JP5263198B2 - Impeller, blower and air conditioner using the same - Google Patents

Impeller, blower and air conditioner using the same Download PDF

Info

Publication number
JP5263198B2
JP5263198B2 JP2010041516A JP2010041516A JP5263198B2 JP 5263198 B2 JP5263198 B2 JP 5263198B2 JP 2010041516 A JP2010041516 A JP 2010041516A JP 2010041516 A JP2010041516 A JP 2010041516A JP 5263198 B2 JP5263198 B2 JP 5263198B2
Authority
JP
Japan
Prior art keywords
impeller
blade
hub
orifice ring
blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010041516A
Other languages
Japanese (ja)
Other versions
JP2011179330A (en
Inventor
琢己 木田
欣公 田積
富之 野間
雄二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010041516A priority Critical patent/JP5263198B2/en
Priority to CN2011100486459A priority patent/CN102168686A/en
Publication of JP2011179330A publication Critical patent/JP2011179330A/en
Application granted granted Critical
Publication of JP5263198B2 publication Critical patent/JP5263198B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

The invention relates to an impeller and a pressure fan and an air conditioner using the same. In a pressure fan having an axial flow impellor or a ramp-flow impeller, the flow is inhibited from approaching to the periphery of the blade, and the enhancement of friction loss at the periphery, the loss due to the change of blade tip eddy and blade tail eddy are reduced, and the input of a motor is inhibited to be quite low. The impeller is composed by a wheel hub disposed at the rotating center and a plurality of blades disposed at the periphery of the wheel hub. The cross section in the radius direction of the blades is in the shape of a concave curve at the peripheral side with respect to a suction side, and is in the shape of a convex curve at the wheel hub side with respect to the suction side. The convex curve is approximately in the shape of a circular arc and extends from the front edge side to the rear edge of the blade. The value of radius of curvature of the convex curve is reduced.

Description

本発明は、空気調和機など室外機に用いられる軸流、あるいは斜流などの羽根車を備えた送風機に関するものである。   The present invention relates to a blower provided with an impeller such as an axial flow or a mixed flow used in an outdoor unit such as an air conditioner.

近年、空気調和機では、地球温暖化などの対応として省エネが急激に進んでおり、機器の低入力化が促進されている。一方、暖房快適性の向上など室内機、室外機の熱交換性能の向上を求められており、熱交換器の高性能化とともに室内、室外の送風機の高効率高性能も必須となっている。従来、室外機の送風機には、大風量でかつ低騒音の観点から軸流式、あるいは斜流式の送風機が用いられてきた。しかし、空気調和機のさらなる省エネの促進のため、室外機の送風機にも低入力化が必要であり、室外機として所定の風量を維持しつつ、送風機の送風効率をさらに向上することが求められている。   In recent years, in air conditioners, energy conservation has been rapidly progressing as a countermeasure against global warming and the like, and lower input of devices has been promoted. On the other hand, improvement of heat exchange performance of indoor units and outdoor units such as improvement of heating comfort is required, and high efficiency and high performance of indoor and outdoor blowers are indispensable together with improvement in performance of heat exchangers. Conventionally, axial blowers or mixed flow blowers have been used as blowers for outdoor units from the viewpoint of large air volume and low noise. However, in order to promote further energy saving of the air conditioner, it is necessary to reduce the input of the blower of the outdoor unit, and it is required to further improve the blowing efficiency of the blower while maintaining a predetermined air volume as the outdoor unit. ing.

図11から図13は、従来の空気調和機用室外ユニットに搭載されたプロペラファンを示すものである(例えば、特許文献1参照)。図11、図12において、101はプロペラファンで、ファン回転軸Aに取り付けられるハブ102に同一形状の2枚の翼103が設けられており、翼103はファン回転中の空気流れの流出部にあたる翼後縁部103aに空気流れと逆方向に凹んだ略円弧状、またはV字状、あるいは多角形状の後縁凹部103bが設けられている。また、一方の翼103はファン回転軸Aを中心に180°±5°の範囲で他方の翼103と反転した状態で配置されている。例えば、一方の翼103と他方の翼103は、ファン回転軸Aに対して軸対称に配置されている。104は、プロペラファン101の吐出側の周囲に翼103と所定のクリアランスを保ち設けられたオリフィスリングである。   11 to 13 show a propeller fan mounted on a conventional outdoor unit for an air conditioner (see, for example, Patent Document 1). 11 and 12, reference numeral 101 denotes a propeller fan, and a hub 102 attached to the fan rotation shaft A is provided with two blades 103 having the same shape, and the blades 103 correspond to an air flow outflow portion during fan rotation. The blade trailing edge 103a is provided with a substantially arc-shaped, V-shaped, or polygonal trailing edge recess 103b that is recessed in the direction opposite to the air flow. One blade 103 is arranged in a state of being inverted with respect to the other blade 103 in a range of 180 ° ± 5 ° around the fan rotation axis A. For example, the one blade 103 and the other blade 103 are arranged symmetrically with respect to the fan rotation axis A. An orifice ring 104 is provided around the discharge side of the propeller fan 101 with a predetermined clearance from the blades 103.

また、図13において、本室外機ユニット111はユニット本体112内に、平面L形状の室外熱交換器113と、先に述べたプロペラファン101と、オリフィスリング104と、ファンモータ114からなる室外送風回路115と、コンプレッサ116と、四方弁、インバータ等(図示せず)を収容している。室外送風回路115とコンプレッサ116との間を仕切板117により仕切っている。   In FIG. 13, the outdoor unit 111 includes an outdoor air blower comprising a planar L-shaped outdoor heat exchanger 113, the propeller fan 101, the orifice ring 104, and the fan motor 114. The circuit 115, the compressor 116, a four-way valve, an inverter, etc. (not shown) are accommodated. The outdoor blower circuit 115 and the compressor 116 are partitioned by a partition plate 117.

次に、特許文献1に記載のプロペラファン、および空気調和機用室外ユニットの作用を説明する。まず、ファンモータ114により回転軸Aを介してプロペラファン101が回転駆動して、室外熱交換器113を介して室外空気をプロペラファン101内に導く。その際、翼103と、翼103の周囲に設けられたオリフィスリング104により、動圧と静圧が付加され送風作用を成す。また、室外熱交換器113を通過する際に、コンプレッサ116の作動により室外熱交換器113の管内を流動する冷媒と熱交換する。   Next, the operation of the propeller fan described in Patent Document 1 and the outdoor unit for an air conditioner will be described. First, the propeller fan 101 is rotationally driven by the fan motor 114 via the rotation axis A, and the outdoor air is guided into the propeller fan 101 via the outdoor heat exchanger 113. At that time, dynamic pressure and static pressure are applied by the wing 103 and the orifice ring 104 provided around the wing 103 to perform a blowing action. Further, when passing through the outdoor heat exchanger 113, the compressor 116 operates to exchange heat with the refrigerant flowing in the pipe of the outdoor heat exchanger 113.

ここで、翼103は、ファン回転中の空気流れの流出部にあたる翼後縁部103aに空気流れと逆方向に凹んだ略円弧状、またはV字状、あるいは多角形状の後縁凹部103bが設けることで、翼後縁部103aの形状を複雑化することなく翼103の面積を小さく形成でき、翼後流渦、すなわち、翼の正圧面および負圧面に沿う空気流の流れが翼後縁部103aの下流部で衝突することにより生じる渦が小さく抑え、流れのロスが増大するのを抑える。これにより、プロペラファン101の回転数を上昇して風量の増加を図った際に、ファンモータ114に与える負荷を小さく抑えて、省エネ性の向上化を得ることができる。   Here, the blade 103 is provided with a substantially arc-shaped, V-shaped, or polygonal trailing edge recessed portion 103b that is recessed in a direction opposite to the air flow at the blade trailing edge portion 103a corresponding to the outflow portion of the air flow during fan rotation. Thus, the area of the blade 103 can be reduced without complicating the shape of the blade trailing edge 103a, and the blade wake vortex, that is, the flow of airflow along the pressure surface and suction surface of the blade The vortex generated by the collision at the downstream portion of 103a is suppressed to be small, and the increase of the flow loss is suppressed. Thereby, when the rotation speed of the propeller fan 101 is increased to increase the air volume, the load applied to the fan motor 114 can be suppressed to be small, and energy saving can be improved.

図14から図16は、他の従来の空気調和機用の送風機羽根車を示すものである(例え
ば、特許文献2参照)。図14、図15に示すように、空調用送風機羽根車151は、回転軸中心にモータ150のシャフトを固定して断面が略円錐台状のハブ153を中心にして薄断面の翼152を放射状に3枚設けている。そして、図14のように、空調用送風機羽根車151のハブ153の回転軸中心にモータ150のシャフトを固定して、翼152外周端の回転軌跡に沿うような適切なケ−シング159に納めている。
14 to 16 show other conventional blower impellers for air conditioners (see, for example, Patent Document 2). As shown in FIGS. 14 and 15, the air-conditioning fan impeller 151 fixes the shaft of the motor 150 to the center of the rotation shaft, and radiates the thin blades 152 around the hub 153 having a substantially frustoconical section. Three are provided. Then, as shown in FIG. 14, the shaft of the motor 150 is fixed to the center of the rotation axis of the hub 153 of the air-conditioning fan impeller 151, and is placed in an appropriate casing 159 that follows the rotation locus of the outer peripheral edge of the blade 152. ing.

