord projection line 6 is bisected is defined as a blade outer peripheral chord projection center point Pt, and a circle having an arbitrary radius R centered on the origin O is drawn in the projection view. , A point dividing the arc 8 indicated by the radius R with the intersection 7 into two equal parts is a arbitrarily-sectioned chord projection center point Pr, and a line segment connecting the origin O and the wing inner chord projection center point Pb. Let Xb be a line segment connecting the origin O and the wing inner circumference projection center point Pt, and let Xt be a line segment X
Assuming that the angle between b and the line segment Xt is Aθt, Aθt is in the range of 30 ° to 60 ° with the rotation direction of the bucket blade 1 being the positive direction, and connects the origin O and the arbitrary cross-section chord projection center point Pr. If an arbitrary angle formed by the line segment and the line segment Xb is Aθ, A
θ takes a value smaller than Aθt, and in a projection projected on a plane including the rotation axis 3, consider a straight line P connecting the wing inner chord projection center point Pb and the wing outer chord center point Pt,
An object on the fluid suction side 9 with respect to the straight line P is defined as a positive direction,
If the thing on the discharge side 10 is in the negative direction, the arbitrary cross-section chord projection center point Pr is in the positive direction, intersects the straight line P at any place, and becomes negative in the vicinity of the blade outer chord projection center point Pt, Assuming that the locus 11 of the arbitrary cross-section chord projection center point Pr shows an S shape and that a plane passing through the wing inner circumference chord projection center point Pb and orthogonal to the rotation axis 3 is a reference plane A, the reference plane A The distance to the arbitrary cross-section chord projection center point Pr is K
, The radial distribution of K is Rb <R <0.46Rt
Is in the range of 0 <K <0.14Rt, and 0.4
In the range of 6Rt <R <0.70Rt, 0.13Rt <
K <0.17Rt, 0.70Rt <R <R
In the range of t, a range of 0.16Rt <K <0.265Rt is taken, (Rt: outer circumference radius of the blade, Rb: inner circumference radius of the blade) and an arbitrary radius R centered on the origin O. Wing cross section 13 formed by cutting and expanding the cross section in two dimensions
The center line of the wing section 13 is formed into an arc shape 8, and the chord length L and the skew D of the wing section 13 are given by Q = D / L. Rate Qt
Takes a value in the range of 0.05 to 0.09, and the inner peripheral portion warpage rate Qt in the wing section 13 of the inner peripheral portion of the wing is 0.03 to 0.09.
6, the warp rate Q of the inner peripheral part is smaller than that of the outer peripheral part.

【0090】上記構成により、動翼羽根1はモータ4に
よって回転し、質量をm、回転半径をr、角速度をωと
したとき遠心力fは、 f=m・r・ω2で与えられる。
機器の小型化、機器性能の使用範囲の拡大をするために
非常に大きな風量および高い静圧を必要とし、小型で高
静圧、大風量を得るためには、動翼羽根1を高回転する
必要がある。回転数が上昇すると角速度ωが大きくなり
同時に遠心力fも上昇する。したがって高回転時には低
回転時よりも、翼表面における境界層内の流体が内周部
から外周部に向かう流れを生じ、境界層は外周部付近の
方が厚くなり、失速しやすくなるため、サージング現象
を起こしやすくなる。このことから、従来の設計方法で
は、内周部のそり率を外周部のそり率よりも大きくして
いた。
With the above configuration, the rotor blade 1 is rotated by the motor 4, and the centrifugal force f is given by f = m · r · ω2 when the mass is m, the radius of rotation is r, and the angular velocity is ω.
A very large air flow and a high static pressure are required in order to reduce the size of the device and to expand the range of use of the device performance. There is a need. As the rotational speed increases, the angular velocity ω increases, and at the same time, the centrifugal force f also increases. Therefore, the fluid in the boundary layer on the wing surface flows from the inner circumference to the outer circumference at high rotation more than at low rotation, and the boundary layer becomes thicker near the outer circumference and stalls more easily. Phenomenon is likely to occur. For this reason, in the conventional design method, the warp rate of the inner peripheral portion is set to be larger than that of the outer peripheral portion.

【0091】しかし、図9に示すように、回転方向に前
進角を設けることにより前縁外周部での境界層の集中を
防止することができるので、前縁での失速を遅らせるこ
とができ、サージング現象を起こしにくくし、低静圧時
での騒音を低減することができるとともに、外周部のそ
り率を内周部のそり率よりも大きくすることができるた
め、外周部での仕事量を増加することができる。
However, as shown in FIG. 9, by providing the advancing angle in the rotation direction, concentration of the boundary layer at the outer peripheral portion of the leading edge can be prevented, so that stall at the leading edge can be delayed. The surging phenomenon is less likely to occur, noise at low static pressure can be reduced, and the warpage rate of the outer peripheral part can be made larger than that of the inner peripheral part. Can be increased.

【0092】また、回転数を大きくすると、周速uが上
昇するため、翼入口における相対速度w1が上昇し、渦
放出を伴う騒音の音響出力Eに対して6乗の乗数で依存
するため、騒音は急激に上昇する傾向を示す。
When the rotational speed is increased, the peripheral speed u increases, so that the relative speed w1 at the blade inlet increases, and the acoustic output E of the noise accompanied by the vortex discharge depends on the sixth power multiplier. Noise tends to rise sharply.

【0093】また、低静圧時には流体は軸方向に平行な
流れ方向20となっているため従来の設計方法で問題が
ないが、高静圧時には吸込側9の逆流21が広がり流体
への遠心力の作用により流れ方向22は動翼羽根1の内
周側から外周側への方向に傾斜することから、従来のよ
うな径方向の形状を意識しない軸流送風機の設計では、
十分な設計が行えない為、翼弦中心点をS字形状とする
ことで径方向の形状を与えることにより動翼羽根1の内
周側から外周側への傾斜断面23での形状を決定するこ
とができ、この傾斜断面23では、従来では略円弧形状
となり、理論的な出口流れ24と実際に流れる出口流れ
25との角度差は大となるが、図8に示すように傾斜断
面23でS字形状を示し、理論的な出口流れ24と実際
に流れる出口流れ25との角度差が小となり、渦放出が
減少し効率が上昇する。
At low static pressure, the fluid has a flow direction 20 parallel to the axial direction, so there is no problem in the conventional design method. However, at high static pressure, the backflow 21 on the suction side 9 expands and centrifugation to the fluid occurs. Since the flow direction 22 is inclined from the inner peripheral side to the outer peripheral side of the bucket blade 1 by the action of the force, in the design of the axial flow blower which is not aware of the radial shape as in the related art,
Since sufficient design cannot be performed, the shape of the rotating blade 1 at the inclined cross section 23 from the inner circumferential side to the outer circumferential side is determined by giving the chord center point an S-shape to give a radial shape. Conventionally, the inclined cross section 23 has a substantially arc shape, and the angle difference between the theoretical outlet flow 24 and the actual outlet flow 25 is large. However, as shown in FIG. It shows an S-shape, and the angular difference between the theoretical outlet flow 24 and the actual outlet flow 25 becomes smaller, so that vortex shedding is reduced and efficiency is increased.

【0094】このため、周速uが小さくても、静圧上昇
をすることができ、高静圧時にも、従来より回転数を低
減でき、騒音を低減することができる。また従来と同一
回転数としたときにも、より高静圧、大風量となるとと
もに、渦放出低減による騒音低減が可能である。
For this reason, even if the peripheral speed u is small, the static pressure can be increased, and even at a high static pressure, the number of revolutions can be reduced as compared with the conventional case, and the noise can be reduced. Also, when the number of revolutions is the same as that of the related art, a higher static pressure and a larger air volume can be obtained, and noise can be reduced by reducing eddy discharge.

【0095】また、Kの半径方向分布を特定すること
で、高静圧時の流れにより一致した形状となり、騒音が
低減できる。
By specifying the radial distribution of K, the shape becomes more consistent with the flow at high static pressure, and noise can be reduced.

【0096】ここで、比騒音レベルKs(dB(A))
を、Ks=SPL−10・Log((Ps+Pv)2・
Q)のように定義する。(SPL:騒音レベル、Q:風
量、Ps:静圧、Pv:動圧) 図10に示すように、動翼羽根1の回転方向を正方向と
した外周前進角Aθtは、30゜以上90゜以下が比騒
音レベルKsが小さくなっていることがわかるが、強度
上の問題から30゜以上60゜以下を最適値とする。
Here, the specific noise level Ks (dB (A))
Is calculated as Ks = SPL-10 · Log ((Ps + Pv) 2 ·
Q). (SPL: noise level, Q: air volume, Ps: static pressure, Pv: dynamic pressure) As shown in FIG. 10, the outer peripheral advance angle Aθt when the rotating direction of the moving blade 1 is the positive direction is 30 ° or more and 90 ° or more. The following shows that the specific noise level Ks is small. However, from the problem of strength, the optimum value is 30 ° or more and 60 ° or less.

【0097】また、図11に示すように、外周部そり率
Qtが0.05以上0.09以下で最適となり、図12
に示すように、内周部そり率Qbが0.03以上0.0
6以下で最適となる。
Further, as shown in FIG. 11, when the outer peripheral portion warp rate Qt is 0.05 or more and 0.09 or less, it becomes optimum.
As shown in FIG.
Optimum at 6 or less.

【0098】このように本発明の第8実施例の送風装置
によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11がS字を示す形状
で設計し、外周部そり率Qtを内周部そり率Qbよりも
大きくし、それぞれの要因の水準を最適化することで、
小型化で高静圧、大風量を得るための動翼羽根1の高回
転化による騒音の上昇を抑制することが可能で、軸流送
風機特有のサージング現象の発生を最小限にし、使用範
囲を大きくすることができる。
As described above, according to the air blower of the eighth embodiment of the present invention, the moving blade 1 is advanced in the rotational direction, and the moving blade is shown in a projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the chord center point of 1 is designed so as to show an S shape, the outer peripheral warpage rate Qt is made larger than the inner peripheral warp rate Qb, and the level of each factor is optimized.
It is possible to suppress an increase in noise due to high rotation of the moving blade 1 to obtain a high static pressure and a large air volume by miniaturization, minimize the occurrence of a surging phenomenon peculiar to the axial blower, and reduce a use range. Can be bigger.

【0099】つぎに本発明の第9実施例について図1〜
図10、図13、図14を参照しながら説明する。な
お、第1実施例と同一箇所には同一番号を付けて詳細な
説明は省略する。
Next, a ninth embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIGS. 10, 13, and 14. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0100】図に示すように、ハブ2の外周に複数枚の
動翼羽根1を備え、動翼羽根1の形状において動翼羽根
1の回転軸3の軸方向に動翼羽根1を投影したときに、
回転軸3に垂直な平面に映し出される投影図において、
回転軸3を原点Oとし、ハブ2と動翼羽根1の接触部に
おける翼内周弦投影線5を2等分する点を翼内周弦投影
中心点Pbとし、動翼羽根1の翼外周弦投影線6を2等
分する点を翼外周弦投影中心点Ptとし、かつ、投影図
において、原点Oを中心とする任意の半径Rを持つ円を
描き、円が動翼羽根1の投影において交わる交点7が存
在し、交点7と半径Rにおいて示される円弧8を2等分
する点を任意断面翼弦投影中心点Prとし、原点Oと翼
内周弦投影中心点Pbを結ぶ線分をXb、原点Oと翼内
周弦投影中心点Ptを結ぶ線分をXtとすると、線分X
bと線分Xtのなす角度をAθtとしたとき、Aθtは
動翼羽根1の回転方向を正方向として30゜〜60゜の
範囲であり、原点Oと任意断面翼弦投影中心点Prを結
ぶ線分と線分Xbがなす任意の角度をAθとすると、A
θはAθtよりも小さい値をとり、任意の場所で直線P
と交わり、翼外周弦投影中心点Pt付近では負方向とな
り、任意断面翼弦投影中心点Prの軌跡11がS字を示
し、かつ、回転軸3を含む平面に映し出される投影図に
おいて、翼内周弦投影中心点Pbと翼外周部中心点Pt
とを結ぶ直線Pを考え、直線Pよりも流体の吸込側9に
あるものを正方向とし、吐き出し側10にあるものを負
方向に有るとすると、任意断面翼弦投影中心点Prが正
方向にあり、かつ、翼内周弦投影中心点Pbを通り、回
転軸3と直行する平面を基準面Aとすると、基準面Aか
ら任意断面翼弦投影中心点Prまでの距離をKとした
時、Kの半径方向分布はRb<R<0.46Rtの範囲
では0<K<0.14Rtの範囲であり、0.46Rt
<R<0.70Rtの範囲では、0.13Rt<K<
0.17Rtの範囲であり、0.70Rt<R<Rtの
範囲では、0.16Rt<K<0.265Rtの範囲を
とり、(Rt:羽根外周半径、Rb:羽根内周半径)、
かつ、原点Oを中心とする任意の半径Rの円筒面で切断
して、断面を2次元に展開してできる翼断面13で、翼
弦と回転軸3と垂直で翼断面13の翼前縁を通る直線で
ある翼列線18とのなす角を取付角Cθとし、翼外周部
の翼断面13における外周部取付角Cθtは20゜〜3
5゜の範囲であり、翼内周部の翼断面13における内周
部取付角Cθbは30゜〜40゜の範囲である構成とす
る。
As shown in the figure, a plurality of moving blades 1 are provided on the outer periphery of a hub 2, and the moving blade 1 is projected in the axial direction of the rotating shaft 3 of the moving blade 1 in the shape of the moving blade 1. sometimes,
In a projection projected on a plane perpendicular to the rotation axis 3,
The rotation axis 3 is defined as the origin O, and the point at which the hub inner chord projected line 5 is bisected at the contact portion between the hub 2 and the blade 1 is designated as the blade inner chord projection center point Pb. A point at which the chord projection line 6 is bisected is defined as a blade outer peripheral chord projection center point Pt, and a circle having an arbitrary radius R centered on the origin O is drawn in the projection view. , A point dividing the arc 8 indicated by the radius R with the intersection 7 into two equal parts is a arbitrarily-sectioned chord projection center point Pr, and a line segment connecting the origin O and the wing inner chord projection center point Pb. Let Xb be a line segment connecting the origin O and the wing inner circumference projection center point Pt, and let Xt be a line segment X
Assuming that the angle between b and the line segment Xt is Aθt, Aθt is in the range of 30 ° to 60 ° with the rotation direction of the bucket blade 1 being the positive direction, and connects the origin O and the arbitrary cross-section chord projection center point Pr. If an arbitrary angle formed by the line segment and the line segment Xb is Aθ, A
θ is smaller than Aθt, and the straight line P
In the vicinity of the wing outer peripheral chord projection center point Pt, the trajectory 11 of the arbitrary cross-section chord projection center point Pr shows an S shape and is projected on a plane including the rotation axis 3. Chord projection center point Pb and wing outer periphery center point Pt
Considering the straight line P connecting the straight line P to the one on the fluid suction side 9 as the positive direction and the one on the discharge side 10 in the negative direction, the arbitrary cross-section chord projection center point Pr is in the positive direction. And a plane passing through the wing inner circumference chord projection center point Pb and orthogonal to the rotation axis 3 is defined as a reference plane A, the distance from the reference plane A to the arbitrary cross-section chord projection center point Pr is K , K in the radial direction range of 0 <K <0.14Rt in the range of Rb <R <0.46Rt, and 0.46Rt
In the range of <R <0.70Rt, 0.13Rt <K <
0.17Rt, in the range of 0.70Rt <R <Rt, 0.16Rt <K <0.265Rt, (Rt: blade outer radius, Rb: blade inner radius),
In addition, a wing cross section 13 formed by cutting a cylindrical surface of an arbitrary radius R centered on the origin O and expanding the cross section two-dimensionally, the wing leading edge of the wing cross section 13 being perpendicular to the chord and the rotation axis 3 The angle formed with the cascade line 18 which is a straight line passing through the blade is referred to as an attachment angle Cθ.
5 °, and the inner peripheral portion mounting angle Cθb in the blade section 13 of the inner peripheral portion of the blade is in the range of 30 ° to 40 °.

【0101】上記構成により、動翼羽根1はモータ4に
よって回転し、質量をm、回転半径をr、角速度をωと
したとき遠心力fはf=m・r・ω2で与えられる。
With the above configuration, the moving blade 1 is rotated by the motor 4, and the centrifugal force f is given by f = m · r · ω 2 when the mass is m, the radius of rotation is r, and the angular velocity is ω.

【0102】機器の小型化、機器性能の使用範囲の拡大
をするために非常に大きな風量および高い静圧を必要と
し、小型で高静圧、大風量を得るためには、動翼羽根1
を高回転する必要がある。回転数が上昇すると角速度ω
が大きくなり同時に遠心力fも上昇する。したがって高
回転時には低回転時よりも、翼表面における境界層内の
流体が内周部から外周部に向かう流れを生じ、境界層は
外周部付近の方が厚くなり、失速しやすくなるため、サ
ージング現象を起こしやすくなる。
An extremely large air flow and a high static pressure are required in order to reduce the size of the equipment and to expand the range of use of the equipment performance.
Need to rotate at high speed. When the rotation speed increases, the angular velocity ω
And the centrifugal force f also increases. Therefore, the fluid in the boundary layer on the wing surface flows from the inner circumference to the outer circumference at high rotation more than at low rotation, and the boundary layer becomes thicker near the outer circumference and stalls more easily. Phenomenon is likely to occur.

【0103】しかし、図9に示すように、回転方向に前
進角を設けることにより前縁外周部での境界層の集中を
防止することができるので、前縁での失速を遅らせるこ
とができ、サージング現象を起こしにくくし、低静圧時
での騒音を低減することができる。
However, as shown in FIG. 9, by providing the advancing angle in the rotation direction, the concentration of the boundary layer at the outer peripheral portion of the leading edge can be prevented, so that the stall at the leading edge can be delayed. It is possible to make the surging phenomenon less likely to occur and reduce noise at low static pressure.

【0104】また外周部取付角Cθtが内周部取付角C
θbよりも小さくすることで外周部での仕事の負担を軽
減し、前縁での失速を遅らせることができる。
The outer peripheral mounting angle Cθt is equal to the inner peripheral mounting angle C.
By making it smaller than θb, the work load on the outer peripheral portion can be reduced, and stall at the leading edge can be delayed.

【0105】また、回転数を大きくすると、周速uが上
昇するため、翼入口における相対速度w1が上昇し、渦
放出を伴う騒音の音響出力Eに対して6乗の乗数で依存
するため、騒音は急激に上昇する傾向を示す。
When the rotational speed is increased, the peripheral speed u increases, so that the relative speed w1 at the blade entrance increases, and the sound output E of the noise accompanied by the vortex emission depends on the sixth power multiplier. Noise tends to rise sharply.

【0106】また、低静圧時には流体は軸方向に平行な
流れ方向20となっているため従来の設計方法で問題が
ないが、高静圧時には吸込側9の逆流21が広がり流体
への遠心力の作用により流れ方向22は動翼羽根1の内
周側から外周側への方向に傾斜することから、従来のよ
うな径方向の形状を意識しない軸流送風機の設計では、
十分な設計が行えない為、翼弦中心点をS字形状とする
ことで径方向の形状を与えることにより動翼羽根1の内
周側から外周側への傾斜断面23での形状を決定するこ
とができ、この傾斜断面23では、従来では略円弧形状
となり、理論的な出口流れ24と実際に流れる出口流れ
25との角度差は大となるが、図8に示すように傾斜断
面23でS字形状を示し、理論的な出口流れ24と実際
に流れる出口流れ25との角度差が小となり、渦放出が
減少し効率が上昇する。
At low static pressure, the fluid has a flow direction 20 parallel to the axial direction, so that there is no problem in the conventional design method. The flow direction 22 is inclined from the inner peripheral side to the outer peripheral side of the bucket blade 1 by the action of the force.
Since sufficient design cannot be performed, the shape of the rotating blade 1 at the inclined cross section 23 from the inner circumferential side to the outer circumferential side is determined by giving the chord center point an S-shape to give a radial shape. Conventionally, the inclined cross section 23 has a substantially arc shape, and the angle difference between the theoretical outlet flow 24 and the actual outlet flow 25 is large. However, as shown in FIG. It shows an S-shape, and the angular difference between the theoretical outlet flow 24 and the actual outlet flow 25 becomes smaller, so that vortex shedding is reduced and efficiency is increased.

【0107】このため、周速uが小さくても、静圧上昇
をすることができ、高静圧時にも、従来より回転数を低
減でき、騒音を低減することができる。また従来と同一
回転数としたときにも、より高静圧、大風量となるとと
もに、渦放出低減による騒音低減が可能である。
Therefore, even if the peripheral speed u is small, the static pressure can be increased, and even at a high static pressure, the number of revolutions can be reduced and noise can be reduced as compared with the conventional case. Also, when the number of revolutions is the same as that of the related art, a higher static pressure and a larger air volume can be obtained, and noise can be reduced by reducing eddy discharge.

