WO2023242950A1 - Propeller fan and axial blower - Google Patents

Propeller fan and axial blower Download PDF

Info

Publication number
WO2023242950A1
WO2023242950A1 PCT/JP2022/023795 JP2022023795W WO2023242950A1 WO 2023242950 A1 WO2023242950 A1 WO 2023242950A1 JP 2022023795 W JP2022023795 W JP 2022023795W WO 2023242950 A1 WO2023242950 A1 WO 2023242950A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
protrusion
propeller fan
trailing edge
point
Prior art date
Application number
PCT/JP2022/023795
Other languages
French (fr)
Japanese (ja)
Inventor
俊勝 新井
一樹 蓮池
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/023795 priority Critical patent/WO2023242950A1/en
Publication of WO2023242950A1 publication Critical patent/WO2023242950A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades

Definitions

  • a separated vortex is formed near the leading edge of the blade, and airflow in a turbulent boundary layer is generated on the suction surface side of the rotor blade.
  • the larger the separation vortex generated near the leading edge of the blade the larger the trailing vortex generated behind the trailing edge of the blade as the airflow on the suction surface side flows toward the trailing edge of the blade while being turbulent.
  • noise is generated due to interference between blade tip vortices, separation vortices, and blade trailing vortices with adjacent rotary blades, bell mouths, and the like. The noise characteristics deteriorate as the blade tip vortices, separation vortices, and trailing vortices become larger, and as the airflow turbulence generated on the suction surface increases.
  • Patent Document 1 a substantially triangular protrusion is provided on the rear edge of the rotational direction of the suction side of the blade, which extends approximately in the direction in which the blade extends, to reduce noise caused by airflow on the suction side. It's suppressed.
  • the approximately triangular protrusion has a larger inclination angle on the leading edge side of the blade than on the trailing edge side of the blade. For this reason, the blade trailing vortex generated behind the blade trailing edge cannot be efficiently reduced, and the noise reduction effect is small.
  • the present disclosure has been made in view of the above, and aims to provide a propeller fan that further reduces noise generated by a trailing vortex of the blade generated behind the trailing edge of the blade.
  • the protrusion includes a first inclined portion whose height gradually increases from the leading edge of the wing toward the apex of the protrusion, and a first slope whose height gradually decreases from the apex of the protrusion toward the trailing edge of the wing. a second slope, and the first angle, which is the angle of the first slope, is steeper than the second angle, which is the angle of the second slope.
  • the propeller fan of the present disclosure it is possible to further reduce the noise generated by the trailing vortex of the blade generated behind the trailing edge of the blade.
  • a cross-sectional developed view of the inner peripheral edge of a blade in a propeller fan according to an embodiment A cross-sectional developed view of the outer peripheral edge of a blade in a propeller fan according to an embodiment
  • FIG. 1 is a perspective view showing the configuration of an axial blower 100 according to an embodiment.
  • the axial blower 100 includes a propeller fan 10, a main body 21, a bell mouth 30 as a wind tunnel, a motor (not shown), and a motor fixing member (not shown).
  • a propeller fan 10 and a motor are arranged inside the bell mouth 30.
  • the propeller fan 10 has a cylindrical boss portion 2 and a plurality of rotary blades 1 having the same three-dimensional shape.
  • the boss portion 2 is rotationally driven by a motor, and rotates in the direction of arrow W around a rotating shaft 3.
  • Each rotor blade 1 is attached radially to the outer periphery of the boss portion 2.
  • the bell mouth 30 has a diameter that is gradually reduced from the large-diameter suction port side toward the blowout port side.
  • the rotary blade 1 has a leading edge 1a, which is the front end in the rotational direction indicated by arrow W, a trailing blade edge 1b, which is the rear end in the rotational direction indicated by arrow W, and an inner circumference (
  • the blade has an inner peripheral edge portion 1c which is an end portion on the boss portion 2 side) and an outer peripheral blade portion 1d which is an end portion on the outer peripheral portion side.
  • five rotary blades 1 are shown, and in FIG. 2, three rotary blades 1 are shown. As the number of rotary blades 1, other numbers may be adopted.
  • the Z-axis corresponding to the rotation axis 3 the X-axis and Y-axis that are two axes perpendicular to the Z-axis, and the coordinate center O of the X-axis, Y-axis, and Z-axis are shown. There is.
  • the propeller fan 10 has a shape in which the outer circumferential portion is bent toward the upstream side of the airflow as indicated by arrow A in terms of the shape in the direction connecting the inner circumferential portion and the outer circumferential portion. This reduces the interference caused by the blade tip vortex 5 mentioned above.
  • the inner periphery side is convex with respect to the airflow, and the outer periphery side is concave with respect to the airflow.
  • the S-shape is not limited to this, the shape is not limited to this, and the outer periphery is bent toward the upstream side of the airflow. It is sufficient if it has the following.
  • FIG. 6 is a perspective view showing the rotor blade 1 of the propeller fan 10 according to the embodiment.
  • FIG. 7 is a cross-sectional development view of the blade inner circumferential edge portion 1c of the propeller fan 10 according to the embodiment.
  • FIG. 7 is a cross-sectional developed view of the propeller fan 10 cut along a cylindrical surface having a radius D1-D1' in FIG. 4 and expanded into a two-dimensional plane.
  • FIG. 8 is a developed cross-sectional view of the blade outer peripheral edge portion 1d of the propeller fan 10 according to the embodiment.
  • FIG. 8 is a cross-sectional developed view of the propeller fan 10 cut along a cylindrical surface having a radius D2-D2' in FIG. 4 and expanded into a two-dimensional plane.
  • FIG. 9 is a cross-sectional developed view of an intermediate portion between the inner blade edge 1c and the outer blade edge 1d in the propeller fan 10 according to the embodiment.
  • FIG. 9 is a cross-sectional exploded view of the propeller fan 10 cut along a cylindrical surface having a radius D3-D3' in FIG. 4 and expanded into a two-dimensional plane.
  • FIG. 10 is a partially sectional exploded view showing the protrusion 20 of the rotor blade 1 of the propeller fan 10 according to the embodiment.
  • FIG. 11 is an enlarged cross-sectional developed view showing the protrusion 20 of the rotor blade 1 of the propeller fan 10 according to the embodiment.
  • FIG. 12 is a diagram showing a change in the slope of the tangent to the suction surface 1f of the rotor blade 1 of the propeller fan 10 according to the embodiment.
  • FIG. 13 is a cross-sectional developed view showing the blade trailing vortex 14 and the like generated in a comparative example without the protrusion 20.
  • FIG. 14 is a cross-sectional development view showing the blade trailing vortex 14 and the like generated in the rotor blade 1 of the propeller fan 10 according to the embodiment in which the protrusion 20 is provided.
  • the blade trailing edge portion 1b also has a rounded shape to prevent separation of airflow.
  • the curvature of the R shape on the side of the suction surface 1f is larger than the curvature of the R shape on the side of the pressure surface 1g.
  • the blade trailing vortex 14 shown in FIG. A protrusion 20 is provided for suppression.
  • the protrusion 20 extends parallel to the wing trailing edge 1b. It is desirable that the protrusion 20 is continuously provided over one-third or more of the length of the blade trailing edge 1b.
  • the protrusion 20 is preferably provided continuously from a radial position Rrib near the inner blade edge 1c to a radial position Rrib' near the outer blade edge 1d.
  • the projection 20 increases in height from the end of the projection on the wing leading edge 1a side (point PB in FIG. 11) toward the apex of the projection 20 (point PD in FIG. 11).
  • the first inclined portion 20a gradually increases in height, and the height increases from the apex of the protrusion 20 (point PD in FIG. 11) to the end of the protrusion on the wing trailing edge 1b side (point PF in FIG. 11). It has a second slope portion 20b that gradually becomes lower.
  • the first angle which is the angle of the first inclined portion 20a, is steeper than the second angle, which is the angle of the second inclined portion 20b.
  • the projection 20 has a shape in which the inclination ⁇ 2 with respect to the blade surface on the downstream side (the blade trailing edge 1b side) is larger than the inclination ⁇ 1 with respect to the blade surface on the upstream side (the blade leading edge 1a side). has. Note that it is preferable that the protrusions 20 have the same cross-sectional shape in the direction along the blade trailing edge 1b.
  • the chord length L is the longest distance between the straight line LW1 and the straight line LW2 when the blade is sandwiched between two parallel straight lines LW1 and LW2 in the cylindrical cross section of the rotary blade 1. It is defined as the length.
  • the direction parallel to the blade chord length L and going from the blade leading edge 1a to the blade trailing edge 1b is defined as the XL direction, which is perpendicular to the blade chord length L, parallel to the straight line LW1 and the straight line LW2, and runs from the downstream side to the upstream side.
  • the heading direction is defined as the ZL direction.
  • the curved surface connecting point PA and point PB is the curved surface on the wing leading edge 1a side of the wing surface adjacent to the protrusion 20.
  • the arc connecting portion connecting point PB and point PC is a portion connecting the portion of the projection portion 20 on the blade leading edge portion 1a side and the blade surface.
  • the curved surface connecting the point PC and the apex point PD is the curved surface of the protrusion 20 on the wing leading edge portion 1a side.
  • the curved surface connecting point PD and point PE is the curved surface of the protrusion 20 on the wing trailing edge 1b side.
  • the arc connecting portion connecting point PE and point PF is a portion connecting the portion of the projection portion 20 on the blade trailing edge portion 1b side and the blade surface.
  • the curved surface connecting point PF and point PG is a curved surface on the blade trailing edge 1b side of the blade surface adjacent to the protrusion 20.
  • Point PG is a point included in the trailing edge portion 1b
  • the curved surface connecting points PA and PB and the curved surface connecting points PF and PG are part of the suction surface 1f, which is the upstream surface of the rotor blade 1.
  • the protrusion 20 is formed by a curved surface connecting points PC and PD and a curved surface connecting points PD and PE.
  • the curved surface connecting points PA and PB and the curved surface connecting points PF and PG are curved surfaces that are convex toward the upstream side.
  • the curved surface connecting point PC and point PD and the curved surface connecting point PD and point PE are curved surfaces convex to the upstream side, and the curved surface connecting point PA and point PB and the curved surface connecting point PF and point PG.
  • the curvature is greater than the curved surface. That is, the protrusion 20 is a curved surface with a larger curvature than the suction surface 1f of the rotor blade 1.
  • the negative pressure surface 1f and the protrusion 20 are smoothly connected in an arc shape by an arc connection part connecting points PB and PC and an arc connection part connecting points PE and PF.
  • the curved surface that connects points PA and PB and the curved surface that connects points PC and PD are continuous and smooth so that the slopes at the connection points are equal due to the arc connection section that connects point PB and point PC. connected to.
  • the arc connecting portion connecting point PB and point PC is convex toward the downstream side.
  • the curved surface that connects points PD and PE and the curved surface that connects points PF and PG are continuously smoothed by the arc connection connecting points PE and PF so that the slopes at the connection are equal. connected to.
  • FIG. 12 shows a change in the slope dZL/dXL of the tangent to the suction surface 1f of the rotor blade 1 of the propeller fan 10 in the XL direction.
  • the curved surface connecting point PA and point PB is a curved surface that is convex toward the upstream side
  • the arc connecting portion connecting point PB and point PC is a curved surface that is convex toward the downstream side.
  • the slope dZL/dXL of the tangent line becomes maximum at point PB between point PA and point PC.
  • Straight line LPB is a straight line that touches the blade surface at point PB.
  • the curved surface connecting point PD and point PE that constitutes the protrusion 20 is a curved surface that is convex toward the upstream side, and has a shape that protrudes toward the upstream side as it approaches the blade leading edge portion 1a side. Since the arcuate connection connecting point PE and point PF is a curved surface convex toward the downstream side, the slope of the tangent of the protrusion 20 on the blade trailing edge 1b side with respect to the XL axis becomes maximum at point PE.
  • Straight line LPE is a straight line that touches the blade surface at point PE.
  • the slope of the protrusion 20 on the blade trailing edge 1b side is defined by a straight line LPE.
  • the inclination of the protrusion 20 on the blade trailing edge 1b side is at a point PE near the connection between the protrusion 20 and the blade trailing edge 1b, where the inclination of the tangent line is maximum downstream. This is the slope at .
  • a straight line passing through point PE and parallel to straight line LPB is defined as straight line LPB2.
  • the inclination ⁇ 1 of the protrusion 20 on the wing leading edge 1a side is defined by the angle between the straight line LPB and the straight line LPC.
  • the inclination ⁇ 2 of the projection 20 on the blade trailing edge 1b side is defined by the angle between the straight line LPB2 and the straight line LPE.
  • the height tr of the protrusion 20 and the plate thickness tk of the rotor blade 1 are defined as follows.
  • the apex of the protrusion 20 in the ZL direction is defined as a point PD.
  • the height tr of the protrusion 20 and the plate thickness tk of the wing portion are defined by the height in the ZL direction at the position of this point PD.
  • Let the straight line LPB be the virtual wing surface.
  • Point Pt is a point on a straight line that passes through the vertex indicated by point PD of protrusion 20 and extends in the ZL direction, and intersects with straight line LPB.
  • the height from point Pt to point PD, which is the apex of protrusion 20, is defined as height tr of protrusion 20.
  • Point Pk is a point that passes through the apex of the protrusion 20 indicated by point PD and intersects with the blade surface of the pressure surface 1g on a straight line extending in the ZL direction.
  • the width tw of the protrusion 20 and the distance B of the protrusion 20 from the wing trailing edge 1b are defined as follows.
  • the width tw of the protrusion 20 is defined as the distance from point PC, which is the front edge of the protrusion 20, to point PE, which is the rear edge of the protrusion 20, in the XL direction.
  • the distance from point PE, which is the trailing edge of the projection 20, to point PG on the blade trailing edge 1b of the rotor 1 is defined as distance B of the projection 20 from the blade trailing edge 1b.
  • a wake vortex 14 is generated.
  • the rotor blade 1 when the rotor blade 1 is provided with the protrusion 20, it is possible to prevent the air flow 32 from flowing toward the blade trailing edge 1b, and airflow occurs behind the blade trailing edge 1b.
  • the blade trailing vortex 14 can be made smaller.
  • the slope ⁇ 2 of the protrusion 20 on the blade trailing edge 1b side is larger than the slope ⁇ 1 of the protrusion 20 on the blade leading edge 1a side.
  • the first angle which is the angle of the first inclined portion 20a
  • the second angle which is the angle of the second inclined portion 20b.
  • Patent Document 1 when the flow point changes and the angle of the flow flowing into the rotor blade 1 changes, separation may become excessive due to the protruding shape and noise may worsen.
  • dust and the like tend to accumulate on the apex of the protrusion, and when dust accumulates, the shape of the protrusion changes, which may change the flow, resulting in excessive separation and worsening of noise.
  • the protrusion 20 of the embodiment has a shape that is curved on the upstream side of the flow and sharply pointed on the downstream side, and the thicker apex portion is closer to the upstream side of the flow. This prevents the flow from separating excessively and stabilizes the flow.
  • ⁇ 1 be larger than 90°.
  • the turbulence caused by the blade trailing vortex 14 can be weakened. That is, it is desirable that the angle of the protrusion 20 satisfies the relationship 90° ⁇ 1 ⁇ 2.
  • K T SPL A -10Log (Q P T 2.5 ) Q is the air volume [m 3 /min], P T is the total pressure [Pa], and SPL A is the noise characteristic [dB] after A-characteristic correction.
  • the width tw of the protrusion 20 preferably satisfies a range from one time the height tr of the protrusion 20 to four times the height tr of the protrusion 20, as shown by the following formula. 1 ⁇ tr ⁇ tw ⁇ 4 ⁇ tr
  • the shape of the protrusion 20 is a smooth curved shape that is high at the center and low at the periphery.
  • a parabola or a quadratic curve may be used as the curve shape.
  • FIG. 16 is a diagram showing the relationship between the distance of the protrusion 20 with respect to the blade trailing edge 1b of the propeller fan 10 and the specific noise reduction rate ⁇ K T according to the embodiment.
  • the horizontal axis represents the ratio of the distance B of the protrusion 20 from the blade trailing edge 1b to the blade chord length L
  • the vertical axis represents the specific noise reduction ratio ⁇ K T.
  • the noise reduction effect will be small. It is desirable to provide the protrusion 20 in the range of ⁇ B/L ⁇ 0.08.
  • FIG. 17 is a plan view showing a modification of the propeller fan 10 according to the embodiment.
  • FIG. 18 is a plan view showing another modification of the propeller fan 10 according to the embodiment.
  • the protrusion 20 is provided from the center position in the radial direction to the outer peripheral side.
  • the protrusion 20 is provided from the center position in the radial direction to the inner peripheral side.
  • the propeller fan 10 it is possible to achieve low noise with any pattern of the projections 20, and experiments have shown that an effect of -1.8 (db) in specific noise can be obtained. I was able to confirm that. Even when the protrusion 20 could not be arranged over the entire blade trailing edge 1b due to manufacturing reasons, certain effects were obtained.
  • These series of evaluation results are the results of evaluating the rotor blade 1 having a diameter of 220 mm at a constant rotation speed of 1400/min.
  • the length of the protrusion 20 is preferably parallel to the blade trailing edge 1b and is 1/3 or more of the length of the blade trailing edge 1b.
  • FIG. 19 is a plan view showing the propeller fan 10 according to the embodiment.
  • the plurality of rotary blades 1 are arranged so that they do not overlap. , are evenly arranged in the circumferential direction around the rotating shaft 3.
  • resin molding the propeller fan 10 it is possible to form the propeller fan 10 using a mold that is divided into two parts vertically in the Z-axis direction.
  • the protrusion 20 is also shaped to be compatible with two-part molding.
  • FIG. 20 is an enlarged sectional developed view of the propeller fan 10 according to the embodiment shown in FIG. 11, which is rotated so that the Z-axis direction is in the vertical direction. It is assumed that resin molding is performed using a mold that is divided into two parts in the vertical direction of FIG. 20, that is, in the positive direction and the negative direction of the Z axis.
  • the cross section of the protrusion 20 on a cylindrical surface centered on the rotating shaft 3 extending in the Z-axis direction should have a shape that becomes wider from the upstream side to the downstream side. good.
  • the slope of the straight line LPC advances from the downstream side (Z-axis negative side) to the upstream side (Z-axis positive side), it increases from the blade leading edge 1a side to the blade trailing edge 1b side.
  • the slope of the straight line LPE advances from the downstream side (Z-axis negative side) to the upstream side (Z-axis positive side), it slopes upward from the blade trailing edge 1b side to the blade leading edge 1a side. It may be a shape.
  • this shape By adopting this shape, it becomes a shape that prevents undercuts during molding, and it becomes possible to use a mold consisting of a simple upper and lower mold configuration, and there is no large increase in cost for introduction. Moreover, by adopting this shape, there are no corners, which prevents dust from adhering, and even when there is no cleaning work, the noise reduction effect can be exerted for a long period of time.

Abstract

The outer peripheral part of a rotary blade (1) has a shape that is bent toward the upstream side of an airflow. A protrusion (20) extending parallel to a blade trailing edge (1b) of the rotary blade (1) is provided on a negative-pressure surface (1f) side of the blade trailing edge (1b). The protrusion (20) has a first inclined part (20a) that gradually increases in height from a blade leading edge side toward the apex of the protrusion (20), and a second inclined part (20b) that gradually decreases in height from the apex of the protrusion (20) toward the blade trailing edge (1b). A first angle, which is the angle of the first inclined part (20a), is steeper than a second angle, which is the angle of the second inclined part (20b).