ここで、図16(a),(b)および(c)に示すように、翼152の半径方向の断面形状を、中点線E−E付近より外周端6側では風上側に対して凹形状の曲線で、中点線E−E付近よりハブ153側は風上側に対して凸形状の曲線にて構成している。かつ、中点線E−E付近より外周側では風上側に対して凹形状である曲線の曲率半径が、翼152の前縁154側の半径方向断面部、翼152の弦長の中央付近の半径方向断面部、翼152の後縁155付近の半径方向断面部の順に、その値が大きくなるようにして構成したものである。すなわち、翼152の前縁154側の半径方向断面部の曲率半径をr1、翼152の弦長の中央付近の半径方向断面部の曲率半径をr2、翼152の後縁155付近の半径方向断面部の曲率半径をr3としたとき、曲率半径の大きさの関係がr1<r2<r3となるように構成したものである。   Here, as shown in FIGS. 16 (a), 16 (b) and 16 (c), the radial cross-sectional shape of the blade 152 is concave with respect to the windward side on the outer peripheral end 6 side near the middle dotted line EE. From the vicinity of the middle dotted line EE, the hub 153 side is configured by a convex curve with respect to the windward side. Further, the radius of curvature of the curve that is concave with respect to the windward side on the outer peripheral side from the vicinity of the middle dotted line EE is a radial cross section on the leading edge 154 side of the wing 152, and the radius near the center of the chord length of the wing 152. The value is increased in the order of the directional cross section and the radial cross section near the trailing edge 155 of the wing 152. That is, the radius of curvature of the radial cross section on the leading edge 154 side of the blade 152 is r1, the radius of curvature of the radial cross section near the center of the chord length of the blade 152 is r2, and the radial cross section near the trailing edge 155 of the blade 152. When the radius of curvature of the portion is r3, the relationship of the magnitude of the radius of curvature is r1 <r2 <r3.

次に、特許文献1に記載の空気調和機用の送風機羽根車の作用を説明する。モータ150により空調用送風機羽根車151を回転させることによって送風作用を生じ、その際、翼152と、翼152の周囲に設けられたオリフィスリング159により、動圧と静圧が付加され送風作用を成す。そして、上記の構成によって、風下側である翼152の圧力面158から風上側である負圧面157に向かい、翼外周端156とケーシング159間を通過する洩れ流れが生じる。これにより翼152の外周付近の負圧面157に発生する翼端渦の生成を翼2自体の上記の凹状の曲線部で促進させて低騒音化が図れる。   Next, the operation of the blower impeller for an air conditioner described in Patent Document 1 will be described. The air blower impeller 151 for air conditioning is rotated by the motor 150 to produce the air blowing action. At that time, dynamic pressure and static pressure are added by the blades 152 and the orifice ring 159 provided around the blades 152 to perform the air blowing action. Make it. With the above-described configuration, a leakage flow is generated from the pressure surface 158 of the blade 152 on the leeward side toward the negative pressure surface 157 on the windward side and passing between the blade outer peripheral end 156 and the casing 159. As a result, the generation of the blade tip vortex generated on the suction surface 157 near the outer periphery of the blade 152 is promoted by the concave curved portion of the blade 2 itself, thereby reducing noise.

また、翼端渦は、翼の負圧面157に発生し、翼152の弦長の中心付近より後縁155よりの位置で、翼152の負圧面157から剥離する傾向にある。しかし、凹形状である曲線の曲率半径が、翼152の前縁154側の半径方向断面部、翼152の弦長の中心付近の半径方向断面部、翼152の後縁155付近の半径方向断面部の順に、その値が大きくなるようにして、翼152の後縁155付近の半径方向断面部側の曲率半径r3が充分に大きくしているので、後縁付近の凹部は、この翼端渦の剥離現象が阻害されることはない。したがって、渦剥離による損失が減少して更なる効率の向上が図れる。   Further, the blade tip vortex is generated on the suction surface 157 of the blade, and tends to peel from the suction surface 157 of the blade 152 at a position near the trailing edge 155 from near the center of the chord length of the blade 152. However, the curved radius of curvature of the concave shape is such that the radial cross section on the leading edge 154 side of the wing 152, the radial cross section near the center of the chord length of the wing 152, and the radial cross section near the trailing edge 155 of the wing 152. Since the radius of curvature r3 on the radial cross section near the trailing edge 155 of the blade 152 is sufficiently large so that the value increases in order of the portion, the concave portion near the trailing edge has the tip vortex. The peeling phenomenon is not hindered. Therefore, the loss due to vortex separation is reduced and the efficiency can be further improved.

特開2005−140081号公報Japanese Patent Laid-Open No. 2005-140081 特開2003−148395号公報JP 2003-148395 A

しかしながら、上記のような従来の構成では、翼103、152の外周側、もしくは外周端103d、156付近は、翼弦長がハブ側103cなどや半径方向の中心付近に比べ長く、また、翼端渦を引き寄せたりするため、翼としての仕事量の比率が大きくなり、翼の前縁103b、154側からの流れが片寄る。そのため、翼の圧力面103P、158、負圧面103S、158でも摩擦損失の増加が抑えられない。また、外周端付近でいうと、特許文献1に記載のプロペラファンでは翼弦長は長いままなので、翼後流渦を小さく抑えるには限界がある。   However, in the conventional configuration as described above, the chord length is longer at the outer peripheral side of the blades 103 and 152 or near the outer ends 103d and 156 than the hub side 103c and the vicinity of the center in the radial direction. Since the vortex is attracted, the ratio of the work amount as the wing increases, and the flow from the front edge 103b, 154 side of the wing is offset. Therefore, an increase in friction loss cannot be suppressed even on the pressure surfaces 103P and 158 and the suction surfaces 103S and 158 of the blade. Further, in the vicinity of the outer peripheral end, the propeller fan described in Patent Document 1 has a long chord length, so there is a limit to keep the wake vortex small.

さらに、特許文献1、2に記載の送風機は、プロペラファン101、送風機羽根車151の吐出側の周囲のみオリフィスリング104、159で周囲を囲っているため、翼10
3、152の吸い込み側の外周から気流が流れ込む。この際、図13、図14に示すようにオリフィスリングの吸込み側は端部104a、159aを有する形状のため、端部104a、159a付近で流れが剥離して、乱れた流れが翼103、152の吸い込み側の外周から翼間に流れ込むことになり、翼103、152の外周側、もしくは外周端103d、156付近の負圧面103S、158の翼端渦を後縁103a、155付近で乱すことになり渦変動による損失を抑えられない。また、翼後流渦も乱れ、翼後流渦の変動による損失を小さく抑えることは困難である。また、翼端渦、後流渦の変動に伴う送風騒音の増加を抑えることも困難となる。
Furthermore, since the blower described in Patent Documents 1 and 2 is surrounded by the orifice rings 104 and 159 only around the discharge side of the propeller fan 101 and the blower impeller 151, the blade 10
3 and 152, airflow flows from the outer periphery of the suction side. At this time, as shown in FIGS. 13 and 14, the suction side of the orifice ring has a shape having end portions 104a and 159a. Therefore, the flow is separated in the vicinity of the end portions 104a and 159a, and the turbulent flow is caused by the blades 103 and 152. From the outer periphery on the suction side of the blade, and the blade tip vortex of the suction surface 103S, 158 near the outer periphery side of the blades 103, 152 or the outer periphery ends 103d, 156 is disturbed near the trailing edges 103a, 155. The loss due to fluctuation of vortex cannot be suppressed. In addition, the wake vortex is also disturbed, and it is difficult to suppress the loss due to fluctuations in the wing vortex. In addition, it is difficult to suppress an increase in blowing noise caused by fluctuations in the blade tip vortex and the wake vortex.

本発明は、上記従来の課題を解決するもので、空気調和機の室外ユニットの送風に用いられる軸流式、あるいは斜流式の羽根車をもつ送風機において、翼の外周側に流れが片寄り、翼の圧力面、負圧面での摩擦損失の増加を抑えると共に、翼の吐出側外周を囲うオリフィスリングを用いた場合に翼の吸い込み側外周からの流入気流の乱れを抑え、翼外周側での翼端渦、翼後流渦の変動に伴う損失を小さく抑えて送風機への入力を低く抑え、かつ、翼端渦、後流渦の変動に伴う送風騒音の増加を抑える送風機と、それを用いた所定の熱交換能力を実現するための送風量を確保しつつ、機器の入力の低減と室外送風騒音の増加を抑えた空気調和機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and in a blower having an axial flow type or mixed flow type impeller used for blowing an outdoor unit of an air conditioner, the flow is shifted to the outer peripheral side of the blade. In addition to suppressing an increase in friction loss on the blade pressure surface and suction surface, and using an orifice ring that surrounds the blade discharge side outer periphery, the turbulence of the inflow air flow from the blade suction side outer periphery is suppressed. A fan that suppresses the loss associated with fluctuations in the blade tip vortex and wake vortex of the blade, reduces input to the blower, and suppresses increase in blowing noise due to fluctuations in the blade vortex and wake vortex. It aims at providing the air conditioner which suppressed the reduction | decrease in the input of an apparatus, and the increase in the outdoor ventilation noise, ensuring the ventilation volume for implement | achieving the used predetermined heat exchange capability.