【0108】ここで、比騒音レベルKs(dB(A))
を、Ks=SPL−10・Log((Ps+Pv)2・
Q)のように定義する。(SPL:騒音レベル、Q:風
量、Ps:静圧、Pv:動圧) 図10示すように、動翼羽根1の回転方向を正方向とし
た外周前進角Aθtは、30゜以上90゜以下が比騒音
レベルKsが小さくなっていることがわかるが、強度上
の問題から30゜以上60゜以下を最適値とする。
Here, the specific noise level Ks (dB (A))
Is calculated as Ks = SPL-10 · Log ((Ps + Pv) 2 ·
Q). (SPL: noise level, Q: air volume, Ps: static pressure, Pv: dynamic pressure) As shown in FIG. 10, the outer peripheral advance angle Aθt when the rotating direction of the moving blade 1 is the positive direction is 30 ° or more and 90 ° or less. It can be seen that the specific noise level Ks is small, but the optimum value is 30 ° or more and 60 ° or less from the problem of strength.

【0109】また、図13に示すように、外周部取付角
Cθtが20゜以上35゜以下で最適となり、図14に
示すように、内周部取付角Cθbが30゜以上40゜以
下で最適となる。
Further, as shown in FIG. 13, the optimum is obtained when the outer peripheral portion mounting angle Cθt is between 20 ° and 35 °, and as shown in FIG. 14, the optimal when the inner peripheral portion mounting angle Cθb is between 30 ° and 40 °. Becomes

【0110】このように本発明の第9実施例の送風装置
によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11がS字を示す形状
で設計し、外周部取付角Cθtを内周部取付角Cθbよ
り小さく、それぞれの要因の水準を最適化することで、
小型化で高静圧、大風量を得るための動翼羽根1の高回
転化による騒音の上昇を抑制することが可能で、軸流送
風機特有のサージング現象の発生を最小限にし、使用範
囲を大きくすることができる。
As described above, according to the air blower of the ninth embodiment of the present invention, the blade 1 is advanced in the rotation direction, and the blade shown in the projection view projected on the plane including the rotating shaft 3 The trajectory 11 of the chord center point of 1 is designed in a shape showing an S shape, the outer peripheral portion mounting angle Cθt is smaller than the inner peripheral portion mounting angle Cθb, and the level of each factor is optimized.
It is possible to suppress an increase in noise due to high rotation of the moving blade 1 to obtain a high static pressure and a large air volume by miniaturization, minimize the occurrence of a surging phenomenon peculiar to the axial blower, and reduce a use range. Can be bigger.

【0111】つぎに本発明の第10実施例について図1
〜図14を参照しながら説明する。なお、第1実施例と
同一箇所には同一番号を付けて詳細な説明は省略する。
Next, a tenth embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0112】図に示すように、ハブ2の外周に複数枚の
動翼羽根1を備え、動翼羽根1の形状において動翼羽根
1の回転軸3の軸方向に動翼羽根1を投影したときに、
回転軸3に垂直な平面に映し出される投影図において、
回転軸3を原点Oとし、ハブ2と動翼羽根1の接触部に
おける翼内周弦投影線5を2等分する点を翼内周弦投影
中心点Pbとし、動翼羽根1の翼外周弦投影線6を2等
分する点を翼外周弦投影中心点Ptとし、 かつ、投影
図において、原点Oを中心とする任意の半径Rを持つ円
を描き、円が動翼羽根1の投影において交わる交点7が
存在し、交点7と半径Rにおいて示される円弧8を2等
分する点を任意断面翼弦投影中心点Prとし、原点Oと
翼内周弦投影中心点Pbを結ぶ線分をXb、原点Oと翼
内周弦投影中心点Ptを結ぶ線分をXtとすると、線分
Xbと線分Xtのなす角度をAθtとしたとき、Aθt
は動翼羽根1の回転方向を正方向として30゜〜60゜
の範囲であり、原点Oと任意断面翼弦投影中心点Prを
結ぶ線分と線分Xbがなす任意の角度をAθとすると、
AθはAθtよりも小さい値をとり、任意の場所で直線
Pと交わり、翼外周弦投影中心点Pt付近では負方向と
なり、任意断面翼弦投影中心点Prの軌跡11がS字を
示し、かつ、回転軸3を含む平面に映し出される投影図
において、翼内周弦投影中心点Pbと翼外周部中心点P
tとを結ぶ直線Pを考え、直線Pよりも流体の吸込側9
にあるものを正方向とし、吐き出し側10にあるものを
負方向に有るとすると、任意断面翼弦投影中心点Prが
正方向にあり、かつ、翼内周弦投影中心点Pbを通り、
回転軸3と直行する平面を基準面Aとすると、基準面A
から任意断面翼弦投影中心点Prまでの距離をKとした
時、Kの半径方向分布はRb<R<0.46Rtの範囲
では0<K<0.14Rtの範囲であり、0.46Rt
<R<0.70Rtの範囲では、0.13Rt<K<
0.17Rtの範囲であり、0.70Rt<R<Rtの
範囲では、0.16Rt<K<0.265Rtの範囲を
とり、(Rt:羽根外周半径、Rb:羽根内周半径)。
かつ、原点Oを中心とする任意の半径Rの円筒面で切断
して、断面を2次元に展開してできる翼断面13で、翼
弦と回転軸3と垂直で翼断面13の翼前縁を通る直線で
ある翼列線18とのなす角を取付角Cθとし、翼外周部
の翼断面13における外周部取付角Cθtは20゜〜3
5゜の範囲であり、翼内周部の翼断面13における内周
部取付角Cθbは30゜〜40゜の範囲である構成とす
る。
As shown in the figure, a plurality of moving blades 1 are provided on the outer periphery of the hub 2, and the moving blade 1 is projected in the axial direction of the rotating shaft 3 of the moving blade 1 in the shape of the moving blade 1. sometimes,
In a projection projected on a plane perpendicular to the rotation axis 3,
The rotation axis 3 is defined as the origin O, and the point at which the hub inner chord projected line 5 is bisected at the contact portion between the hub 2 and the blade 1 is designated as the blade inner chord projection center point Pb. A point at which the chord projection line 6 is bisected is defined as a blade outer peripheral chord projection center point Pt, and a circle having an arbitrary radius R centered on the origin O is drawn in the projection view, and the circle is projected onto the moving blade 1. , A point dividing the arc 8 indicated by the radius R with the intersection 7 into two equal parts is a arbitrarily-sectioned chord projection center point Pr, and a line segment connecting the origin O and the wing inner chord projection center point Pb. Let Xt be the line segment connecting the origin O and the wing inner chord projection center point Pt, and let Aθt be the angle formed by the line segment Xb and the line segment Xt.
Is in the range of 30 ° to 60 ° with the rotation direction of the moving blade 1 as a positive direction, and Aθ is an arbitrary angle formed by a line segment connecting the origin O and the arbitrary cross-section chord projection center point Pr and a line segment Xb. ,
Aθ takes a value smaller than Aθt, intersects the straight line P at an arbitrary place, becomes a negative direction near the blade outer peripheral chord projection center point Pt, and the trajectory 11 of the arbitrary cross-section chord projection center point Pr shows an S shape, and In the projection view projected on a plane including the rotation axis 3, the wing inner chord projection center point Pb and the wing outer circumference center point P
Considering a straight line P connecting t, the fluid suction side 9
Is in the positive direction, and the object on the discharge side 10 is in the negative direction. If the arbitrary cross-section chord projection center point Pr is in the positive direction, and passes through the wing inner chord projection center point Pb,
Assuming that a plane perpendicular to the rotation axis 3 is a reference plane A, the reference plane A
When the distance from to the arbitrary cross-section chord projection center point Pr is K, the radial distribution of K is 0 <K <0.14Rt in the range of Rb <R <0.46Rt, and 0.46Rt.
In the range of <R <0.70Rt, 0.13Rt <K <
In the range of 0.17Rt, and in the range of 0.70Rt <R <Rt, the range of 0.16Rt <K <0.265Rt is taken (Rt: blade outer radius, Rb: blade inner radius).
In addition, a wing cross section 13 formed by cutting a cylindrical surface of an arbitrary radius R centered on the origin O and expanding the cross section two-dimensionally, the wing leading edge of the wing cross section 13 being perpendicular to the chord and the rotation axis 3 The angle formed with the cascade line 18 which is a straight line passing through the blade is referred to as an attachment angle Cθ.
5 °, and the inner peripheral portion mounting angle Cθb in the blade section 13 of the inner peripheral portion of the blade is in the range of 30 ° to 40 °.

【0113】上記構成により、動翼羽根1はモータ4に
よって回転し、質量をm、回転半径をr、角速度をωと
したとき遠心力fは f=m・r・ω2で与えられる。
With the above configuration, the rotor blade 1 is rotated by the motor 4, and the centrifugal force f is given by f = m · r · ω2 when the mass is m, the radius of rotation is r, and the angular velocity is ω.

【0114】機器の小型化、機器性能の使用範囲の拡大
をするために非常に大きな風量および高い静圧を必要と
し、小型で高静圧、大風量を得るためには、動翼羽根1
を高回転する必要がある。回転数が上昇すると角速度ω
が大きくなり同時に遠心力fも上昇する。したがって高
回転時には低回転時よりも、翼表面における境界層内の
流体が内周部から外周部に向かう流れを生じ、境界層は
外周部付近の方が厚くなり、失速しやすくなるため、サ
ージング現象を起こしやすくなる。
A very large air flow and a high static pressure are required to reduce the size of the equipment and to expand the range of use of the equipment performance.
Need to rotate at high speed. When the rotation speed increases, the angular velocity ω
And the centrifugal force f also increases. Therefore, the fluid in the boundary layer on the wing surface flows from the inner circumference to the outer circumference at high rotation more than at low rotation, and the boundary layer becomes thicker near the outer circumference and stalls more easily. Phenomenon is likely to occur.

【0115】このことから、従来の設計方法では、内周
部のそり率を外周部のそり率よりも大きくしていた。
For this reason, in the conventional design method, the warp ratio of the inner peripheral portion is set larger than that of the outer peripheral portion.

【0116】しかし、図9に示すように、回転方向に前
進角を設けることにより前縁外周部での境界層の集中を
防止することができるので、前縁での失速を遅らせるこ
とができ、サージング現象を起こしにくくし、低静圧時
での騒音を低減することができるとともに、外周部のそ
り率を内周部のそり率よりも大きくすることができるた
め、外周部での仕事量を増加することができる。
However, as shown in FIG. 9, by providing the advance angle in the rotation direction, the concentration of the boundary layer at the outer peripheral portion of the leading edge can be prevented, so that the stall at the leading edge can be delayed. The surging phenomenon is less likely to occur, noise at low static pressure can be reduced, and the warpage rate of the outer peripheral part can be made larger than that of the inner peripheral part. Can be increased.

【0117】また外周部取付角Cθtが内周部取付角C
θbよりも小さくすることで外周部での仕事の負担を軽
減し、前縁での失速を遅らせることができる。
The outer peripheral mounting angle Cθt is equal to the inner peripheral mounting angle C.
By making it smaller than θb, the work load on the outer peripheral portion can be reduced, and stall at the leading edge can be delayed.

【0118】また、回転数を大きくすると、周速uが上
昇するため、翼入口における相対速度w1が上昇し、渦
放出を伴う騒音の音響出力Eに対して6乗の乗数で依存
するため、騒音は急激に上昇する傾向を示す。
When the rotational speed is increased, the peripheral speed u increases, so that the relative speed w1 at the blade inlet increases, and the acoustic output E of the noise accompanied by the vortex discharge depends on the sixth power multiplier. Noise tends to rise sharply.

【0119】また、低静圧時には流体は軸方向に平行な
流れ方向20となっているため従来の設計方法で問題が
ないが、高静圧時には吸込側9の逆流21が広がり流体
への遠心力の作用により流れ方向22は動翼羽根1の内
周側から外周側への方向に傾斜することから、従来のよ
うな径方向の形状を意識しない軸流送風機の設計では、
十分な設計が行えない為、翼弦中心点をS字形状とする
ことで径方向の形状を与えることにより動翼羽根1の内
周側から外周側への傾斜断面23での形状を決定するこ
とができ、この傾斜断面23では、従来では略円弧形状
となり、理論的な出口流れ24と実際に流れる出口流れ
25との角度差は大となるが、図8に示すように傾斜断
面23でS字形状を示し、理論的な出口流れ24と実際
に流れる出口流れ25との角度差は小の関係となり、渦
放出が減少し効率が上昇する。
At a low static pressure, the fluid has a flow direction 20 parallel to the axial direction, so that there is no problem in the conventional design method. The flow direction 22 is inclined from the inner peripheral side to the outer peripheral side of the bucket blade 1 by the action of the force.
Since sufficient design cannot be performed, the shape of the rotating blade 1 at the inclined cross section 23 from the inner circumferential side to the outer circumferential side is determined by giving the chord center point an S-shape to give a radial shape. Conventionally, the inclined cross section 23 has a substantially arc shape, and the angle difference between the theoretical outlet flow 24 and the actual outlet flow 25 is large. However, as shown in FIG. It shows an S-shape, and the angular difference between the theoretical outlet flow 24 and the actual outlet flow 25 has a small relationship, reducing vortex shedding and increasing efficiency.

【0120】このため、周速uが小さくても、静圧上昇
をすることができ、高静圧時にも、従来より回転数を低
減でき、騒音を低減することができる。また従来と同一
回転数としたときにも、より高静圧、大風量となるとと
もに、渦放出低減による騒音低減が可能である。
Therefore, even if the peripheral speed u is small, the static pressure can be increased, and even at a high static pressure, the number of revolutions can be reduced and the noise can be reduced. Also, when the number of revolutions is the same as that of the related art, a higher static pressure and a larger air volume can be obtained, and noise can be reduced by reducing eddy discharge.

【0121】ここで、比騒音レベルKs(dB(A))
を、Ks=SPL−10・Log((Ps+Pv)2・
Q)のように定義する。(SPL:騒音レベル、Q:風
量、Ps:静圧、Pv:動圧) 図10に示すように、動翼羽根1の回転方向を正方向と
した外周前進角Aθtは、30゜以上90゜以下が比騒
音レベルKsが小さくなっていることがわかるが、強度
上の問題から30゜以上60゜以下を最適値とする。
Here, the specific noise level Ks (dB (A))
Is calculated as Ks = SPL-10 · Log ((Ps + Pv) 2 ·
Q). (SPL: noise level, Q: air volume, Ps: static pressure, Pv: dynamic pressure) As shown in FIG. 10, the outer peripheral advance angle Aθt when the rotating direction of the moving blade 1 is the positive direction is 30 ° or more and 90 ° or more. The following shows that the specific noise level Ks is small. However, from the problem of strength, the optimum value is 30 ° or more and 60 ° or less.

【0122】また、図11に示すように、外周部そり率
Qtが0.05以上0.09以下で最適となり、図12
に示すように、内周部そり率Qbが0.03以上0.0
6以下で最適となる。
Further, as shown in FIG. 11, when the outer peripheral portion warp ratio Qt is not less than 0.05 and not more than 0.09, it becomes optimum.
As shown in FIG.
Optimum at 6 or less.

【0123】また、図13に示すように、外周部取付角
Cθtが20゜以上35゜以下で最適となり、図14に
示すように、内周部取付角Cθbが30゜以上40゜以
下で最適となる。
Further, as shown in FIG. 13, the outer peripheral portion mounting angle Cθt is optimum when it is 20 ° or more and 35 ° or less, and as shown in FIG. 14, the inner peripheral portion mounting angle Cθb is optimum when it is 30 ° or more and 40 ° or less. Becomes

【0124】このように本発明の第10実施例の送風装
置によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11がS字を示す形状
で設計し、外周部そり率Qtを内周部そり率Qbよりも
大きくし、それぞれの要因の水準を最適化し、外周部取
付角Cθtを内周部取付角Cθbより小さく、それぞれ
の要因の水準を最適化することで、小型化で高静圧、大
風量を得るための動翼羽根1の高回転化による騒音の上
昇を抑制することが可能で、軸流送風機特有のサージン
グ現象の発生を最小限にし、使用範囲を大きくすること
ができる。
As described above, according to the air blower of the tenth embodiment of the present invention, the moving blade 1 is advanced in the rotational direction, and the moving blade is shown in a projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the chord center point 1 is designed so as to show an S shape, the outer peripheral warpage rate Qt is made larger than the inner peripheral warp rate Qb, the level of each factor is optimized, and the outer peripheral part mounting angle Cθt is reduced. It is smaller than the inner peripheral part mounting angle Cθb, and by optimizing the levels of the respective factors, it is possible to suppress an increase in noise due to high rotation of the moving blade 1 in order to obtain a high static pressure and a large air flow with a small size. It is possible to minimize the occurrence of a surging phenomenon peculiar to the axial blower, and to enlarge the range of use.

【0125】つぎに本発明の第11実施例について図1
〜図15を参照しながら説明する。なお、第1実施例と
同一箇所には同一番号を付けて詳細な説明は省略する。
Next, an eleventh embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0126】図に示すように、第10実施例の構成に、
原点Oを中心とする任意の半径Rの円筒面で切断して、
断面を2次元に展開してできる翼断面13で翼弦長L
と、回転軸3と垂直で翼14の翼前縁17を通る直線で
ある翼列線18上で、翼14の翼前縁17と隣り合う翼
15の翼前縁19との距離をピッチTとしたとき、節弦
比Sは、S=L/Tで与え、節弦比Sは0.6〜1.0
の範囲となる構成としている。
As shown in the figure, the configuration of the tenth embodiment is
Cutting at a cylindrical surface with an arbitrary radius R centered on the origin O,
Chord length L in wing section 13 formed by expanding the section in two dimensions
And the distance between the wing leading edge 17 of the adjacent wing 15 and the wing leading edge 19 of the adjacent wing 15 on the cascade line 18 which is a straight line perpendicular to the rotation axis 3 and passing through the wing leading edge 17 of the wing 14. Then, the string ratio S is given by S = L / T, and the string ratio S is 0.6 to 1.0.
Configuration.

【0127】上記構成により、翼弦長Lが変化しない場
合、ピッチTを小さくする、つまり翼の枚数を増加する
ことで高静圧時でも流れを翼に沿いやすくし、境界層の
厚みを小さくすることで騒音の低減をはかれるが、翼枚
数を増加すると翼から発生する音源が増加してしまうた
め低静圧時には反対に騒音が上昇する傾向にある。
According to the above configuration, when the chord length L does not change, the pitch T is reduced, that is, by increasing the number of blades, the flow can easily follow the blade even at high static pressure, and the thickness of the boundary layer is reduced. However, when the number of blades is increased, the number of sound sources generated from the blades increases, so that the noise tends to increase when the static pressure is low.

【0128】したがって低静圧時および高静圧時のバラ
ンスをとりながら低騒音化するために節弦比Sを限定し
た。
Therefore, the string ratio S was limited in order to reduce noise while maintaining a balance between low static pressure and high static pressure.

【0129】また、図15に示すように、節弦比Sが
0.6以上1.0以下で最適となる。このように本発明
の第11実施例の送風装置によれば、動翼羽根1が回転
方向に前進した形状であり、回転軸3を含む平面に映し
出される投影図において、動翼羽根1の弦中心点の軌跡
11がS字を示す形状で設計し、外周部そり率Qtを内
周部そり率Qbよりも大きくし、節弦比Sを限定し、そ
れぞれの要因の水準を最適化し、外周部取付角Cθtを
内周部取付角Cθbより小さく、それぞれの要因の水準
を最適化することで、小型化で高静圧、大風量を得るた
めの動翼羽根1の高回転化による騒音の上昇を抑制する
ことが可能で、軸流送風機特有のサージング現象の発生
を最小限にし、使用範囲を大きくすることができる。
Further, as shown in FIG. 15, the optimum value is obtained when the chord ratio S is 0.6 or more and 1.0 or less. As described above, according to the air blower of the eleventh embodiment of the present invention, the moving blade 1 has a shape advancing in the rotation direction, and the chord of the moving blade 1 is shown in a projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the center point is designed in a shape showing an S shape, the outer peripheral warpage rate Qt is made larger than the inner peripheral warp rate Qb, the chord ratio S is limited, and the level of each factor is optimized. The angle of attachment Cθt is smaller than the angle of attachment Cθb of the inner circumference, and by optimizing the levels of the respective factors, noise reduction due to high rotation of the moving blade 1 to obtain high static pressure and a large air flow with a small size is achieved. It is possible to suppress the rise, minimize the occurrence of the surging phenomenon peculiar to the axial blower, and enlarge the use range.