Description

プロペラファンおよび軸流送風機Propeller fans and axial blowers
 本開示は、換気扇、空調機等に用いるプロペラファンおよび軸流送風機に関する。 The present disclosure relates to a propeller fan and an axial blower used in ventilation fans, air conditioners, etc.
 軸流送風機のプロペラファンの回転翼においては、低騒音化のために、回転方向への前進化と気流上流側への傾斜化とが図られてきた。近年ではさらなる低騒音化のため、回転翼の外周部側を気流の上流側に屈曲させ、翼外周部に発生する翼端渦による干渉を低減することが提案されている。 The rotor blades of the propeller fan of an axial blower have been advanced in the direction of rotation and tilted toward the upstream side of the airflow in order to reduce noise. In recent years, in order to further reduce noise, it has been proposed to bend the outer circumferential side of the rotor blade toward the upstream side of the airflow to reduce interference caused by blade tip vortices generated at the outer circumference of the blade.
 また、翼前縁部の付近には剥離渦が形成され、回転翼の負圧面側には、乱流境界層における気流が生じる。翼前縁部の付近にて発生する剥離渦が大きいほど、負圧面側の気流が乱れながら翼後縁部へ流動することによって、翼後縁部の後方に生じる翼後流渦が大きくなる。軸流送風機では、翼端渦、剥離渦、および翼後流渦と、隣接する回転翼、ベルマウスなどとの干渉により、騒音を生じる。そして、翼端渦、剥離渦、および翼後流渦が大きくなるほど、また、負圧面に発生する気流の乱れが大きくなるほど、騒音特性が悪化する。 Additionally, a separated vortex is formed near the leading edge of the blade, and airflow in a turbulent boundary layer is generated on the suction surface side of the rotor blade. The larger the separation vortex generated near the leading edge of the blade, the larger the trailing vortex generated behind the trailing edge of the blade as the airflow on the suction surface side flows toward the trailing edge of the blade while being turbulent. In an axial blower, noise is generated due to interference between blade tip vortices, separation vortices, and blade trailing vortices with adjacent rotary blades, bell mouths, and the like. The noise characteristics deteriorate as the blade tip vortices, separation vortices, and trailing vortices become larger, and as the airflow turbulence generated on the suction surface increases.
 特許文献1では、ブレードの負圧面側の回転方向後方側の縁部に、ブレードの延出方向に略沿う、略三角形状の突条を設け、負圧面側の気流に起因する騒音の発生を抑制している。 In Patent Document 1, a substantially triangular protrusion is provided on the rear edge of the rotational direction of the suction side of the blade, which extends approximately in the direction in which the blade extends, to reduce noise caused by airflow on the suction side. It's suppressed.
特開2013-19335号公報Japanese Patent Application Publication No. 2013-19335
 特許文献1では、略三角形状の突条の形状は、翼後縁部側の傾斜角より翼前縁部側の傾斜角が大きい。このため、翼後縁部の後方に生じる翼後流渦を効率よく低減できず、低騒音化の効果が少ない。 In Patent Document 1, the approximately triangular protrusion has a larger inclination angle on the leading edge side of the blade than on the trailing edge side of the blade. For this reason, the blade trailing vortex generated behind the blade trailing edge cannot be efficiently reduced, and the noise reduction effect is small.
 本開示は、上記に鑑みてなされたものであり、翼後縁部の後方に発生する翼後流渦により発生する騒音の更なる低騒音化を図るプロペラファンを得ることを目的とする。 The present disclosure has been made in view of the above, and aims to provide a propeller fan that further reduces noise generated by a trailing vortex of the blade generated behind the trailing edge of the blade.
 上述した課題を解決し、目的を達成するために、本開示におけるプロペラファンは、回転駆動されるボス部と、ボス部に放射状に取付けられ回転軸の方向に気流を発生する複数の回転翼と、を備える。回転翼の外周部は、気流の上流側に屈曲する形状を有する。回転翼の翼後縁部の負圧面側に、翼後縁部に平行に延びる突起部が設けられる。突起部は、翼前縁部側から突起部の頂点に向けて高さが徐々に高くなる第1傾斜部と、突起部の頂点から翼後縁部側に向けて高さが徐々に低くなる第2傾斜部とを有し、第1傾斜部の角度である第1角度が、第2傾斜部の角度である第2角度より急角度である。 In order to solve the above-mentioned problems and achieve the objectives, a propeller fan according to the present disclosure includes a rotatably driven boss part, and a plurality of rotary blades that are radially attached to the boss part and generate airflow in the direction of the rotation axis. , is provided. The outer peripheral portion of the rotor blade has a shape that is bent toward the upstream side of the airflow. A protrusion extending parallel to the blade trailing edge is provided on the suction surface side of the blade trailing edge of the rotary blade. The protrusion includes a first inclined portion whose height gradually increases from the leading edge of the wing toward the apex of the protrusion, and a first slope whose height gradually decreases from the apex of the protrusion toward the trailing edge of the wing. a second slope, and the first angle, which is the angle of the first slope, is steeper than the second angle, which is the angle of the second slope.
 本開示におけるプロペラファンによれば、翼後縁部の後方に発生する翼後流渦により発生する騒音の更なる低騒音化を図ることができるという効果を奏する。 According to the propeller fan of the present disclosure, it is possible to further reduce the noise generated by the trailing vortex of the blade generated behind the trailing edge of the blade.
実施の形態にかかる軸流送風機の構成を示す斜視図A perspective view showing the configuration of an axial blower according to an embodiment. 実施の形態にかかるプロペラファンの構成を示す斜視図A perspective view showing the configuration of a propeller fan according to an embodiment. 実施の形態にかかるプロペラファンの回転翼において、翼端渦の発生を示す斜視図A perspective view showing the generation of a blade tip vortex in a rotor blade of a propeller fan according to an embodiment. 実施の形態にかかるプロペラファンの回転翼を示す平面図A plan view showing a rotor blade of a propeller fan according to an embodiment. 実施の形態にかかるプロペラファンを半径方向に沿って切断した一部断面図A partial cross-sectional view of the propeller fan according to the embodiment taken along the radial direction. 実施の形態にかかるプロペラファンの回転翼を示す斜視図A perspective view showing a rotor blade of a propeller fan according to an embodiment. 実施の形態にかかるプロペラファンにおける翼内周縁部の断面展開図A cross-sectional developed view of the inner peripheral edge of a blade in a propeller fan according to an embodiment 実施の形態にかかるプロペラファンにおける翼外周縁部の断面展開図A cross-sectional developed view of the outer peripheral edge of a blade in a propeller fan according to an embodiment 実施の形態にかかるプロペラファンにおける翼内周縁部と翼外周縁部との中間部の断面展開図A cross-sectional developed view of the intermediate portion between the inner peripheral edge of the blade and the outer peripheral edge of the blade in the propeller fan according to the embodiment. 実施の形態にかかるプロペラファンの回転翼の突起部を示す一部断面展開図A partial cross-sectional developed view showing a protrusion of a rotor blade of a propeller fan according to an embodiment. 実施の形態にかかるプロペラファンの回転翼の突起部を拡大して示す拡大断面展開図An enlarged cross-sectional development view showing an enlarged protrusion of the rotor blade of the propeller fan according to the embodiment. 実施の形態にかかるプロペラファンの回転翼の負圧面の接線の傾きの変化を示す図A diagram showing changes in the slope of the tangent to the negative pressure surface of the rotor blade of the propeller fan according to the embodiment. 突起部が無い比較例に発生する翼後流渦などを示す断面展開図A cross-sectional development diagram showing the trailing vortices of the blade that occur in a comparative example without protrusions. 突起部が有る実施の形態にかかるプロペラファンの回転翼に発生する翼後流渦などを示す断面展開図A cross-sectional developed view showing a trailing vortex generated in a rotor blade of a propeller fan according to an embodiment having a protrusion. 実施の形態にかかるプロペラファンの翼部の突起部の高さと比騒音低減との関係を示す図A diagram showing the relationship between the height of the protrusion of the blade of the propeller fan according to the embodiment and specific noise reduction. 実施の形態にかかるプロペラファンの翼後縁部に対する突起部の距離と比騒音低減割合との関係を示す図A diagram showing the relationship between the distance of the protrusion to the trailing edge of the blade of the propeller fan according to the embodiment and the specific noise reduction rate. 実施の形態にかかるプロペラファンの変形例を示す平面図A plan view showing a modified example of the propeller fan according to the embodiment. 実施の形態にかかるプロペラファンの他の変形例を示す平面図A plan view showing another modification of the propeller fan according to the embodiment. 実施の形態にかかるプロペラファンを示す平面図A plan view showing a propeller fan according to an embodiment. 図11に示す実施の形態にかかるプロペラファンの拡大断面展開図をZ軸方向が上下方向になるように回転した拡大断面展開図An enlarged cross-sectional developed view of the propeller fan according to the embodiment shown in FIG. 11 rotated so that the Z-axis direction is the vertical direction.
 以下に、本開示の実施の形態にかかるプロペラファンおよび軸流送風機を図面に基づいて詳細に説明する。 Below, a propeller fan and an axial blower according to an embodiment of the present disclosure will be described in detail based on the drawings.
実施の形態.
 図1は、実施の形態にかかる軸流送風機100の構成を示す斜視図である。軸流送風機100は、プロペラファン10と、本体21と、風洞としてのベルマウス30と、モータ(図示せず)と、モータ固定部材(図示せず)とを備える。ベルマウス30の内側に、プロペラファン10とモータとが配置される。プロペラファン10は、円柱状のボス部2と、同一の三次元立体形状を有する複数の回転翼1とを有する。ボス部2は、モータにより回転駆動され、回転軸3を中心に矢印W方向に回転する。各回転翼1は、ボス部2の外周に放射状に取り付けられている。プロペラファン10が回転することによって、回転翼1が矢印A方向に気流を発生させる。ベルマウス30は、大径の吸込口側から吹出口側に向かって漸次縮径されている。
Embodiment.