上記従来の課題を解決するために、本発明の羽根車は、回転中心に設けられたハブと前記ハブの周囲に設けられた複数の羽根から成り、前記羽根の半径方向の断面形状は外周側では吸込み側に対して凹形状の曲線となり、ハブ側では吸込み側に対して凸形状の曲線となり、前記ハブ側における凸形状曲線は略円弧状で前記羽根の前縁側から後縁側に向かうにつれて略円弧状の凸形状曲線の曲率半径の値が小さくなっている。   In order to solve the above-described conventional problems, an impeller according to the present invention includes a hub provided at the center of rotation and a plurality of blades provided around the hub, and a radial cross-sectional shape of the blade is an outer peripheral side. Is a concave curve with respect to the suction side, a convex curve is formed with respect to the suction side on the hub side, and the convex curve on the hub side is substantially arc-shaped and is approximately as it goes from the front edge side to the rear edge side of the blade. The value of the radius of curvature of the arc-shaped convex curve is small.

この構成によって、羽根のハブ側の前縁から後縁側に向かって凸形状曲線の曲率半径が小さくなることで、その凸形状部の圧力面側に形成される凹みが羽根前縁から後縁に向かってが徐々に狭くなる。このため、ハブ側の凸形状部の圧力面側に流れ込んだ気流は羽根から気流にかかる遠心力により後縁に向かうほど大きな半径方向成分を有するが圧力面側に形成される凹みに導かれ羽根後縁から羽根車の吐出側に吹き出す。   With this configuration, the radius of curvature of the convex curve decreases from the leading edge on the hub side of the blade toward the trailing edge, so that the dent formed on the pressure surface side of the convex portion extends from the leading edge of the blade to the trailing edge. It gradually becomes narrower. For this reason, the airflow flowing into the pressure surface side of the convex portion on the hub side has a larger radial component toward the trailing edge due to the centrifugal force applied from the blade to the airflow, but is guided to the recess formed on the pressure surface side. Blow out from the trailing edge to the discharge side of the impeller.

また、ハブ側の凸部の負圧面側に流れ込んだ気流も、凸部頂点より内周側では凸形状が後縁側に向かうほど、外周側に向かう流れが凸部に沿って周方向に流れて後縁から羽根車の吐出側に吹き出す。   In addition, the airflow that flows into the suction side of the convex part on the hub side also flows in the circumferential direction along the convex part as the convex shape goes to the trailing edge side on the inner peripheral side from the convex part apex. Blow out from the trailing edge to the discharge side of the impeller.

このため、羽根車の複数の羽根により形成される翼間において、ハブ側の流れが気流にかかる遠心力により外周側に片寄ることが抑制され、ハブ側の羽根の後縁側から吹き出される。そして、ハブ側に比べ、翼弦長が長く、また、翼端渦を外周側の凹部の負圧面側に導くことで、外周側の流れを促進してもハブ側からの流れが外周側に片寄らず外周側の気流の流速が大きくならず、羽根の外周側の圧力面、負圧面での摩擦損失の増加を抑える。   For this reason, between the blades formed by the plurality of blades of the impeller, the hub-side flow is prevented from being displaced toward the outer peripheral side by the centrifugal force applied to the airflow, and blown out from the trailing edge side of the hub-side blades. And the chord length is longer than the hub side, and by guiding the tip vortex to the suction surface side of the recess on the outer peripheral side, the flow from the hub side is moved to the outer peripheral side even if the flow on the outer peripheral side is promoted. The flow velocity of the airflow on the outer peripheral side does not increase without deviation, and the increase in friction loss on the pressure surface and the negative pressure surface on the outer peripheral side of the blade is suppressed.

本発明の羽根車は、外周側では、翼端渦の生成を促進して、翼端渦の崩壊による羽根外周側の流れの乱れを抑えつつ、ハブ側の流れが気流にかかる遠心力により外周側に片寄ることが抑制され羽根の後縁側から吹き出される。その結果、羽根の外周側が、翼弦長が長く、また、翼端渦を外周側の凹部の負圧面側に導くことで、外周側の流れを促進してもハブ側からの流れが外周側に片寄らず外周側の気流の流速が大きくならず、羽根の外周側の圧力面、負圧面での摩擦損失の増加を抑える。   The impeller of the present invention promotes the generation of blade tip vortices on the outer peripheral side and suppresses disturbance of the flow on the outer periphery of the blades due to the collapse of the blade tip vortex, while the flow on the hub side is affected by the centrifugal force applied to the airflow. It is suppressed from being displaced to the side and blown out from the trailing edge side of the blade. As a result, the blade outer chord has a long chord length, and the tip vortex is guided to the suction side of the outer recess, so that the flow from the hub side can be Accordingly, the flow velocity of the airflow on the outer peripheral side does not increase and the increase in friction loss on the pressure surface and the negative pressure surface on the outer peripheral side of the blade is suppressed.

従って、かかる羽根車を搭載した送風機の送風騒音の増加を抑えると共に、送風機の空
力効率が向上し、送風機用のモータの低入力化が図れる。さらに、かかる送風機を搭載した空気調和機は、所定の熱交換能力を実現するための送風量を確保しつつ、機器の入力の低減と室外送風騒音の増加を抑えることができる。
Therefore, an increase in the blowing noise of the blower equipped with such an impeller is suppressed, the aerodynamic efficiency of the blower is improved, and the input of the blower motor can be reduced. Furthermore, an air conditioner equipped with such a blower can suppress a reduction in device input and an increase in outdoor blowing noise while ensuring a blown amount for realizing a predetermined heat exchange capability.

本発明の実施の形態1における一部回転軌跡のある送風機の子午断面図Meridian cross-sectional view of a blower having a partial rotation locus in Embodiment 1 of the present invention 同実施の形態1における羽根車の回転軌跡を示す子午断面図A meridional section showing the rotation trajectory of the impeller in the first embodiment 同実施の形態1における羽根車の正面図Front view of impeller in embodiment 1 (a)図3のA−O(同羽根車の前縁側半径方向)断面図(b)図3のB−O(同羽根車の翼の弦長の中央付近の半径方向)断面図(c)図3のC−O(同羽根車の後縁側半径方向)断面図(A) AO (front edge side radial direction of the impeller) cross-sectional view of FIG. 3 (b) B-O (radial direction near the center of the chord length of the impeller blade) of FIG. 3 (c) ) Cross-sectional view taken along the line C-O (in the radial direction of the trailing edge of the impeller) in FIG. 同実施の形態1における空気調和機の室外ユニットの断面図Sectional drawing of the outdoor unit of the air conditioner in Embodiment 1 同実施の形態1における円筒型ハブの径の羽根車外径の比と、所定の空力特性(風量、静圧)を確保した条件での送風機のモータの入力の関係を示す特性図The characteristic diagram which shows the relationship between the ratio of the impeller outer diameter of the diameter of the cylindrical hub in the same Embodiment 1, and the input of the motor of a fan on the conditions which ensured predetermined aerodynamic characteristics (air volume, static pressure) 同実施の形態1における他の羽根車の回転軌跡を示す子午断面図The meridional section showing the rotation trajectory of another impeller in the first embodiment 同実施の形態1における他の羽根車の正面図Front view of another impeller in the first embodiment 本発明の実施の形態2における一部回転軌跡のある送風機の子午断面図Meridian cross-sectional view of a blower having a partial rotation trajectory in Embodiment 2 of the present invention 同実施の形態2における第1のオリフィスリングと第2のオリフィスリングの半径方向の間隔Sと羽根車外径D2の比と、所定の空力特性(風量、静圧)を確保した条件での送風機のモータの入力の関係を示す特性図The ratio of the distance S between the first orifice ring and the second orifice ring in the second embodiment in the radial direction and the impeller outer diameter D2 and the condition of the fan that ensures predetermined aerodynamic characteristics (air volume, static pressure) are ensured. Characteristic diagram showing the relationship of motor input 従来の羽根車の正面図Front view of conventional impeller 従来の羽根車の斜視図A perspective view of a conventional impeller 従来の空気調和機の室外ユニットの断面図Sectional view of an outdoor unit of a conventional air conditioner 従来の他の一部回転軌跡のある送風機の子午断面図A meridional section of another conventional blower with partial rotation trajectory 従来の他の送風機の正面図Front view of another conventional blower (a)図15のA−O(同羽根車の前縁側半径方向)断面図(b)図15のB−O(同羽根車の翼の弦長の中央付近の半径方向)断面図(c)図15のC−O(同羽根車の後縁側半径方向)断面図(A) AO (front edge side radial direction of the impeller) cross-sectional view of FIG. 15 (b) B-O (radial direction near the center of the chord length of the impeller blade) of FIG. 15 (c) FIG. 15 is a cross-sectional view taken along the line C-O in FIG.

請求項1に記載の発明は、回転中心に設けられたハブと前記ハブの周囲に設けられた複数の羽根から成る羽根車であり、前記羽根の半径方向の断面形状は外周側では吸込み側に対して凹形状の曲線となり、ハブ側では吸込み側に対して凸形状の曲線となり、前記ハブ側における凸形状曲線は略円弧状で前記羽根の前縁側から後縁側に向かうにつれて略円弧状の凸形状曲線の曲率半径の値が小さくなるものである。   The invention according to claim 1 is an impeller comprising a hub provided at the center of rotation and a plurality of blades provided around the hub, and the radial cross-sectional shape of the blade is on the suction side on the outer peripheral side. On the hub side, it is a convex curve with respect to the suction side, and the convex curve on the hub side is substantially arc-shaped, and the convex shape is substantially arc-shaped as it goes from the front edge side to the rear edge side of the blade. The value of the radius of curvature of the shape curve is small.