【0130】つぎに本発明の第12実施例について図1
〜図16を参照しながら説明する。なお、第1実施例と
同一箇所には同一番号を付けて詳細な説明は省略する。
Next, a twelfth embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0131】図に示すように、第8、9、10および1
1実施例の構成に、中心軸を外周径Dtを有する動翼羽
根1の回転軸3と同一とし、吸込口側の断面が半径Or
で最小内径Drを示す中心軸に直行する平面上の半径O
rの中心から吸込口側に角度Oθだけ伸ばした円弧状の
円環であり、断面が直線であり長さがLrのダクト部と
一体に作られたオリフィスを有し、半径Orは0.15
Dt〜0.4Dtであり、最小内径Drは1.02Dt
〜1.03Dtであり、角度Oθは30゜〜90゜であ
り、長さLrは0.05Dt〜0.10Dtである構成
としている。
As shown in the figure, the eighth, ninth, tenth, and first
In the configuration of the first embodiment, the center axis is the same as the rotation axis 3 of the rotor blade 1 having the outer diameter Dt, and the cross section on the suction port side has a radius Or.
The radius O on a plane perpendicular to the central axis indicating the minimum inner diameter Dr
a circular orifice extending from the center of r to the suction port side by an angle Oθ, having an orifice integrally formed with a duct portion having a straight section and a length of Lr, and having a radius Or of 0.15.
Dt to 0.4 Dt, and the minimum inner diameter Dr is 1.02 Dt.
1.03 Dt, the angle Oθ is 30 ° to 90 °, and the length Lr is 0.05 Dt to 0.10 Dt.

【0132】上記構成により、吸込口側の断面を円弧状
の円管とし、出口側をダクト部とすることで、低静圧時
に翼に沿った流れが中心軸と平行になり、出口での流れ
も乱れにくくなり、騒音が低下する。
With the above configuration, the cross section on the suction port side is an arc-shaped circular tube, and the outlet side is a duct section, so that the flow along the blade at the time of low static pressure becomes parallel to the central axis. The flow is also less turbulent and noise is reduced.

【0133】このように本発明の第12実施例の送風装
置によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11がS字を示す形状
で設計し、外周部そり率Qtを内周部そり率Qbよりも
大きくし、節弦比Sを限定し、それぞれの要因の水準を
最適化し、外周部取付角Cθtを内周部取付角Cθbよ
り小さくし、また、オリフィスの形状を特定し、それぞ
れの要因の水準を最適化することで、小型化で高静圧、
大風量を得るための動翼羽根1の高回転化による騒音の
上昇を抑制することが可能で、軸流送風機特有のサージ
ング現象の発生を最小限にし、使用範囲を大きくするこ
とができる。
As described above, according to the air blower of the twelfth embodiment of the present invention, the moving blade 1 has a shape advanced in the rotational direction, and the moving blade 1 The trajectory 11 of the chord center point of 1 is designed so as to show an S shape, the outer peripheral warp ratio Qt is made larger than the inner peripheral warp ratio Qb, the chord ratio S is limited, and the level of each factor is optimized. The outer peripheral portion mounting angle Cθt is made smaller than the inner peripheral portion mounting angle Cθb, and the shape of the orifice is specified, and the level of each factor is optimized.
It is possible to suppress an increase in noise due to an increase in the rotation speed of the rotor blades 1 for obtaining a large air volume, minimize the occurrence of a surging phenomenon peculiar to the axial blower, and increase the range of use.

【0134】つぎに本発明の第13実施例について図1
〜図15、図17を参照しながら説明する。なお、第1
実施例と同一箇所には同一番号を付けて詳細な説明は省
略する。
Next, a thirteenth embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIGS. The first
The same parts as those of the embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0135】図に示すように、第8、9、10および1
1実施例の構成に、中心軸を外周径Dtを有する動翼羽
根1の回転軸3と同一とし、吸込口および出口側の断面
が半径Orで最小内径Drを示す中心軸に直行する平面
上の半径Orの中心から吸込口側に角度Oθだけ伸ばし
た円弧状の円環であり、断面が直線であり長さがLrの
ダクト部を挟み込み一体に作られたオリフィスを有し、
半径Orは0.05Dt〜0.2Dtであり、最小内径
Drは1.02Dt〜1.03Dtであり、角度Oθは
30゜〜90゜であり、長さLrは0.01Dt〜0.
02Dtである構成としている。
As shown in FIG.
In the configuration of the first embodiment, the center axis is the same as the rotation axis 3 of the rotor blade 1 having the outer diameter Dt, and the cross section of the suction port and the outlet side is a radius Or, and is on a plane perpendicular to the center axis indicating the minimum inner diameter Dr. A circular arc extending from the center of the radius Or to the suction port side by an angle Oθ, having an orifice integrally formed by sandwiching a duct portion having a linear cross section and a length of Lr,
The radius Or is 0.05 Dt to 0.2 Dt, the minimum inner diameter Dr is 1.02 Dt to 1.03 Dt, the angle Oθ is 30 ° to 90 °, and the length Lr is 0.01 Dt to 0.
02Dt.

【0136】上記構成により、吸込口側および出口側の
断面を円弧状の円管とし、ダクト部により接合すること
で、高静圧時には吸込側9の逆流21が広がり流体への
遠心力の作用により動翼羽根1の内周側から外周側への
方向に傾斜することから出口側がダクト部の形状で流体
の出口流れを妨げ、乱れを発生させる原因を排除するこ
とができる。
With the above structure, the cross sections of the suction port side and the outlet side are arc-shaped circular pipes and are joined by ducts, so that the backflow 21 on the suction side 9 expands at high static pressure and the centrifugal force acts on the fluid. As a result, the blade is inclined in the direction from the inner peripheral side to the outer peripheral side of the bucket blade 1, so that the outlet side obstructs the outlet flow of the fluid in the form of a duct portion, and the cause of turbulence can be eliminated.

【0137】このように本発明の第13実施例の送風装
置によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11がS字を示す形状
で設計し、外周部そり率Qtを内周部そり率Qbよりも
大きくし、節弦比Sを限定し、それぞれの要因の水準を
最適化し、外周部取付角Cθtを内周部取付角Cθbよ
り小さくし、またオリフィスの形状を特定し、それぞれ
の要因の水準を最適化することで、小型化で高静圧、大
風量を得るための動翼羽根1の高回転化による騒音の上
昇を抑制することが可能で、軸流送風機特有のサージン
グ現象の発生を最小限にし、使用範囲を大きくすること
ができる。
As described above, according to the air blower of the thirteenth embodiment of the present invention, the moving blade 1 is advanced in the rotational direction, and the moving blade is shown in a projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the chord center point of 1 is designed so as to show an S shape, the outer peripheral warp ratio Qt is made larger than the inner peripheral warp ratio Qb, the chord ratio S is limited, and the level of each factor is optimized. To obtain a high static pressure and a large air flow by miniaturization by making the outer peripheral mounting angle Cθt smaller than the inner peripheral mounting angle Cθb, specifying the shape of the orifice, and optimizing the level of each factor. It is possible to suppress an increase in noise due to high rotation of the moving blade 1, minimize the occurrence of a surging phenomenon peculiar to the axial blower, and increase the range of use.

【0138】つぎに本発明の第14実施例について図1
〜図7、図18を参照しながら説明する。なお、第1実
施例と同一箇所には同一番号を付けて詳細な説明は省略
する。
Next, a fourteenth embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0139】図に示すように、ハブ2の外周に複数枚の
動翼羽根1を備え、動翼羽根1を回転軸3で支持するモ
ータ4があり、動翼羽根1の形状において回転軸3の軸
方向に動翼羽根1を投影したときに、回転軸3に垂直な
平面に映し出される投影図において、回転軸3を原点O
とし、ハブ2と動翼羽根1の接触部における翼内周弦投
影線5を2等分する点を翼内周弦投影中心点Pbとし、
動翼羽根1の翼外周弦投影線6を2等分する点を翼外周
弦投影中心点Ptとし、かつ、投影図において、原点O
を中心とする任意の半径Rを持つ円を描き、円が動翼羽
根1の投影において交わる交点7が存在し、交点7と半
径Rにおいて示される円弧8を2等分する点を任意断面
翼弦投影中心点Prとし、かつ、回転軸3を含む平面に
映し出される投影図において、翼内周弦投影中心点Pb
と翼外周弦中心点Ptとを結ぶ直線Pを考え、直線Pよ
りも流体の吸込側9にあるものを正方向とし、吐き出し
側10にあるものを負方向にあるとすると、任意断面翼
弦投影中心点Prが翼内周弦投影中心点Pb付近では正
方向にあり、任意の場所で直線Pと交わり、翼外周弦投
影中心点Pt付近では直線P上を通る軌跡11を描く構
成としている。
As shown in the figure, there is a motor 4 provided with a plurality of moving blades 1 on the outer periphery of a hub 2 and supporting the moving blades 1 on a rotating shaft 3. When the rotor blades 1 are projected in the axial direction, the rotation axis 3 is set to the origin O in a projection view projected on a plane perpendicular to the rotation axis 3.
A point at which the wing inner chord projection line 5 at the contact portion between the hub 2 and the moving blade 1 is bisected is a wing inner chord projection center point Pb,
A point at which the blade outer peripheral chord projection line 6 of the rotor blade 1 is bisected is a blade outer peripheral chord projection center point Pt.
, A circle having an arbitrary radius R is drawn, and there is an intersection 7 at which the circle intersects in the projection of the moving blade 1, and a point bisecting the intersection 8 and the arc 8 indicated by the radius R is an arbitrary cross-section blade. In the projection view which is set as the chord projection center point Pr and is projected on a plane including the rotation axis 3, the wing inner circumference chord projection center point Pb
Considering a straight line P connecting the airfoil outer chord and the center point Pt of the blade, the one on the suction side 9 of the fluid from the straight line P is in the positive direction, and the one on the discharge side 10 is in the negative direction. The projection center point Pr is in the positive direction near the wing inner chord projection center point Pb, intersects the straight line P at an arbitrary location, and draws a locus 11 passing on the straight line P near the wing outer chord projection center point Pt. .

【0140】上記構成により、動翼羽根1がモータ4に
より回転し、機器の小型化、機器性能の使用範囲の拡大
をするために非常に大きな風量および高い静圧を必要と
し、小型で高静圧、大風量を得るためには、動翼羽根1
を高回転する必要がある。回転数を大きくすると、周速
uが上昇するため、翼入口における相対速度w1が上昇
し、渦放出を伴う騒音の音響出力Eに対して6乗の乗数
で依存するため、騒音は急激に上昇する傾向を示す。
With the above configuration, the moving blade 1 is rotated by the motor 4, and requires a very large air flow and a high static pressure in order to reduce the size of the equipment and expand the range of use of the equipment performance. In order to obtain pressure and large air flow, the blade 1
Need to rotate at high speed. When the rotation speed is increased, the peripheral speed u increases, so that the relative speed w1 at the blade inlet increases, and the sound output E depends on the sound output E of the noise accompanied with the vortex emission by a sixth power, so that the noise rapidly increases. Show a tendency to.

【0141】また、図6および図7に示すように、低静
圧時には流体は軸方向に平行な流れ方向20となってい
るため従来の設計方法で問題がないが、高静圧時には吸
込側9の逆流21が広がり流体への遠心力の作用により
流れ方向22は動翼羽根1の内周側から外周側への方向
に傾斜することから、従来のような径方向の形状を意識
しない軸流送風機の設計では、十分な設計が行えない
為、翼弦中心点を特定することで径方向の形状を与える
ことにより動翼羽根1の内周側から外周側への傾斜断面
26での形状を決定することができ、この傾斜断面26
では、従来では略円弧形状となり、理論的な出口流れ2
7と実際に流れる出口流れ28との角度差は大となる
が、図18に示すように、傾斜断面26で特定形状を示
し、理論的な出口流れ27と実際に流れる出口流れ28
との角度差が小となり、渦放出が減少し効率が上昇す
る。
As shown in FIGS. 6 and 7, the fluid has a flow direction 20 parallel to the axial direction at a low static pressure, so that there is no problem in the conventional design method. 9, the flow direction 22 is inclined in the direction from the inner peripheral side to the outer peripheral side of the moving blade 1 by the action of centrifugal force on the fluid. In the design of the blower, since sufficient design cannot be performed, the shape in the inclined section 26 from the inner peripheral side to the outer peripheral side of the moving blade 1 is given by specifying the chord center point to give a radial shape. Can be determined, and this inclined section 26
Therefore, the conventional outlet flow 2 has a substantially circular arc shape.
7, the angle difference between the actual outlet flow 28 and the actual outlet flow 28 is large. However, as shown in FIG.
And the angle difference between them becomes smaller, the vortex shedding decreases, and the efficiency increases.

【0142】このため、周速uが小さくても、静圧上昇
をすることができ、高静圧時にも、従来より回転数を低
減でき、騒音を低減することができる。また従来と同一
回転数としたときにも、より高静圧、大風量となるとと
もに、渦放出低減による騒音低減が可能である。また、
第1から第13実施例で行った傾斜断面26をS字形状
にしているときよりも絶対速度の円周方向分速度が上昇
するため仕事量が増加し、締切静圧が同一回転の場合で
は上昇する。
Therefore, even if the peripheral speed u is small, the static pressure can be increased, and even at a high static pressure, the number of revolutions can be reduced and noise can be reduced as compared with the conventional case. Also, when the number of revolutions is the same as that of the related art, a higher static pressure and a larger air volume can be obtained, and noise can be reduced by reducing eddy discharge. Also,
When the inclined cross-section 26 performed in the first to thirteenth embodiments has an S-shaped cross section, the work speed increases because the circumferential speed of the absolute speed increases, and when the shutoff static pressure is the same rotation, To rise.

【0143】このように本発明の第14実施例の送風装
置によれば、回転軸3を含む平面に映し出される投影図
において、動翼羽根1の弦中心点の軌跡11を特定形状
で設計しているために、小型化で高静圧、大風量を得る
ための動翼羽根1の高回転化による騒音の上昇を抑制す
ることが可能で、軸流送風機特有のサージング現象の発
生を最小限にし、使用範囲を大きくすることができる。
As described above, according to the air blower of the fourteenth embodiment of the present invention, the locus 11 of the chord center point of the moving blade 1 is designed to have a specific shape in the projection projected on the plane including the rotation axis 3. As a result, it is possible to suppress an increase in noise due to high rotation of the moving blade 1 to obtain a high static pressure and a large air flow by miniaturization, and to minimize occurrence of a surging phenomenon peculiar to an axial blower. And the range of use can be increased.

【0144】つぎに本発明の第15実施例について図1
〜図7、図9〜図12、図18を参照しながら説明す
る。なお、第1実施例と同一箇所には同一番号を付けて
詳細な説明は省略する。
Next, a fifteenth embodiment of the present invention will be described with reference to FIG.
7, FIG. 9 to FIG. 12, and FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0145】図に示すように、ハブ2の外周に複数枚の
動翼羽根1を備え、動翼羽根1の形状において動翼羽根
1の回転軸3の軸方向に動翼羽根1を投影したときに、
回転軸3に垂直な平面に映し出される投影図において、
回転軸3を原点Oとし、ハブ2と動翼羽根1の接触部に
おける翼内周弦投影線5を2等分する点を翼内周弦投影
中心点Pbとし、動翼羽根1の翼外周弦投影線6を2等
分する点を翼外周弦投影中心点Ptとし、かつ、投影図
において、原点Oを中心とする任意の半径Rを持つ円を
描き、円が動翼羽根1の投影において交わる交点7が存
在し、交点7と半径Rにおいて示される円弧8を2等分
する点を任意断面翼弦投影中心点Prとし、原点Oと翼
内周弦投影中心点Pbを結ぶ線分をXb、原点Oと翼内
周弦投影中心点Ptを結ぶ線分をXtとすると、線分X
bと線分Xtのなす角度をAθtとしたとき、Aθtは
動翼羽根1の回転方向を正方向として30゜〜60゜の
範囲であり、原点Oと任意断面翼弦投影中心点Prを結
ぶ線分と線分Xbがなす任意の角度をAθとすると、A
θはAθtよりも小さい値をとり、かつ、回転軸3を含
む平面に映し出される投影図において、翼内周弦投影中
心点Pbと翼外周弦中心点Ptとを結ぶ直線Pを考え、
直線Pよりも流体の吸込側9にあるものを正方向とし、
吐き出し側10にあるものを負方向に有るとすると、任
意断面翼弦投影中心点Prが正方向にあり、任意の場所
で直線Pと交わり、翼外周弦投影中心点Pt付近では直
線P上を通る軌跡11を示し、かつ、翼内周弦投影中心
点Pbを通り、回転軸3と直行する平面を基準面Aとす
ると、基準面Aから任意断面翼弦投影中心点Prまでの
距離をKとした時、Kの半径方向分布はRb<R<0.
46Rtの範囲では0<K<0.125Rtの範囲であ
り、0.46Rt<R<0.70Rtの範囲では、0.
12Rt<K<0.17Rtの範囲であり、0.70R
t<R<Rtの範囲では、0.16Rt<K<0.26
5Rtの範囲をとり、(Rt:羽根外周半径、Rb:羽
根内周半径)、かつ、原点Oを中心とする任意の半径R
の円筒面で切断して、断面を2次元に展開してできる翼
断面13で、翼断面13における中心線は円弧形状と
し、翼断面13の翼弦長LとそりDで、そり率Qは、Q
=D/Lで与え、翼外周部の翼断面13における外周部
そり率Qtは0.05〜0.09の範囲の値をとり、翼
内周部の翼断面13における内周部そり率Qtは0.0
3〜0.06の範囲の値をとり、外周部より内周部のそ
り率Qが小さくなる構成としている。
As shown in the figure, a plurality of moving blades 1 are provided on the outer periphery of the hub 2, and the moving blade 1 is projected in the axial direction of the rotating shaft 3 of the moving blade 1 in the shape of the moving blade 1. sometimes,
In a projection projected on a plane perpendicular to the rotation axis 3,
The rotation axis 3 is defined as the origin O, and the point at which the hub inner chord projected line 5 is bisected at the contact portion between the hub 2 and the blade 1 is designated as the blade inner chord projection center point Pb. A point at which the chord projection line 6 is bisected is defined as a blade outer peripheral chord projection center point Pt, and a circle having an arbitrary radius R centered on the origin O is drawn in the projection view. , A point dividing the arc 8 indicated by the radius R with the intersection 7 into two equal parts is a arbitrarily-sectioned chord projection center point Pr, and a line segment connecting the origin O and the wing inner chord projection center point Pb. Let Xb be a line segment connecting the origin O and the wing inner circumference projection center point Pt, and let Xt be a line segment X
Assuming that the angle between b and the line segment Xt is Aθt, Aθt is in the range of 30 ° to 60 ° with the rotation direction of the bucket blade 1 being the positive direction, and connects the origin O and the arbitrary cross-section chord projection center point Pr. If an arbitrary angle formed by the line segment and the line segment Xb is Aθ, A
θ takes a value smaller than Aθt, and in a projection projected on a plane including the rotation axis 3, consider a straight line P connecting the wing inner chord projection center point Pb and the wing outer chord center point Pt,
An object on the fluid suction side 9 with respect to the straight line P is defined as a positive direction,
If the thing on the discharge side 10 is in the negative direction, the arbitrary cross-section chord projection center point Pr is in the positive direction, intersects the straight line P at any place, and on the straight line P near the blade outer chord projection center point Pt. Assuming that a plane that shows the passing locus 11 and passes through the wing inner circumference chord projection center point Pb and is orthogonal to the rotation axis 3 is a reference plane A, the distance from the reference plane A to the arbitrary cross section chord projection center point Pr is K , The radial distribution of K is Rb <R <0.
In the range of 46Rt, 0 <K <0.125Rt, and in the range of 0.46Rt <R <0.70Rt, the range of 0.
In the range of 12Rt <K <0.17Rt, 0.70R
In the range of t <R <Rt, 0.16Rt <K <0.26
In the range of 5Rt, (Rt: blade outer radius, Rb: blade inner radius), and an arbitrary radius R centered on the origin O
The blade section 13 is formed by cutting the cylindrical surface of the blade section and expanding the cross section two-dimensionally. The center line of the blade section 13 is formed in an arc shape, the chord length L and the warp D of the blade section 13, and the warp rate Q is , Q
= D / L, the outer peripheral warpage rate Qt of the outer peripheral part of the blade section 13 takes a value in the range of 0.05 to 0.09, and the inner peripheral warp rate Qt of the inner peripheral part of the blade section 13 Is 0.0
The value is in the range of 3 to 0.06, and the warp ratio Q of the inner peripheral portion is smaller than that of the outer peripheral portion.

【0146】上記構成により、動翼羽根1はモータ4に
よって回転し、質量をm、回転半径をr、角速度をωと
したとき遠心力fは、f=m・r・ω2で与えられる。
With the above configuration, the rotor blade 1 is rotated by the motor 4, and the centrifugal force f is given by f = m · r · ω2 when the mass is m, the radius of rotation is r, and the angular velocity is ω.