FIG. 1 is a perspective view showing the configuration of an axial blower 100 according to an embodiment. The axial blower 100 includes a propeller fan 10, a main body 21, a bell mouth 30 as a wind tunnel, a motor (not shown), and a motor fixing member (not shown). A propeller fan 10 and a motor are arranged inside the bell mouth 30. The propeller fan 10 has a cylindrical boss portion 2 and a plurality of rotary blades 1 having the same three-dimensional shape. The boss portion 2 is rotationally driven by a motor, and rotates in the direction of arrow W around a rotating shaft 3. Each rotor blade 1 is attached radially to the outer periphery of the boss portion 2. As the propeller fan 10 rotates, the rotor blade 1 generates an airflow in the direction of arrow A. The bell mouth 30 has a diameter that is gradually reduced from the large-diameter suction port side toward the blowout port side.
 図2は、実施の形態にかかるプロペラファン10の構成を示す斜視図である。図3は、実施の形態にかかるプロペラファン10の回転翼1において、翼端渦の発生を示す斜視図である。図4は、実施の形態にかかるプロペラファン10の回転翼1を示す平面図である。図5は、実施の形態にかかるプロペラファン10を半径方向に沿って切断した一部断面図である。回転翼1は、矢印Wで示す回転方向の前方の端部である翼前縁部1aと、矢印Wで示す回転方向の後方の端部である翼後縁部1bと、内周部側(ボス部2側)の端部である翼内周縁部1cと、外周部側の端部である翼外周縁部1dとを有する。図1では5枚の回転翼1が示され、図2では3枚の回転翼1が示されている。回転翼1の枚数として、他の枚数を採用してもよい。 FIG. 2 is a perspective view showing the configuration of the propeller fan 10 according to the embodiment. FIG. 3 is a perspective view showing the generation of a blade tip vortex in the rotor blade 1 of the propeller fan 10 according to the embodiment. FIG. 4 is a plan view showing the rotor blade 1 of the propeller fan 10 according to the embodiment. FIG. 5 is a partial cross-sectional view of the propeller fan 10 according to the embodiment taken along the radial direction. The rotary blade 1 has a leading edge 1a, which is the front end in the rotational direction indicated by arrow W, a trailing blade edge 1b, which is the rear end in the rotational direction indicated by arrow W, and an inner circumference ( The blade has an inner peripheral edge portion 1c which is an end portion on the boss portion 2 side) and an outer peripheral blade portion 1d which is an end portion on the outer peripheral portion side. In FIG. 1, five rotary blades 1 are shown, and in FIG. 2, three rotary blades 1 are shown. As the number of rotary blades 1, other numbers may be adopted.
 プロペラファン10の回転によって矢印A方向の気流が発生すると、内周部の流れが遠心方向に移流し、回転翼1の圧力面1gと負圧面1fとの間に圧力差が生じる。これにより、回転翼1の外周部において、図3に示すように、圧力が高い圧力面1gから圧力の低い負圧面1fへ漏れ渦が発生する。これを翼端渦5と呼ぶ。この翼端渦5は、後述する、翼前縁部1aの付近にて発生する剥離渦と、翼後縁部1bの後方に生じる翼後流渦などとの干渉により、騒音が発生する要因となる。図5に示すように、矢印Aで示す気流の方向に対して、上流側の翼表面が圧力の低い負圧面1fとなり、下流側の翼表面が圧力の高い圧力面1gとなる。図4には、座標中心Oを中心とした各半径位置における翼前縁部1aと翼後縁部1bとの中点を、翼内周縁部1cから翼外周縁部1dまで結んだ、翼弦中心線gが示されている。図3、図4において、回転軸3に対応するZ軸と、Z軸に垂直な2つの軸であるX軸およびY軸と、X軸、Y軸およびZ軸の座標中心Oが示されている。 When an airflow in the direction of arrow A is generated by the rotation of the propeller fan 10, the flow in the inner peripheral portion advects in the centrifugal direction, creating a pressure difference between the pressure surface 1g and the negative pressure surface 1f of the rotor blade 1. As a result, a leakage vortex is generated in the outer peripheral portion of the rotary blade 1 from the pressure surface 1g where the pressure is high to the negative pressure surface 1f where the pressure is low, as shown in FIG. This is called a wing tip vortex 5. This blade tip vortex 5 is a cause of noise generation due to interference between a separation vortex generated near the blade leading edge 1a and a blade trailing vortex generated behind the blade trailing edge 1b, which will be described later. Become. As shown in FIG. 5, with respect to the direction of the airflow indicated by arrow A, the blade surface on the upstream side becomes a negative pressure surface 1f with low pressure, and the blade surface on the downstream side becomes a pressure surface 1g with high pressure. FIG. 4 shows the blade chord, which connects the midpoints of the blade leading edge 1a and the blade trailing edge 1b at each radial position centering on the coordinate center O from the blade inner peripheral edge 1c to the blade outer peripheral edge 1d. A center line g is shown. 3 and 4, the Z-axis corresponding to the rotation axis 3, the X-axis and Y-axis that are two axes perpendicular to the Z-axis, and the coordinate center O of the X-axis, Y-axis, and Z-axis are shown. There is.
 図5に示すように、プロペラファン10は、内周部と外周部とを結ぶ方向の形状に関しては、外周部が矢印Aで示される気流の上流側へ屈曲した形状を有する。これにより、前述した翼端渦5による干渉を低減させている。図4では、内周部側が気流に対して凸形状で、外周部側が気流に対して凹形状を有するS字形状であるが、これに限らず、外周部が気流の上流側へ屈曲した形状を有していればよい。 As shown in FIG. 5, the propeller fan 10 has a shape in which the outer circumferential portion is bent toward the upstream side of the airflow as indicated by arrow A in terms of the shape in the direction connecting the inner circumferential portion and the outer circumferential portion. This reduces the interference caused by the blade tip vortex 5 mentioned above. In FIG. 4, the inner periphery side is convex with respect to the airflow, and the outer periphery side is concave with respect to the airflow. Although the S-shape is not limited to this, the shape is not limited to this, and the outer periphery is bent toward the upstream side of the airflow. It is sufficient if it has the following.
 図6は、実施の形態にかかるプロペラファン10の回転翼1を示す斜視図である。図7は、実施の形態にかかるプロペラファン10における翼内周縁部1cの断面展開図である。図7は、プロペラファン10を図4の半径D1-D1´の円筒面で切断し、その断面を2次元平面に展開した断面展開図である。図8は、実施の形態にかかるプロペラファン10における翼外周縁部1dの断面展開図である。図8は、プロペラファン10を図4の半径D2-D2´の円筒面で切断し、その断面を2次元平面に展開した断面展開図である。図9は、実施の形態にかかるプロペラファン10における翼内周縁部1cと翼外周縁部1dとの中間部の断面展開図である。図9は、プロペラファン10を図4の半径D3-D3´の円筒面で切断し、その断面を2次元平面に展開した断面展開図である。図10は、実施の形態にかかるプロペラファン10の回転翼1の突起部20を示す一部断面展開図である。図11は、実施の形態にかかるプロペラファン10の回転翼1の突起部20を拡大して示す拡大断面展開図である。図12は、実施の形態にかかるプロペラファン10の回転翼1の負圧面1fの接線の傾きの変化を示す図である。図13は、突起部20が無い比較例に発生する翼後流渦14などを示す断面展開図である。図14は、突起部20が有る実施の形態にかかるプロペラファン10の回転翼1に発生する翼後流渦14などを示す断面展開図である。 FIG. 6 is a perspective view showing the rotor blade 1 of the propeller fan 10 according to the embodiment. FIG. 7 is a cross-sectional development view of the blade inner circumferential edge portion 1c of the propeller fan 10 according to the embodiment. FIG. 7 is a cross-sectional developed view of the propeller fan 10 cut along a cylindrical surface having a radius D1-D1' in FIG. 4 and expanded into a two-dimensional plane. FIG. 8 is a developed cross-sectional view of the blade outer peripheral edge portion 1d of the propeller fan 10 according to the embodiment. FIG. 8 is a cross-sectional developed view of the propeller fan 10 cut along a cylindrical surface having a radius D2-D2' in FIG. 4 and expanded into a two-dimensional plane. FIG. 9 is a cross-sectional developed view of an intermediate portion between the inner blade edge 1c and the outer blade edge 1d in the propeller fan 10 according to the embodiment. FIG. 9 is a cross-sectional exploded view of the propeller fan 10 cut along a cylindrical surface having a radius D3-D3' in FIG. 4 and expanded into a two-dimensional plane. FIG. 10 is a partially sectional exploded view showing the protrusion 20 of the rotor blade 1 of the propeller fan 10 according to the embodiment. FIG. 11 is an enlarged cross-sectional developed view showing the protrusion 20 of the rotor blade 1 of the propeller fan 10 according to the embodiment. FIG. 12 is a diagram showing a change in the slope of the tangent to the suction surface 1f of the rotor blade 1 of the propeller fan 10 according to the embodiment. FIG. 13 is a cross-sectional developed view showing the blade trailing vortex 14 and the like generated in a comparative example without the protrusion 20. FIG. 14 is a cross-sectional development view showing the blade trailing vortex 14 and the like generated in the rotor blade 1 of the propeller fan 10 according to the embodiment in which the protrusion 20 is provided.
 図7から図9に示すように、回転翼1の翼前縁部1aから翼後縁部1bに至る形状は、翼全体として上流側に凸の形状を有する。従って、翼後縁部1b付近では、回転翼1は、翼後縁部1bに進むにしたがって下流側(ZL方向の負側)に傾斜している。また、翼前縁部1aが翼後縁部1bに比べ翼の厚みが厚くなっている。また、図7から図9から分かるように、翼内周縁部1cから翼外周縁部1dに向かって回転翼1の厚みが徐々に薄くなっている。また、翼前縁部1aは、気流の剥離防止のためにR形状を有する。また、翼後縁部1bも、気流の剥離防止のためにR形状を有する。翼後縁部1bにおいては、負圧面1f側のR形状の曲率が、圧力面1g側のR形状の曲率より大きい。 As shown in FIGS. 7 to 9, the shape of the rotary blade 1 from the blade leading edge 1a to the blade trailing edge 1b is convex toward the upstream side as a whole. Therefore, near the blade trailing edge 1b, the rotary blade 1 is inclined toward the downstream side (negative side in the ZL direction) as it advances toward the blade trailing edge 1b. Further, the blade leading edge 1a is thicker than the blade trailing edge 1b. Further, as can be seen from FIGS. 7 to 9, the thickness of the rotary blade 1 gradually becomes thinner from the inner peripheral edge 1c of the blade toward the outer peripheral edge 1d. Further, the blade leading edge portion 1a has an R shape to prevent separation of airflow. Further, the blade trailing edge portion 1b also has a rounded shape to prevent separation of airflow. In the blade trailing edge portion 1b, the curvature of the R shape on the side of the suction surface 1f is larger than the curvature of the R shape on the side of the pressure surface 1g.