かかる構成とすることにより、羽根のハブ側の前縁から後縁側に向かって凸形状曲線の曲率半径が小さくなることで、その凸形状部の圧力面側に形成される凹みが羽根前縁から後縁に向かってが徐々に狭くなる。このため、ハブ側の凸形状部の圧力面側に流れ込んだ気流は羽根から気流にかかる遠心力により後縁に向かうほど大きな半径方向成分を有するが圧力面側に形成される凹みに導かれ羽根後縁から羽根車の吐出側に吹き出す。   By adopting such a configuration, the curvature radius of the convex curve decreases from the front edge on the hub side of the blade toward the rear edge side, so that the depression formed on the pressure surface side of the convex portion is from the front edge of the blade. Gradually narrow toward the trailing edge. For this reason, the airflow flowing into the pressure surface side of the convex portion on the hub side has a larger radial component toward the trailing edge due to the centrifugal force applied from the blade to the airflow, but is guided to the recess formed on the pressure surface side. Blow out from the trailing edge to the discharge side of the impeller.

また、ハブ側の凸部の負圧面側に流れ込んだ気流も、凸部頂点より内周側では凸形状の傾斜が後縁側に向かうほど急になるので、外周側に向かう流れが凸部に沿って周方向に流れて後縁から羽根車の吐出側に吹き出す。   Also, the airflow that flows into the suction side of the convex part on the hub side also becomes steep as the convex shape slopes toward the rear edge side on the inner peripheral side from the convex part apex, so the flow toward the outer peripheral side follows the convex part It flows in the circumferential direction and blows out from the trailing edge to the discharge side of the impeller.

このため、羽根車の複数の羽根により形成される翼間において、ハブ側の流れが気流にかかる遠心力により外周側に片寄ることが抑制され、ハブ側の羽根の後縁側から吹き出される。   For this reason, between the blades formed by the plurality of blades of the impeller, the hub-side flow is prevented from being displaced toward the outer peripheral side by the centrifugal force applied to the airflow, and blown out from the trailing edge side of the hub-side blades.

その結果、外周側では、ハブ側に比べ翼弦長が長く、翼端渦の生成を促進して、翼端渦の崩壊による羽根外周側の流れの乱れを抑えつつ、ハブ側に比べ翼弦長が長く翼端渦を外周側の凹部の負圧面側に導くことで、外周側の流れを促進しても、ハブ側からの流れが外周側に片寄らず外周側の気流の流速が大きくならず、羽根の外周側の圧力面、負圧面での摩擦損失の増加を抑える。   As a result, the chord length on the outer circumference side is longer than that on the hub side, promoting the generation of wing tip vortices and suppressing turbulence in the outer circumference of the blade due to the collapse of the wing tip vortex, while reducing the chord length on the outer circumference side. By guiding the blade tip vortex to the suction surface side of the concave part on the outer peripheral side, the flow from the hub side does not shift to the outer peripheral side and the air flow velocity on the outer peripheral side is increased by guiding the blade tip vortex to the suction side. First, it suppresses an increase in friction loss on the pressure surface and the suction surface on the outer peripheral side of the blade.

請求項2に記載の発明は、前記ハブを前記羽根の前縁の内径と後縁の内径がほぼ同一径となる略円筒形にするものである。   According to a second aspect of the present invention, the hub has a substantially cylindrical shape in which the inner diameter of the front edge of the blade and the inner diameter of the rear edge are substantially the same.

かかる構成とすることにより、ハブ側の凸部形状の圧力面側、負圧面側に流れ込んだ気流が共に傾斜した斜流型ハブに阻害されず周方向に流れるため、ハブ側でも流動損失の増加を小さく抑えることができ、羽根車で発生する損失をさらに低く抑えることができる。   By adopting such a configuration, the airflow that flows into the pressure side and suction side of the convex shape on the hub side flows in the circumferential direction without being obstructed by the inclined flow-type hub, so the flow loss also increases on the hub side. Can be kept small, and the loss generated by the impeller can be further reduced.

請求項3に記載の発明は、前記略円筒形ハブの径をD1とし、前記羽根車の外径をD2とした場合、D1/D2を0.135〜0.368としたものである。   According to a third aspect of the present invention, when the diameter of the substantially cylindrical hub is D1 and the outer diameter of the impeller is D2, D1 / D2 is 0.135 to 0.368.

かかる構成とすることにより、円筒型ハブの径を最適化することで、所定の空力特性(風量、静圧)を確保した条件にて、ハブ側の凸部形状の圧力面側、負圧面側に流れ込んだ気流が共に周方向に流れてハブ側での流動損失の抑制効果が最大に発揮され、さらにハブ側に比べ、翼弦長が長く、また、翼端渦を外周側の凹部の負圧面側に導くことで外周側の流れを促進しても、ハブ側からの流れが外周側に片寄らず外周側の気流の流速を低く抑え、羽根の外周側の圧力面、負圧面での摩擦損失の増加を抑える効果を最大に発揮できる。   By adopting such a configuration, by optimizing the diameter of the cylindrical hub, the pressure side and the negative pressure side of the convex shape of the hub side are obtained under the conditions that ensure the predetermined aerodynamic characteristics (air volume, static pressure). Both airflows flowing into the circumferential direction flow in the circumferential direction, and the effect of suppressing flow loss on the hub side is maximized.In addition, the chord length is longer than that on the hub side, and the tip vortex is negative in the recesses on the outer circumferential side. Even if the flow on the outer peripheral side is promoted by guiding it to the pressure side, the flow from the hub side does not shift to the outer peripheral side, the flow velocity of the outer peripheral side is kept low, and the friction on the pressure surface and the suction surface on the outer peripheral side of the blade The effect of suppressing the increase in loss can be maximized.

請求項4に記載の発明は、モータと、請求項1から3のいずれかに記載の羽根車と、前記羽根車の吐出側の周囲を囲むオリフィスリングとから成る送風機とするものである。   According to a fourth aspect of the present invention, there is provided a blower comprising a motor, the impeller according to any one of the first to third aspects, and an orifice ring surrounding the discharge side of the impeller.

かかる構成により、ハブ側での流動損失の抑制し、かつ、翼弦長が長く、また、翼端渦を外周側の凹部の負圧面側に導くことで外周側の流れを促進しても、外周側の気流の流速を低く抑え、羽根の外周側の圧力面、負圧面での摩擦損失の増加を抑え、かかる羽根車を搭載した送風機の送風騒音の増加を抑えると共に、送風機の空力効率が向上し送風機用のモータの低入力化が図れることができる。   With such a configuration, the flow loss on the hub side is suppressed, the chord length is long, and the vortex tip vortex is guided to the suction surface side of the concave portion on the outer peripheral side to promote the flow on the outer peripheral side, The flow rate of the airflow on the outer peripheral side is kept low, the increase in friction loss on the pressure surface and the negative pressure surface on the outer peripheral side of the blade is suppressed, the increase in blowing noise of the blower equipped with such an impeller is suppressed, and the aerodynamic efficiency of the blower is reduced. Thus, the input of the motor for the blower can be reduced.

請求項5に記載の発明は、前記オリフィスリングが前記羽根車の吐出側外周を囲み、吐出側先端部を開放端とした略円筒形の第1のオリフィスリングと、前記第1のオリフィスリングの外側に設けた略同心円状でかつ第1のオリフィスリングより軸方向高さの高い第2のオリフィスリングと、第1のオリフィスリングの吸込み側と第2のオリフィスリングの吸込み側をなめらかにつなぐ湾曲部とから成る請求項4に記載の送風機とするものである。   According to a fifth aspect of the present invention, there is provided a substantially cylindrical first orifice ring in which the orifice ring surrounds the discharge-side outer periphery of the impeller and the discharge-side tip is an open end; and the first orifice ring A second orifice ring that is substantially concentrically provided on the outside and has a higher axial height than the first orifice ring, and a curve that smoothly connects the suction side of the first orifice ring and the suction side of the second orifice ring The blower according to claim 4, comprising a portion.

かかる構成により、第2オリフィスリングと第1オリフィスリングの吸込み側がなめらかな湾曲部でつながり吸込み側に端部がないため、オリフィスリングに囲まれていない羽根の外周から気流が流れ込む際に、剥離のないスムーズな流れとなり、翼間に流れ込む。そして、羽根の外周側、もしくは外周端付近で、負圧面の翼端渦を後縁付近で乱すこと無く、翼端渦変動による損失を抑えられる。また、翼後流渦の変動による損失を小さく抑える。   With this configuration, since the suction side of the second orifice ring and the first orifice ring are connected by a smooth curved portion and there is no end on the suction side, when the airflow flows from the outer periphery of the blade not surrounded by the orifice ring, There is no smooth flow and flows between the wings. Further, on the outer peripheral side of the blade or in the vicinity of the outer peripheral end, the loss due to the fluctuation of the blade tip vortex can be suppressed without disturbing the blade tip vortex on the suction surface in the vicinity of the trailing edge. In addition, the loss due to fluctuations in the wake vortex is kept small.