【0147】機器の小型化、機器性能の使用範囲の拡大
をするために非常に大きな風量および高い静圧を必要と
し、小型で高静圧、大風量を得るためには、動翼羽根1
を高回転する必要がある。回転数が上昇すると角速度ω
が大きくなり同時に遠心力fも上昇する。したがって高
回転時には低回転時よりも、翼表面における境界層内の
流体が内周部から外周部に向かう流れを生じ、境界層は
外周部付近の方が厚くなり、失速しやすくなるため、サ
ージング現象を起こしやすくなる。このことから、従来
の設計方法では、内周部のそり率を外周部のそり率より
も大きくしていた。
A very large air flow and a high static pressure are required to reduce the size of the equipment and expand the range of use of the equipment performance. To obtain a small, high static pressure and a large air flow, the moving blade 1
Need to rotate at high speed. When the rotation speed increases, the angular velocity ω
And the centrifugal force f also increases. Therefore, the fluid in the boundary layer on the wing surface flows from the inner circumference to the outer circumference at high rotation more than at low rotation, and the boundary layer becomes thicker near the outer circumference and stalls more easily. Phenomenon is likely to occur. For this reason, in the conventional design method, the warp rate of the inner peripheral portion is set to be larger than that of the outer peripheral portion.

【0148】しかし、図9に示すように、回転方向に前
進角を設けることにより前縁外周部での境界層の集中を
防止することができるので、前縁での失速を遅らせるこ
とができ、サージング現象を起こしにくくし、低静圧時
での騒音を低減することができるとともに、外周部のそ
り率を内周部のそり率よりも大きくすることができるた
め、外周部での仕事量を増加することができる。
However, as shown in FIG. 9, by providing the advancing angle in the rotation direction, concentration of the boundary layer at the outer peripheral portion of the leading edge can be prevented, so that stall at the leading edge can be delayed. The surging phenomenon is less likely to occur, the noise at low static pressure can be reduced, and the warp rate of the outer circumference can be made larger than that of the inner circumference. Can be increased.

【0149】また、回転数を大きくすると、周速uが上
昇するため、翼入口における相対速度w1が上昇し、渦
放出を伴う騒音の音響出力Eに対して6乗の乗数で依存
するため、騒音は急激に上昇する傾向を示す。
When the rotational speed is increased, the peripheral speed u increases, so that the relative speed w1 at the blade entrance increases, and the acoustic output E of the noise accompanied by the vortex discharge depends on the sixth power. Noise tends to rise sharply.

【0150】また、低静圧時には流体は軸方向に平行な
流れ方向20となっているため従来の設計方法で問題が
ないが、高静圧時には吸込側9の逆流21が広がり流体
への遠心力の作用により流れ方向22は動翼羽根1の内
周側から外周側への方向に傾斜することから、従来のよ
うな径方向の形状を意識しない軸流送風機の設計では、
十分な設計が行えない為、翼弦中心点を特定することで
径方向の形状を与えることにより動翼羽根1の内周側か
ら外周側への傾斜断面26での形状を決定することがで
き、この傾斜断面26では、従来では略円弧形状とな
り、理論的な出口流れ27と実際に流れる出口流れ28
との角度差は大となるが、図18に示すように傾斜断面
26で特定形状を示し、理論的な出口流れ27と実際に
流れる出口流れ28との角度差が小となり、渦放出が減
少し効率が上昇する。
At a low static pressure, the fluid has a flow direction 20 parallel to the axial direction, so that there is no problem in the conventional design method. However, at a high static pressure, the backflow 21 on the suction side 9 expands, and the fluid is centrifuged to the fluid. Since the flow direction 22 is inclined from the inner peripheral side to the outer peripheral side of the moving blade 1 by the action of the force, in the design of the axial flow fan which is not aware of the radial shape as in the related art,
Since a sufficient design cannot be performed, the shape in the inclined cross section 26 from the inner peripheral side to the outer peripheral side of the moving blade 1 can be determined by giving the radial shape by specifying the chord center point. Conventionally, the inclined cross section 26 has a substantially arc shape, and has a theoretical outlet flow 27 and an actual outlet flow 28.
18, the angle difference between the theoretical outlet flow 27 and the actual outlet flow 28 becomes smaller, and the vortex shedding decreases, as shown in FIG. Efficiency increases.

【0151】このため、周速uが小さくても、静圧上昇
をすることができ、高静圧時にも、従来より回転数を低
減でき、騒音を低減することができる。また従来と同一
回転数としたときにも、より高静圧、大風量となるとと
もに、渦放出低減による騒音低減が可能である。また、
第1から第13実施例で行った傾斜断面26をS字形状
にしているときよりも絶対速度の円周方向分速度が上昇
するため仕事量が増加し、締切静圧が同一回転の場合で
は上昇する。
Therefore, even if the peripheral speed u is small, the static pressure can be increased, and even at a high static pressure, the number of revolutions can be reduced and noise can be reduced as compared with the conventional case. Also, when the number of revolutions is the same as that of the related art, a higher static pressure and a larger air volume can be obtained, and noise can be reduced by reducing eddy discharge. Also,
When the inclined cross-section 26 performed in the first to thirteenth embodiments has an S-shaped cross section, the work speed increases because the circumferential speed of the absolute speed increases, and when the shutoff static pressure is the same rotation, To rise.

【0152】ここで、比騒音レベルKs(dB(A))
を、Ks=SPL−10・Log((Ps+Pv)2・
Q)のように定義する。(SPL:騒音レベル、Q:風
量、Ps:静圧、Pv:動圧) 図10に示すように、動翼羽根1の回転方向を正方向と
した外周前進角Aθtは、30゜以上90゜以下が比騒
音レベルKsが小さくなっていることがわかるが、強度
上の問題から30゜以上60゜以下を最適値とする。
Here, the specific noise level Ks (dB (A))
Is calculated as Ks = SPL-10 · Log ((Ps + Pv) 2 ·
Q). (SPL: noise level, Q: air volume, Ps: static pressure, Pv: dynamic pressure) As shown in FIG. 10, the outer peripheral advance angle Aθt when the rotating direction of the moving blade 1 is the positive direction is 30 ° or more and 90 ° or more. The following shows that the specific noise level Ks is small. However, from the problem of strength, the optimum value is 30 ° or more and 60 ° or less.

【0153】また、図11に示すように、外周部そり率
Qtが0.05以上0.09以下で最適となり、図12
に示すように、内周部そり率Qbが0.03以上0.0
6以下で最適となる。
Further, as shown in FIG. 11, when the outer peripheral portion warp ratio Qt is not less than 0.05 and not more than 0.09, it becomes optimum.
As shown in FIG.
Optimum at 6 or less.

【0154】このように本発明の第15実施例の送風装
置によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11がS字を示す形状
で設計し、外周部そり率Qtを内周部そり率Qbよりも
大きくし、それぞれの要因の水準を最適化することで、
小型化で高静圧、大風量を得るための動翼羽根1の高回
転化による騒音の上昇を抑制することが可能で、軸流送
風機特有のサージング現象の発生を最小限にし、使用範
囲を大きくすることができる。
As described above, according to the air blower of the fifteenth embodiment of the present invention, the blade 1 is advanced in the rotational direction, and the blade shown in the projection view projected on the plane including the rotary shaft 3 The trajectory 11 of the chord center point of 1 is designed so as to show an S shape, the outer peripheral portion warp rate Qt is made larger than the inner peripheral portion warp rate Qb, and the level of each factor is optimized.
It is possible to suppress an increase in noise due to high rotation of the moving blade 1 to obtain a high static pressure and a large air volume by miniaturization, minimize the occurrence of a surging phenomenon peculiar to the axial blower, and reduce a use range. Can be bigger.

【0155】つぎに本発明の第16実施例について図1
〜図7、図9、図10、図13、図14、図18を参照
しながら説明する。なお、第1実施例と同一箇所には同
一番号を付けて詳細な説明は省略する。
Next, a sixteenth embodiment of the present invention will be described with reference to FIG.
7, FIG. 9, FIG. 9, FIG. 10, FIG. 13, FIG. 14, and FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0156】図に示すように、ハブ2の外周に複数枚の
動翼羽根1を備え、動翼羽根1の形状において動翼羽根
1の回転軸3の軸方向に動翼羽根1を投影したときに、
回転軸3に垂直な平面に映し出される投影図において、
回転軸3を原点Oとし、ハブ2と動翼羽根1の接触部に
おける翼内周弦投影線5を2等分する点を翼内周弦投影
中心点Pbとし、動翼羽根1の翼外周弦投影線6を2等
分する点を翼外周弦投影中心点Ptとし、かつ、投影図
において、原点Oを中心とする任意の半径Rを持つ円を
描き、円が動翼羽根1の投影において交わる交点7が存
在し、交点7と半径Rにおいて示される円弧8を2等分
する点を任意断面翼弦投影中心点Prとし、原点Oと翼
内周弦投影中心点Pbを結ぶ線分をXb、原点Oと翼内
周弦投影中心点Ptを結ぶ線分をXtとすると、線分X
bと線分Xtのなす角度をAθtとしたとき、Aθtは
動翼羽根1の回転方向を正方向として30゜〜60゜の
範囲であり、原点Oと任意断面翼弦投影中心点Prを結
ぶ線分と線分Xbがなす任意の角度をAθとすると、A
θはAθtよりも小さい値をとり、かつ、回転軸3を含
む平面に映し出される投影図において、翼内周弦投影中
心点Pbと翼外周部中心点Ptとを結ぶ直線Pを考え、
直線Pよりも流体の吸込側9にあるものを正方向とし、
吐き出し側10にあるものを負方向に有るとすると、任
意断面翼弦投影中心点Prが正方向にあり、任意の場所
で直線Pと交わり、翼外周弦投影中心点Pt付近では直
線P上を通る軌跡11を示し、かつ、翼内周弦投影中心
点Pbを通り、回転軸3と直行する平面を基準面Aとす
ると、基準面Aから任意断面翼弦投影中心点Prまでの
距離をKとした時、Kの半径方向分布はRb<R<0.
46Rtの範囲では0<K<0.125Rtの範囲であ
り、0.46Rt<R<0.70Rtの範囲では、0.
12Rt<K<0.17Rtの範囲であり、0.70R
t<R<Rtの範囲では、0.16Rt<K<0.26
5Rtの範囲をとり、(Rt:羽根外周半径、Rb:羽
根内周半径)、かつ、原点Oを中心とする任意の半径R
の円筒面で切断して、断面を2次元に展開してできる翼
断面13で、翼弦と回転軸3と垂直で翼断面13の翼前
縁を通る直線である翼列線18とのなす角を取付角Cθ
とし、翼外周部の翼断面13における外周部取付角Cθ
tは20゜〜35゜の範囲であり、翼内周部の翼断面1
3における内周部取付角Cθbは30゜〜40゜の範囲
であり、外周部より内周部のそり率Qが小さくなる構成
としている。
As shown in the figure, a plurality of moving blades 1 are provided on the outer periphery of the hub 2, and the moving blade 1 is projected in the axial direction of the rotating shaft 3 of the moving blade 1 in the shape of the moving blade 1. sometimes,
In a projection projected on a plane perpendicular to the rotation axis 3,
The rotation axis 3 is defined as the origin O, and the point at which the hub inner chord projected line 5 is bisected at the contact portion between the hub 2 and the blade 1 is designated as the blade inner chord projection center point Pb. A point at which the chord projection line 6 is bisected is defined as a blade outer peripheral chord projection center point Pt, and a circle having an arbitrary radius R centered on the origin O is drawn in the projection view. , A point dividing the arc 8 indicated by the radius R with the intersection 7 into two equal parts is a arbitrarily-sectioned chord projection center point Pr, and a line segment connecting the origin O and the wing inner chord projection center point Pb. Let Xb be a line segment connecting the origin O and the wing inner circumference projection center point Pt, and let Xt be a line segment X
Assuming that the angle between b and the line segment Xt is Aθt, Aθt is in the range of 30 ° to 60 ° with the rotation direction of the bucket blade 1 being the positive direction, and connects the origin O and the arbitrary cross-section chord projection center point Pr. If an arbitrary angle formed by the line segment and the line segment Xb is Aθ, A
θ takes a value smaller than Aθt, and in a projection view projected on a plane including the rotation axis 3, consider a straight line P connecting the wing inner chord projection center point Pb and the wing outer periphery center point Pt,
An object on the fluid suction side 9 with respect to the straight line P is defined as a positive direction,
If the thing on the discharge side 10 is in the negative direction, the arbitrary cross-section chord projection center point Pr is in the positive direction, intersects the straight line P at any place, and on the straight line P near the blade outer chord projection center point Pt. Assuming that a plane that shows the passing locus 11 and passes through the wing inner circumference chord projection center point Pb and is orthogonal to the rotation axis 3 is a reference plane A, the distance from the reference plane A to the arbitrary cross section chord projection center point Pr is K , The radial distribution of K is Rb <R <0.
In the range of 46Rt, 0 <K <0.125Rt, and in the range of 0.46Rt <R <0.70Rt, the range of 0.
In the range of 12Rt <K <0.17Rt, 0.70R
In the range of t <R <Rt, 0.16Rt <K <0.26
In the range of 5Rt, (Rt: blade outer radius, Rb: blade inner radius), and an arbitrary radius R centered on the origin O
A blade section 13 formed by cutting the cylindrical surface of the blade section and expanding the section in a two-dimensional manner. The blade section line 18 is a straight line perpendicular to the chord and the rotation axis 3 and passing through the leading edge of the blade section 13. Angle is mounting angle Cθ
And the outer peripheral part mounting angle Cθ in the wing cross section 13 of the outer peripheral part of the blade
t is in the range of 20 ° to 35 °, and the blade cross section 1
3, the inner peripheral part mounting angle Cθb is in the range of 30 ° to 40 °, and the warp rate Q of the inner peripheral part is smaller than that of the outer peripheral part.

【0157】上記構成により、動翼羽根1はモータ4に
よって回転し、質量をm、回転半径をr、角速度をωと
したとき遠心力fは、f=m・r・ω2で与えられる。
With the above configuration, the rotor blade 1 is rotated by the motor 4, and the centrifugal force f is given by f = m · r · ω2 when the mass is m, the radius of rotation is r, and the angular velocity is ω.

【0158】機器の小型化、機器性能の使用範囲の拡大
をするために非常に大きな風量および高い静圧を必要と
し、小型で高静圧、大風量を得るためには、動翼羽根1
を高回転する必要がある。回転数が上昇すると角速度ω
が大きくなり同時に遠心力fも上昇する。したがって高
回転時には低回転時よりも、翼表面における境界層内の
流体が内周部から外周部に向かう流れを生じ、境界層は
外周部付近の方が厚くなり、失速しやすくなるため、サ
ージング現象を起こしやすくなる。
A very large air flow and a high static pressure are required to reduce the size of the equipment and to expand the range of use of the equipment performance.
Need to rotate at high speed. When the rotation speed increases, the angular velocity ω
And the centrifugal force f also increases. Therefore, the fluid in the boundary layer on the wing surface flows from the inner circumference to the outer circumference at high rotation more than at low rotation, and the boundary layer becomes thicker near the outer circumference and stalls more easily. Phenomenon is likely to occur.

【0159】しかし、図9に示すように、回転方向に前
進角を設けることにより前縁外周部での境界層の集中を
防止することができるので、前縁での失速を遅らせるこ
とができ、サージング現象を起こしにくくし、低静圧時
での騒音を低減することができる。
However, as shown in FIG. 9, by providing the advancing angle in the rotational direction, the concentration of the boundary layer at the outer peripheral portion of the leading edge can be prevented, so that the stall at the leading edge can be delayed. It is possible to make the surging phenomenon less likely to occur and reduce noise at low static pressure.

【0160】また外周部取付角Cθtが内周部取付角C
θbよりも小さくすることで外周部での仕事の負担を軽
減し、前縁での失速を遅らせることができる。
When the outer peripheral mounting angle Cθt is equal to the inner peripheral mounting angle C
By making it smaller than θb, the work load on the outer peripheral portion can be reduced, and stall at the leading edge can be delayed.

【0161】また、回転数を大きくすると、周速uが上
昇するため、翼入口における相対速度w1が上昇し、渦
放出を伴う騒音の音響出力Eに対して6乗の乗数で依存
するため、騒音は急激に上昇する傾向を示す。
When the rotational speed is increased, the peripheral speed u increases, so that the relative speed w1 at the blade entrance increases, and the acoustic output E of the noise accompanied by the vortex emission depends on the sixth power multiplier. Noise tends to rise sharply.

【0162】また、低静圧時には流体は軸方向に平行な
流れ方向20となっているため従来の設計方法で問題が
ないが、高静圧時には吸込側9の逆流21が広がり流体
への遠心力の作用により流れ方向22は動翼羽根1の内
周側から外周側への方向に傾斜することから、従来のよ
うな径方向の形状を意識しない軸流送風機の設計では、
十分な設計が行えない為、翼弦中心点を特定することで
径方向の形状を与えることにより動翼羽根1の内周側か
ら外周側への傾斜断面26での形状を決定することがで
き、この傾斜断面26では、従来では略円弧形状とな
り、理論的な出口流れ27と実際に流れる出口流れ28
との角度差は大となるが、図18に示すように傾斜断面
26で特定形状を示し、理論的な出口流れ27と実際に
流れる出口流れ28との角度差が小となり、渦放出が減
少し効率が上昇する。
At low static pressure, the fluid has a flow direction 20 parallel to the axial direction, so there is no problem in the conventional design method. However, at high static pressure, the backflow 21 on the suction side 9 expands and centrifugation to the fluid occurs. Since the flow direction 22 is inclined from the inner peripheral side to the outer peripheral side of the moving blade 1 by the action of the force, in the design of the axial flow fan which is not aware of the radial shape as in the related art,
Since a sufficient design cannot be performed, the shape in the inclined cross section 26 from the inner peripheral side to the outer peripheral side of the moving blade 1 can be determined by giving the radial shape by specifying the chord center point. Conventionally, the inclined cross section 26 has a substantially arc shape, and has a theoretical outlet flow 27 and an actual outlet flow 28.
18, the angle difference between the theoretical outlet flow 27 and the actual outlet flow 28 becomes smaller, and the vortex shedding decreases, as shown in FIG. Efficiency increases.

【0163】このため、周速uが小さくても、静圧上昇
をすることができ、高静圧時にも、従来より回転数を低
減でき、騒音を低減することができる。また従来と同一
回転数としたときにも、より高静圧、大風量となるとと
もに、渦放出低減による騒音低減が可能である。また、
第1から第13実施例で行った傾斜断面26をS字形状
にしているときよりも絶対速度の円周方向分速度が上昇
するため仕事量が増加し、締切静圧が同一回転の場合で
は上昇する。
Therefore, even if the peripheral speed u is small, the static pressure can be increased, and even at a high static pressure, the number of revolutions can be reduced and noise can be reduced as compared with the conventional case. Also, when the number of revolutions is the same as that of the related art, a higher static pressure and a larger air volume can be obtained, and noise can be reduced by reducing eddy discharge. Also,
When the inclined cross-section 26 performed in the first to thirteenth embodiments has an S-shaped cross section, the work speed increases because the circumferential speed of the absolute speed increases, and when the shutoff static pressure is the same rotation, To rise.

【0164】ここで、比騒音レベルKs(dB(A))
を、Ks=SPL−10・Log((Ps+Pv)2・
Q)のように定義する。(SPL:騒音レベル、Q:風
量、Ps:静圧、Pv:動圧) 図10示すように、動翼羽根1の回転方向を正方向とし
た外周前進角Aθtは、30゜以上90゜以下が比騒音
レベルKsが小さくなっていることがわかるが、強度上
の問題から30゜以上60゜以下を最適値とする。
Here, the specific noise level Ks (dB (A))
Is calculated as Ks = SPL-10 · Log ((Ps + Pv) 2 ·
Q). (SPL: noise level, Q: air volume, Ps: static pressure, Pv: dynamic pressure) As shown in FIG. 10, the outer peripheral advance angle Aθt when the rotating direction of the moving blade 1 is the positive direction is 30 ° or more and 90 ° or less. It can be seen that the specific noise level Ks is small, but the optimum value is 30 ° or more and 60 ° or less from the problem of strength.

【0165】また、図13に示すように、外周部取付角
Cθtが20゜以上35゜以下で最適となり、図14に
示すように、内周部取付角Cθbが30゜以上40゜以
下で最適となる。
Also, as shown in FIG. 13, the outer peripheral portion mounting angle Cθt is optimal when it is 20 ° or more and 35 ° or less, and as shown in FIG. 14, the inner peripheral portion mounting angle Cθb is optimal when it is 30 ° or more and 40 ° or less. Becomes

【0166】このように本発明の第16実施例の送風装
置によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11がS字を示す形状
で設計し、外周部取付角Cθtを内周部取付角Cθbよ
り小さく、それぞれの要因の水準を最適化することで、
小型化で高静圧、大風量を得るための動翼羽根1の高回
転化による騒音の上昇を抑制することが可能で、軸流送
風機特有のサージング現象の発生を最小限にし、使用範
囲を大きくすることができる。
As described above, according to the air blower of the sixteenth embodiment of the present invention, the moving blade 1 is advanced in the rotation direction, and the moving blade is shown in a projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the chord center point of 1 is designed in a shape showing an S shape, the outer peripheral portion mounting angle Cθt is smaller than the inner peripheral portion mounting angle Cθb, and the level of each factor is optimized.
It is possible to suppress an increase in noise due to high rotation of the moving blade 1 to obtain a high static pressure and a large air volume by miniaturization, minimize the occurrence of a surging phenomenon peculiar to the axial blower, and reduce a use range. Can be bigger.