 図2、図3、図4、図6、図9に示すように、回転翼1の負圧面1f側の翼後縁部1bの近傍には、図14に示す翼後流渦14の放出を抑制するための突起部20が設けられている。突起部20は、翼後縁部1bに平行に延びている。突起部20は、翼後縁部1bの長さの1/3以上に渡って連続して設けられていることが望ましい。突起部20は、図4に示すように、翼内周縁部1cの近傍の半径位置Rribから翼外周縁部1dの近傍の半径位置Rrib´に亘って連続的に設けられていることが望ましい。 As shown in FIGS. 2, 3, 4, 6, and 9, the blade trailing vortex 14 shown in FIG. A protrusion 20 is provided for suppression. The protrusion 20 extends parallel to the wing trailing edge 1b. It is desirable that the protrusion 20 is continuously provided over one-third or more of the length of the blade trailing edge 1b. As shown in FIG. 4, the protrusion 20 is preferably provided continuously from a radial position Rrib near the inner blade edge 1c to a radial position Rrib' near the outer blade edge 1d.
 図10、図11に示すように、突起部20は、翼前縁部1a側の突起部端部(図11の点PB)から突起部20の頂点(図11の点PD)に向けて高さが徐々に高くなる第1傾斜部20aと、突起部20の頂点(図11の点PD)から翼後縁部1b側の突起部端部(図11の点PF)に向けて高さが徐々に低くなる第2傾斜部20bと、を有する。そして、第1傾斜部20aの角度である第1角度が、第2傾斜部20bの角度である第2角度より急角度である。別言すれば、突起部20は、上流側(翼前縁部1a側)での翼表面に対する傾きθ1に対し、下流側(翼後縁部1b側)での翼表面に対する傾きθ2が大きい形状を有する。なお、突起部20は、翼後縁部1bに沿った方向において同一の断面形状を有するほうが望ましい。 As shown in FIGS. 10 and 11, the projection 20 increases in height from the end of the projection on the wing leading edge 1a side (point PB in FIG. 11) toward the apex of the projection 20 (point PD in FIG. 11). The first inclined portion 20a gradually increases in height, and the height increases from the apex of the protrusion 20 (point PD in FIG. 11) to the end of the protrusion on the wing trailing edge 1b side (point PF in FIG. 11). It has a second slope portion 20b that gradually becomes lower. The first angle, which is the angle of the first inclined portion 20a, is steeper than the second angle, which is the angle of the second inclined portion 20b. In other words, the projection 20 has a shape in which the inclination θ2 with respect to the blade surface on the downstream side (the blade trailing edge 1b side) is larger than the inclination θ1 with respect to the blade surface on the upstream side (the blade leading edge 1a side). has. Note that it is preferable that the protrusions 20 have the same cross-sectional shape in the direction along the blade trailing edge 1b.
 図9に示すように、翼弦長Lは、回転翼1の円筒断面において、平行な2本の直線LW1と直線LW2とで翼を挟んだときの直線LW1と直線LW2との距離が最も長くなる長さと定義する。翼弦長Lに平行で翼前縁部1aから翼後縁部1bに向かう方向をXL方向と定義し、翼弦長Lに直交し、直線LW1および直線LW2に平行で下流側から上流側に向かう方向をZL方向と定義する。 As shown in FIG. 9, the chord length L is the longest distance between the straight line LW1 and the straight line LW2 when the blade is sandwiched between two parallel straight lines LW1 and LW2 in the cylindrical cross section of the rotary blade 1. It is defined as the length. The direction parallel to the blade chord length L and going from the blade leading edge 1a to the blade trailing edge 1b is defined as the XL direction, which is perpendicular to the blade chord length L, parallel to the straight line LW1 and the straight line LW2, and runs from the downstream side to the upstream side. The heading direction is defined as the ZL direction.
 図11において、点PAと点PBとを結ぶ曲面は、突起部20に隣接する翼表面の翼前縁部1a側の曲面である。点PBと点PCとを結ぶ円弧接続部は、突起部20の翼前縁部1a側の部分と翼表面とを接続する部分である。点PCと頂点である点PDとを結ぶ曲面は、突起部20の翼前縁部1a側の曲面である。点PDと点PEとを結ぶ曲面は、突起部20の翼後縁部1b側の曲面である。点PEと点PFとを結ぶ円弧接続部は、突起部20の翼後縁部1b側の部分と翼表面とを接続する部分である。点PFと点PGとを結ぶ曲面は、突起部20に隣接する翼表面の翼後縁部1b側の曲面である。点PGは、翼後縁部1bに含まれる点である。 In FIG. 11, the curved surface connecting point PA and point PB is the curved surface on the wing leading edge 1a side of the wing surface adjacent to the protrusion 20. The arc connecting portion connecting point PB and point PC is a portion connecting the portion of the projection portion 20 on the blade leading edge portion 1a side and the blade surface. The curved surface connecting the point PC and the apex point PD is the curved surface of the protrusion 20 on the wing leading edge portion 1a side. The curved surface connecting point PD and point PE is the curved surface of the protrusion 20 on the wing trailing edge 1b side. The arc connecting portion connecting point PE and point PF is a portion connecting the portion of the projection portion 20 on the blade trailing edge portion 1b side and the blade surface. The curved surface connecting point PF and point PG is a curved surface on the blade trailing edge 1b side of the blade surface adjacent to the protrusion 20. Point PG is a point included in the trailing edge portion 1b of the wing.
 点PAと点PBとを結ぶ曲面および点PFと点PGとを結ぶ曲面は、回転翼1の上流側表面である負圧面1fの一部である。点PCと点PDとを結ぶ曲面と、点PDと点PEとを結ぶ曲面とによって突起部20が形成される。点PAと点PBとを結ぶ曲面と、点PFと点PGとを結ぶ曲面とは、上流側に凸の曲面である。点PCと点PDとを結ぶ曲面と、点PDと点PEとを結ぶ曲面とは、上流側に凸の曲面であり、点PAと点PBとを結ぶ曲面および点PFと点PGとを結ぶ曲面より曲率が大きい。すなわち、突起部20は、回転翼1の負圧面1fよりも曲率の大きな曲面である。 The curved surface connecting points PA and PB and the curved surface connecting points PF and PG are part of the suction surface 1f, which is the upstream surface of the rotor blade 1. The protrusion 20 is formed by a curved surface connecting points PC and PD and a curved surface connecting points PD and PE. The curved surface connecting points PA and PB and the curved surface connecting points PF and PG are curved surfaces that are convex toward the upstream side. The curved surface connecting point PC and point PD and the curved surface connecting point PD and point PE are curved surfaces convex to the upstream side, and the curved surface connecting point PA and point PB and the curved surface connecting point PF and point PG. The curvature is greater than the curved surface. That is, the protrusion 20 is a curved surface with a larger curvature than the suction surface 1f of the rotor blade 1.
 負圧面1fと突起部20とは、点PBと点PCとを結ぶ円弧接続部、点PEと点PFとを結ぶ円弧接続部によって円弧状に滑らかに接続される。点PAと点PBとを結ぶ曲面と、点PCと点PDとを結ぶ曲面とは、点PBと点PCとを結ぶ円弧接続部によって、接続部での傾きが等しくなるように連続的に滑らかに接続される。点PBと点PCとを結ぶ円弧接続部は、下流側に凸である。点PDと点PEとを結ぶ曲面と、点PFと点PGとを結ぶ曲面とは、点PEと点PFとを結ぶ円弧接続部によって、接続部での傾きが等しくなるように連続的に滑らかに接続される。点PEと点PFとを結ぶ円弧接続部は、下流側に凸である。突起部20の翼後縁部1b側の曲面である点PDと点PEとを結ぶ曲面は、突起部20の翼前縁部1a側の曲面である点PCと点PDとを結ぶ曲面より、曲率が小さく形成されている。 The negative pressure surface 1f and the protrusion 20 are smoothly connected in an arc shape by an arc connection part connecting points PB and PC and an arc connection part connecting points PE and PF. The curved surface that connects points PA and PB and the curved surface that connects points PC and PD are continuous and smooth so that the slopes at the connection points are equal due to the arc connection section that connects point PB and point PC. connected to. The arc connecting portion connecting point PB and point PC is convex toward the downstream side. The curved surface that connects points PD and PE and the curved surface that connects points PF and PG are continuously smoothed by the arc connection connecting points PE and PF so that the slopes at the connection are equal. connected to. The arc connecting portion connecting point PE and point PF is convex toward the downstream side. The curved surface connecting point PD, which is the curved surface on the wing trailing edge 1b side of the protrusion 20, and point PE is, from the curved surface connecting the point PC and point PD, which is the curved surface on the wing leading edge 1a side of the protrusion 20, It is formed with a small curvature.
 図12では、プロペラファン10の回転翼1の負圧面1fの接線の傾きdZL/dXLのXL方向の変化が示されている。図11、図12に示すように、点PAと点PBとを結ぶ曲面は上流側に凸の曲面であり、点PBと点PCとを結ぶ円弧接続部は下流側に凸の曲面であるので、接線の傾きdZL/dXLは、点PAと点PCとの間において、点PBで最大になる。直線LPBは、点PBで翼表面に接する直線である。突起部20に対し翼前縁部1a側で隣接する翼表面部分の傾きを直線LPBで定義する。すなわち、突起部20に対し翼前縁部1a側で隣接する翼表面部分の傾きは、突起部20の頂点である点PDよりも翼前縁部1a側であって、接線の傾きが下流側に最大に傾斜した位置である点PBでの傾きである。 FIG. 12 shows a change in the slope dZL/dXL of the tangent to the suction surface 1f of the rotor blade 1 of the propeller fan 10 in the XL direction. As shown in FIGS. 11 and 12, the curved surface connecting point PA and point PB is a curved surface that is convex toward the upstream side, and the arc connecting portion connecting point PB and point PC is a curved surface that is convex toward the downstream side. , the slope dZL/dXL of the tangent line becomes maximum at point PB between point PA and point PC. Straight line LPB is a straight line that touches the blade surface at point PB. The inclination of the blade surface portion adjacent to the protrusion 20 on the blade leading edge 1a side is defined by a straight line LPB. That is, the slope of the blade surface portion adjacent to the protrusion 20 on the wing leading edge 1a side is closer to the blade leading edge 1a than the point PD, which is the apex of the protrusion 20, and the slope of the tangent is on the downstream side. This is the inclination at point PB, which is the maximum inclination position.
 突起部20を構成する点PCと点PDとを結ぶ曲面は、上流側に凸の曲面であり、翼後縁部1b側に行くほど上流側に突出する形状である。点PBと点PCとを結ぶ円弧接続部は、下流側に凸の曲面であるので、XL軸に対する突起部20の翼前縁部1a側の接線の傾きは、点PCで最大になる。直線LPCは、点PCで翼表面に接する直線である。突起部20の翼前縁部1a側の傾きを直線LPCで定義する。すなわち、突起部20の翼前縁部1a側の傾きは、突起部20の頂点である点PDよりも翼前縁部1a側で、接線の傾きが上流側に最大に傾斜した位置である点PCの傾きである。 The curved surface connecting points PC and PD constituting the protrusion 20 is a curved surface that is convex toward the upstream side, and has a shape that protrudes toward the upstream side toward the blade trailing edge 1b. Since the arc connecting portion connecting point PB and point PC is a curved surface convex toward the downstream side, the slope of the tangent of the protrusion 20 on the blade leading edge portion 1a side with respect to the XL axis becomes maximum at point PC. Straight line LPC is a straight line that touches the blade surface at point PC. The inclination of the projection 20 on the wing leading edge 1a side is defined by a straight line LPC. In other words, the inclination of the protrusion 20 on the wing leading edge 1a side is a point on the wing leading edge 1a side from the point PD, which is the apex of the protrusion 20, at a point where the inclination of the tangent line is maximum upstream. This is the tilt of the PC.
 突起部20を構成する点PDと点PEとを結ぶ曲面は、上流側に凸の曲面で、翼前縁部1a側に行くほど上流側に突出する形状である。点PEと点PFとを結ぶ円弧接続部は、下流側に凸の曲面であるので、XL軸に対する突起部20の翼後縁部1b側の接線の傾きは、点PEで最大になる。直線LPEは、点PEで翼表面に接する直線である。突起部20の翼後縁部1b側の傾きを直線LPEで定義する。すなわち、突起部20の翼後縁部1b側の傾きは、突起部20と翼後縁部1bとの接続部付近であって、接線の傾きが下流側に最大に傾斜した位置である点PEでの傾きである。点PEを通り、直線LPBに平行な直線を直線LPB2とする。 The curved surface connecting point PD and point PE that constitutes the protrusion 20 is a curved surface that is convex toward the upstream side, and has a shape that protrudes toward the upstream side as it approaches the blade leading edge portion 1a side. Since the arcuate connection connecting point PE and point PF is a curved surface convex toward the downstream side, the slope of the tangent of the protrusion 20 on the blade trailing edge 1b side with respect to the XL axis becomes maximum at point PE. Straight line LPE is a straight line that touches the blade surface at point PE. The slope of the protrusion 20 on the blade trailing edge 1b side is defined by a straight line LPE. That is, the inclination of the protrusion 20 on the blade trailing edge 1b side is at a point PE near the connection between the protrusion 20 and the blade trailing edge 1b, where the inclination of the tangent line is maximum downstream. This is the slope at . A straight line passing through point PE and parallel to straight line LPB is defined as straight line LPB2.
 突起部20の翼前縁部1a側の傾きθ1は、直線LPBと直線LPCとの角度で定義する。突起部20の翼後縁部1b側の傾きθ2は、直線LPB2と直線LPEとの角度で定義する。 The inclination θ1 of the protrusion 20 on the wing leading edge 1a side is defined by the angle between the straight line LPB and the straight line LPC. The inclination θ2 of the projection 20 on the blade trailing edge 1b side is defined by the angle between the straight line LPB2 and the straight line LPE.
 突起部20の高さtrと回転翼1の板厚tkは以下のように定義する。突起部20のZL方向の頂点を点PDとする。この点PDの位置でのZL方向の高さによって、突起部20の高さtrと翼部の板厚tkを定義する。直線LPBを仮想翼表面とする。点Ptは、突起部20の点PDで示す頂点を通り、ZL方向に延びる直線上で、直線LPBと交わる点である。点Ptから突起部20の頂点である点PDまでの高さを突起部20の高さtrとする。点Pkは、突起部20の点PDで示す頂点を通り、ZL方向に延びる直線上で、圧力面1gの翼表面と交わる点である。点Ptから点Pkまでの幅を翼部の板厚tkとする。 The height tr of the protrusion 20 and the plate thickness tk of the rotor blade 1 are defined as follows. The apex of the protrusion 20 in the ZL direction is defined as a point PD. The height tr of the protrusion 20 and the plate thickness tk of the wing portion are defined by the height in the ZL direction at the position of this point PD. Let the straight line LPB be the virtual wing surface. Point Pt is a point on a straight line that passes through the vertex indicated by point PD of protrusion 20 and extends in the ZL direction, and intersects with straight line LPB. The height from point Pt to point PD, which is the apex of protrusion 20, is defined as height tr of protrusion 20. Point Pk is a point that passes through the apex of the protrusion 20 indicated by point PD and intersects with the blade surface of the pressure surface 1g on a straight line extending in the ZL direction. Let the width from point Pt to point Pk be the plate thickness tk of the wing section.
 突起部20の幅twと、翼後縁部1bからの突起部20の距離Bをつぎのように定義する。突起部20の幅twは、XL方向において、突起部20の前縁端である点PCから突起部20の後縁端である点PEまでの距離とする。XL方向において、突起部20の後縁端である点PEから回転翼1の翼後縁部1b上の点PGまでの距離を、突起部20の翼後縁部1bからの距離Bとする。 The width tw of the protrusion 20 and the distance B of the protrusion 20 from the wing trailing edge 1b are defined as follows. The width tw of the protrusion 20 is defined as the distance from point PC, which is the front edge of the protrusion 20, to point PE, which is the rear edge of the protrusion 20, in the XL direction. In the XL direction, the distance from point PE, which is the trailing edge of the projection 20, to point PG on the blade trailing edge 1b of the rotor 1 is defined as distance B of the projection 20 from the blade trailing edge 1b.
 図13、図14に示すように、翼前縁部1aには、前方からの気流と側方からの気流とが流入することから、翼前縁部1aの付近には剥離渦31が形成される。回転翼1の負圧面1f側には、乱流境界層における気流32が生じる。翼前縁部1aの付近にて発生する剥離渦31が大きいほど、気流32が乱れながら翼後縁部1bへ流動することによって、翼後縁部1bの後方に生じる翼後流渦14が大きくなる。図13に示すように、突起部20が無い場合、翼後縁部1bへの気流32の流動を妨げることができず、翼後縁部1bの後方に、比較的大きな、カルマン渦である翼後流渦14が発生する。これに対し、図14に示すように、回転翼1に突起部20を設けた場合、翼後縁部1bへの気流32の流動を妨げることができ、翼後縁部1bの後方に発生する翼後流渦14を小さくすることができる。 As shown in FIGS. 13 and 14, since airflow from the front and airflow from the sides flow into the leading edge 1a of the blade, a separation vortex 31 is formed near the leading edge 1a. Ru. An airflow 32 in a turbulent boundary layer is generated on the suction surface 1f side of the rotary blade 1. The larger the separation vortex 31 generated near the blade leading edge 1a, the larger the blade trailing vortex 14 generated behind the blade trailing edge 1b as the airflow 32 flows toward the blade trailing edge 1b while being turbulent. Become. As shown in FIG. 13, if there is no protrusion 20, the flow of airflow 32 toward the trailing edge 1b of the blade cannot be obstructed, and a relatively large Karman vortex forms behind the trailing edge 1b of the blade. A wake vortex 14 is generated. On the other hand, as shown in FIG. 14, when the rotor blade 1 is provided with the protrusion 20, it is possible to prevent the air flow 32 from flowing toward the blade trailing edge 1b, and airflow occurs behind the blade trailing edge 1b. The blade trailing vortex 14 can be made smaller.
 実施の形態では、突起部20の翼前縁部1a側の傾きθ1より突起部20の翼後縁部1b側の傾きθ2を大きくしている。別言すれば、第1傾斜部20aの角度である第1角度を、第2傾斜部20bの角度である第2角度より急角度としている。これにより、特許文献1の突条に比べ、翼後縁部1bへの気流32の流動を妨げることができ、翼後縁部1bの後方に発生する翼後流渦14をさらに小さくすることができる。したがって、更なる低騒音化を図ることが可能となる。 In the embodiment, the slope θ2 of the protrusion 20 on the blade trailing edge 1b side is larger than the slope θ1 of the protrusion 20 on the blade leading edge 1a side. In other words, the first angle, which is the angle of the first inclined portion 20a, is made steeper than the second angle, which is the angle of the second inclined portion 20b. As a result, compared to the protrusion in Patent Document 1, it is possible to prevent the airflow 32 from flowing toward the blade trailing edge 1b, and to further reduce the blade trailing vortex 14 generated behind the blade trailing edge 1b. can. Therefore, it is possible to further reduce noise.
 すなわち、特許文献1では、流量ポイントが変化して、回転翼1に流入する流れの角度が変化すると、突状の形状によって剥離が過大となり、騒音が悪化する可能性がある。また、突状の頂点部に埃等が堆積しやすく、埃が堆積すると突状の形状が変わるため、流れが変わり、剥離が過大となり、騒音悪化となる可能性がある。これに対し、実施の形態の突起部20は、流れの上流側が曲線的で下流側が鋭く尖る形状とし、厚みの厚い頂点部分が流れの上流側に寄っている形状となっている。これにより、流れが過剰に剥離することが防止され、流れが安定化される。したがって、流量ポイントが変化して、流れの角度が変化してもその影響が小さく、突起部20による効果が安定的に得られる。また、突起形状が連続的に変化しているので、角部がなくなり、埃等が堆積し難くなるため、突起形状が変わり難く、突起部20による効果が安定的に得られる。 That is, in Patent Document 1, when the flow point changes and the angle of the flow flowing into the rotor blade 1 changes, separation may become excessive due to the protruding shape and noise may worsen. In addition, dust and the like tend to accumulate on the apex of the protrusion, and when dust accumulates, the shape of the protrusion changes, which may change the flow, resulting in excessive separation and worsening of noise. In contrast, the protrusion 20 of the embodiment has a shape that is curved on the upstream side of the flow and sharply pointed on the downstream side, and the thicker apex portion is closer to the upstream side of the flow. This prevents the flow from separating excessively and stabilizes the flow. Therefore, even if the flow point changes and the flow angle changes, the effect is small and the effect of the protrusion 20 can be stably obtained. Furthermore, since the shape of the protrusion changes continuously, there are no corners and it becomes difficult for dust etc. to accumulate, so the shape of the protrusion is difficult to change and the effect of the protrusion 20 can be stably obtained.
 また、θ1は90°より大きいことが望ましい。θ1を90°より大きくすることで、翼後流渦14に起因する乱れを弱くすることができる。すなわち、突起部20の角度は、90°<θ1<θ2の関係を満たすことが望ましい。 Furthermore, it is desirable that θ1 be larger than 90°. By making θ1 larger than 90°, the turbulence caused by the blade trailing vortex 14 can be weakened. That is, it is desirable that the angle of the protrusion 20 satisfies the relationship 90°<θ1<θ2.
 図15は、実施の形態にかかるプロペラファン10の翼部の突起部20の高さと比騒音低減との関係を示す図である。図15では、板厚tkに対する突起部20の高さtrの比を横軸にとり、比騒音低減割合ΔKを縦軸にとっている。図15に示すように、突起部20の高さtrと比騒音低減割合ΔKには、最適なポイントが存在する。有効な騒音低減効果を得るためには、0.04≦tr/tk≦0.56の範囲では、比騒音にて-1(db)以上の効果を得ることが分かる。 FIG. 15 is a diagram showing the relationship between the height of the protruding portion 20 of the blade portion of the propeller fan 10 and the specific noise reduction according to the embodiment. In FIG. 15, the horizontal axis represents the ratio of the height tr of the protrusion 20 to the plate thickness tk, and the vertical axis represents the specific noise reduction ratio ΔK T. As shown in FIG. 15, there is an optimal point between the height tr of the protrusion 20 and the specific noise reduction rate ΔK T. It can be seen that in order to obtain an effective noise reduction effect, in the range of 0.04≦tr/tk≦0.56, an effect of −1 (db) or more in specific noise can be obtained.
 比騒音Kは下記のような計算値である。
 K=SPL-10Log(Q・P 2.5
 Qは風量[m/min]であり、Pは全圧[Pa]であり、SPLはA特性補正後の騒音特性[dB]である。
The specific noise KT is a calculated value as shown below.
K T = SPL A -10Log (Q P T 2.5 )
Q is the air volume [m 3 /min], P T is the total pressure [Pa], and SPL A is the noise characteristic [dB] after A-characteristic correction.
 突起部20の幅twについては、以下の式で示すように、突起部20の高さtrの1倍から突起部20の高さtrの4倍までの範囲を満たすことが望ましい。
 1×tr≦tw≦4×tr
The width tw of the protrusion 20 preferably satisfies a range from one time the height tr of the protrusion 20 to four times the height tr of the protrusion 20, as shown by the following formula.
1×tr≦tw≦4×tr
 突起部20の形状は、中心部が高く、周辺部が低い、滑らかな曲線形状である。曲線形状としては、例えば放物線または2次曲線を用いればよい。 The shape of the protrusion 20 is a smooth curved shape that is high at the center and low at the periphery. For example, a parabola or a quadratic curve may be used as the curve shape.
 図16は、実施の形態にかかるプロペラファン10の翼後縁部1bに対する突起部20の距離と比騒音低減割合ΔKとの関係を示す図である。図16では、翼弦長Lに対する翼後縁部1bからの突起部20の距離Bの比を横軸にとり、比騒音低減割合ΔKを縦軸にとっている。図16に示すように、突起部20の位置が翼後縁部1bより離れ過ぎる場合は、騒音低減の効果が小さくなるため、-1(db)以上の効果を得るためには、0.01≦B/L≦0.08の範囲に突起部20を設けることが望ましい。 FIG. 16 is a diagram showing the relationship between the distance of the protrusion 20 with respect to the blade trailing edge 1b of the propeller fan 10 and the specific noise reduction rate ΔK T according to the embodiment. In FIG. 16, the horizontal axis represents the ratio of the distance B of the protrusion 20 from the blade trailing edge 1b to the blade chord length L, and the vertical axis represents the specific noise reduction ratio ΔK T. As shown in FIG. 16, if the position of the protrusion 20 is too far away from the blade trailing edge 1b, the noise reduction effect will be small. It is desirable to provide the protrusion 20 in the range of ≦B/L≦0.08.
 図17は、実施の形態にかかるプロペラファン10の変形例を示す平面図である。図18は、実施の形態にかかるプロペラファン10の他の変形例を示す平面図である。図17においては、突起部20を半径方向の中央位置から外周部側に設けている。図18においては、突起部20を半径方向の中央位置から内周部側に設けている。 FIG. 17 is a plan view showing a modification of the propeller fan 10 according to the embodiment. FIG. 18 is a plan view showing another modification of the propeller fan 10 according to the embodiment. In FIG. 17, the protrusion 20 is provided from the center position in the radial direction to the outer peripheral side. In FIG. 18, the protrusion 20 is provided from the center position in the radial direction to the inner peripheral side.
 実施の形態にかかるプロペラファン10によれば、いずれの突起部20のパターンでも低騒音化を図ることが可能であり、比騒音にて、-1.8(db)の効果を得ることが実験的に確認できた。製造上、翼後縁部1bの全体に亘って突起部20を配置できない場合でも、一定の効果が得られた。これらの一連の評価結果は、直径が220mmの回転翼1を1400/minの一定回転数で評価を行った結果である。なお、突起部20の長さは、翼後縁部1bに平行で、翼後縁部1bの長さの1/3以上であることが望ましい。 According to the propeller fan 10 according to the embodiment, it is possible to achieve low noise with any pattern of the projections 20, and experiments have shown that an effect of -1.8 (db) in specific noise can be obtained. I was able to confirm that. Even when the protrusion 20 could not be arranged over the entire blade trailing edge 1b due to manufacturing reasons, certain effects were obtained. These series of evaluation results are the results of evaluating the rotor blade 1 having a diameter of 220 mm at a constant rotation speed of 1400/min. Note that the length of the protrusion 20 is preferably parallel to the blade trailing edge 1b and is 1/3 or more of the length of the blade trailing edge 1b.
 つぎに、プロペラファン10の成型方法に関連する形状について説明する。図19は、実施の形態にかかるプロペラファン10を示す平面図である。図1、図2、図9に示すように、実施の形態のプロペラファン10では、回転軸3の方向(Z軸方向)から見たときに、複数枚の回転翼1が、重ならないように、回転軸3を中心とした円周方向に均等に配置されている。このように構成することにより、プロペラファン10の樹脂成型の際に、Z軸方向に上下に2分割する金型で形成が可能となる。 Next, the shape related to the method of molding the propeller fan 10 will be explained. FIG. 19 is a plan view showing the propeller fan 10 according to the embodiment. As shown in FIGS. 1, 2, and 9, in the propeller fan 10 of the embodiment, when viewed from the direction of the rotating shaft 3 (Z-axis direction), the plurality of rotary blades 1 are arranged so that they do not overlap. , are evenly arranged in the circumferential direction around the rotating shaft 3. With this configuration, when resin molding the propeller fan 10, it is possible to form the propeller fan 10 using a mold that is divided into two parts vertically in the Z-axis direction.
 ここで、実施の形態では、突起部20についても、2分割成型に対応可能な形状としている。図20は、図11に示す実施の形態にかかるプロペラファン10の拡大断面展開図をZ軸方向が上下方向になるように回転した拡大断面展開図である。図20の上下方向、すなわちZ軸の正方向と負方向に2分割する金型で樹脂成型するものとする。この成型を可能とするためには、突起部20の、Z軸方向に延びる回転軸3を軸とする円筒面での断面は、上流側から下流側に向けて幅が広くなる形状とすれば良い。具体的には、直線LPCの傾きが、下流側(Z軸負側)から上流側(Z軸正側)に進むにしたがって、翼前縁部1a側から翼後縁部1b側に向けて上り傾斜し、直線LPEの傾きが、下流側(Z軸負側)から上流側(Z軸正側)に進むにしたがって、翼後縁部1b側から翼前縁部1a側に向けて上り傾斜する形状とすればよい。 Here, in the embodiment, the protrusion 20 is also shaped to be compatible with two-part molding. FIG. 20 is an enlarged sectional developed view of the propeller fan 10 according to the embodiment shown in FIG. 11, which is rotated so that the Z-axis direction is in the vertical direction. It is assumed that resin molding is performed using a mold that is divided into two parts in the vertical direction of FIG. 20, that is, in the positive direction and the negative direction of the Z axis. In order to make this molding possible, the cross section of the protrusion 20 on a cylindrical surface centered on the rotating shaft 3 extending in the Z-axis direction should have a shape that becomes wider from the upstream side to the downstream side. good. Specifically, as the slope of the straight line LPC advances from the downstream side (Z-axis negative side) to the upstream side (Z-axis positive side), it increases from the blade leading edge 1a side to the blade trailing edge 1b side. As the slope of the straight line LPE advances from the downstream side (Z-axis negative side) to the upstream side (Z-axis positive side), it slopes upward from the blade trailing edge 1b side to the blade leading edge 1a side. It may be a shape.
 本形状とすることで、成型時のアンダーカットを防ぐ形状となり、単純な上下型の構成から成る金型を用いることが可能となり、導入のための大きなコストアップが発生しない。また、本形状となることで、角部が無くなり塵埃の付着を防止でき、清掃作業が無い場合においても、低騒音化効果が長期間にわたって効果を発揮することが可能となる。 By adopting this shape, it becomes a shape that prevents undercuts during molding, and it becomes possible to use a mold consisting of a simple upper and lower mold configuration, and there is no large increase in cost for introduction. Moreover, by adopting this shape, there are no corners, which prevents dust from adhering, and even when there is no cleaning work, the noise reduction effect can be exerted for a long period of time.
 以上の実施の形態に示した構成は、本開示の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the embodiments described above are examples of the contents of the present disclosure, and can be combined with other known technologies, and the configurations can be modified without departing from the gist of the present disclosure. It is also possible to omit or change parts.
 1 回転翼、1a 翼前縁部、1b 翼後縁部、1c 翼内周縁部、1d 翼外周縁部、1f 負圧面、1g 圧力面、2 ボス部、3 回転軸、5 翼端渦、10 プロペラファン、14 翼後流渦、20 突起部、20a 第1傾斜部、20b 第2傾斜部、21 本体、30 ベルマウス、31 剥離渦、32 気流、100 軸流送風機、g 翼弦中心線、L 翼弦長、O 座標中心。 1 rotor blade, 1a blade leading edge, 1b blade trailing edge, 1c blade inner peripheral edge, 1d blade outer peripheral edge, 1f suction surface, 1g pressure surface, 2 boss, 3 rotating shaft, 5 blade tip vortex, 10 Propeller fan, 14 Blade wake vortex, 20 Projection, 20a First slope, 20b Second slope, 21 Main body, 30 Bell mouth, 31 Separation vortex, 32 Airflow, 100 Axial blower, g Chord center line, L: chord length, O: coordinate center.

Claims (8)

  1.  回転駆動されるボス部と、前記ボス部に放射状に取付けられ回転軸の方向に気流を発生する複数の回転翼と、を備えるプロペラファンであって、
     前記回転翼の外周部は、気流の上流側に屈曲する形状を有し、
     前記回転翼の翼後縁部の負圧面側に、前記翼後縁部に平行に延びる突起部が設けられ、
     前記突起部は、翼前縁部側から前記突起部の頂点に向けて高さが徐々に高くなる第1傾斜部と、前記突起部の前記頂点から前記翼後縁部側に向けて高さが徐々に低くなる第2傾斜部とを有し、前記第1傾斜部の角度である第1角度が、前記第2傾斜部の角度である第2角度より急角度である
     ことを特徴とするプロペラファン。
    A propeller fan comprising a rotationally driven boss part and a plurality of rotary blades that are radially attached to the boss part and generate airflow in the direction of a rotation axis,
    The outer peripheral portion of the rotary blade has a shape bent toward the upstream side of the airflow,
    A protrusion extending parallel to the blade trailing edge is provided on the suction side of the blade trailing edge of the rotary blade,
    The protrusion includes a first inclined part whose height gradually increases from the leading edge of the wing toward the apex of the protrusion, and a first slope whose height gradually increases from the apex of the protrusion toward the trailing edge of the wing. and a second sloping part that gradually lowers, and the first angle that is the angle of the first sloping part is steeper than the second angle that is the angle of the second sloping part. propeller fan.
  2.  前記第1傾斜部および前記第2傾斜部は、上流側に凸の曲面であることを特徴とする請求項1に記載のプロペラファン。 The propeller fan according to claim 1, wherein the first inclined part and the second inclined part are curved surfaces convex toward the upstream side.
  3.  前記突起部の前記回転軸を軸とする円筒面での断面は、上流側から下流側に向けて幅が広くなる形状を有することを特徴とする請求項1または2に記載のプロペラファン。 The propeller fan according to claim 1 or 2, wherein a cross section of the protrusion on a cylindrical surface centering on the rotation axis has a shape that becomes wider from the upstream side to the downstream side.
  4.  前記突起部の高さをtrとし、前記回転翼の板厚をtkとすると、
     0.04≦tr/tk≦0.56
     が成立することを特徴とする請求項1から3の何れか一つに記載のプロペラファン。
    When the height of the protrusion is tr and the thickness of the rotary blade is tk,
    0.04≦tr/tk≦0.56
    The propeller fan according to any one of claims 1 to 3, characterized in that:
  5.  前記突起部の前記翼後縁部側の端部と前記回転翼の前記翼後縁部との距離をBとし、前記回転翼の前記翼前縁部と前記翼後縁部との距離である翼弦長をLとすると、
     0.01≦B/L≦0.08
     が成立することを特徴とする請求項1から4の何れか一つに記載のプロペラファン。
    The distance between the end of the projection on the blade trailing edge side and the blade trailing edge of the rotary blade is B, and the distance is the distance between the blade leading edge and the blade trailing edge of the rotary blade. Letting the chord length of the blade be L,
    0.01≦B/L≦0.08
    The propeller fan according to any one of claims 1 to 4, characterized in that:
  6.  前記突起部の翼後縁部側の曲面は、突起部の翼前縁部側の曲面より、曲率が小さく形成されている
     ことを特徴とする請求項1から5の何れか一つに記載のプロペラファン。
    6. The curved surface of the protrusion on the wing trailing edge side is formed to have a smaller curvature than the curved surface of the protrusion on the wing leading edge side. propeller fan.
  7.  前記突起部の前記翼後縁部に沿った長さは、前記翼後縁部の長さの1/3以上である
     ことを特徴とする請求項1から6の何れか一つに記載のプロペラファン。
    The propeller according to any one of claims 1 to 6, wherein the length of the projection along the trailing edge of the blade is 1/3 or more of the length of the trailing edge of the blade. fan.
  8.  請求項1から7の何れか一つに記載のプロペラファンと、
     前記プロペラファンの前記ボス部を回転駆動するモータと、
     前記プロペラファンの周りに配設されるベルマウスを含む本体と、
     を備えることを特徴とする軸流送風機。
    The propeller fan according to any one of claims 1 to 7,
    a motor that rotationally drives the boss portion of the propeller fan;
    a main body including a bell mouth disposed around the propeller fan;
    An axial flow blower characterized by comprising:
PCT/JP2022/023795 2022-06-14 2022-06-14 Propeller fan and axial blower WO2023242950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023795 WO2023242950A1 (en) 2022-06-14 2022-06-14 Propeller fan and axial blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023795 WO2023242950A1 (en) 2022-06-14 2022-06-14 Propeller fan and axial blower

Publications (1)

Publication Number Publication Date
WO2023242950A1 true WO2023242950A1 (en) 2023-12-21

Family

ID=89192672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023795 WO2023242950A1 (en) 2022-06-14 2022-06-14 Propeller fan and axial blower

Country Status (1)

Country Link
WO (1) WO2023242950A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179330A (en) * 2010-02-26 2011-09-15 Panasonic Corp Impeller, blower, and air conditioner using the same
JP2012041821A (en) * 2010-08-12 2012-03-01 Mitsubishi Heavy Ind Ltd Wing device
JP2013019335A (en) * 2011-07-12 2013-01-31 Mitsuba Corp Cooling fan
KR20140124892A (en) * 2012-08-07 2014-10-28 엘지전자 주식회사 Fan

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179330A (en) * 2010-02-26 2011-09-15 Panasonic Corp Impeller, blower, and air conditioner using the same
JP2012041821A (en) * 2010-08-12 2012-03-01 Mitsubishi Heavy Ind Ltd Wing device
JP2013019335A (en) * 2011-07-12 2013-01-31 Mitsuba Corp Cooling fan
KR20140124892A (en) * 2012-08-07 2014-10-28 엘지전자 주식회사 Fan

Similar Documents

Publication Publication Date Title
JP3979388B2 (en) Blower
JP4396775B2 (en) Centrifugal fan
JP6218862B2 (en) Axial blower
JP6914371B2 (en) Axial blower
US20200240430A1 (en) Propeller fan and axial flow blower
WO2006011333A1 (en) Blower
KR101251130B1 (en) Propeller fan
JP4818310B2 (en) Axial blower
JP5127854B2 (en) Blower and heat pump device
JP2003184792A (en) Blower
JP5682751B2 (en) Multi-blade blower
WO2023242950A1 (en) Propeller fan and axial blower
TWI529308B (en) Impeller and the use of impeller shaft flow blower
WO2019035153A1 (en) Impeller, fan, and air conditioning device
JPH08240197A (en) Axial-flow fan
KR20170102097A (en) Fan of axial flow suppress for vortex and leakage flow
WO2021220469A1 (en) Blower
JP2000009083A (en) Impeller
KR100484824B1 (en) An axial flow fan
CN205876751U (en) Centrifugal forced draught blower and have air conditioner of this centrifugal forced draught blower
JP6625291B1 (en) Impeller, blower and air conditioner
WO2020110167A1 (en) Impeller and axial flow fan
JP7409246B2 (en) turbo fan
JP4749175B2 (en) Propeller fan and fluid feeder
WO2022137388A1 (en) Blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22946770

Country of ref document: EP

Kind code of ref document: A1