その結果、軸流式、あるいは斜流式の羽根車をもつ送風機において、羽根の外周側に流れが片寄り、羽根の圧力面、負圧面での摩擦損失の増加を抑えると共に、羽根の吐出側外周を囲うオリフィスリングを用いた場合に羽根の吸い込み側外周からの流入気流の乱れを抑え、羽根外周側での翼端渦、翼後流渦の変動に伴う損失を小さく抑えて、送風機の空気
効率をさらに向上し、送風機用モータへの入力を低く抑え、かつ、翼端渦、後流渦の変動に伴う送風騒音の増加を抑えることができる。
As a result, in a blower having an axial flow type or mixed flow type impeller, the flow is shifted to the outer peripheral side of the blade, suppressing an increase in friction loss on the pressure surface and the negative pressure surface of the blade, and also on the discharge side of the blade When using an orifice ring that surrounds the outer periphery, the turbulence of the inflow airflow from the outer periphery of the blade suction side is suppressed, and the loss associated with fluctuations in the blade tip vortex and the blade wake vortex on the blade outer periphery is suppressed to a small level. The efficiency can be further improved, the input to the blower motor can be kept low, and an increase in blowing noise due to fluctuations in the blade tip vortex and wake vortex can be suppressed.

請求項6に記載の発明は、第1のオリフィスリングと第2のオリフィスリングの半径方向の間隔をSとし、前記羽根車の外径をD2とした場合、S/D2を0.020〜0.092としたものである。   According to the sixth aspect of the present invention, when the radial distance between the first orifice ring and the second orifice ring is S and the outer diameter of the impeller is D2, S / D2 is 0.020-0. .092.

かかる構成とすることにより、第1のオリフィスリングと第2のオリフィスリングの半径方向の間隔を最適化することで、所定の空力特性(風量、静圧)を確保した条件にて、オリフィスリングに囲まれていない羽根の外周から気流が流れ込む際に、翼間へ流れが剥離を最小に抑えたスムーズな流れとなる。そして、羽根の外周側もしくは外周端付近で、負圧面の後縁付近での翼端渦変動の抑制効果が最大に発揮され、翼端渦変動による損失を最小にする。また、翼後流渦の変動による損失を最小にする。   By adopting such a configuration, by optimizing the radial interval between the first orifice ring and the second orifice ring, the orifice ring can be used under the condition that a predetermined aerodynamic characteristic (air volume, static pressure) is secured. When the airflow flows from the outer periphery of the blade that is not surrounded, the flow between the blades becomes a smooth flow with minimal separation. In addition, on the outer peripheral side of the blade or in the vicinity of the outer peripheral end, the effect of suppressing the blade tip vortex fluctuation near the trailing edge of the suction surface is maximized, and the loss due to the blade tip vortex fluctuation is minimized. It also minimizes losses due to fluctuations in the wake vortex.

請求項7に記載の発明は、空気と冷媒の熱交換を行うフィンチューブ型の熱交換器と、請求項1から3のいずれか一項に記載の羽根車、あるいは請求項4から6のいずれか一項に記載の送風機と、前記熱交喚器と前記送風機とを収納する箱体とから成る空気調和機である。   The invention according to claim 7 is a finned tube type heat exchanger for exchanging heat between air and refrigerant, the impeller according to any one of claims 1 to 3, or any one of claims 4 to 6. An air conditioner comprising: the blower according to claim 1; and a box housing the heat exchanger and the blower.

かかる構成により、請求項1から6のいずれか一項に記載の羽根車、あるいは送風機の送風騒音の増加を抑えると共に、送風機の空力効率が向上し、送風機用のモータの低入力化が図れ、かかる送風機を搭載した空気調和機は、所定の熱交換能力を実現するための送風量を確保しつつ、機器の入力の低減と室外送風騒音の増加を抑えることができる。   With this configuration, the impeller according to any one of claims 1 to 6 or an increase in the blowing noise of the blower is suppressed, the aerodynamic efficiency of the blower is improved, and the input of the fan motor is reduced. An air conditioner equipped with such an air blower can suppress a reduction in input of the device and an increase in outdoor air blowing noise while securing an air blowing amount for realizing a predetermined heat exchange capability.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における一部回転軌跡のある送風機の子午断面図である。図2は、同実施の形態1における羽根車の回転軌跡を示す子午断面図である。図3は同実施の形態1における羽根車の正面図である。図4の(a)は図3のA−O断面(同羽根車の前縁側半径方向断面図)、(b)は図3のB−O断面(同羽根車の翼の弦長の中央付近の半径方向断面図)、(c)は図3のC−O断面(同羽根車の後縁側半径方向断面図)である。図5は同実施の形態1における空気調和機の室外ユニットの断面図である。図6は同実施の形態1における円筒型ハブの径の羽根車外径の比と、所定の空力特性(風量、静圧)を確保した条件での送風機のモータの入力の関係を示す図である。図7は同実施の形態1における他の羽根車の回転軌跡を示す子午断面図である。図8は同実施の形態1における他の羽根車の正面図である。
(Embodiment 1)
FIG. 1 is a meridional sectional view of a blower having a partial rotation locus according to Embodiment 1 of the present invention. FIG. 2 is a meridional sectional view showing a rotation locus of the impeller according to the first embodiment. FIG. 3 is a front view of the impeller according to the first embodiment. 4A is a cross-sectional view taken along the line AO in FIG. 3 (cross-sectional view in the radial direction of the leading edge side of the impeller), and FIG. 4B is a cross-sectional view taken along the line B-O in FIG. (C) is a cross-sectional view taken along the line C-O of FIG. 3 (a radial direction cross-sectional view of the trailing edge of the impeller). FIG. 5 is a cross-sectional view of the outdoor unit of the air conditioner according to the first embodiment. FIG. 6 is a diagram showing the relationship between the ratio of the impeller outer diameter to the diameter of the cylindrical hub in the first embodiment and the input of the motor of the blower under conditions that ensure predetermined aerodynamic characteristics (air volume, static pressure). . FIG. 7 is a meridional sectional view showing a rotation locus of another impeller according to the first embodiment. FIG. 8 is a front view of another impeller according to the first embodiment.

まず、図1で示すように、送風機1は、羽根車2と、モータ3と、羽根車2の吐出側の周囲を囲むベルマウス状のオリフィスリング4から成る。ベルマウス状のオリフィスリングの吸込み側には端部4aを有する。   First, as shown in FIG. 1, the blower 1 includes an impeller 2, a motor 3, and a bell mouth-shaped orifice ring 4 surrounding the periphery of the discharge side of the impeller 2. The bell mouth shaped orifice ring has an end 4a on the suction side.

また、図2、図3で示すように、羽根車2はモータ3の回転軸3aと連結した円筒型のハブ5と、ハブ5の周囲に配設された2枚の羽根6から成っている。そして、羽根6は、図3で示すように、外周側6aがハブ側6bに対し羽根車2の回転方向に前傾している。   As shown in FIGS. 2 and 3, the impeller 2 includes a cylindrical hub 5 connected to the rotation shaft 3 a of the motor 3 and two blades 6 disposed around the hub 5. . As shown in FIG. 3, the outer peripheral side 6 a of the blade 6 is inclined forward in the rotational direction of the impeller 2 with respect to the hub side 6 b.

また、図4(a)、(b)および(c)に示すように、羽根6の半径方向の断面形状を、羽根6の半径方向の中央付近より外周側6aでは吸込み側に対して凹形状の曲線で、羽根6の半径方向の中央付近よりハブ6b側は吸込み側に対して凸形状の曲線にて構成して
いる。
Further, as shown in FIGS. 4A, 4B, and 4C, the blade 6 has a radial cross-sectional shape that is concave from the vicinity of the radial center of the blade 6 on the outer peripheral side 6a with respect to the suction side. The hub 6b side from the vicinity of the center of the blade 6 in the radial direction is a convex curve with respect to the suction side.

さらに、また、羽根6の半径方向の中央付近よりハブ側6bでは、吸込み側に対して凸形状である曲線の曲率半径が、羽根6の前縁7側の半径方向断面部、羽根の弦長の中央付近の半径方向断面部、羽根の後縁8付近の半径方向断面部の順に、その値が小さくなるようにして構成したものである。すなわち、羽根6の前縁7側の半径方向断面部の曲率半径をR1、羽根6の弦長の中央付近の半径方向断面部の曲率半径をR2、羽根6の後縁8付近の半径方向断面部の曲率半径をR3としたとき、曲率半径の大きさの関係がR1>R2>R3となるように構成したものである。   Further, from the vicinity of the radial center of the blade 6 on the hub side 6b, the radius of curvature of the curve that is convex with respect to the suction side is the radial cross section on the leading edge 7 side of the blade 6, the chord length of the blade The radial section in the vicinity of the center of the blade and the radial section in the vicinity of the trailing edge 8 of the blade are arranged so that the values become smaller. That is, the radius of curvature of the radial cross section on the front edge 7 side of the blade 6 is R1, the radius of curvature of the radial cross section near the center of the chord length of the blade 6 is R2, and the radial cross section near the rear edge 8 of the blade 6 When the radius of curvature of the part is R3, the relationship of the magnitude of the radius of curvature is R1> R2> R3.

以上のように構成された送風機1について、以下その動作を説明する。まず、モータ3により回転軸3aを介して羽根車2が回転し、その際、羽根6と、羽根の6の吐出側の周囲に設けられたオリフィスリング4により、動圧と静圧が付加され送風作用を成す。   About the air blower 1 comprised as mentioned above, the operation | movement is demonstrated below. First, the impeller 2 is rotated by the motor 3 via the rotating shaft 3a. At that time, dynamic pressure and static pressure are applied by the blade 6 and the orifice ring 4 provided around the discharge side of the blade 6. Makes air blowing.