【0167】つぎに本発明の第17実施例について図1
〜図7、図9〜図14、図18を参照しながら説明す
る。なお、第1実施例と同一箇所には同一番号を付けて
詳細な説明は省略する。
Next, a seventeenth embodiment of the present invention will be described with reference to FIG.
7, FIG. 9, FIG. 9 to FIG. 14, and FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0168】図に示すように、ハブ2の外周に複数枚の
動翼羽根1を備え、動翼羽根1の形状において動翼羽根
1の回転軸3の軸方向に動翼羽根1を投影したときに、
回転軸3に垂直な平面に映し出される投影図において、
回転軸3を原点Oとし、ハブ2と動翼羽根1の接触部に
おける翼内周弦投影線5を2等分する点を翼内周弦投影
中心点Pbとし、動翼羽根1の翼外周弦投影線6を2等
分する点を翼外周弦投影中心点Ptとし、かつ、投影図
において、原点Oを中心とする任意の半径Rを持つ円を
描き、円が動翼羽根1の投影において交わる交点7が存
在し、交点7と半径Rにおいて示される円弧8を2等分
する点を任意断面翼弦投影中心点Prとし、原点Oと翼
内周弦投影中心点Pbを結ぶ線分をXb、原点Oと翼内
周弦投影中心点Ptを結ぶ線分をXtとすると、線分X
bと線分Xtのなす角度をAθtとしたとき、Aθtは
動翼羽根1の回転方向を正方向として30゜〜60゜の
範囲であり、原点Oと任意断面翼弦投影中心点Prを結
ぶ線分と線分Xbがなす任意の角度をAθとすると、A
θはAθtよりも小さい値をとり、かつ、回転軸3を含
む平面に映し出される投影図において、翼内周弦投影中
心点Pbと翼外周部中心点Ptとを結ぶ直線Pを考え、
直線Pよりも流体の吸込側9にあるものを正方向とし、
吐き出し側10にあるものを負方向に有るとすると、任
意断面翼弦投影中心点Prが正方向にあり、任意の場所
で直線Pと交わり、翼外周弦投影中心点Pt付近では直
線P上を通る軌跡11を示し、かつ、翼内周弦投影中心
点Pbを通り、回転軸3と直行する平面を基準面Aとす
ると、基準面Aから任意断面翼弦投影中心点Prまでの
距離をKとした時、Kの半径方向分布はRb<R<0.
46Rtの範囲では0<K<0.125Rtの範囲であ
り、0.46Rt<R<0.70Rtの範囲では、0.
12Rt<K<0.17Rtの範囲であり、0.70R
t<R<Rtの範囲では、0.16Rt<K<0.26
5Rtの範囲をとり、(Rt:羽根外周半径、Rb:羽
根内周半径)、かつ、原点Oを中心とする任意の半径R
の円筒面で切断して、断面を2次元に展開してできる翼
断面13で、翼の翼断面13における中心線は略円弧形
状とし、翼断面13の翼弦長LとそりDでそり率Qは、
Q=D/Lで与え、翼外周部の翼断面13における外周
部そり率Qtは0.05〜0.09の範囲の値をとり、
翼内周部の翼断面13における内周部そり率Qtは0.
03〜0.06の範囲の値をとり、外周部より内周部の
そり率Qが小さくなり、かつ、原点Oを中心とする任意
の半径Rの円筒面で切断して、断面を2次元に展開して
できる翼断面13で、翼弦と、回転軸3と垂直で翼14
の翼前縁17を通る直線である翼列線18とのなす角を
取付角Cθとし、翼外周部の翼断面13における外周部
取付角Cθtは20゜〜35゜の範囲であり、翼内周部
の翼断面13における内周部取付角Cθbは30゜〜4
0゜の範囲であり、外周部より内周部の取付角Cθが大
きくなる構成としている。
As shown in the figure, a plurality of moving blades 1 are provided on the outer periphery of the hub 2, and the moving blade 1 is projected in the axial direction of the rotating shaft 3 of the moving blade 1 in the shape of the moving blade 1. sometimes,
In a projection projected on a plane perpendicular to the rotation axis 3,
The rotation axis 3 is defined as the origin O, and the point at which the hub inner chord projected line 5 is bisected at the contact portion between the hub 2 and the blade 1 is designated as the blade inner chord projection center point Pb. A point at which the chord projection line 6 is bisected is defined as a blade outer peripheral chord projection center point Pt, and a circle having an arbitrary radius R centered on the origin O is drawn in the projection view. , A point dividing the arc 8 indicated by the radius R with the intersection 7 into two equal parts is a arbitrarily-sectioned chord projection center point Pr, and a line segment connecting the origin O and the wing inner chord projection center point Pb. Let Xb be a line segment connecting the origin O and the wing inner circumference projection center point Pt, and let Xt be a line segment X
Assuming that the angle between b and the line segment Xt is Aθt, Aθt is in the range of 30 ° to 60 ° with the rotation direction of the bucket blade 1 being the positive direction, and connects the origin O and the arbitrary cross-section chord projection center point Pr. If an arbitrary angle formed by the line segment and the line segment Xb is Aθ, A
θ takes a value smaller than Aθt, and in a projection view projected on a plane including the rotation axis 3, consider a straight line P connecting the wing inner chord projection center point Pb and the wing outer periphery center point Pt,
An object on the fluid suction side 9 with respect to the straight line P is defined as a positive direction,
If the thing on the discharge side 10 is in the negative direction, the arbitrary cross-section chord projection center point Pr is in the positive direction, intersects the straight line P at any place, and on the straight line P near the blade outer chord projection center point Pt. Assuming that a plane that shows the passing locus 11 and passes through the wing inner circumference chord projection center point Pb and is orthogonal to the rotation axis 3 is a reference plane A, the distance from the reference plane A to the arbitrary cross section chord projection center point Pr is K , The radial distribution of K is Rb <R <0.
In the range of 46Rt, 0 <K <0.125Rt, and in the range of 0.46Rt <R <0.70Rt, the range of 0.
In the range of 12Rt <K <0.17Rt, 0.70R
In the range of t <R <Rt, 0.16Rt <K <0.26
In the range of 5Rt, (Rt: blade outer radius, Rb: blade inner radius), and an arbitrary radius R centered on the origin O
A wing cross section 13 formed by cutting the cylindrical surface of the wing and expanding the cross section two-dimensionally has a substantially arc-shaped center line in the wing cross section 13 of the wing. Q is
Q = D / L, and the outer peripheral part warpage rate Qt in the blade section 13 of the outer peripheral part of the blade takes a value in the range of 0.05 to 0.09,
The inner peripheral portion warpage rate Qt of the inner peripheral portion of the blade section 13 at the blade cross section 13 is set to 0.1.
Taking a value in the range of 03 to 0.06, the warp ratio Q of the inner peripheral portion is smaller than that of the outer peripheral portion, and the cross section is two-dimensionally cut by a cylindrical surface having an arbitrary radius R centered on the origin O. The wing cross section 13 formed by the
The angle formed between the blade line 18 and a straight line passing through the leading edge 17 of the blade is referred to as a mounting angle Cθ, and the mounting angle Cθt of the outer peripheral portion in the blade cross section 13 of the outer peripheral portion of the blade is in the range of 20 ° to 35 °. The inner peripheral part mounting angle Cθb in the peripheral blade section 13 is 30 ° to 4 °.
The angle is in the range of 0 °, and the mounting angle Cθ of the inner peripheral portion is larger than that of the outer peripheral portion.

【0169】上記構成により、動翼羽根1はモータ4に
よって回転し、質量をm、回転半径をr、角速度をωと
したとき遠心力fは、 f=m・r・ω2で与えられる。
With the above configuration, the rotor blade 1 is rotated by the motor 4, and the centrifugal force f is given by f = m · r · ω2 when the mass is m, the radius of rotation is r, and the angular velocity is ω.

【0170】機器の小型化、機器性能の使用範囲の拡大
をするために非常に大きな風量および高い静圧を必要と
し、小型で高静圧、大風量を得るためには、動翼羽根1
を高回転する必要がある。回転数が上昇すると角速度ω
が大きくなり同時に遠心力fも上昇する。したがって高
回転時には低回転時よりも、翼表面における境界層内の
流体が内周部から外周部に向かう流れを生じ、境界層は
外周部付近の方が厚くなり、失速しやすくなるため、サ
ージング現象を起こしやすくなる。
An extremely large air flow and a high static pressure are required to reduce the size of the equipment and expand the range of use of the equipment performance. To obtain a small, high static pressure and a large air flow, the moving blade 1
Need to rotate at high speed. When the rotation speed increases, the angular velocity ω
And the centrifugal force f also increases. Therefore, the fluid in the boundary layer on the wing surface flows from the inner circumference to the outer circumference at high rotation more than at low rotation, and the boundary layer becomes thicker near the outer circumference and stalls more easily. Phenomenon is likely to occur.

【0171】このことから、従来の設計方法では、内周
部のそり率を外周部のそり率よりも大きくしていた。
For this reason, in the conventional design method, the warp ratio of the inner peripheral portion is set larger than that of the outer peripheral portion.

【0172】しかし、図9に示すように、回転方向に前
進角を設けることにより前縁外周部での境界層の集中を
防止することができるので、前縁での失速を遅らせるこ
とができ、サージング現象を起こしにくくし、低静圧時
での騒音を低減することができるとともに、外周部のそ
り率を内周部のそり率よりも大きくすることができるた
め、外周部での仕事量を増加することができる。
However, as shown in FIG. 9, by providing the advancing angle in the rotation direction, concentration of the boundary layer at the outer peripheral portion of the leading edge can be prevented, so that stall at the leading edge can be delayed. The surging phenomenon is less likely to occur, the noise at low static pressure can be reduced, and the warp rate of the outer circumference can be made larger than that of the inner circumference. Can be increased.

【0173】また外周部取付角Cθtが内周部取付角C
θbよりも小さくすることで外周部での仕事の負担を軽
減し、前縁での失速を遅らせることができるまた、回転
数を大きくすると、周速uが上昇するため、翼入口にお
ける相対速度w1が上昇し、渦放出を伴う騒音の音響出
力Eに対して6乗の乗数で依存するため、騒音は急激に
上昇する傾向を示す。
The outer peripheral mounting angle Cθt is equal to the inner peripheral mounting angle C.
By making it smaller than θb, the work load on the outer peripheral portion can be reduced, and the stall at the leading edge can be delayed. Also, when the rotation speed is increased, the peripheral speed u increases, so that the relative speed w1 at the blade inlet is increased. Rises and depends on the sound power E of the noise accompanied by vortex shedding by a power of six, so that the noise tends to rise rapidly.

【0174】また、低静圧時には流体は軸方向に平行な
流れ方向20となっているため従来の設計方法で問題が
ないが、高静圧時には吸込側9の逆流21が広がり流体
への遠心力の作用により流れ方向22は羽根の内周側か
ら外周側への方向に傾斜することから、従来のような径
方向の形状を意識しない軸流送風機の設計では、十分な
設計が行えない為、翼弦中心点を特定することで径方向
の形状を与えることにより動翼羽根1の内周側から外周
側への傾斜断面26での形状を決定することができ、こ
の傾斜断面26では、従来では略円弧形状となり、理論
的な出口流れ27と実際に流れる出口流れ28との角度
差は大となるが、図9に示すように傾斜断面26で特定
形状を示し、理論的な出口流れ27と実際に流れる出口
流れ28との角度差は小の関係となり、渦放出が減少し
効率が上昇する。
At low static pressure, the fluid has a flow direction 20 parallel to the axial direction, so there is no problem in the conventional design method. However, at high static pressure, the backflow 21 on the suction side 9 expands and centrifugation to the fluid occurs. Since the flow direction 22 is inclined from the inner peripheral side to the outer peripheral side of the blade due to the action of the force, a sufficient design cannot be performed with the conventional design of the axial flow blower which does not consider the radial shape. By giving the radial shape by specifying the chord center point, the shape of the inclined section 26 from the inner peripheral side to the outer peripheral side of the moving blade 1 can be determined. Conventionally, the outlet flow has a substantially arc shape, and the angle difference between the theoretical outlet flow 27 and the actual outlet flow 28 is large. However, as shown in FIG. Angle between 27 and actual outlet flow 28 Becomes small relationship, vortex shedding is reduced efficiency increases.

【0175】このため、周速uが小さくても、静圧上昇
をすることができ、高静圧時にも、従来より回転数を低
減でき、騒音を低減することができる。また従来と同一
回転数としたときにも、より高静圧、大風量となるとと
もに、渦放出低減による騒音低減が可能である。また、
第1から第13実施例で行った傾斜断面26をS字形状
にしているときよりも絶対速度の円周方向分速度が上昇
するため仕事量が増加し、締切静圧が同一回転の場合で
は上昇する。
For this reason, even if the peripheral speed u is small, the static pressure can be increased, and even at a high static pressure, the number of revolutions can be reduced as compared with the conventional case, and the noise can be reduced. Also, when the number of revolutions is the same as that of the related art, a higher static pressure and a larger air volume can be obtained, and noise can be reduced by reducing eddy discharge. Also,
When the inclined cross-section 26 performed in the first to thirteenth embodiments has an S-shaped cross section, the work speed increases because the circumferential speed of the absolute speed increases, and when the shutoff static pressure is the same rotation, To rise.

【0176】ここで、比騒音レベルKs(dB(A))
をKs=SPL−10・Log((Ps+Pv)2・
Q)のように定義する。(SPL:騒音レベル、Q:風
量、Ps:静圧、Pv:動圧) 図10に示すように、動翼羽根1の回転方向を正方向と
した外周前進角Aθtは、30゜以上90゜以下が比騒
音レベルKsが小さくなっていることがわかるが、強度
上の問題から30゜以上60゜以下を最適値とする。
Here, the specific noise level Ks (dB (A))
To Ks = SPL-10 · Log ((Ps + Pv) 2 ·
Q). (SPL: noise level, Q: air volume, Ps: static pressure, Pv: dynamic pressure) As shown in FIG. 10, the outer peripheral advance angle Aθt when the rotating direction of the moving blade 1 is the positive direction is 30 ° or more and 90 ° or more. The following shows that the specific noise level Ks is small. However, from the problem of strength, the optimum value is 30 ° or more and 60 ° or less.

【0177】また、図11に示すように、外周部そり率
Qtが0.05以上0.09以下で最適となり、図12
に示すように、内周部そり率Qbが0.03以上0.0
6以下で最適となる。
Further, as shown in FIG. 11, the outer peripheral portion warp ratio Qt is optimum when the value is 0.05 or more and 0.09 or less, and FIG.
As shown in FIG.
Optimum at 6 or less.

【0178】また、図13に示すように、外周部取付角
Cθtが20゜以上35゜以下で最適となり、図14に
示すように、内周部取付角Cθbが30゜以上40゜以
下で最適となる。
Further, as shown in FIG. 13, the optimum is obtained when the outer peripheral portion mounting angle Cθt is between 20 ° and 35 °, and as shown in FIG. 14, the optimal when the inner peripheral portion mounting angle Cθb is between 30 ° and 40 °. Becomes

【0179】このように本発明の第17実施例の送風装
置によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11を特定形状で設計
し、外周部そり率Qtを内周部そり率Qbよりも大きく
し、それぞれの要因の水準を最適化し、外周部取付角C
θtを内周部取付角Cθbより小さく、それぞれの要因
の水準を最適化することで、小型化で高静圧、大風量を
得るための動翼羽根1の高回転化による騒音の上昇を抑
制することが可能で、軸流送風機特有のサージング現象
の発生を最小限にし、使用範囲を大きくすることができ
る。
As described above, according to the air blower of the seventeenth embodiment of the present invention, the moving blade 1 is advanced in the rotational direction, and the moving blade 1 is projected on a plane including the rotating shaft 3. The trajectory 11 of the chord center point 1 is designed in a specific shape, the outer peripheral warpage rate Qt is made larger than the inner peripheral warp rate Qb, the level of each factor is optimized, and the outer peripheral part installation angle C
θt is smaller than the inner peripheral portion mounting angle Cθb, and by optimizing the levels of the respective factors, noise rise due to high rotation of the moving blade 1 for obtaining high static pressure and large air flow by miniaturization is suppressed. It is possible to minimize the occurrence of a surging phenomenon peculiar to an axial blower, and to enlarge the range of use.

【0180】つぎに本発明の第18実施例について図1
〜図7、図9〜図15、図18を参照しながら説明す
る。なお、第1実施例と同一箇所には同一番号を付けて
詳細な説明は省略する。
Next, an eighteenth embodiment of the present invention will be described with reference to FIG.
7, FIG. 9 to FIG. 15, and FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0181】図に示すように、ハブ2の外周に複数枚の
動翼羽根1を備え、動翼羽根1の形状において動翼羽根
1の回転軸3の軸方向に動翼羽根1を投影したときに、
回転軸3に垂直な平面に映し出される投影図において、
回転軸3を原点Oとし、ハブ2と動翼羽根1の接触部に
おける翼内周弦投影線5を2等分する点を翼内周弦投影
中心点Pbとし、動翼羽根1の翼外周弦投影線6を2等
分する点を翼外周弦投影中心点Ptとし、かつ、投影図
において、原点Oを中心とする任意の半径Rを持つ円を
描き、円が動翼羽根1の投影において交わる交点7が存
在し、交点7と半径Rにおいて示される円弧8を2等分
する点を任意断面翼弦投影中心点Prとし、原点Oと翼
内周弦投影中心点Pbを結ぶ線分をXb、原点Oと翼内
周弦投影中心点Ptを結ぶ線分をXtとすると、線分X
bと線分Xtのなす角度をAθtとしたとき、Aθtは
動翼羽根1の回転方向を正方向として30゜〜60゜の
範囲であり、原点Oと任意断面翼弦投影中心点Prを結
ぶ線分と線分Xbがなす任意の角度をAθとすると、A
θはAθtよりも小さい値をとり、かつ、回転軸3を含
む平面に映し出される投影図において、翼内周弦投影中
心点Pbと翼外周部中心点Ptとを結ぶ直線Pを考え、
直線Pよりも流体の吸込側9にあるものを正方向とし、
吐き出し側10にあるものを負方向に有るとすると、任
意断面翼弦投影中心点Prが正方向にあり、任意の場所
で直線Pと交わり、翼外周弦投影中心点Pt付近では直
線P上を通る軌跡11を示し、かつ、翼内周弦投影中心
点Pbを通り、回転軸3と直行する平面を基準面Aとす
ると、基準面Aから任意断面翼弦投影中心点Prまでの
距離をKとした時、Kの半径方向分布はRb<R<0.
46Rtの範囲では0<K<0.125Rtの範囲であ
り、0.46Rt<R<0.70Rtの範囲では、0.
12Rt<K<0.17Rtの範囲であり、0.70R
t<R<Rtの範囲では、0.16Rt<K<0.26
5Rtの範囲をとり、(Rt:羽根外周半径、Rb:羽
根内周半径)、かつ、原点Oを中心とする任意の半径R
の円筒面で切断して、断面を2次元に展開してできる翼
断面13で、翼の翼断面13における中心線は略円弧形
状とし、翼断面13の翼弦長LとそりDで、そり率Q
は、Q=D/Lで与え、翼外周部の翼断面13における
外周部そり率Qtは0.05〜0.09の範囲の値をと
り、翼内周部の翼断面13における内周部そり率Qtは
0.03〜0.06の範囲の値をとり、外周部より内周
部のそり率Qが小さくなり、かつ、原点Oを中心とする
任意の半径Rの円筒面で切断して、断面を2次元に展開
してできる翼断面13で、翼弦と、回転軸3と垂直で翼
14の翼前縁17を通る直線である翼列線18とのなす
角を取付角Cθとし、翼外周部の翼断面13における外
周部取付角Cθtは20゜〜35゜の範囲であり、翼内
周部の翼断面13における内周部取付角Cθbは30゜
〜40゜の範囲であり、外周部より内周部の取付角Cθ
が大きくなり、かつ、原点Oを中心とする任意の半径R
の円筒面で切断して、断面を2次元に展開してできる翼
断面13で翼弦長Lと、回転軸3と垂直で翼14の翼前
縁17を通る直線である翼列線18上で、翼14の翼前
縁17と翼と隣り合う翼15の翼前縁19との距離をピ
ッチTとしたとき、節弦比Sは、S=L/Tで与え、節
弦比Sは0.6〜1.0の範囲となる構成をしている。
As shown in the figure, a plurality of moving blades 1 are provided on the outer periphery of the hub 2, and the moving blade 1 is projected in the axial direction of the rotating shaft 3 of the moving blade 1 in the shape of the moving blade 1. sometimes,
In a projection projected on a plane perpendicular to the rotation axis 3,
The rotation axis 3 is defined as the origin O, and the point at which the hub inner chord projected line 5 is bisected at the contact portion between the hub 2 and the blade 1 is designated as the blade inner chord projection center point Pb. A point at which the chord projection line 6 is bisected is defined as a blade outer peripheral chord projection center point Pt, and a circle having an arbitrary radius R centered on the origin O is drawn in the projection view. , A point dividing the arc 8 indicated by the radius R with the intersection 7 into two equal parts is a arbitrarily-sectioned chord projection center point Pr, and a line segment connecting the origin O and the wing inner chord projection center point Pb. Let Xb be a line segment connecting the origin O and the wing inner circumference projection center point Pt, and let Xt be a line segment X
Assuming that the angle between b and the line segment Xt is Aθt, Aθt is in the range of 30 ° to 60 ° with the rotation direction of the bucket blade 1 being the positive direction, and connects the origin O and the arbitrary cross-section chord projection center point Pr. If an arbitrary angle formed by the line segment and the line segment Xb is Aθ, A
θ takes a value smaller than Aθt, and in a projection view projected on a plane including the rotation axis 3, consider a straight line P connecting the wing inner chord projection center point Pb and the wing outer periphery center point Pt,
An object on the fluid suction side 9 with respect to the straight line P is defined as a positive direction,
If the thing on the discharge side 10 is in the negative direction, the arbitrary cross-section chord projection center point Pr is in the positive direction, intersects the straight line P at any place, and on the straight line P near the blade outer chord projection center point Pt. Assuming that a plane that shows the passing locus 11 and passes through the wing inner circumference chord projection center point Pb and is orthogonal to the rotation axis 3 is a reference plane A, the distance from the reference plane A to the arbitrary cross section chord projection center point Pr is K , The radial distribution of K is Rb <R <0.
In the range of 46Rt, 0 <K <0.125Rt, and in the range of 0.46Rt <R <0.70Rt, the range of 0.
In the range of 12Rt <K <0.17Rt, 0.70R
In the range of t <R <Rt, 0.16Rt <K <0.26
In the range of 5Rt, (Rt: blade outer radius, Rb: blade inner radius), and an arbitrary radius R centered on the origin O
Wing section 13 formed by cutting the cylindrical surface of the wing and expanding the section in two dimensions. The center line of the wing section 13 of the wing has a substantially arc shape. Rate Q
Is given by Q = D / L, the outer peripheral warpage rate Qt in the blade cross section 13 of the blade outer peripheral portion takes a value in the range of 0.05 to 0.09, and the inner circumferential portion of the blade inner peripheral portion in the blade cross section 13 The warp rate Qt takes a value in the range of 0.03 to 0.06, and the warp rate Q of the inner peripheral portion is smaller than that of the outer peripheral portion. In the blade cross section 13 formed by expanding the cross section two-dimensionally, the angle formed between the chord and the cascade line 18 which is a straight line perpendicular to the rotation axis 3 and passing through the leading edge 17 of the blade 14 is defined as an attachment angle Cθ. The outer peripheral portion mounting angle Cθt in the blade cross section 13 of the outer peripheral portion of the blade is in the range of 20 ° to 35 °, and the inner peripheral portion mounting angle Cθb in the blade cross section 13 of the inner peripheral portion of the blade is in the range of 30 ° to 40 °. Yes, the mounting angle Cθ from the outer circumference to the inner circumference
And an arbitrary radius R centered on the origin O
On the wing row line 18 which is a straight line passing through the wing leading edge 17 of the wing 14 perpendicularly to the rotation axis 3 and a wing cross section 13 formed by expanding the cross section in a two-dimensional manner. When the pitch T is the distance between the wing leading edge 17 of the wing 14 and the wing leading edge 19 of the wing 15 adjacent to the wing, the chord ratio S is given by S = L / T. The configuration is in the range of 0.6 to 1.0.

【0182】上記構成により、翼弦長Lが変化しない場
合、ピッチTを小さくする、つまり翼の枚数を増加する
ことで高静圧時でも流れを翼に沿いやすくし、境界層の
厚みを小さくすることで騒音の低減をはかれるが、翼枚
数を増加すると翼から発生する音源が増加してしまうた
め低静圧時には反対に騒音が上昇する傾向にある。した
がって低静圧時および高静圧時のバランスをとりながら
低騒音化するために節弦比Sを限定した。
With the above configuration, when the chord length L does not change, the pitch T is reduced, that is, the number of blades is increased, so that the flow can easily follow the blade even at high static pressure, and the thickness of the boundary layer is reduced. However, when the number of blades is increased, the number of sound sources generated from the blades increases, so that the noise tends to increase when the static pressure is low. Therefore, in order to reduce noise while maintaining a balance between low static pressure and high static pressure, the stringing ratio S is limited.

【0183】また、図15に示すように、節弦比Sが
0.6以上1.0以下で最適となる。このように本発明
の第18実施例の送風装置によれば、動翼羽根1が回転
方向に前進した形状であり、回転軸3を含む平面に映し
出される投影図において、動翼羽根1の弦中心点の軌跡
11を特定形状で設計し、外周部そり率Qtを内周部そ
り率Qbよりも大きくし、節弦比Sを限定し、それぞれ
の要因の水準を最適化し、外周部取付角Cθtを内周部
取付角Cθbより小さく、それぞれの要因の水準を最適
化することで、小型化で高静圧、大風量を得るための動
翼羽根1の高回転化による騒音の上昇を抑制することが
可能で、軸流送風機特有のサージング現象の発生を最小
限にし、使用範囲を大きくすることができる。
Also, as shown in FIG. 15, the optimum is obtained when the chord ratio S is 0.6 or more and 1.0 or less. As described above, according to the blower of the eighteenth embodiment of the present invention, the moving blade 1 has a shape advanced in the rotational direction, and the chord of the moving blade 1 is shown in a projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the center point is designed in a specific shape, the outer peripheral portion warp ratio Qt is made larger than the inner peripheral portion warp ratio Qb, the chord ratio S is limited, the level of each factor is optimized, and the outer peripheral portion mounting angle is set. Cθt is smaller than the inner peripheral portion mounting angle Cθb, and the level of each factor is optimized to suppress noise rise due to high rotation of the moving blade 1 to obtain high static pressure and large air flow with downsizing. It is possible to minimize the occurrence of a surging phenomenon peculiar to an axial blower, and to enlarge the range of use.

【0184】つぎに本発明の第19実施例について図1
〜図7、図8〜図17、図18を参照しながら説明す
る。なお、第1実施例と同一箇所には同一番号を付けて
詳細な説明は省略する。
Next, a nineteenth embodiment of the present invention will be described with reference to FIG.
7, FIG. 8 to FIG. 17, and FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0185】図に示すように、第15、16、17およ
び18実施例の構成に、中心軸を外周径Dtを有する動
翼羽根1の回転軸3と同一とし、吸込口側の断面が半径
Orで最小内径Drを示す中心軸に直行する平面上の半
径Orの中心から吸込口側に角度Oθだけ伸ばした円弧
状の円環であり、断面が直線であり長さがLrのダクト
部と一体に作られたオリフィスを有し、半径Orは0.
15Dt〜0.4Dtであり、最小内径Drは1.02
Dt〜1.03Dtであり、角度Oθは30゜〜90゜
であり、長さLrは0.05Dt〜0.10Dtである
構成としている。
As shown in the drawing, the configuration of the fifteenth, sixteenth, seventeenth, and eighteenth embodiments has the same central axis as the rotating shaft 3 of the moving blade 1 having the outer diameter Dt, and has a radial cross section on the suction port side. A circular arc extending from the center of a radius Or on a plane perpendicular to the central axis indicating the minimum inner diameter Dr at Or to the suction port side by an angle Oθ, and having a duct section having a linear cross section and a length of Lr. It has an orifice made in one piece and has a radius Or.
15Dt to 0.4Dt, and the minimum inner diameter Dr is 1.02
Dt to 1.03 Dt, the angle Oθ is 30 ° to 90 °, and the length Lr is 0.05 Dt to 0.10 Dt.

【0186】上記構成により、吸込口側の断面を円弧状
の円管とし、出口側をダクト部とすることで、低静圧時
に翼に沿った流れが中心軸と平行になり、出口での流れ
も乱れにくくなり、騒音が低下する。
According to the above configuration, the cross section on the suction port side is an arc-shaped circular pipe, and the outlet side is a duct, so that the flow along the blade at low static pressure becomes parallel to the central axis, and The flow is also less turbulent and noise is reduced.

【0187】このように本発明の第19実施例の送風装
置によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11を特定形状で設計
し、外周部そり率Qtを内周部そり率Qbよりも大きく
し、節弦比Sを限定し、それぞれの要因の水準を最適化
し、外周部取付角Cθtを内周部取付角Cθbより小さ
くし、また、オリフィスの形状を特定し、それぞれの要
因の水準を最適化することで、小型化で高静圧、大風量
を得るための動翼羽根1の高回転化による騒音の上昇を
抑制することが可能で、軸流送風機特有のサージング現
象の発生を最小限にし、使用範囲を大きくすることがで
きる。
As described above, according to the air blower of the nineteenth embodiment of the present invention, the moving blade 1 is advanced in the rotational direction, and the moving blade is shown in a projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the chord center point of No. 1 is designed in a specific shape, the outer peripheral warp ratio Qt is made larger than the inner peripheral warp ratio Qb, the chord ratio S is limited, and the level of each factor is optimized. By making the part mounting angle Cθt smaller than the inner peripheral part mounting angle Cθb, specifying the shape of the orifice, and optimizing the level of each factor, the dynamics for obtaining high static pressure and large air flow with miniaturization are obtained. It is possible to suppress an increase in noise due to the high rotation speed of the blade 1, minimize the occurrence of a surging phenomenon peculiar to the axial blower, and increase the range of use.

【0188】つぎに本発明の第20実施例について図1
〜図7、図9〜図16、図18を参照しながら説明す
る。なお、第1実施例と同一箇所には同一番号を付けて
詳細な説明は省略する。
Next, a twentieth embodiment of the present invention will be described with reference to FIG.
7, FIG. 9, FIG. 9 to FIG. 16, and FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0189】図に示すように、第15、16、17およ
び18実施例の構成に、中心軸を外周径Dtを有する動
翼羽根1の回転軸3と同一とし、吸込口および出口側の
断面が半径Orで最小内径Drを示す中心軸に直行する
平面上の半径Orの中心から吸込口側に角度Oθだけ伸
ばした円弧状の円環であり、断面が直線であり長さがL
rのダクト部を挟み込み一体に作られたオリフィスを有
し、半径Orは0.05Dt〜0.2Dtであり、最小
内径Drは1.02Dt〜1.03Dtであり、角度O
θは30゜〜90゜であり、長さLrは0.01Dt〜
0.02Dtである構成としている。
As shown in the figure, the configuration of the fifteenth, sixteenth, seventeenth, and eighteenth embodiments has the same central axis as the rotating shaft 3 of the moving blade 1 having the outer diameter Dt, and shows a cross section on the suction port and the outlet side. Is an arcuate ring extending from the center of the radius Or on a plane perpendicular to the central axis showing the minimum inner diameter Dr with the radius Or toward the suction port side by an angle Oθ, having a straight section and a length L
r having an orifice formed by sandwiching the duct portion, the radius Or is 0.05 Dt to 0.2 Dt, the minimum inner diameter Dr is 1.02 Dt to 1.03 Dt, and the angle O
is 30 ° to 90 °, and the length Lr is 0.01 Dt to
It is configured to be 0.02Dt.

【0190】上記構成により、吸込口側および出口側の
断面を円弧状の円管とし、ダクト部により接合すること
で、高静圧時には吸込側9の逆流21が広がり流体への
遠心力の作用により動翼羽根1の内周側から外周側への
方向に傾斜することから出口側がダクト部の形状で流体
の出口流れを妨げ、乱れを発生させる原因を排除するこ
とができる。
With the above structure, the cross sections of the suction port side and the outlet side are arc-shaped circular pipes and joined by a duct portion, so that at high static pressure, the backflow 21 on the suction side 9 expands and the action of centrifugal force on the fluid is exerted. As a result, the blade is inclined in the direction from the inner peripheral side to the outer peripheral side of the bucket blade 1, so that the outlet side obstructs the outlet flow of the fluid in the form of a duct portion, and the cause of turbulence can be eliminated.

【0191】このように本発明の第20実施例の送風装
置によれば、動翼羽根1が回転方向に前進した形状であ
り、回転軸3を含む平面に映し出される投影図におい
て、動翼羽根1の弦中心点の軌跡11を特定形状で設計
し、外周部そり率Qtを内周部そり率Qbよりも大きく
し、節弦比Sを限定し、それぞれの要因の水準を最適化
し、外周部取付角Cθtを内周部取付角Cθbより小さ
くし、またオリフィスの形状を特定し、それぞれの要因
の水準を最適化することで、小型化で高静圧、大風量を
得るための動翼羽根1の高回転化による騒音の上昇を抑
制することが可能で、軸流送風機特有のサージング現象
の発生を最小限にし、使用範囲を大きくすることができ
る。
As described above, according to the air blower of the twentieth embodiment of the present invention, the moving blade 1 is advanced in the rotational direction, and the moving blade is shown in a projection view projected on a plane including the rotating shaft 3. The trajectory 11 of the chord center point of No. 1 is designed in a specific shape, the outer peripheral warp ratio Qt is made larger than the inner peripheral warp ratio Qb, the chord ratio S is limited, and the level of each factor is optimized. The blade for obtaining a high static pressure and a large air volume with a small size by making the part mounting angle Cθt smaller than the inner peripheral part mounting angle Cθb, specifying the shape of the orifice, and optimizing the level of each factor. It is possible to suppress an increase in noise due to the high rotation speed of the blade 1, minimize the occurrence of a surging phenomenon peculiar to an axial blower, and increase the range of use.

【0192】[0192]

【発明の効果】以上のように実施例から明らかなよう
に、本発明によれば、動翼羽根1の羽根形状が、動翼羽
根1の回転軸3を含む平面に映し出される投影図におい
て、翼弦の中心点の軌跡11がS字を示す形状となり、
また翼の回転方向に前進した形状であり、また、外周部
より内周部のそり率が小さくなり、外周部より内周部の
取付角が大きくなり、また節弦比の範囲を特定し、また
オリフィス形状の寸法を特定し、これらの要因の水準を
最適化することで、小型化で高静圧、大風量を得るため
の送風羽根車の高回転化による騒音の上昇を抑制し、軸
流送風機特有のサージング現象の発生を最小限にし、使
用範囲を大きくし、またモータ4の使用負担を軽減する
ことが可能であり、この送風羽根車を使用することで、
従来の換気送風機器および空気調和機器では成しえなか
った幅広い用途に展開できる。
As is clear from the embodiments as described above, according to the present invention, the blade shape of the moving blade 1 is projected on a plane including the rotation axis 3 of the moving blade 1 in the projection view. The locus 11 of the center point of the chord becomes a shape showing an S shape,
In addition, it is a shape advanced in the direction of rotation of the wing, and the warp rate of the inner peripheral part is smaller than the outer peripheral part, the mounting angle of the inner peripheral part is larger than the outer peripheral part, and the range of the chord ratio is specified, In addition, by specifying the dimensions of the orifice shape and optimizing the levels of these factors, it is possible to suppress the rise in noise due to the high rotation of the blower impeller to obtain high static pressure and a large air flow with miniaturization. It is possible to minimize the occurrence of the surging phenomenon peculiar to the blower, to increase the use range, and to reduce the use load of the motor 4, and by using this blower impeller,
It can be applied to a wide range of applications that could not be achieved with conventional ventilation ventilation equipment and air conditioning equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の送風羽根車の全体図FIG. 1 is an overall view of a blower impeller according to a first embodiment of the present invention.

【図2】同要部投影図FIG. 2 is a projection view of the main part.

【図3】同要部断面図FIG. 3 is a sectional view of a main part of the same.

【図4】同要部断面図FIG. 4 is a sectional view of an essential part of the same.

【図5】同要部断面図FIG. 5 is a sectional view of the main part.

【図6】同要部側断面図FIG. 6 is a side sectional view of the main part.

【図7】同要部側断面図FIG. 7 is a side sectional view of the main part.

【図8】同要部断面図FIG. 8 is a sectional view of the main part.

【図9】同要部投影図FIG. 9 is a projection view of the main part.

【図10】同外周前進角Aθtにおける比騒音レベルK
sの性能特性図
FIG. 10 shows a specific noise level K at the outer peripheral advance angle Aθt.
s performance characteristic diagram

【図11】同外周部そり率Qtにおける比騒音レベルK
sの性能特性図
FIG. 11 shows a specific noise level K at the outer peripheral portion warpage rate Qt.
s performance characteristic diagram

【図12】同内周部そり率Qbにおける比騒音レベルk
sの性能特性図
FIG. 12 shows a specific noise level k at the inner peripheral portion warpage rate Qb.
s performance characteristic diagram

【図13】同外周部取付角Cθtにおける比騒音レベル
Ksの性能特性図
FIG. 13 is a characteristic diagram of a specific noise level Ks at the outer peripheral portion mounting angle Cθt.

【図14】同内周部取付角Cθbにおける比騒音レベル
Ksの性能特性図
FIG. 14 is a performance characteristic diagram of a specific noise level Ks at the inner peripheral portion mounting angle Cθb.

【図15】同節弦比Sにおける比騒音レベルKsの性能
特性図
FIG. 15 is a performance characteristic diagram of a specific noise level Ks at the same string ratio S.

【図16】同第6実施例の送風羽根車の側断面図FIG. 16 is a side sectional view of a blower impeller of the sixth embodiment.

【図17】同第7実施例の送風羽根車の側断面図FIG. 17 is a side sectional view of a blower impeller of the seventh embodiment.

【図18】同第実施例の他の送風羽根車の要部断面図FIG. 18 is a sectional view of a main part of another blower impeller of the first embodiment.

【図19】従来の送風羽根車の要部投影図FIG. 19 is a projection view of a main part of a conventional blower impeller.

【図20】同要部断面図FIG. 20 is a sectional view of a main part of the same.

【図21】同要部断面図FIG. 21 is a sectional view of the main part.

【図22】同要部断面図FIG. 22 is a sectional view of the main part.

【図23】同要部側断面図FIG. 23 is a side sectional view of the relevant part.