ここで、図4で示すように、羽根6の半径方向の断面形状は外周側6aでは吸込み側に対して凹形状の曲線となり、ハブ側6bでは吸込み側に対して凸形状の曲線となり、ハブ側6bにおける凸形状曲線は略円弧状で前記羽根の前縁7側から後縁8側に向かうにつれて略円弧状の凸形状曲線の曲率半径の値が小さくしていることで、凸形状のハブ側6bの圧力面9側に形成される凹み11が羽根6の前縁7から後縁8に向かってが徐々に狭くなる。このため、ハブ側6bの凸形状部の圧力面9側に流れ込んだ気流は羽根6から気流にかかる遠心力により後縁8に向かうほど大きな半径方向成分を有するが圧力面9側に形成される凹み11に導かれ羽根6の後縁8から羽根車2の吐出側に吹き出す。   Here, as shown in FIG. 4, the radial cross section of the blade 6 has a concave curve with respect to the suction side on the outer peripheral side 6a, and a convex curve with respect to the suction side on the hub side 6b. The convex curve on the side 6b is substantially arc-shaped, and the value of the radius of curvature of the substantially arc-shaped convex curve decreases from the front edge 7 side to the rear edge 8 side of the blade, so that a convex hub The dent 11 formed on the pressure surface 9 side of the side 6b gradually narrows from the front edge 7 to the rear edge 8 of the blade 6. For this reason, the airflow flowing into the pressure surface 9 side of the convex portion of the hub side 6b has a larger radial component toward the trailing edge 8 due to the centrifugal force applied from the blade 6 to the airflow, but is formed on the pressure surface 9 side. It is guided to the recess 11 and blows out from the rear edge 8 of the blade 6 to the discharge side of the impeller 2.

また、凸形状のハブ側6bの負圧面10側に流れ込んだ気流も、凸形状の頂点より内周側6b’では凸形状の傾斜が後縁8側に向かうほど急になるので、外周側6aに向かう流れが凸部に沿って周方向に流れて後縁8から羽根車2の吐出側に吹き出す。   Further, the airflow that flows into the negative pressure surface 10 side of the convex hub side 6b also becomes steeper as the convex inclination toward the trailing edge 8 side on the inner peripheral side 6b ′ from the apex of the convex shape. To the discharge side of the impeller 2 from the trailing edge 8 flows in the circumferential direction along the convex portion.

このため、羽根車2の2枚の羽根6により形成される翼間において、ハブ側6bの流れが気流にかかる遠心力により外周側6aに片寄ることが抑制され、ハブ側6bの羽根6の後縁8側から吹き出される。   For this reason, it is suppressed that the flow on the hub side 6b is shifted to the outer peripheral side 6a by the centrifugal force applied to the airflow between the blades formed by the two blades 6 of the impeller 2, and the rear side of the blade 6 on the hub side 6b. It blows out from the edge 8 side.

その結果、羽根6の外周側6aがハブ側6bに比べ翼弦長が長く、翼端渦の生成を促進して、翼端渦の崩壊による羽根6の外周側6aの流れの乱れを抑えつつ、翼端渦を凹状の外周側6aの負圧面10側に導くことで、外周側6aの流れを促進しても、ハブ側6bからの流れが外周側6aに片寄らず外周側6aの気流の流速が大きくならず、羽根6の外周側6aの圧力面9、負圧面10での摩擦損失の増加を抑える。   As a result, the outer peripheral side 6a of the blade 6 has a longer chord length than the hub side 6b, promotes the generation of the blade tip vortex and suppresses the disturbance of the flow on the outer peripheral side 6a of the blade 6 due to the collapse of the blade tip vortex. By guiding the blade tip vortex to the negative pressure surface 10 side of the concave outer peripheral side 6a, the flow from the hub side 6b is not offset toward the outer peripheral side 6a even if the flow on the outer peripheral side 6a is promoted. The flow velocity is not increased, and an increase in friction loss on the pressure surface 9 and the suction surface 10 on the outer peripheral side 6a of the blade 6 is suppressed.

また、図2、図3で示すように、羽根車2のハブ5を羽根6の前縁7の内径と後縁8の内径がほぼ同一径となる略円筒形にすることで、凸形状のハブ側6bの圧力面9側、負圧面10側に流れ込んだ気流が共に傾斜した斜流型ハブに比べに阻害されず周方向に流れるため、ハブ側6bでも流動損失の増加を小さく抑えることができ、斜流型のハブの場合に比べ、羽根車2で発生する損失をさらに低く抑えることができる。   Further, as shown in FIGS. 2 and 3, the hub 5 of the impeller 2 is formed into a substantially cylindrical shape in which the inner diameter of the front edge 7 of the blade 6 and the inner diameter of the rear edge 8 are substantially the same diameter. Since the airflow flowing into the pressure surface 9 side and the negative pressure surface 10 side of the hub side 6b flows in the circumferential direction without being disturbed as compared to the inclined flow type hub, both of the hub side 6b can suppress an increase in flow loss. The loss generated in the impeller 2 can be further reduced as compared with a mixed flow type hub.

さらに、ここで、円筒型のハブ5の外径D1とし、羽根車2の外径をD2とした場合に、D1/D2を0.135〜0.368とすることにより、図6の円筒型ハブの径D1の羽根車外径D2の比D1/D2と、所定の空力特性(風量、静圧)を確保した条件での送風機1のモータ3の従来の送風機に対する入力の比との関係の特性図で示すように、従来の送風機に対する入力を1以下と低入力化する傾向が実現できる。   Further, when the outer diameter D1 of the cylindrical hub 5 is set to D2 and the outer diameter of the impeller 2 is set to D2, D1 / D2 is set to 0.135 to 0.368, so that the cylindrical type shown in FIG. Characteristics of the relationship between the ratio D1 / D2 of the impeller outer diameter D2 of the hub diameter D1 and the ratio of the input of the motor 3 of the blower 1 to the conventional blower under the condition that predetermined aerodynamic characteristics (air volume, static pressure) are ensured. As shown in the figure, it is possible to realize a tendency to reduce the input to the conventional blower to 1 or less.

また、図5に示すように、セパレート型の空気調和機15の室外ユニットは、空気と冷
媒の熱交換を行うフィンチューブ型の熱交換器12と、羽根車2と、モータ3と、オリフィスリング4から成る送風機1と、熱交換器12と送風機1と圧縮機13を収納する箱体14とから成ることにより、送風機1の送風騒音の増加を抑えると共に、送風機1の空力効率が向上し、送風機1用のモータ3の低入力化が図れ、かかる送風機1を搭載した空気調和機15は、所定の熱交換能力を実現するための送風量を確保しつつ、機器の入力の低減と室外送風騒音の増加を抑えることができる。
As shown in FIG. 5, the outdoor unit of the separate type air conditioner 15 includes a fin tube type heat exchanger 12 that performs heat exchange between air and refrigerant, an impeller 2, a motor 3, an orifice ring. 4 and the heat exchanger 12, the blower 1, and the box 14 that houses the compressor 13, the increase in blowing noise of the blower 1 is suppressed, and the aerodynamic efficiency of the blower 1 is improved. The input of the motor 3 for the blower 1 can be reduced, and the air conditioner 15 equipped with such a blower 1 can reduce the input of the equipment and the outdoor blow while securing a blown amount for realizing a predetermined heat exchange capability. Increase in noise can be suppressed.

尚、本発明の実施の形態1では、ハブ3を円筒型としたが、図7、図8で示すように、傾斜型のハブ16としても、ハブ側6bでの流動損失の抑制効果が発揮され、さらにハブ側6bに比べ、翼弦長が長く、また、翼端渦を凹状の外周側6aの負圧面10側に導くことで外周側6aの流れを促進しても、ハブ側6bからの流れが外周側6aに片寄らず外周側6aの気流の流速を低く抑え、羽根6の外周側6aの圧力面9、負圧面10での摩擦損失の増加を抑える効果を発揮できる。   In the first embodiment of the present invention, the hub 3 is cylindrical. However, as shown in FIGS. 7 and 8, even if the inclined hub 16 is used, the effect of suppressing the flow loss on the hub side 6b is exhibited. Further, the chord length is longer than that of the hub side 6b, and even if the flow on the outer peripheral side 6a is promoted by guiding the blade tip vortex to the suction surface 10 side of the concave outer peripheral side 6a, The flow of the air does not deviate toward the outer peripheral side 6 a, and the flow velocity of the air current on the outer peripheral side 6 a can be suppressed low, and the effect of suppressing the increase in friction loss on the pressure surface 9 and the negative pressure surface 10 on the outer peripheral side 6 a of the blade 6 can be exhibited.

尚、本発明の実施の形態1では、羽根6枚数の枚数を2枚としたが、3枚以上でも同様の効果が得られる。   In Embodiment 1 of the present invention, the number of six blades is two, but the same effect can be obtained with three or more blades.

尚、本発明の実施の形態1では、オリフィスリング4を羽根車2の吐出側のみ囲う構成としたが、羽根車の外周全域を囲う構成でも同様の効果が得られる。   In the first embodiment of the present invention, the orifice ring 4 is enclosed only on the discharge side of the impeller 2. However, the same effect can be obtained by surrounding the entire outer periphery of the impeller.

(実施の形態2)
図9は本発明の実施の形態2における一部回転軌跡のある送風機の子午断面図である。図10は同実施の形態2における第1のオリフィスリングと第2のオリフィスリングの半径方向の間隔Sと羽根車外径D2の比と、所定の空力特性(風量、静圧)を確保した条件での送風機のモータの入力の関係の特性を示す図である。尚、先の実施の形態1と同じ構成要件については同一の符号を付して説明を省略する。
(Embodiment 2)
FIG. 9 is a meridional sectional view of a blower having a partial rotation locus in the second embodiment of the present invention. FIG. 10 shows a condition in which the ratio between the radial interval S between the first orifice ring and the second orifice ring and the impeller outer diameter D2 and predetermined aerodynamic characteristics (air volume, static pressure) are secured in the second embodiment. It is a figure which shows the characteristic of the input relationship of the motor of a fan. The same constituent elements as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図9で示すように、17は、羽根車2の吐出側外周を囲むオリフィスリングであり、吐出側先端部を開放端18aとした略円筒形の第1のオリフィスリング18と、第1のオリフィスリング18の外側に設けた略同心円状でかつ第1のオリフィスリングより軸方向高さの高い第2のオリフィスリング19と、第1のオリフィスリングの吸込み側18bと第2のオリフィスリング19の吸込み側19bをなめらかにつなぐ湾曲部20とから成る。   As shown in FIG. 9, reference numeral 17 denotes an orifice ring that surrounds the discharge-side outer periphery of the impeller 2, and includes a substantially cylindrical first orifice ring 18 having a discharge-side tip portion as an open end 18a, and a first orifice. A second orifice ring 19 that is substantially concentrically provided on the outside of the ring 18 and has an axial height higher than that of the first orifice ring, and the suction side 18b of the first orifice ring and the suction of the second orifice ring 19 It comprises a curved portion 20 that smoothly connects the side 19b.

これにより、第1オリフィスリング18と第2オリフィスリング19をつなぐ湾曲部20で吸込み側に端部がないため、オリフィスリング18に囲まれていない羽根6の外周から気流が流れ込む際に、剥離のないスムーズな流れとなり、翼間に流れ込む。そして、羽根6の外周側6a、外周端6d付近で、負圧面10の翼端渦を後縁付近で乱すこと無く、翼端渦変動による損失を抑えられる。また、翼後流渦の変動による損失を小さく抑える。   As a result, the curved portion 20 connecting the first orifice ring 18 and the second orifice ring 19 does not have an end on the suction side. Therefore, when the airflow flows from the outer periphery of the blade 6 not surrounded by the orifice ring 18, There is no smooth flow and flows between the wings. Further, near the outer peripheral side 6a and the outer peripheral end 6d of the blade 6, the loss due to the fluctuation of the blade tip vortex can be suppressed without disturbing the blade tip vortex of the suction surface 10 near the trailing edge. In addition, the loss due to fluctuations in the wake vortex is kept small.

その結果、円筒型のハブ5の羽根車2をもつ送風機1において、羽根6の外周側6aに流れが片寄り、羽根6の圧力面9、負圧面10での摩擦損失の増加を抑えると共に、羽根6の吐出側外周を囲うオリフィスリング15を用いた場合に羽根6の吸い込み側外周からの流入気流の乱れを抑え、羽根6の外周側6aでの翼端渦、翼後流渦の変動に伴う損失を小さく抑えて、送風機1の空気効率をさらに向上し、送風機1のモータ3への入力を低く抑え、かつ、翼端渦、後流渦の変動に伴う送風騒音の増加を抑える。   As a result, in the blower 1 having the impeller 2 of the cylindrical hub 5, the flow is shifted to the outer peripheral side 6a of the blade 6 to suppress an increase in friction loss on the pressure surface 9 and the suction surface 10 of the blade 6, When the orifice ring 15 surrounding the discharge side outer periphery of the blade 6 is used, the disturbance of the inflow air flow from the suction side outer periphery of the blade 6 is suppressed, and the fluctuation of the blade tip vortex and the blade wake vortex on the outer peripheral side 6a of the blade 6 is suppressed. The accompanying loss is kept small, the air efficiency of the blower 1 is further improved, the input to the motor 3 of the blower 1 is kept low, and the increase in blowing noise accompanying fluctuations in the blade tip vortex and the wake vortex is suppressed.

さらに、ここで、第1のオリフィスリング18と第2のオリフィスリング19の半径方向の間隔をSとし、羽根車2の外径をD2とした場合に、S/D2を0.020〜0.092とすることにより、図10の2つのオリフィスリング18、19の間の間隔Sと羽根車外径D2の比S/D2と、所定の空力特性(風量、静圧)を確保した条件での送風機1
のモータ3の従来のオリフィスリング4を有する送風機1に対する入力の比との関係の特性図で示すように、従来のオリフィスリング4を有する送風機1に対する入力を1以下と低入力化する傾向が実現できる。
Furthermore, here, when the radial distance between the first orifice ring 18 and the second orifice ring 19 is S, and the outer diameter of the impeller 2 is D2, S / D2 is 0.020-0. By setting the value to 092, the blower under the condition that the distance S between the two orifice rings 18 and 19 in FIG. 10 and the ratio S / D2 of the impeller outer diameter D2 and the predetermined aerodynamic characteristics (air volume, static pressure) are ensured. 1
As shown in the characteristic diagram of the relationship with the ratio of input to the blower 1 having the conventional orifice ring 4 of the motor 3, the input to the blower 1 having the conventional orifice ring 4 tends to be reduced to 1 or less. it can.

以上のように、本発明にかかる羽根車と、送風機は、羽根外周側では、翼端渦の生成を促進して、翼端渦の崩壊による羽根外周側の流れの乱れを抑えつつ、外周側の流れを促進してもハブ側からの流れが外周側に片寄らず外周側の気流の流速が大きくならず、羽根の外周側の圧力面、負圧面での摩擦損失の増加を抑える。さらに、オリフィスリングに囲まれていない吸込み側外周の流れもスムーズに流入させ、羽根の外周側での翼端渦、後流渦の変動を抑える。従って、かかる羽根車を搭載した送風機の送風騒音の増加を抑えると共に、送風機の空力効率が向上し、送風機用のモータの低入力化が図れる。   As described above, the impeller and the blower according to the present invention promote the generation of the blade tip vortex on the blade outer peripheral side, and suppress the disturbance of the flow on the blade outer peripheral side due to the collapse of the blade tip vortex. However, the flow from the hub side does not deviate toward the outer peripheral side and the air flow velocity on the outer peripheral side does not increase, and the increase in friction loss on the pressure surface and the suction surface on the outer peripheral side of the blade is suppressed. Furthermore, the flow on the suction side outer periphery that is not surrounded by the orifice ring is also smoothly introduced, and the fluctuations of the blade tip vortex and the wake vortex on the outer periphery side of the blade are suppressed. Therefore, an increase in the blowing noise of the blower equipped with such an impeller is suppressed, the aerodynamic efficiency of the blower is improved, and the input of the blower motor can be reduced.

従って、かかる羽根車、送風機を用いた室外ユニットの送風効率の向上とヒートポンプユニットとしての高い熱交換能力を両立でき、さらに低騒音化が可能となるので、家庭用、業務用等エアコンの空調機器、家庭用冷凍冷蔵庫や自動販売機等の冷凍冷蔵機器、給湯機等のヒートポンプ機器、さらに熱電子部品を有する電子機器のみならず、AV機器、廃熱回収機器などの用途にも適用できる。   Therefore, it is possible to achieve both the improvement of the blowing efficiency of the outdoor unit using such an impeller and blower and the high heat exchanging ability as a heat pump unit, and further noise reduction. It can be applied not only to refrigeration and refrigeration equipment such as household refrigerator-freezers and vending machines, heat pump equipment such as water heaters, and electronic equipment having thermoelectric components, but also to AV equipment and waste heat recovery equipment.

1 送風機
2 羽根車
3 モータ
4、17 オリフィスリング
5、16 ハブ
6 羽根
12 熱交換器
14 箱体
18 第1のオリフィスリング
18a 開放端
19 第2のオリフィスリング
20 湾曲部
DESCRIPTION OF SYMBOLS 1 Blower 2 Impeller 3 Motor 4, 17 Orifice ring 5, 16 Hub 6 Blade 12 Heat exchanger 14 Box 18 First orifice ring 18a Open end 19 Second orifice ring 20 Curved portion

Claims (7)

回転中心に設けられたハブと前記ハブの周囲に設けられた複数の羽根から成り、前記羽根の半径方向の断面形状は外周側では吸込み側に対して凹形状の曲線となり、ハブ側では吸込み側に対して凸形状の曲線となり、前記ハブ側における凸形状曲線は略円弧状で前記羽根の前縁側から後縁側に向かうにつれて略円弧状の凸形状曲線の曲率半径の値が小さくなることを特徴とした羽根車。 It consists of a hub provided at the center of rotation and a plurality of blades provided around the hub, and the radial cross-sectional shape of the blades is a concave curve with respect to the suction side on the outer peripheral side, and the suction side on the hub side The convex curve on the hub side is substantially arc-shaped, and the value of the radius of curvature of the substantially arc-shaped convex curve decreases from the front edge side to the rear edge side of the blade. Impeller. 前記ハブを前記羽根の前縁の内径と後縁の内径がほぼ同一径となる略円筒形にすることを特徴とした請求項1に記載の羽根車。 2. The impeller according to claim 1, wherein the hub has a substantially cylindrical shape in which an inner diameter of a front edge and an inner diameter of a rear edge of the blade are substantially the same. 前記略円筒形ハブの径をD1とし、前記羽根車の外径をD2とした場合、D1/D2を0.135〜0.368としたことを特徴とした請求項2に記載の羽根車。 The impeller according to claim 2, wherein D1 / D2 is 0.135 to 0.368, where D1 is a diameter of the substantially cylindrical hub and D2 is an outer diameter of the impeller. モータと、請求項1から3のいずれかに記載の羽根車と、前記羽根車の吐出側の周囲を囲むオリフィスリングとから成ることを特徴とした送風機。 A blower comprising: a motor; an impeller according to any one of claims 1 to 3; and an orifice ring surrounding a discharge side of the impeller. 前記オリフィスリングは、前記羽根車の吐出側外周を囲み、吐出側先端部を開放端とした略円筒形の第1のオリフィスリングと、前記第1のオリフィスリングの外側に設けた略同心円状でかつ第1のオリフィスリングより軸方向高さの高い第2のオリフィスリングと、第1のオリフィスリングの吸込み側と第2のオリフィスリングの吸込み側をなめらかにつなぐ湾曲部とから成ることを特徴とした請求項4に記載の送風機。 The orifice ring has a substantially cylindrical first orifice ring that surrounds the discharge-side outer periphery of the impeller and has a discharge-side tip portion as an open end, and a substantially concentric circle provided outside the first orifice ring. And a second orifice ring having an axial height higher than that of the first orifice ring, and a curved portion that smoothly connects the suction side of the first orifice ring and the suction side of the second orifice ring. The blower according to claim 4. 第1のオリフィスリングと第2のオリフィスリングの半径方向の間隔をSとし、前記羽根車の外径をD2とした場合、S/D2を0.020〜0.092としたことを特徴とした請求項5に記載の送風機。 S / D2 is 0.020 to 0.092, where S is the radial distance between the first orifice ring and the second orifice ring and the outer diameter of the impeller is D2. The blower according to claim 5. 空気と冷媒の熱交換を行うフィンチューブ型の熱交換器と、請求項4から6のいずれか一項に記載の送風機と、前記熱交換器と前記送風機とを収納する箱体とから成ることを特徴とした空気調和機。
It consists of a fin tube type heat exchanger that performs heat exchange between air and refrigerant, a blower according to any one of claims 4 to 6 , and a box that houses the heat exchanger and the blower. Air conditioner characterized by.
JP2010041516A 2010-02-26 2010-02-26 Impeller, blower and air conditioner using the same Active JP5263198B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010041516A JP5263198B2 (en) 2010-02-26 2010-02-26 Impeller, blower and air conditioner using the same
CN2011100486459A CN102168686A (en) 2010-02-26 2011-02-25 Impeller and pressure fan and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010041516A JP5263198B2 (en) 2010-02-26 2010-02-26 Impeller, blower and air conditioner using the same

Publications (2)

Publication Number Publication Date
JP2011179330A JP2011179330A (en) 2011-09-15
JP5263198B2 true JP5263198B2 (en) 2013-08-14

Family

ID=44489967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041516A Active JP5263198B2 (en) 2010-02-26 2010-02-26 Impeller, blower and air conditioner using the same

Country Status (2)

Country Link
JP (1) JP5263198B2 (en)
CN (1) CN102168686A (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014010058A1 (en) * 2012-07-12 2014-01-16 三菱電機株式会社 Propeller fan, and fan, air-conditioner and outdoor unit for hot-water supply provided with propeller fan
WO2014024305A1 (en) 2012-08-10 2014-02-13 三菱電機株式会社 Propeller fan, and fan, air conditioner and outdoor unit for supplying hot water provided with same
WO2014162552A1 (en) * 2013-04-04 2014-10-09 三菱電機株式会社 Propeller fan, blower device, and outdoor equipment
US9618010B2 (en) 2013-04-22 2017-04-11 Lennox Industries Inc. Fan systems
WO2015029245A1 (en) 2013-09-02 2015-03-05 三菱電機株式会社 Propeller fan, air-blowing device, and outdoor unit
WO2015092924A1 (en) * 2013-12-20 2015-06-25 三菱電機株式会社 Axial flow fan
EP3217018B1 (en) * 2014-11-04 2020-09-16 Mitsubishi Electric Corporation Propeller fan, propeller fan device, and outdoor equipment for air-conditioning device
WO2017042877A1 (en) * 2015-09-08 2017-03-16 三菱電機株式会社 Propeller fan, propeller fan device and outdoor unit for air conditioning device
MY189574A (en) * 2016-06-16 2022-02-17 Mitsubishi Electric Corp Impeller and axial flow fan
JP6428833B2 (en) * 2017-04-14 2018-11-28 ダイキン工業株式会社 Propeller fan
CN110678659B (en) 2017-05-25 2021-11-16 三菱电机株式会社 Propeller fan and refrigeration cycle device
CN107023513A (en) * 2017-06-16 2017-08-08 广东美的制冷设备有限公司 Axial-flow windwheel and air conditioner
CN107956723A (en) * 2017-12-04 2018-04-24 江苏航天动力机电有限公司 Two level Novel fan structure
CN108180168A (en) * 2017-12-27 2018-06-19 泛仕达机电股份有限公司 A kind of compound bending fan blade and the fan including the blade
CN108087308A (en) * 2017-12-31 2018-05-29 青岛众力风机有限公司 A kind of aerofoil fan
CN108506247A (en) * 2018-05-09 2018-09-07 约克广州空调冷冻设备有限公司 Blade and use its axial wheel
WO2019214632A1 (en) * 2018-05-09 2019-11-14 约克广州空调冷冻设备有限公司 Blade and axial flow impeller using same
US20210324874A1 (en) 2018-12-26 2021-10-21 Mitsubishi Electric Corporation Impeller, fan, and air-conditioning apparatus
JP2020112034A (en) * 2019-01-08 2020-07-27 パナソニックIpマネジメント株式会社 Axial fan
EP3974659A4 (en) * 2019-05-21 2022-05-11 Mitsubishi Electric Corporation Axial fan, blower, and refrigeration cycle apparatus
WO2021095122A1 (en) * 2019-11-12 2021-05-20 三菱電機株式会社 Axial flow fan, blowing device, and refrigeration cycle device
CN113757168A (en) * 2020-06-01 2021-12-07 广东美的白色家电技术创新中心有限公司 Fan blade, fan, air condensing units and air conditioning system
WO2022091225A1 (en) * 2020-10-27 2022-05-05 三菱電機株式会社 Axial-flow fan, blowing device, and refrigeration cycle device
WO2023242950A1 (en) * 2022-06-14 2023-12-21 三菱電機株式会社 Propeller fan and axial blower

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2286856B (en) * 1994-02-16 1998-09-16 Mitsubishi Electric Corp Blower
JP3638355B2 (en) * 1995-11-15 2005-04-13 三菱電機株式会社 Air conditioner outdoor unit
JP3775848B2 (en) * 1996-01-26 2006-05-17 松下冷機株式会社 Axial blower
JP3960776B2 (en) * 2001-11-09 2007-08-15 松下電器産業株式会社 Blower impeller for air conditioning
JP2005016457A (en) * 2003-06-27 2005-01-20 Matsushita Electric Ind Co Ltd Blower and heat exchange unit equipped with blower
JP4467952B2 (en) * 2003-11-10 2010-05-26 東芝キヤリア株式会社 Propeller fan, outdoor unit for air conditioner using this
CN1318765C (en) * 2003-12-15 2007-05-30 珠海格力电器股份有限公司 Impeller for fan, fan using same and air conditioner using the fan
JP2006291735A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Blower impeller
JP4400686B2 (en) * 2008-01-07 2010-01-20 ダイキン工業株式会社 Propeller fan

Also Published As

Publication number Publication date
CN102168686A (en) 2011-08-31
JP2011179330A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5263198B2 (en) Impeller, blower and air conditioner using the same
JP6430024B2 (en) Outdoor unit for propeller fan, propeller fan device and air conditioner
CN108700086B (en) Axial-flow blower and outdoor unit
WO2013150673A1 (en) Indoor unit for air conditioning device
EP3626974B1 (en) Outdoor unit for an air conditioner
JP5971667B2 (en) Propeller fan, blower and outdoor unit
US10052931B2 (en) Outdoor cooling unit in vehicle air-conditioning apparatus
JP6377172B2 (en) Outdoor unit for propeller fan, propeller fan device and air conditioner
JP2006291735A (en) Blower impeller
JP2011179331A (en) Blower, and air conditioner using the same
JPWO2014103702A1 (en) Propeller fan, blower, outdoor unit
JP2012047080A (en) Propeller, blower and heat pump device
JP6035508B2 (en) Blower and outdoor unit using it
JP2004218450A (en) Centrifugal blower
CN110914553B (en) Impeller, blower and air conditioner
WO2017077564A1 (en) Axial fan and air-conditioning device having said axial fan
JP2007247494A (en) Diagonal flow blower impeller
JP2007162521A (en) Mixed flow blower impeller and air conditioner
JP4802694B2 (en) Blower impeller and air conditioner
JP4797776B2 (en) Mixed flow blower impeller and air conditioner
JPWO2013150673A1 (en) Air conditioner indoor unit
WO2022191034A1 (en) Propeller fan and refrigeration device
JP2013120046A (en) Outdoor unit
WO2023157271A1 (en) Impeller, blower, and air conditioner
JP4967883B2 (en) Mixed flow blower impeller and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R151 Written notification of patent or utility model registration

Ref document number: 5263198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151