【符号の説明】[Explanation of symbols]

1 動翼羽根 2 ハブ 3 回転軸 4 モータ 5 翼内周弦投影線 6 翼外周弦投影線 7 交点 8 円弧 X 直線 P 直線 R 半径 Aθ 前進角 Aθt 外周前進角 Pt 翼外周弦投影中心点 Pb 翼内周弦投影中心点 Pr 任意断面翼弦投影中心点 O 原点 9 吸込側 10 吐き出し側 11 軌跡 13 翼断面 14 翼 15 翼 16 翼弦 17 翼前縁 18 翼列線 19 翼前縁 L 翼弦長 T ピッチ Cθ 取付角 u 周速 c1 入口軸流速度 c2 出口軸流速度 w1 相対速度 w2 相対速度 20 流れ方向 21 逆流 22 流れ方向 23 傾斜断面 24 出口流れ 25 出口流れ Dt 外周径 Or 半径 Dr 最小内径 Oθ 角度 Lr 長さ 26 傾斜断面 27 出口流れ 28 出口流れ Reference Signs List 1 rotor blade 2 hub 3 rotation axis 4 motor 5 blade inner chord projection line 6 blade outer chord projection line 7 intersection 8 arc X straight line P straight line R radius Aθ advance angle Aθt outer circumference advance angle Pt blade outer chord projection center point Pb blade Inner chord projection center point Pr Arbitrary cross-section chord projection center point O Origin 9 Suction side 10 Discharge side 11 Trajectory 13 Wing cross section 14 Wing 15 Wing 16 Chord 17 Wing leading edge 18 Cascade line 19 Wing leading edge L Chord length T pitch Cθ Mounting angle u Peripheral speed c1 Inlet axial flow speed c2 Outlet axial flow speed w1 Relative speed w2 Relative speed 20 Flow direction 21 Backflow 22 Flow direction 23 Inclined section 24 Outlet flow 25 Outlet flow Dt Outer diameter Or Radius Dr Minimum inner diameter Oθ Angle Lr Length 26 Inclined cross section 27 Outlet flow 28 Outlet flow

Claims (20)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ハブの外周に複数枚の動翼羽根を備え、
この動翼羽根を回転軸で支持するモータを設け、前記動
翼羽根の形状は前記回転軸の軸方向に投影した投影図に
おいて、前記回転軸を原点Oとし、前記ハブと前記動翼
羽根の接触部における翼内周弦投影線を2等分する点を
翼内周弦投影中心点Pbとし、前記動翼羽根の翼外周弦
投影を2等分する点を翼外周弦投影中心点Ptとし、か
つ、前記原点Oを中心とする任意の半径Rを持つ円を描
き、この円が前記動翼羽根の投影において交わる交点と
半径Rに示される円弧を2等分する点を任意断面翼弦投
影中心点Prとし、かつ、前記回転軸を含む平面に映し
出される投影図において、前記翼内周弦投影中心点Pb
と前記翼外周弦投影中心点Ptとを結ぶ直線Pとし、こ
の直線Pより流体の吸込側にあるものを正方向とし、吐
き出し側にあるものを負方向とすると、前記任意断面翼
弦投影中心点Prが前記翼内周弦投影中心点Pb付近で
は正方向にあり、任意の場所で前記直線Pと交わり、前
記翼外周弦投影中心点Pt付近では負方向となる、前記
任意断面翼弦投影中心点Prの軌跡がS字を示すか、ま
たは、前記翼外周弦投影中心点Pt付近では直線P上を
通る軌跡を描く送風羽根車。
A plurality of rotor blades provided on an outer periphery of a hub;
A motor for supporting the moving blades with a rotating shaft is provided, and the shape of the moving blades is a projection projected in the axial direction of the rotating shaft. A point at which the projection line of the blade inner chord at the contact part is bisected is defined as a blade inner chord projection center point Pb, and a point at which the projection of the blade outer periphery chord of the moving blade is bisected is designated as a blade outer chord projection center point Pt. A circle having an arbitrary radius R centered on the origin O is drawn, and an intersection point where the circle intersects in the projection of the bucket blade and a point bisecting an arc indicated by the radius R are arbitrarily sectioned chords. The projection center point Pr is used as the projection center point Pb in the projection view projected on a plane including the rotation axis.
And a straight line P connecting the wing outer peripheral chord projection center point Pt, a line on the fluid suction side from the straight line P is defined as a positive direction, and a line on the discharge side is defined as a negative direction. The arbitrary cross-section chord projection, in which the point Pr is in the positive direction near the wing inner chord projection center point Pb, intersects the straight line P at an arbitrary position, and becomes a negative direction near the wing outer chord projection center point Pt. Whether the locus of the center point Pr shows an S shape , or
Or, in the vicinity of the wing outer peripheral chord projection center point Pt,
A blower impeller that draws a trajectory .
【請求項2】回転軸の原点Oと翼内周弦投影中心点Pb
を結ぶ線分をXb、前記原点Oと翼内周弦投影中心点P
tを結ぶ線分をXtとすると、前記線分Xbと前記線分
Xtのなす角度をAθtとしたとき、このAθtは動翼
羽根の回転方向を正方向として30゜〜60゜の範囲で
あり、前記原点Oと任意断面翼弦投影中心点Prを結ぶ
線分と前記線分Xbがなす任意の角度をAθとすると、
AθはAθtよりも小さい値をとり、 かつ、前記翼内周弦投影中心点Pbを通り、回転軸と直
行する平面を基準面Aとすると、前記基準面Aから前記
任意断面翼弦投影中心点Prまでの距離をKとした時、
Kの半径方向分布はRb<R<0.46Rtの範囲では
0<K<0.125Rtの範囲であり、0.46Rt<
R<0.70Rtの範囲では、0.12Rt<K<0.
17Rtの範囲であり、0.70Rt<R<Rtの範囲
では、0.16Rt<K<0.34Rtの範囲をとり、
(Rt:羽根外周半径、Rb:羽根内周半径)、 かつ、前記原点Oを中心とする任意の半径Rの円筒面で
切断して、断面を2次元に展開してできる翼断面で、前
記翼断面における中心線は略円弧形状とし、前記翼断面
の翼弦長LとそりDでそり率Qは、Q=D/Lで与え、
前記翼外周部の翼断面における外周部そり率Qtは0.
05〜0.09の範囲の値をとり、前記翼内周部の翼断
面における内周部そり率Qtは0.03〜0.06の範
囲の値をとり、外周部より内周部のそり率Qの方が小さ
くなる請求項1記載の送風羽根車。
2. The origin O of the rotation axis and the projection center point Pb of the blade inner circumference chord.
Xb, the origin O and the wing inner chord projection center point P
Assuming that a line segment connecting t is Xt and an angle formed by the line segment Xb and the line segment Xt is Aθt, this Aθt is in a range of 30 ° to 60 ° with the rotation direction of the bucket blade being the positive direction. If an arbitrary angle formed by a line segment connecting the origin O and the arbitrary cross-section chord projection center point Pr and the line segment Xb is Aθ,
Aθ takes a value smaller than Aθt, and when a plane passing through the wing inner chord projection center point Pb and perpendicular to the rotation axis is defined as a reference plane A, the arbitrary cross-section chord projection center point from the reference plane A When the distance to Pr is K,
The radial distribution of K is in the range of 0 <K <0.125Rt in the range of Rb <R <0.46Rt, and 0.46Rt <
In the range of R <0.70Rt, 0.12Rt <K <0.
17Rt, and in a range of 0.70Rt <R <Rt, a range of 0.16Rt <K <0.34Rt is taken;
(Rt: outer circumference radius of the blade, Rb: inner circumference radius of the blade), and a blade section formed by cutting a cylindrical surface having an arbitrary radius R centered on the origin O and expanding the section in two dimensions. The center line in the cross section of the wing has a substantially arc shape, and the chord length L and the deflection D of the wing cross section are given by Q = D / L.
The outer peripheral portion warpage rate Qt in the blade cross section of the outer peripheral portion of the blade is 0.
05 to 0.09, the inner peripheral part warpage rate Qt in the blade cross section of the inner peripheral part of the blade takes a value in the range of 0.03 to 0.06, and the inner peripheral part is more curved than the outer peripheral part. The blower impeller according to claim 1, wherein the rate Q is smaller.
【請求項3】回転軸の原点Oと翼内周弦投影中心点Pb
を結ぶ線分をXb、前記原点Oと翼内周弦投影中心点P
tを結ぶ線分をXtとすると、前記線分Xbと前記線分
Xtのなす角度をAθtとしたとき、このAθtは動翼
羽根の回転方向を正方向として30゜〜60゜の範囲で
あり、前記原点Oと任意断面翼弦投影中心点Prを結ぶ
線分と前記線分Xbがなす任意の角度をAθとすると、
AθはAθtよりも小さい値をとり、 かつ、前記翼内周弦投影中心点Pbを通り、回転軸と直
行する平面を基準面Aとすると、前記基準面Aから前記
任意断面翼弦投影中心点Prまでの距離をKとした時、
Kの半径方向分布はRb<R<0.46Rtの範囲では
0<K<0.125Rtの範囲であり、0.46Rt<
R<0.70Rtの範囲では、0.12Rt<K<0.
17Rtの範囲であり、0.70Rt<R<Rtの範囲
では、0.16Rt<K<0.34Rtの範囲をとり、
(Rt:羽根外周半径、Rb:羽根内周半径)、 かつ、前記原点Oを中心とする前記任意の半径Rの円筒
面で切断して、断面を2次元に展開してできる翼断面
で、翼弦と前記回転軸と垂直で前記翼断面の翼前縁を通
る直線である翼列線とのなす角を取付角Cθとし、前記
翼外周部の翼断面における外周部取付角Cθtは20゜
〜35゜の範囲であり、前記翼内周部の翼断面における
内周部取付角Cθbは30゜〜40゜の範囲である請求
項1記載の送風羽根車。
3. The origin O of the rotation axis and the projection center point Pb of the inner wing chord.
Xb, the origin O and the wing inner chord projection center point P
Assuming that a line segment connecting t is Xt and an angle formed by the line segment Xb and the line segment Xt is Aθt, this Aθt is in a range of 30 ° to 60 ° with the rotation direction of the bucket blade being the positive direction. If an arbitrary angle formed by a line segment connecting the origin O and the arbitrary cross-section chord projection center point Pr and the line segment Xb is Aθ,
Aθ takes a value smaller than Aθt, and when a plane passing through the wing inner chord projection center point Pb and perpendicular to the rotation axis is defined as a reference plane A, the arbitrary cross-section chord projection center point from the reference plane A When the distance to Pr is K,
The radial distribution of K is in the range of 0 <K <0.125Rt in the range of Rb <R <0.46Rt, and 0.46Rt <
In the range of R <0.70Rt, 0.12Rt <K <0.
17Rt, and in a range of 0.70Rt <R <Rt, a range of 0.16Rt <K <0.34Rt is taken;
(Rt: blade outer radius, Rb: blade inner radius), and a blade section formed by cutting the cylindrical surface of the arbitrary radius R centered on the origin O and expanding the section in two dimensions. The angle formed between the chord and a row of cascade lines that is perpendicular to the rotation axis and passes through the leading edge of the blade section is defined as a mounting angle Cθ, and an outer peripheral portion mounting angle Cθt in the blade cross section of the outer peripheral portion of the blade is 20 °. 2. The blower impeller according to claim 1, wherein the inner peripheral portion mounting angle Cθb in the blade cross section of the inner peripheral portion of the blade is in a range of 30 ° to 40 °.
【請求項4】回転軸の原点Oを中心とする任意の半径R
の円筒面で切断して、断面を2次元に展開してできる翼
断面で、翼の前記翼断面における中心線は略円弧形状と
し、前記翼断面の翼弦長LとそりDでそり率QはQ=D
/Lで与え、前記翼外周部の翼断面における外周部そり
率Qtは0.05〜0.09の範囲の値をとり、前記翼
内周部の翼断面における内周部そり率Qtは0.03〜
0.06の範囲の値をとり、外周部より内周部のそり率
Qが小さくなる請求項1または3記載の送風羽根車。
4. An arbitrary radius R centered on the origin O of the rotation axis.
Is a wing cross section formed by expanding the cross section two-dimensionally, the center line of the wing in the wing cross section is substantially arc-shaped, and the chord length L and the warp D of the wing cross section Q Is Q = D
/ L, the outer peripheral part warpage rate Qt in the blade cross section of the outer peripheral part of the blade takes a value in the range of 0.05 to 0.09, and the inner peripheral part warp rate Qt in the blade cross section of the inner peripheral part of the blade is 0. .03-
4. The blower impeller according to claim 1, wherein the blower impeller takes a value in the range of 0.06, and the warp ratio Q of the inner peripheral portion is smaller than that of the outer peripheral portion.
【請求項5】回転軸の原点Oを中心とする前記任意の半
径Rの円筒面で切断して、断面を2次元に展開してでき
る翼断面で翼弦長Lと、回転軸と垂直で翼の翼前縁を通
る直線である翼列線上で、前記翼の前記翼前縁と前記翼
と隣り合う翼の翼前縁との距離をピッチTとしたとき、
節弦比SはS=L/Tで与え、前記節弦比Sは0.6〜
1.0の範囲となる請求項1、3または4記載の送風羽
根車。
5. A blade section formed by cutting the cylindrical surface having the arbitrary radius R centered on the origin O of the rotation axis and expanding the cross section two-dimensionally, and having a chord length L perpendicular to the rotation axis. On a cascade line that is a straight line passing through the wing leading edge of the wing, when a distance between the wing leading edge of the wing and the wing leading edge of an adjacent wing is a pitch T,
The string ratio S is given by S = L / T, and the string ratio S is 0.6 to
The blower impeller according to claim 1, 3 or 4, which has a range of 1.0.
【請求項6】中心軸を、外周径Dtを有する動翼羽根の
回転軸と同一とし、吸込口側の断面が半径Orで最小内
径Drを示す中心軸に直行する平面上の半径Orの中心
から吸込口側に角度Oθだけ伸ばした円弧状の円環であ
り、断面が直線であり長さがLrのダクト部と一体に作
られたオリフィスを有し、前記半径Orは0.15Dt
〜0.4Dtであり、前記最小内径Drは1.02Dt
〜1.03Dtであり、前記角度Oθは30゜〜90゜
であり、前記長さLrは0.05Dt〜0.10Dtで
ある請求項1、2、3、4または5記載の送風羽根車。
6. A center of a radius Or on a plane perpendicular to a central axis having a cross section on the suction port side having a radius of Or and a minimum inner diameter Dr, wherein the center axis is the same as the rotation axis of the rotor blade having an outer diameter Dt. Is an arc-shaped ring extending from the opening to the suction port side by an angle Oθ, and has an orifice integrally formed with a duct portion having a straight section and a length of Lr, and the radius Or is 0.15 Dt.
0.4Dt, and the minimum inner diameter Dr is 1.02Dt.
6. The blower impeller according to claim 1, wherein the angle Oθ is 30 ° to 90 °, and the length Lr is 0.05 Dt to 0.10 Dt. 7.
【請求項7】中心軸を、外周径Dtを有する動翼羽根の
回転軸と同一とし、吸込口および出口側の断面が半径O
rで最小内径Drを示す中心軸に直行する平面上の半径
Orの中心から吸込口側に角度Oθだけ伸ばした円弧状
の円環であり、断面が直線であり長さがLrのダクト部
を挟み込み一体に作られたオリフィスを有し、前記半径
Orは0.05Dt〜0.2Dtであり、前記最小内径
Drは1.02Dt〜1.03Dtであり、前記角度O
θは30゜〜90゜であり、前記長さLrは0.01D
t〜0.02Dtである請求項1、2、3、4または5
記載の送風羽根車。
7. A rotating shaft of a rotor blade having an outer peripheral diameter Dt having the same central axis as a rotating shaft of a rotor blade having a radius O
r is an arcuate ring extending from the center of a radius Or on a plane perpendicular to the central axis indicating the minimum inner diameter Dr toward the suction port side by an angle Oθ, and has a straight section and a length Lr. An orifice formed integrally with the pinch, the radius Or is 0.05 Dt to 0.2 Dt, the minimum inner diameter Dr is 1.02 Dt to 1.03 Dt, and the angle O
is 30 ° to 90 °, and the length Lr is 0.01D
6. The method according to claim 1, wherein t is 0.02 Dt.
The blower impeller described.
【請求項8】回転軸の原点Oと翼内周弦投影中心点Pb
を結ぶ線分をXb、前記原点Oと前記翼内周弦投影中心
点Ptを結ぶ線分をXtとすると、前記線分Xbと前記
線分Xtのなす角度をAθtとしたとき、このAθtは
動翼羽根の回転方向を正方向として30゜〜60゜の範
囲であり、前記原点Oと任意断面翼弦投影中心点Prを
結ぶ線分と前記線分Xbがなす任意の角度をAθとする
と、AθはAθtよりも小さい値をとり、 かつ、前記翼内周弦投影中心点Pbを通り、前記回転軸
と直行する平面を基準面Aとすると、前記基準面Aから
前記任意断面翼弦投影中心点Prまでの距離をKとした
時、Kの半径方向分布はRb<R<0.46Rtの範囲
では0<K<0.14Rtの範囲であり、0.46Rt
<R<0.70Rtの範囲では、0.13Rt<K<
0.17Rtの範囲であり、0.70Rt<R<Rtの
範囲では、0.16Rt<K<0.265Rtの範囲を
とり、(Rt:羽根外周半径、Rb:羽根内周半径)、 かつ、前記原点Oを中心とする任意の半径Rの円筒面で
切断して、断面を2次元に展開してできる翼断面で、前
記翼の前記翼断面における中心線は略円弧形状とし、前
記翼断面の翼弦長LとそりDでそり率QはQ=D/Lで
与え、前記翼外周部の翼断面における外周部そり率Qt
は0.05〜0.09の範囲の値をとり、前記翼内周部
の翼断面における内周部そり率Qtは0.03〜0.0
6の範囲の値をとり、外周部より内周部のそり率Qが小
さくなる請求項1記載の送風羽根車。
8. The origin O of the rotation axis and the projection center point Pb of the blade inner circumference.
Is defined as Xb, and a line connecting the origin O and the wing inner chord projection center point Pt is defined as Xt, where Aθt is an angle formed by the line Xb and the line Xt. When the rotation direction of the bucket blade is the positive direction, the angle is in the range of 30 ° to 60 °, and an arbitrary angle formed by a line segment connecting the origin O and the arbitrary cross-section chord projection center point Pr and the line segment Xb is Aθ. , Aθ is smaller than Aθt, and if a plane passing through the wing inner circumference chord projection center point Pb and perpendicular to the rotation axis is defined as a reference plane A, the arbitrary cross-section chord projection from the reference plane A is performed. Assuming that the distance to the center point Pr is K, the radial distribution of K is 0 <K <0.14Rt in the range of Rb <R <0.46Rt, and 0.46Rt.
In the range of <R <0.70Rt, 0.13Rt <K <
In the range of 0.70Rt <R <Rt, the range of 0.16Rt <K <0.265Rt is taken, (Rt: blade outer radius, Rb: blade inner radius), and A wing section formed by cutting a cylindrical surface of an arbitrary radius R centered on the origin O and expanding the section in two dimensions, the center line of the wing section of the wing is substantially arc-shaped, Is given by Q = D / L with the chord length L and the warp D of the blade.
Takes a value in the range of 0.05 to 0.09, and the inner peripheral portion warp rate Qt in the blade cross section of the inner peripheral portion of the blade is 0.03 to 0.09.
The blower impeller according to claim 1, wherein a value of the range of 6 is set, and the warp rate Q of the inner peripheral portion is smaller than that of the outer peripheral portion.
【請求項9】回転軸の原点Oと翼内周弦投影中心点Pb
を結ぶ線分をXb、前記原点Oと翼内周弦投影中心点P
tを結ぶ線分をXtとすると、前記線分Xbと前記線分
Xtのなす角度をAθtとしたとき、このAθtは動翼
羽根の回転方向を正方向として30゜〜60゜の範囲で
あり、前記原点Oと前記任意断面翼弦投影中心点Prを
結ぶ線分と前記線分Xbがなす任意の角度をAθとする
と、AθはAθtよりも小さい値をとり、 かつ、前記翼内周弦投影中心点Pbを通り、前記回転軸
と直行する平面を基準面Aとすると、前記基準面Aから
前記任意断面翼弦投影中心点Prまでの距離をKとした
時、Kの半径方向分布はRb<R<0.46Rtの範囲
では0<K<0.14Rtの範囲であり、0.46Rt
<R<0.70Rtの範囲では、0.13Rt<K<
0.17Rtの範囲であり、0.70Rt<R<Rtの
範囲では、0.16Rt<K<0.265Rtの範囲を
とり、(Rt:羽根外周半径、Rb:羽根内周半径)、 かつ、前記原点Oを中心とする前記任意の半径Rの円筒
面で切断して、断面を2次元に展開してできる翼断面
で、翼弦と前記回転軸と垂直で前記翼断面の翼前縁を通
る直線である翼列線とのなす角を取付角Cθとし、前記
翼外周部の翼断面における外周部取付角Cθtは20゜
〜35゜の範囲であり、前記翼内周部の翼断面における
内周部取付角Cθbは30゜〜40゜の範囲であり、外
周部より内周部の取付角Cθが大きくなる請求項1記載
の送風羽根車。
9. The origin O of the rotation axis and the projection center point Pb of the inner wing chord.
Xb, the origin O and the wing inner chord projection center point P
Assuming that a line segment connecting t is Xt and an angle formed by the line segment Xb and the line segment Xt is Aθt, this Aθt is in a range of 30 ° to 60 ° with the rotation direction of the bucket blade being the positive direction. If an arbitrary angle formed by a line segment connecting the origin O and the arbitrary cross-section chord projection center point Pr and the line segment Xb is Aθ, Aθ takes a value smaller than Aθt, and Assuming that a plane passing through the projection center point Pb and perpendicular to the rotation axis is a reference plane A, when a distance from the reference plane A to the arbitrary cross-section chord projection center point Pr is K, a radial distribution of K is When Rb <R <0.46Rt, 0 <K <0.14Rt, and 0.46Rt
In the range of <R <0.70Rt, 0.13Rt <K <
In the range of 0.70Rt <R <Rt, the range of 0.16Rt <K <0.265Rt is taken, (Rt: blade outer radius, Rb: blade inner radius), and A wing section formed by cutting the cylindrical surface of the arbitrary radius R centered on the origin O and expanding the section in two dimensions, the wing leading edge of the wing section perpendicular to the chord and the rotation axis. The angle formed with the cascade line, which is a straight line, is referred to as an attachment angle Cθ, and the outer peripheral portion attachment angle Cθt in the blade cross section of the outer peripheral portion of the blade is in a range of 20 ° to 35 °. The blower impeller according to claim 1, wherein the inner peripheral portion mounting angle Cθb is in a range of 30 ° to 40 °, and the inner peripheral portion mounting angle Cθ is larger than the outer peripheral portion.
【請求項10】回転軸の原点Oを中心とする任意の半径
Rの円筒面で切断して、断面を2次元に展開してできる
翼断面で、翼の前記翼断面における中心線は略円弧形状
とし、前記翼断面の翼弦長LとそりDでそり率QはQ=
D/Lで与え、前記翼外周部の翼断面における外周部そ
り率Qtは0.05〜0.09の範囲の値をとり、前記
翼内周部の翼断面における内周部そり率Qtは0.03
〜0.06の範囲の値をとり、外周部より内周部のそり
率Qが小さくなる請求項1または9記載の送風羽根車。
10. A wing section formed by cutting a cylindrical surface having an arbitrary radius R centered on the origin O of the rotation axis and expanding the section in two dimensions, wherein the center line of the wing section is substantially a circular arc. With the chord length L and the sled D of the wing cross section, the warp rate Q is Q =
Given by D / L, the outer peripheral part warpage rate Qt in the blade cross section of the outer peripheral part of the blade takes a value in the range of 0.05 to 0.09, and the inner peripheral part warp rate Qt in the wing cross section of the inner peripheral part of the blade is 0.03
The blower impeller according to claim 1 or 9, wherein the blower impeller has a value in the range of -0.06 and the warp ratio Q of the inner peripheral portion is smaller than that of the outer peripheral portion.
【請求項11】回転軸の原点Oを中心とする任意の半径
Rの円筒面で切断して、断面を2次元に展開してできる
翼断面で翼弦長Lと、回転軸と垂直で翼の翼前縁を通る
直線である翼列線上で、前記翼の前記翼前縁と前記翼と
隣り合う翼の翼前縁との距離をピッチTとしたとき、節
弦比SはS=L/Tで与え、前記節弦比Sは0.6〜
1.0の範囲となる請求項1、9または10記載の送風
羽根車。
11. A blade section formed by cutting a cylindrical surface having an arbitrary radius R centered on the origin O of the rotation axis and expanding the cross section in two dimensions, and a chord length L and a blade section perpendicular to the rotation axis. On a cascade line that is a straight line passing through the leading edge of the wing, when the distance between the leading edge of the wing and the leading edge of the wing adjacent to the wing is a pitch T, the chord ratio S is S = L / T, and the chord ratio S is 0.6 to
The blower impeller according to claim 1, 9 or 10, which has a range of 1.0.
【請求項12】中心軸を、外周径Dtを有する動翼羽根
の回転軸と同一とし、吸込口側の断面が半径Orで最小
内径Drを示す中心軸に直行する平面上の半径Orの中
心から吸込口側に角度Oθだけ伸ばした円弧状の円環で
あり、断面が直線であり長さがLrのダクト部と一体に
作られたオリフィスを有し、前記半径Orは0.15D
t〜0.4Dtであり、前記最小内径Drは1.02D
t〜1.03Dtであり、前記角度Oθは30゜〜90
゜であり、前記長さLrは0.05Dt〜0.10Dt
である請求項1、8、9、10または11記載の送風羽
根車。
12. The center axis of which is the same as the rotation axis of the rotor blade having an outer diameter Dt, and whose center on a plane Or whose cross section on the suction port side is a radius Or and is perpendicular to the center axis indicating the minimum inner diameter Dr. Is an arc-shaped ring extending from the side to the suction port side by an angle Oθ, and has an orifice integrally formed with a duct portion having a straight section and a length of Lr, and the radius Or is 0.15D.
t to 0.4 Dt, and the minimum inner diameter Dr is 1.02 D
t to 1.03 Dt, and the angle Oθ is 30 ° to 90 °.
長, and the length Lr is 0.05 Dt to 0.10 Dt.
The blower impeller according to claim 1, 8, 9, 10, or 11, wherein
【請求項13】中心軸を、外周径Dtを有する動翼羽根
の回転軸と同一とし、吸込口および出口側の断面が半径
Orで最小内径Drを示す中心軸に直行する平面上の半
径Orの中心から吸込口側に角度Oθだけ伸ばした円弧
状の円環であり、断面が直線であり長さがLrのダクト
部を挟み込み一体に作られたオリフィスを有し、前記半
径Orは0.05Dt〜0.2Dtであり、前記最小内
径Drは1.02Dt〜1.03Dtであり、前記角度
Oθは30゜〜90゜であり、前記長さLrは0.01
Dt〜0.02Dtである請求項1、8、9、10また
は11記載の送風羽根車。
13. A central axis having the same axis as the rotating axis of the rotor blade having an outer peripheral diameter Dt, and having a radius Or on a plane perpendicular to the central axis whose cross section on the inlet and outlet sides has the radius Or and the minimum inner diameter Dr. Is an arc-shaped ring extending from the center to the suction port side by an angle Oθ, has an orifice integrally formed by sandwiching a duct section having a linear cross section and a length of Lr. 05Dt to 0.2Dt, the minimum inner diameter Dr is 1.02Dt to 1.03Dt, the angle Oθ is 30 ° to 90 °, and the length Lr is 0.01
The blower impeller according to claim 1, 8, 9, 10, or 11, wherein Dt is 0.02Dt.
【請求項14】ハブの外周に複数枚の動翼羽根を備え、
この動翼羽根を回転軸で支持するモータを設け、前記動
翼羽根の形状は前記回転軸の軸方向に前記動翼羽根を投
影したときに、前記回転軸に垂直な平面に映し出される
投影図において、前記回転軸を原点Oとし、前記ハブと
前記動翼羽根の接触部における翼内周弦投影線を2等分
する点を翼内周弦投影中心点Pbとし、前記動翼羽根の
翼外周弦投影線を2等分する点を翼外周弦投影中心点P
tとし、 かつ、前記投影図において、前記原点Oを中心とする任
意の半径Rを持つ円を描き、前記円が前記動翼羽根の投
影において交わる交点と半径Rにおいて示される円弧を
2等分する点を任意断面翼弦投影中心点Prとし、 かつ、前記回転軸を含む平面に映し出される投影図にお
いて、前記翼内周弦投影中心点Pbと前記翼外周弦中心
点Ptとを結ぶ直線Pを考え、前記直線Pよりも流体の
吸込側にあるものを正方向とし、吐き出し側にあるもの
を負方向にあるとすると、前記任意断面翼弦投影中心点
Prが前記翼内周弦投影中心点Pb付近では正方向にあ
り、任意の場所で前記直線Pと交わり、前記翼外周弦投
影中心点Pt付近では直線P上を通る軌跡を描く送風羽
根車。
14. A plurality of rotor blades are provided on the outer periphery of the hub,
A motor for supporting the moving blades with a rotating shaft is provided, and the shape of the moving blade is projected on a plane perpendicular to the rotating shaft when the moving blade is projected in the axial direction of the rotating shaft. , The rotation axis is defined as the origin O, the point at which the hub and the rotor blade contact each other, and the point at which the blade inner circumference projection line is bisected is defined as the blade inner circumference projection center point Pb, and the blade of the rotor blade is The point at which the outer chord projection line is bisected is the wing outer chord projection center point P
t, and in the projection, a circle having an arbitrary radius R centered on the origin O is drawn, and an intersection point where the circle intersects in the projection of the bucket blade and an arc indicated by the radius R are bisected. Is defined as an arbitrary cross-section chord projection center point Pr, and a straight line P connecting the wing inner chord projection center point Pb and the wing outer chord center point Pt in a projection view projected on a plane including the rotation axis. In consideration of the above, if the one on the suction side of the fluid with respect to the straight line P is in the positive direction, and the one on the discharge side is in the negative direction, the arbitrary cross-section chord projection center point Pr is equal to the wing inner chord projection center. A blower impeller that is in the positive direction near point Pb, intersects with the straight line P at an arbitrary position, and draws a locus passing on the straight line P near the blade outer peripheral chord projection center point Pt.
【請求項15】回転軸の原点Oと翼内周弦投影中心点P
bを結ぶ線分をXb、前記原点Oと翼内周弦投影中心点
Ptを結ぶ線分をXtとすると、前記線分Xbと前記線
分Xtのなす角度をAθtとしたとき、このAθtは動
翼羽根の回転方向を正方向として30゜〜60゜の範囲
であり、前記原点Oと前記任意断面翼弦投影中心点Pr
を結ぶ線分と前記線分Xbがなす任意の角度をAθとす
ると、AθはAθtよりも小さい値をとり、 かつ、前記翼内周弦投影中心点Pbを通り、前記回転軸
と直行する平面を基準面Aとすると、前記基準面Aから
前記任意断面翼弦投影中心点Prまでの距離をKとした
時、Kの半径方向分布はRb<R<0.46Rtの範囲
では0<K<0.125Rtの範囲であり、0.46R
t<R<0.70Rtの範囲では、0.12Rt<K<
0.17Rtの範囲であり、0.70Rt<R<Rtの
範囲では、0.16Rt<K<0.265Rtの範囲を
とり、(Rt:羽根外周半径、Rb:羽根内周半径)、 かつ、前記原点Oを中心とする任意の半径Rの円筒面で
切断して、断面を2次元に展開してできる翼断面で、前
記翼断面における中心線は円弧形状とし、前記翼断面の
翼弦長LとそりDでそり率QはQ=D/Lで与え、前記
翼外周部の翼断面における外周部そり率Qtは0.05
〜0.09の範囲の値をとり、前記翼内周部の翼断面に
おける内周部そり率Qtは0.03〜0.06の範囲の
値をとり、外周部より内周部のそり率Qが小さくなる請
求項14記載の送風羽根車。
15. The origin O of the rotation axis and the projection center point P of the wing inner circumference chord.
Assuming that a line connecting Xb is Xb and a line connecting the origin O and the wing inner chord projection center point Pt is Xt, when an angle formed by the line Xb and the line Xt is Aθt, Aθt is The rotation direction of the moving blade is in the range of 30 ° to 60 ° with the rotation direction being the positive direction, and the origin O and the arbitrary cross-section chord projection center point Pr
Is defined as Aθ, and Aθ has a value smaller than Aθt, and passes through the wing inner chord projection center point Pb and is orthogonal to the rotation axis. Let K be the distance from the reference plane A to the arbitrary cross-section chord projection center point Pr, the radial distribution of K is 0 <K <in the range of Rb <R <0.46Rt. 0.125Rt range, 0.46Rt
In the range of t <R <0.70Rt, 0.12Rt <K <
In the range of 0.70Rt <R <Rt, the range of 0.16Rt <K <0.265Rt is taken, (Rt: blade outer radius, Rb: blade inner radius), and A wing section obtained by cutting a cylindrical surface having an arbitrary radius R centered on the origin O and expanding the section in two dimensions, the center line in the wing section has an arc shape, and the chord length of the wing section The warp rate Q is given by Q = D / L with L and warp D, and the outer circumferential warp rate Qt in the blade cross section of the outer circumferential portion of the blade is 0.05.
The value of the inner peripheral portion warp Qt in the blade cross section of the inner peripheral portion of the blade takes a value of 0.03 to 0.06. The blower impeller according to claim 14, wherein Q is reduced.
【請求項16】回転軸の原点Oと翼内周弦投影中心点P
bを結ぶ線分をXb、前記原点Oと翼内周弦投影中心点
Ptを結ぶ線分をXtとすると、前記線分Xbと前記線
分Xtのなす角度をAθtとしたとき、このAθtは動
翼羽根の回転方向を正方向として30゜〜60゜の範囲
であり、前記原点Oと前記任意断面翼弦投影中心点Pr
を結ぶ線分と前記線分Xbがなす任意の角度をAθとす
ると、AθはAθtよりも小さい値をとり、 かつ、前記翼内周弦投影中心点Pbを通り、前記回転軸
と直行する平面を基準面Aとすると、前記基準面Aから
前記任意断面翼弦投影中心点Prまでの距離をKとした
時、Kの半径方向分布はRb<R<0.46Rtの範囲
では0<K<0.125Rtの範囲であり、0.46R
t<R<0.70Rtの範囲では、0.12Rt<K<
0.17Rtの範囲であり、0.70Rt<R<Rtの
範囲では、0.16Rt<K<0.265Rtの範囲を
とり、(Rt:羽根外周半径、Rb:羽根内周半径)、 かつ、前記原点Oを中心とする前記任意の半径Rの円筒
面で切断して、断面を2次元に展開してできる翼断面
で、翼弦と前記回転軸と垂直で前記翼断面の翼前縁を通
る直線である翼列線とのなす角を取付角Cθとし、前記
翼外周部の翼断面における外周部取付角Cθtは20゜
〜35゜の範囲であり、前記翼内周部の翼断面における
内周部取付角Cθbは30゜〜40゜の範囲であり、外
周部より内周部のそり率Qが小さくなる請求項14記載
の送風羽根車。
16. The origin O of the rotation axis and the projection center point P of the blade inner circumference chord.
Assuming that a line connecting Xb is Xb and a line connecting the origin O and the wing inner chord projection center point Pt is Xt, when an angle formed by the line Xb and the line Xt is Aθt, Aθt is The rotation direction of the moving blade is in the range of 30 ° to 60 ° with the rotation direction being the positive direction, and the origin O and the arbitrary cross-section chord projection center point Pr
Is defined as Aθ, and Aθ has a value smaller than Aθt, and passes through the wing inner chord projection center point Pb and is orthogonal to the rotation axis. Let K be the distance from the reference plane A to the arbitrary cross-section chord projection center point Pr, the radial distribution of K is 0 <K <in the range of Rb <R <0.46Rt. 0.125Rt range, 0.46Rt
In the range of t <R <0.70Rt, 0.12Rt <K <
In the range of 0.70Rt <R <Rt, the range of 0.16Rt <K <0.265Rt is taken, (Rt: blade outer radius, Rb: blade inner radius), and A wing section formed by cutting the cylindrical surface of the arbitrary radius R centered on the origin O and expanding the section in two dimensions, the wing leading edge of the wing section perpendicular to the chord and the rotation axis. The angle formed with the cascade line, which is a straight line, is referred to as an attachment angle Cθ, and the outer peripheral portion attachment angle Cθt in the blade cross section of the outer peripheral portion of the blade is in a range of 20 ° to 35 °. 15. The blower impeller according to claim 14, wherein the inner peripheral portion mounting angle C [theta] b is in a range of 30 [deg.] To 40 [deg.], And the warp rate Q of the inner peripheral portion is smaller than that of the outer peripheral portion.
【請求項17】回転軸の原点Oを中心とする任意の半径
Rの円筒面で切断して、断面を2次元に展開してできる
翼断面で、翼の前記翼断面における中心線は略円弧形状
とし、前記翼断面の翼弦長LとそりDでそり率QはQ=
D/Lで与え、前記翼外周部の翼断面における外周部そ
り率Qtは0.05〜0.09の範囲の値をとり、前記
翼内周部の翼断面における内周部そり率Qtは0.03
〜0.06の範囲の値をとり、外周部より内周部のそり
率Qが小さくなる請求項14または16記載の送風羽根
車。
17. A wing section obtained by cutting a cylindrical surface having an arbitrary radius R centered on the origin O of the rotation axis and expanding the section in two dimensions, wherein the center line of the wing section is substantially a circular arc. With the chord length L and the sled D of the wing cross section, the warp rate Q is Q =
Given by D / L, the outer peripheral part warpage rate Qt in the blade cross section of the outer peripheral part of the blade takes a value in the range of 0.05 to 0.09, and the inner peripheral part warp rate Qt in the wing cross section of the inner peripheral part of the blade is 0.03
17. The blower impeller according to claim 14 or 16, wherein a value in a range of -0.06 is set, and a warp ratio Q of the inner peripheral portion is smaller than that of the outer peripheral portion.
【請求項18】回転軸の原点Oを中心とする任意の半径
Rの円筒面で切断して、断面を2次元に展開してできる
翼断面で翼弦長Lと、回転軸と垂直で翼の翼前縁を通る
直線である翼列線上で、前記翼の前記翼前縁と前記翼と
隣り合う翼の翼前縁との距離をピッチTとしたとき、節
弦比SはS=L/Tで与え、前記節弦比Sは0.6〜
1.0の範囲となる請求項14、16または17記載の
送風羽根車。
18. A blade section formed by cutting a cylindrical surface having an arbitrary radius R centered on the origin O of the rotation axis and expanding the cross section in two dimensions, and a chord length L and a blade section perpendicular to the rotation axis. On a cascade line that is a straight line passing through the leading edge of the wing, when the distance between the leading edge of the wing and the leading edge of the wing adjacent to the wing is a pitch T, the chord ratio S is S = L / T, and the chord ratio S is 0.6 to
The blower impeller according to claim 14, 16 or 17, which has a range of 1.0.
【請求項19】中心軸を、外周径Dtを有する動翼羽根
の回転軸と同一とし、吸込口側の断面が半径Orで最小
内径Drを示す中心軸に直行する平面上の半径Orの中
心から吸込口側に角度Oθだけ伸ばした円弧状の円環で
あり、断面が直線であり長さがLrのダクト部と一体に
作られたオリフィスを有し、前記半径Orは0.15D
t〜0.4Dtであり、前記最小内径Drは1.02D
t〜1.03Dtであり、前記角度Oθは30゜〜90
゜であり、前記長さLrは0.05Dt〜0.10Dt
である請求項14、15、16、17または18記載の
送風羽根車。
19. A center of a radius Or on a plane perpendicular to the center axis whose cross section on the suction port side is the radius Or and has the minimum inner diameter Dr, wherein the center axis is the same as the rotation axis of the rotor blade having the outer diameter Dt. Is an arc-shaped ring extending from the side to the suction port side by an angle Oθ, and has an orifice integrally formed with a duct portion having a straight section and a length Lr, and the radius Or is 0.15D.
t to 0.4 Dt, and the minimum inner diameter Dr is 1.02 D
t to 1.03 Dt, and the angle Oθ is 30 ° to 90 °.
長, and the length Lr is 0.05 Dt to 0.10 Dt.
The blower impeller according to claim 14, 15, 16, 17, or 18.
【請求項20】中心軸を、外周径Dtを有する動翼羽根
の回転軸と同一とし、吸込口および出口側の断面が半径
Orで最小内径Drを示す中心軸に直行する平面上の半
径Orの中心から吸込口側に角度Oθだけ伸ばした円弧
状の円環であり、断面が直線であり長さがLrのダクト
部を挟み込み一体に作られたオリフィスを有し、前記半
径Orは0.05Dt〜0.2Dtであり、前記最小内
径Drは1.02Dt〜1.03Dtであり、前記角度
Oθは30゜〜90゜であり、前記長さLrは0.01
Dt〜0.02Dtである請求項14、15、16、1
7または18記載の送風羽根車。
20. A central axis having the same axis as a rotating axis of a rotor blade having an outer diameter Dt, and a cross section on the inlet and outlet sides having a radius of Or and a radius Or on a plane perpendicular to the central axis indicating the minimum inner diameter Dr. Is an arc-shaped ring extending from the center to the suction port side by an angle Oθ, has an orifice integrally formed by sandwiching a duct section having a linear cross section and a length of Lr. 05Dt to 0.2Dt, the minimum inner diameter Dr is 1.02Dt to 1.03Dt, the angle Oθ is 30 ° to 90 °, and the length Lr is 0.01
Dt to 0.02 Dt.
The blower impeller according to 7 or 18.
JP26262395A 1995-10-11 1995-10-11 Blast impeller Expired - Fee Related JP3304243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26262395A JP3304243B2 (en) 1995-10-11 1995-10-11 Blast impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26262395A JP3304243B2 (en) 1995-10-11 1995-10-11 Blast impeller

Publications (2)

Publication Number Publication Date
JPH09105396A JPH09105396A (en) 1997-04-22
JP3304243B2 true JP3304243B2 (en) 2002-07-22

Family

ID=17378371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26262395A Expired - Fee Related JP3304243B2 (en) 1995-10-11 1995-10-11 Blast impeller

Country Status (1)

Country Link
JP (1) JP3304243B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2372785B (en) * 2001-01-11 2004-05-05 Lg Electronics Inc Fan for condenser of refrigerator
JP4677677B2 (en) * 2001-03-02 2011-04-27 ダイキン工業株式会社 Propeller fan and blower
JP5011657B2 (en) * 2005-05-19 2012-08-29 パナソニック株式会社 Axial type impeller
JP5849524B2 (en) * 2011-08-19 2016-01-27 日本電産株式会社 Axial flow fan
CN102758793B (en) * 2012-07-25 2015-03-11 佛山市盈赛机械设备有限公司 Fan blade and axial flow fan with fan blade of air conditioner
JP2019056309A (en) * 2017-09-20 2019-04-11 ミネベアミツミ株式会社 Axial flow fan

Also Published As

Publication number Publication date
JPH09105396A (en) 1997-04-22

Similar Documents

Publication Publication Date Title
US8007243B2 (en) Blower including blades attached to a boss
JP3507758B2 (en) Multi-wing fan
JP5263198B2 (en) Impeller, blower and air conditioner using the same
JP2011089460A (en) Turbo type fluid machine
JP3461661B2 (en) Blower
JP2009133267A (en) Impeller of compressor
JP6730917B2 (en) Centrifugal compressor and turbocharger
JP3677214B2 (en) Axial fan
JP3304243B2 (en) Blast impeller
CN110914553B (en) Impeller, blower and air conditioner
JP2001115997A (en) Multi-blade fan
JP2013053533A (en) Axial flow blower and air conditioner
JP2018080653A (en) Fluid machinery
JPH06173895A (en) Propeller fan
JP4492060B2 (en) Blower impeller
KR20030016175A (en) Vortex flow fan
JPH10311296A (en) Blower
JP3473549B2 (en) Blower impeller and air conditioner equipped with the blower impeller
WO1999036701A1 (en) Centrifugal turbomachinery
JP7150480B2 (en) Propeller fan and outdoor unit for air conditioner provided with the same
JPH0121198Y2 (en)
JPH04143499A (en) Diffuser of centrifugal fluid machine
JPH06299994A (en) Multiblade fan
JPH0615878B2 (en) High-speed centrifugal compressor diffuser
JPH0544697A (en) Thin type mixed flow fan

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees