WO2020110167A1 - Impeller and axial flow fan - Google Patents

Impeller and axial flow fan Download PDF

Info

Publication number
WO2020110167A1
WO2020110167A1 PCT/JP2018/043355 JP2018043355W WO2020110167A1 WO 2020110167 A1 WO2020110167 A1 WO 2020110167A1 JP 2018043355 W JP2018043355 W JP 2018043355W WO 2020110167 A1 WO2020110167 A1 WO 2020110167A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
blade
angle
traveling direction
tangent line
Prior art date
Application number
PCT/JP2018/043355
Other languages
French (fr)
Japanese (ja)
Inventor
新井 俊勝
青木 普道
樹司 村上
侑也 向坂
一樹 蓮池
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020557411A priority Critical patent/JPWO2020110167A1/en
Priority to PCT/JP2018/043355 priority patent/WO2020110167A1/en
Priority to CN201880099511.XA priority patent/CN113039366B/en
Priority to TW108114283A priority patent/TWI742364B/en
Publication of WO2020110167A1 publication Critical patent/WO2020110167A1/en
Priority to JP2022044255A priority patent/JP2022075846A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form

Definitions

  • the present invention relates to an impeller and an axial-flow blower that generate an air flow that flows in the direction of a rotation axis.
  • Patent Document 1 discloses an impeller in which the planar shape of the blade when the blade is projected on a plane perpendicular to the rotation axis is such that the chord centerline is advanced in the traveling direction of the blade due to the rotation of the impeller. It is disclosed.
  • the chord center line is a line connecting the centers of the chord lines. To move the chord centerline forward in the traveling direction means that the chord centerline is curved forward in the traveling direction as it moves away from the rotation axis.
  • the present invention has been made in view of the above, and an object thereof is to obtain an impeller that can reduce noise and stress concentration.
  • an impeller according to the present invention includes a boss portion rotatable about a rotation axis and a blade extending radially from the boss portion.
  • the blade leading edge of the outer edge of the blade which is directed toward the traveling direction of the blade due to the rotation of the boss, is opposite to the traveling direction.
  • Has a third bending portion which is provided on the opposite side and bends in the traveling direction.
  • the impeller according to the present invention has an effect of reducing noise and stress concentration.
  • the figure which shows the plane shape of the impeller shown in FIG. The figure which shows the plane shape of a wing and a boss part among the impellers shown in FIG.
  • the figure explaining the state of the air flow around the wing shown in FIG. The figure explaining the relationship between the shape of the wing shown in FIG. 3, and the strength of the wing.
  • the top view which shows the suction side of the impeller shown in FIG. The top view which shows the pressure side of the impeller shown in FIG.
  • FIG. 1 is a diagram showing a schematic configuration of an axial blower 10 having an impeller 11 according to a first embodiment of the present invention.
  • the axial blower 10 is used for cooling a fan, a ventilation fan, an air conditioner, or equipment.
  • the axial blower 10 has an impeller 11 that can generate an airflow by rotation, and a motor 12 that rotationally drives the impeller 11.
  • the axial blower 10 also has a housing that houses the impeller 11 in a rotatable manner.
  • the motor 12 is held in the housing.
  • the housing has an opening through which the airflow generated by the rotation of the impeller 11 passes. At the edge of the opening, a bell mouth is provided whose diameter is expanded toward the upstream side of the air flow. In FIG. 1, the illustration of the housing and the bell mouth is omitted.
  • the impeller 11 has a spider 5 that is molded from one plate material, and three curved plates 3 that are joined to the spider 5.
  • the spider 5 has a boss portion 2 that is a main plate portion located at the center of the spider 5, and three mounting portions 4 provided around the boss portion 2.
  • the boss portion 2 is connected to the motor 12, and when the motor 12 is driven, the boss portion 2 rotates in the rotation direction C about the rotation shaft 6.
  • Each of the curved plates 3 constitutes the wing 1.
  • the curved plate 3 is formed by pressing a sheet metal.
  • the curved plate 3 is attached to each of the mounting portions 4, and is joined to the end portion of the mounting portion 4 on the side opposite to the rotating shaft 6.
  • the mounting portion 4 corresponds to a root portion of the wing 1 on the boss portion 2 side.
  • the curved plate 3 is joined to the mounting portion 4 by welding or using rivets.
  • the impeller 11 has the boss portion 2 rotatable about the rotation axis 6 and the three blades 1 radially extending from the boss portion 2.
  • Each wing 1 includes a curved plate 3 and a mounting portion 4.
  • the blade 1 has a curved surface shape in which the portion on the side opposite to the rotating shaft 6 is inclined toward the upstream side of the air flow.
  • the rotation of the impeller 11 in the rotation direction C causes the axial blower 10 to generate an airflow flowing in the direction of arrow A, which is a direction parallel to the rotation axis 6.
  • the impeller 11 is not limited to the one composed of the spider 5 and the curved plate 3, and may have the cylindrical boss portion 2 and the wing 1 attached to the boss portion 2.
  • the number of blades 1 provided in the impeller 11 is not limited to three and may be arbitrary.
  • Each of the blades 1 provided on the impeller 11 has a similar three-dimensional solid shape. The description of the blade 1 described below is common to each of the blades 1 provided in the impeller 11.
  • FIG. 2 is a diagram showing a planar shape of the impeller 11 shown in FIG.
  • FIG. 2 shows a plan view of the impeller 11 when the impeller 11 is projected on a plane perpendicular to the rotation axis 6.
  • FIG. 3 is a view showing a plane shape of the blade 1 and the boss portion 2 of the impeller 11 shown in FIG. 2 and 3, the X axis and the Y axis are axes perpendicular to each other.
  • the origin O of the X axis and the Y axis is the position of the rotary shaft 6.
  • the outer edge of the blade 1 in the plane shape is a blade leading edge portion 13 that is a portion that is directed in the traveling direction of the blade 1 due to the rotation of the boss portion 2, and a portion that is directed to the side opposite to the traveling direction of the blade 1. It has a certain blade trailing edge portion 14, a blade outer peripheral portion 15 which is a portion directed to the side opposite to the rotary shaft 6, and a blade inner peripheral portion 16 which is a portion directed to the rotary shaft 6. In plan view, the blade inner peripheral portion 16 forms an arc along the outer edge of the boss portion 2.
  • the blade 1 has a tip portion 20 protruding in the traveling direction of the blade 1.
  • the blade outer peripheral portion 15 forms an arc centered on the rotating shaft 6.
  • the blade outer peripheral portion 15 may be a curve other than a circular arc.
  • the blade outer peripheral portion 15 is bent toward the upstream side of the air flow.
  • the impeller 11 suppresses the generation of blade tip vortices due to the leakage of the air flow from the pressure surface side of the blade 1 to the suction surface side of the blade 1 in the blade outer peripheral portion 15.
  • the impeller 11 can reduce noise caused by the tip vortex generated on the blade 1 interfering with the pressure surface, the other blade 1, or the bell mouth.
  • the blade leading edge portion 13 is provided on the first bending portion 17 that bends in a direction opposite to the traveling direction of the blade 1 and on the rotary shaft 6 side with respect to the first bending portion 17. It has the 2nd bending part 18 which curves in the advancing direction, and the 3rd bending part 19 which is provided in the opposite side to the rotating shaft 6 rather than the 1st bending part 17, and bends in the advancing direction.
  • the blade leading edge portion 13 is curved between the first bending portion 17 and the second bending portion 18 and between the first bending portion 17 and the third bending portion 19, respectively.
  • the shape of the curve is changing.
  • the third curved portion 19 constitutes the tip portion 20 together with the blade outer peripheral portion 15.
  • the traveling direction of the blade 1 may be referred to as the front, and the direction opposite to the traveling direction of the blade 1 may be referred to as the rear.
  • the combination of the first bending portion 17, the second bending portion 18, and the third bending portion 19 may be referred to as unevenness.
  • the line segment 21 represents the first tangent line that is the tangent line at the position 25 included in the tip portion 20 of the blade outer peripheral portion 15.
  • the position 25 is a position behind the apex 24 between the blade outer peripheral portion 15 and the blade leading edge portion 13.
  • the line segment 22 represents the second tangent line that is the tangent line at the position 26 included in the distal end portion 20 of the third bending portion 19.
  • the position 26 is a position closer to the rotary shaft 6 than the apex 24.
  • the line segment 23 represents the third tangent line that is the tangent line at the position 27 at the end of the first bending portion 17 on the side of the second bending portion 18.
  • the chord centerline 30 of the wing 1 is curved forward as it moves away from the rotation axis 6.
  • the tip portion 20 has a shape that is tapered toward the front and protrudes toward the front.
  • the first angle ⁇ 1 is an angle formed by the line segment 21 and the line segment 22 and is an angle in a range including the tip portion 20.
  • the angle ⁇ 2, which is the second angle, is an angle formed by the line segment 22 and the line segment 23 and is an angle in a range including the first bending portion 17.
  • the angle ⁇ 1 is smaller than the angle ⁇ 2.
  • FIG. 4 is a diagram for explaining the state of the airflow around the blade 1 shown in FIG.
  • FIG. 4 shows a cross section taken along line IV-IV shown in FIG.
  • a blade tip vortex 28 is generated in the blade 1 near the blade outer peripheral portion 15.
  • the blade tip vortex 28 is formed by the pressure difference between the pressure surface 31 and the suction surface 32 of the blade 1 when the impeller 11 is rotating. Since the airflow from the front and the airflow sucked from the side where the bell mouth is provided flow into the blade leading edge portion 13, a separation vortex 29 is formed near the blade leading edge portion 13. ..
  • the blade tip vortex 28 and the separation vortex 29 generated on the blade 1 may generate noise by hitting another blade 1, a bell mouth, or a housing adjacent to the blade 1.
  • An air flow 33 in the turbulent boundary layer is generated on the suction surface 32 side of the blade 1.
  • the noise characteristics are deteriorated as the separation vortex 29 and the wake vortex 34 are increased and the turbulence of the air flow 33 is increased.
  • the longitudinal vortex that wraps around from the blade leading edge portion 13 to the suction surface 32 side is attached to the suction surface 32, and the blade leading edge portion 13 is formed.
  • the separation vortex 29 generated at 1 becomes a stable vertical vortex.
  • FIG. 5 is a diagram for explaining the relationship between the shape of the blade 1 and the strength of the blade 1 shown in FIG.
  • FIG. 5 shows the planar shape of the blade 1 when the shape of the blade 1 is changed so that the curvature of the chord centerline 30 becomes large.
  • the forward projection of the tip portion 20 increases. Note that, in FIG. 5, the shape of the blade 1 is shown in a simplified manner, and illustrations of configurations unnecessary for the description are omitted.
  • the line segment 35 is a straight line connecting a position 36 on an arbitrary radius R of the blade leading edge portion 13 and a position 37 on the blade outer peripheral portion 15.
  • the line segment 35 is assumed to be perpendicular to the tangent line of the blade outer peripheral portion 15 at the position 37.
  • the angle ⁇ 1 becomes smaller as the protrusion of the tip portion 20 toward the front becomes larger.
  • the stress concentration in the vicinity of the blade leading edge portion 13 becomes more remarkable, so that the blade 1 is more likely to be deformed.
  • unevenness is not provided on the blade leading edge portion 13, if the angle ⁇ 1 is reduced by increasing the forward curve of the chord centerline 30, the separation vortex 29 is stabilized as described above. While noise characteristics can be improved, deformation of the blade 1 is likely to occur due to stress concentration. In the first embodiment, unevenness is provided on the blade leading edge portion 13 to reduce stress concentration on the blade 1.
  • FIG. 6 is a plan view showing the suction surface 32 side of the impeller 11 shown in FIG.
  • FIG. 7 is a plan view showing the pressure surface 31 side of the impeller 11 shown in FIG.
  • the stress generated by the rotation of the impeller 11 is concentrated in the portion 40 of each blade 1 surrounded by the broken line.
  • the portion 40 is a portion near the blade leading edge portion 13 and near a position where the curved plate 3 is joined to the mounting portion 4. Since the blade 1 is deformed with the position of the curved plate 3 joined to the mounting portion 4 serving as a fulcrum, stress concentrates on the portion 40 of each blade 1.
  • the stress is measured in the case of the blade 1 having the tip portion 20 of the same angle ⁇ 1 and in the case where the blade leading edge portion 13 is not provided with unevenness and in the case of the first embodiment in which the blade leading edge portion 13 is provided with unevenness.
  • Examples of the stress described here are a steel material in which the rotational speed of the impeller 11 is 1800 min ⁇ 1 , the thickness of the curved plate 3 is 1 mm, the thickness of the spider 5 is 3 mm, and the materials of the curved plate 3 and the spider 5 are general.
  • the stress when When the blade leading edge portion 13 is not provided with irregularities, the maximum stress that the blade 1 receives is 57.2 MPa.
  • the maximum stress received by the blade 1 is 48.2 MPa.
  • the maximum stress received by the blade 1 is reduced by about 15.7% as compared with the case where the unevenness is not provided by providing the blade leading edge portion 13 with the unevenness.
  • the impeller 11 the first curved portion 17, the second curved portion 18, and the third curved portion 19 are provided in the blade leading edge portion 13, so that stress concentration in the blade 1 is relaxed. be able to.
  • the impeller 11 can suppress the deformation of the blade 1 by relaxing the stress concentration on the blade 1.
  • the impeller 11 can be made lighter in weight and can be manufactured at a lower cost as compared with the case where the thickness of the blade 1 is increased to improve the strength of the blade 1. Further, the impeller 11 can reduce the material cost as compared with the case of using a high-strength and expensive material for the material of the blade 1 in order to improve the strength of the blade 1.
  • FIG. 8 is a diagram illustrating noise characteristics of the impeller 11 according to the first embodiment.
  • FIG. 9 is a diagram illustrating the air flow-static pressure characteristics of the impeller 11 according to the first embodiment.
  • FIG. 10 is a diagram showing an example of the angles ⁇ 1 and ⁇ 2 shown in FIG. 2 for the impeller 11 according to the first embodiment.
  • the graph shown in FIG. 8 represents an example of the relationship between the air volume and the level of specific noise.
  • the graph shown in FIG. 9 represents an example of the relationship between the air volume and the static pressure.
  • the “impeller A1” is the impeller 11 according to the first embodiment, and the angle ⁇ 1 is 42.1 degrees and the angle ⁇ 2 is 130.0 degrees.
  • the “impeller A2” is the impeller 11 according to the first embodiment, and the angle ⁇ 1 is 29.4 degrees and the angle ⁇ 2 is 111.6 degrees.
  • the “impeller A3” is the impeller 11 according to the first embodiment, and the angle ⁇ 1 is 20.2 degrees and the angle ⁇ 2 is 90.0 degrees.
  • the “impeller B1” is an impeller according to a comparative example, and does not have the above-mentioned unevenness. In the “impeller B1”, the angle ⁇ 1 is 67.6 degrees.
  • the "impeller A1", “impeller A2”, “impeller A3” and “impeller B1” have a diameter of 260 mm.
  • the angle ⁇ 1 is included in the range of 20.2 degrees to 42.1 degrees.
  • the blade 1 has an angle ⁇ 2 of 90 degrees or more, so that the first bending portion 17, the second bending portion 18, and the third bending portion 19 are smoothly connected.
  • the impeller 11 can reduce the influence of the unevenness on the blade leading edge portion 13 on the inflow of the airflow at the blade leading edge portion 13.
  • the vertical axis represents the specific noise K T (dB) based on the total pressure
  • the horizontal axis represents the air volume Q (m 3 /min).
  • the vertical axis represents the static pressure P S (Pa)
  • the horizontal axis represents the air volume Q (m 3 /min).
  • SPL A represents the noise level corrected by the A characteristic
  • P T represents total pressure
  • K T SPL A ⁇ 10 ⁇ log(Q ⁇ P T 2.5 ) (1)
  • the airflow-static pressure characteristics of "impeller A1", “impeller A2” and “impeller A3” can be regarded as the same as the airflow-static pressure characteristics of "impeller B1".
  • the noise characteristic relationship between "impeller A1", “impeller A2”, and “impeller A3” is such that noise is reduced by about 2 dB at the maximum as compared with the case of "impeller B1". Has been improved.
  • FIG. 11 is a diagram showing an example of the relationship between the angle ⁇ 1 of the impeller 11 and the air volume Q according to the first embodiment.
  • the graph shown in FIG. 11 represents an example of the relationship between the angle ⁇ and the air volume ratio ⁇ Q at the open point where the static pressure is zero.
  • the air volume ratio ⁇ Q represents the ratio of the air volume Q of each impeller 11 to the air volume Q of the “impeller B1” whose angle ⁇ 1 is 67.6 degrees.
  • the vertical axis represents the air volume ratio ⁇ Q (%)
  • the horizontal axis represents the angle ⁇ 1 (degrees).
  • 11 represents the relationship between the angle ⁇ 1 and the air volume ratio ⁇ Q for “impeller A1”, “impeller A2”, “impeller A3”, and “impeller B1”.
  • the curve representing the relationship between the angle ⁇ and the air volume ratio ⁇ Q is obtained by interpolating the relationship between the angle ⁇ and the air volume ratio ⁇ Q between the plots.
  • the air volume ratio ⁇ Q tends to decrease as the angle ⁇ 1 decreases.
  • the angle ⁇ 1 is changed in the angle range of 67.6 degrees to 20.2 degrees, the reduction width of the air volume ratio ⁇ Q is suppressed to 0.6% at the maximum.
  • the impeller 11 according to the first embodiment has a limited decrease in the air volume by reducing the angle ⁇ 1.
  • FIG. 12 is a diagram showing an example of the relationship between the angle ⁇ 1 of the impeller 11 and the minimum specific noise K Tmin according to the first embodiment.
  • the vertical axis represents the minimum specific noise difference ⁇ K Tmin (dB)
  • the horizontal axis represents the angle ⁇ 1 (degrees).
  • Minimum specific noise difference [Delta] K Tmin the angle ⁇ 1 represents the difference between the minimum ratio noise K Tmin and minimum specific noise K Tmin of each wheel 11 of the "wheel B1" is 67.6 degrees.
  • the plot in the graph of FIG. 12 represents the relationship between the angle ⁇ 1 and the minimum specific noise difference ⁇ K Tmin for “impeller A1”, “impeller A2”, “impeller A3” and “impeller B1”. Curve representing the relationship between the angle ⁇ 1 and the minimum ratio noise difference [Delta] K Tmin is determined by interpolating the relation between the angle ⁇ 1 and the minimum ratio noise difference [Delta] K Tmin between plots.
  • the noise characteristic of the impeller 11 is improved so that the minimum specific noise difference ⁇ K Tmin becomes 0.5 dB or more lower.
  • the noise characteristic of the impeller 11 is improved so that the minimum specific noise difference ⁇ K Tmin becomes 2 dB lower.
  • FIG. 13 is a diagram showing an example of the relationship between the angle ⁇ 1 of the impeller 11 and the maximum stress ⁇ max according to the first embodiment.
  • the vertical axis represents the maximum stress ratio ⁇ max (%)
  • the horizontal axis represents the angle ⁇ 1 (degrees).
  • the maximum stress ratio ⁇ max represents the ratio of the maximum stress ⁇ max of each impeller 11 to the maximum stress ⁇ max of the “impeller B1” having the angle ⁇ 1 of 67.6 degrees.
  • the plot in the graph of FIG. 13 represents the relationship between the angle ⁇ 1 and the maximum stress ratio ⁇ max for “impeller A1”, “impeller A2”, “impeller A3”, and “impeller B1”.
  • the curve representing the relationship between the angle ⁇ 1 and the maximum stress ratio ⁇ max is obtained by interpolating the relationship between the angle ⁇ 1 and the maximum stress ratio ⁇ max between the plots.
  • the impeller 11 when the angle ⁇ 1 is included in the range of 20.2 degrees to 55 degrees, the maximum stress ⁇ max decreases from 4% to 9%.
  • the impeller 11 can reduce noise and alleviate stress concentration.
  • the angle ⁇ 2 is set to 90 degrees or more, so that the relationship of ⁇ 2 ⁇ 1 is established. As described above, the impeller 11 can reduce noise and alleviate stress concentration when the angle ⁇ 1 is smaller than the angle ⁇ 2.
  • the impeller 11 is provided with the first curved portion 17, the second curved portion 18, and the third curved portion 19 at the blade leading edge portion 13 of each blade 1.
  • the impeller 11 can reduce noise and stress concentration by making the plane shape of the blade 1 a shape having an angle ⁇ 1 smaller than the angle ⁇ 2. As a result, the impeller 11 has an effect of reducing noise and stress concentration.

Abstract

An impeller (11) comprises: a boss (2) that is rotatable about an rotary axis (6); and blades (1) that are radiated from the boss (2). Of a planar shape of each blade (1) when the blade (1) is projected on a plane orthogonal to the rotary axis (6), a blade leading edge section (13) of the outer edge of the blade (1), which faces towards the blade (1) traveling direction that is caused by the rotation of the boss (2), has: a first curve section (17) that is curved towards an opposite direction to the traveling direction; a second curve section (18) that is provided more towards the rotary axis (6) than is the first curve section (17) and is curved towards the traveling direction; and a third curve section (19) that is provided on the opposite side of the first curve section (17) from the rotary axis (6) and is curved towards the traveling direction.

Description

翼車および軸流送風機Impeller and axial blower
 本発明は、回転軸の方向へ流動する気流を発生させる翼車および軸流送風機に関する。 The present invention relates to an impeller and an axial-flow blower that generate an air flow that flows in the direction of a rotation axis.
 軸流送風機は、翼車の回転によって生じる騒音の低減を図るために、翼車を構成する翼の形状についてのさまざまな提案がなされている。特許文献1には、回転軸に垂直な面に翼を投影させた場合における翼の平面形を、翼車の回転による翼の進行方向へ翼弦中心線を前進させた形状とした翼車が開示されている。翼弦中心線は、翼弦線の中心を結んだ線である。進行方向へ翼弦中心線を前進させるとは、回転軸から離れるにしたがって翼弦中心線が進行方向の前方へ湾曲していることを指す。特許文献1の翼車では、翼のうち進行方向へ向けられた翼前縁部から進入した気流の流出を促して、翼前縁部にて発生する剥離渦を安定した縦渦にさせることによって、剥離渦に起因する騒音の低減が図られている。 ▽For axial blowers, various proposals have been made regarding the shape of the blades that make up the impeller in order to reduce the noise generated by the rotation of the impeller. Patent Document 1 discloses an impeller in which the planar shape of the blade when the blade is projected on a plane perpendicular to the rotation axis is such that the chord centerline is advanced in the traveling direction of the blade due to the rotation of the impeller. It is disclosed. The chord center line is a line connecting the centers of the chord lines. To move the chord centerline forward in the traveling direction means that the chord centerline is curved forward in the traveling direction as it moves away from the rotation axis. In the impeller of Patent Document 1, by promoting the outflow of the airflow entering from the blade leading edge portion directed in the traveling direction in the blade, the separation vortex generated at the blade leading edge portion is made into a stable vertical vortex. The noise caused by the separation vortex is reduced.
特公平2-2000号公報Japanese Patent Publication No. 2000-2000
 しかしながら、翼車は、翼弦中心線を前進させるほど翼前縁部の付近における応力集中が顕著となる。上記特許文献1に開示の従来技術によると、騒音の低減と応力集中の低減との両立が困難であるという問題があった。 However, in the impeller, as the chord centerline is advanced, the stress concentration near the blade leading edge becomes more pronounced. According to the conventional technique disclosed in Patent Document 1, there is a problem that it is difficult to achieve both reduction of noise and reduction of stress concentration.
 本発明は、上記に鑑みてなされたものであって、騒音の低減と応力集中の低減とを可能とする翼車を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain an impeller that can reduce noise and stress concentration.
 上述した課題を解決し、目的を達成するために、本発明にかかる翼車は、回転軸周りに回転可能なボス部と、ボス部から放射状に延びた翼と、を備える。回転軸に垂直な面に翼を投影させた場合における翼の平面形にて、翼の外縁のうちボス部の回転による翼の進行方向へ向けられた翼前縁部は、進行方向とは逆の方向へ湾曲する第1の湾曲部と、第1の湾曲部よりも回転軸の側に設けられており進行方向へ湾曲する第2の湾曲部と、第1の湾曲部よりも回転軸とは逆の側に設けられており進行方向へ湾曲する第3の湾曲部と、を有する。 In order to solve the above-mentioned problems and achieve the object, an impeller according to the present invention includes a boss portion rotatable about a rotation axis and a blade extending radially from the boss portion. In the plan view of the blade when the blade is projected on a plane perpendicular to the axis of rotation, the blade leading edge of the outer edge of the blade, which is directed toward the traveling direction of the blade due to the rotation of the boss, is opposite to the traveling direction. A first bending portion that bends in the direction of, a second bending portion that is provided closer to the rotation shaft than the first bending portion and bends in the traveling direction, and a rotation shaft that extends beyond the first bending portion. Has a third bending portion which is provided on the opposite side and bends in the traveling direction.
 本発明にかかる翼車は、騒音の低減と応力集中の低減とが可能となるという効果を奏する。 The impeller according to the present invention has an effect of reducing noise and stress concentration.
本発明の実施の形態1にかかる翼車を有する軸流送風機の概略構成を示す図The figure which shows schematic structure of the axial blower which has the impeller concerning Embodiment 1 of this invention. 図1に示す翼車の平面形を示す図The figure which shows the plane shape of the impeller shown in FIG. 図2に示す翼車のうち翼とボス部との平面形を示す図The figure which shows the plane shape of a wing and a boss part among the impellers shown in FIG. 図3に示す翼の周囲における気流の状態について説明する図The figure explaining the state of the air flow around the wing shown in FIG. 図3に示す翼の形状と翼の強度との関係について説明する図The figure explaining the relationship between the shape of the wing shown in FIG. 3, and the strength of the wing. 図2に示す翼車のうちの負圧面側を示す平面図The top view which shows the suction side of the impeller shown in FIG. 図2に示す翼車のうちの圧力面側を示す平面図The top view which shows the pressure side of the impeller shown in FIG. 実施の形態1にかかる翼車の騒音特性について説明する図The figure explaining the noise characteristic of the impeller concerning Embodiment 1. 実施の形態1にかかる翼車の風量-静圧特性について説明する図The figure explaining the air flow-static pressure characteristic of the impeller concerning Embodiment 1. 実施の形態1にかかる翼車について、図2に示す角度θ1と角度θ2との例を示す図The figure which shows the example of the angle (theta)1 and the angle (theta)2 which are shown in FIG. 2 about the impeller concerning Embodiment 1. 実施の形態1にかかる翼車の角度θ1と風量Qとの関係の例を示す図The figure which shows the example of the relationship between the angle (theta) 1 of the impeller and the air volume Q concerning Embodiment 1. 実施の形態1にかかる翼車の角度θ1と最小比騒音KTminとの関係の例を示す図The figure which shows the example of the relationship between the angle (theta) 1 of the impeller and the minimum specific noise KTmin concerning Embodiment 1. 実施の形態1にかかる翼車の角度θ1と最大応力σmaxとの関係の例を示す図The figure which shows the example of the relationship between the angle (theta)1 of the impeller and the maximum stress (sigma)max concerning Embodiment 1.
 以下に、本発明の実施の形態にかかる翼車および軸流送風機を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The following is a detailed description of an impeller and an axial blower according to an embodiment of the present invention, based on the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかる翼車11を有する軸流送風機10の概略構成を示す図である。軸流送風機10は、扇風機、換気扇、空気調和機あるいは機器の冷却等に使用される。
Embodiment 1.
FIG. 1 is a diagram showing a schematic configuration of an axial blower 10 having an impeller 11 according to a first embodiment of the present invention. The axial blower 10 is used for cooling a fan, a ventilation fan, an air conditioner, or equipment.
 軸流送風機10は、回転によって気流を発生可能な翼車11と、翼車11を回転駆動するモータ12とを有する。また、軸流送風機10は、翼車11を回転可能に収容する筐体を有する。モータ12は、筐体に保持されている。筐体は、翼車11の回転によって発生させた気流が通る開口を有する。開口の縁には、気流の上流側へ向かって径が拡げられたベルマウスが設けられている。図1では、筐体とベルマウスとの図示を省略している。 The axial blower 10 has an impeller 11 that can generate an airflow by rotation, and a motor 12 that rotationally drives the impeller 11. The axial blower 10 also has a housing that houses the impeller 11 in a rotatable manner. The motor 12 is held in the housing. The housing has an opening through which the airflow generated by the rotation of the impeller 11 passes. At the edge of the opening, a bell mouth is provided whose diameter is expanded toward the upstream side of the air flow. In FIG. 1, the illustration of the housing and the bell mouth is omitted.
 翼車11は、1枚の板材から型取りされたスパイダー5と、スパイダー5に接合されている3枚の湾曲板3とを有する。スパイダー5は、スパイダー5の中心に位置する主板部であるボス部2と、ボス部2の周囲に設けられた3個の取付部4とを有する。ボス部2は、モータ12に接続されており、モータ12が駆動することによってボス部2が回転軸6を中心に回転方向Cへ回転する。 The impeller 11 has a spider 5 that is molded from one plate material, and three curved plates 3 that are joined to the spider 5. The spider 5 has a boss portion 2 that is a main plate portion located at the center of the spider 5, and three mounting portions 4 provided around the boss portion 2. The boss portion 2 is connected to the motor 12, and when the motor 12 is driven, the boss portion 2 rotates in the rotation direction C about the rotation shaft 6.
 湾曲板3の各々は、翼1を構成する。湾曲板3は、板金へのプレス加工によって形成される。湾曲板3は、取付部4の各々に取り付けられており、取付部4のうち回転軸6とは逆の側の端部に接合されている。取付部4は、翼1のうちボス部2の側の根元部分に相当する。湾曲板3は、溶接により、またはリベットを用いて取付部4に接合されている。 Each of the curved plates 3 constitutes the wing 1. The curved plate 3 is formed by pressing a sheet metal. The curved plate 3 is attached to each of the mounting portions 4, and is joined to the end portion of the mounting portion 4 on the side opposite to the rotating shaft 6. The mounting portion 4 corresponds to a root portion of the wing 1 on the boss portion 2 side. The curved plate 3 is joined to the mounting portion 4 by welding or using rivets.
 このように、翼車11は、回転軸6周りに回転可能なボス部2と、ボス部2から放射状に延びた3枚の翼1とを有する。各翼1は、湾曲板3と取付部4とからなる。翼1は、回転軸6とは逆の側の部分が気流の上流側へ傾けられた曲面形状をなしている。軸流送風機10は、回転方向Cへの翼車11の回転によって、回転軸6に平行な方向である矢印Aの方向へ流動する気流を発生させる。 As described above, the impeller 11 has the boss portion 2 rotatable about the rotation axis 6 and the three blades 1 radially extending from the boss portion 2. Each wing 1 includes a curved plate 3 and a mounting portion 4. The blade 1 has a curved surface shape in which the portion on the side opposite to the rotating shaft 6 is inclined toward the upstream side of the air flow. The rotation of the impeller 11 in the rotation direction C causes the axial blower 10 to generate an airflow flowing in the direction of arrow A, which is a direction parallel to the rotation axis 6.
 翼車11は、スパイダー5と湾曲板3とからなるものに限られず、円柱状のボス部2と、ボス部2に取り付けられた翼1とを有するものであっても良い。翼車11に設けられる翼1の数は、3個に限られず、任意であるものとする。翼車11に設けられる各翼1は、いずれも同様の3次元立体形状を有する。以下に述べる翼1についての説明は、翼車11に設けられる翼1の各々に共通であるものとする。 The impeller 11 is not limited to the one composed of the spider 5 and the curved plate 3, and may have the cylindrical boss portion 2 and the wing 1 attached to the boss portion 2. The number of blades 1 provided in the impeller 11 is not limited to three and may be arbitrary. Each of the blades 1 provided on the impeller 11 has a similar three-dimensional solid shape. The description of the blade 1 described below is common to each of the blades 1 provided in the impeller 11.
 図2は、図1に示す翼車11の平面形を示す図である。図2には、回転軸6に垂直な面に翼車11を投影させた場合における翼車11の平面形を示している。図3は、図2に示す翼車11のうち翼1とボス部2との平面形を示す図である。図2および図3においてX軸とY軸とは互いに垂直な軸とする。X軸とY軸との原点Oは、回転軸6の位置である。 FIG. 2 is a diagram showing a planar shape of the impeller 11 shown in FIG. FIG. 2 shows a plan view of the impeller 11 when the impeller 11 is projected on a plane perpendicular to the rotation axis 6. FIG. 3 is a view showing a plane shape of the blade 1 and the boss portion 2 of the impeller 11 shown in FIG. 2 and 3, the X axis and the Y axis are axes perpendicular to each other. The origin O of the X axis and the Y axis is the position of the rotary shaft 6.
 翼1の平面形における外縁は、ボス部2の回転による翼1の進行方向へ向けられた部分である翼前縁部13と、翼1の進行方向とは逆の側へ向けられた部分である翼後縁部14と、回転軸6とは逆の側へ向けられた部分である翼外周部15と、回転軸6へ向けられた部分である翼内周部16とを有する。平面形において、翼内周部16は、ボス部2の外縁に沿った円弧をなしている。翼1は、翼1の進行方向へ向けて突出した先端部20を有する。 The outer edge of the blade 1 in the plane shape is a blade leading edge portion 13 that is a portion that is directed in the traveling direction of the blade 1 due to the rotation of the boss portion 2, and a portion that is directed to the side opposite to the traveling direction of the blade 1. It has a certain blade trailing edge portion 14, a blade outer peripheral portion 15 which is a portion directed to the side opposite to the rotary shaft 6, and a blade inner peripheral portion 16 which is a portion directed to the rotary shaft 6. In plan view, the blade inner peripheral portion 16 forms an arc along the outer edge of the boss portion 2. The blade 1 has a tip portion 20 protruding in the traveling direction of the blade 1.
 平面形において、翼外周部15は、回転軸6を中心とする円弧をなしている。翼外周部15は、円弧以外の曲線であっても良い。翼1の3次元立体形状において、翼外周部15は、気流の上流側へ屈曲している。翼車11は、翼外周部15を屈曲させることによって、翼外周部15における翼1の圧力面側から翼1の負圧面側への気流の漏れに起因する翼端渦の発生を抑制させる。これにより、翼車11は、翼1で発生した翼端渦が、圧力面、他の翼1あるいは上記のベルマウスに干渉することによる騒音を低減できる。 In plan view, the blade outer peripheral portion 15 forms an arc centered on the rotating shaft 6. The blade outer peripheral portion 15 may be a curve other than a circular arc. In the three-dimensional shape of the blade 1, the blade outer peripheral portion 15 is bent toward the upstream side of the air flow. By bending the blade outer peripheral portion 15, the impeller 11 suppresses the generation of blade tip vortices due to the leakage of the air flow from the pressure surface side of the blade 1 to the suction surface side of the blade 1 in the blade outer peripheral portion 15. As a result, the impeller 11 can reduce noise caused by the tip vortex generated on the blade 1 interfering with the pressure surface, the other blade 1, or the bell mouth.
 平面形において、翼前縁部13は、翼1の進行方向とは逆の方向へ湾曲する第1の湾曲部17と、第1の湾曲部17よりも回転軸6の側に設けられており進行方向へ湾曲する第2の湾曲部18と、第1の湾曲部17よりも回転軸6とは逆の側に設けられており進行方向へ湾曲する第3の湾曲部19とを有する。このように、翼前縁部13は、第1の湾曲部17および第2の湾曲部18の間と、第1の湾曲部17および第3の湾曲部19の間とのそれぞれにて、湾曲の向きが変化している曲線をなしている。第3の湾曲部19は、翼外周部15とともに、先端部20を構成している。以下の説明にて、翼1の進行方向を前方、翼1の進行方向とは逆の方向を後方と称することがある。また、第1の湾曲部17と第2の湾曲部18と第3の湾曲部19とを合わせたものを凹凸と称することがある。 In the plan view, the blade leading edge portion 13 is provided on the first bending portion 17 that bends in a direction opposite to the traveling direction of the blade 1 and on the rotary shaft 6 side with respect to the first bending portion 17. It has the 2nd bending part 18 which curves in the advancing direction, and the 3rd bending part 19 which is provided in the opposite side to the rotating shaft 6 rather than the 1st bending part 17, and bends in the advancing direction. As described above, the blade leading edge portion 13 is curved between the first bending portion 17 and the second bending portion 18 and between the first bending portion 17 and the third bending portion 19, respectively. The shape of the curve is changing. The third curved portion 19 constitutes the tip portion 20 together with the blade outer peripheral portion 15. In the following description, the traveling direction of the blade 1 may be referred to as the front, and the direction opposite to the traveling direction of the blade 1 may be referred to as the rear. In addition, the combination of the first bending portion 17, the second bending portion 18, and the third bending portion 19 may be referred to as unevenness.
 線分21は、翼外周部15のうち先端部20に含まれる位置25における接線である第1の接線を表す。位置25は、翼外周部15と翼前縁部13との間の頂点24よりも後方の位置である。線分22は、第3の湾曲部19のうち先端部20に含まれる位置26における接線である第2の接線を表す。位置26は、頂点24よりも回転軸6の側の位置である。線分23は、第1の湾曲部17のうち第2の湾曲部18の側の端にある位置27における接線である第3の接線を表す。 The line segment 21 represents the first tangent line that is the tangent line at the position 25 included in the tip portion 20 of the blade outer peripheral portion 15. The position 25 is a position behind the apex 24 between the blade outer peripheral portion 15 and the blade leading edge portion 13. The line segment 22 represents the second tangent line that is the tangent line at the position 26 included in the distal end portion 20 of the third bending portion 19. The position 26 is a position closer to the rotary shaft 6 than the apex 24. The line segment 23 represents the third tangent line that is the tangent line at the position 27 at the end of the first bending portion 17 on the side of the second bending portion 18.
 翼1の翼弦中心線30は、回転軸6から離れるにしたがって前方へ湾曲している。先端部20は、前方へ向かうにしたがって先細りとなって前方へ突出した形状をなしている。第1の角度である角度θ1は、線分21と線分22とがなす角度であって先端部20を含む範囲における角度とする。第2の角度である角度θ2は、線分22と線分23とがなす角度であって第1の湾曲部17を含む範囲における角度とする。角度θ1は、角度θ2よりも小さい。 The chord centerline 30 of the wing 1 is curved forward as it moves away from the rotation axis 6. The tip portion 20 has a shape that is tapered toward the front and protrudes toward the front. The first angle θ1 is an angle formed by the line segment 21 and the line segment 22 and is an angle in a range including the tip portion 20. The angle θ2, which is the second angle, is an angle formed by the line segment 22 and the line segment 23 and is an angle in a range including the first bending portion 17. The angle θ1 is smaller than the angle θ2.
 図4は、図3に示す翼1の周囲における気流の状態について説明する図である。図4には、図3に示すIV-IV線における断面を示している。図3に示すように、翼1のうち翼外周部15付近には、翼端渦28が生じる。翼端渦28は、翼車11が回転しているときに、翼1における圧力面31と負圧面32との圧力差によって形成される。翼前縁部13には、前方からの気流と、ベルマウスが設けられている側方から吸い込まれる気流とが流入することから、翼前縁部13の付近には剥離渦29が形成される。軸流送風機10は、翼1にて生じた翼端渦28と剥離渦29とが、当該翼1と隣り合う他の翼1、ベルマウスまたは筐体に当たることによって騒音を生じ得る。 FIG. 4 is a diagram for explaining the state of the airflow around the blade 1 shown in FIG. FIG. 4 shows a cross section taken along line IV-IV shown in FIG. As shown in FIG. 3, a blade tip vortex 28 is generated in the blade 1 near the blade outer peripheral portion 15. The blade tip vortex 28 is formed by the pressure difference between the pressure surface 31 and the suction surface 32 of the blade 1 when the impeller 11 is rotating. Since the airflow from the front and the airflow sucked from the side where the bell mouth is provided flow into the blade leading edge portion 13, a separation vortex 29 is formed near the blade leading edge portion 13. .. In the axial blower 10, the blade tip vortex 28 and the separation vortex 29 generated on the blade 1 may generate noise by hitting another blade 1, a bell mouth, or a housing adjacent to the blade 1.
 翼1の負圧面32側には、乱流境界層における気流33が生じる。翼前縁部13の付近にて発生する剥離渦29が大きいほど、気流33が乱れながら翼後縁部14へ流動することによって、翼後縁部14の後方に生じる後流渦34が大きくなる。軸流送風機10は、剥離渦29と後流渦34とが大きくなるほど、また、気流33の乱れが大きくなるほど、騒音特性が悪化する。 An air flow 33 in the turbulent boundary layer is generated on the suction surface 32 side of the blade 1. The larger the separation vortex 29 generated near the blade leading edge portion 13, the larger the wake vortex 34 generated behind the blade trailing edge portion 14 due to the flow of the airflow 33 to the blade trailing edge portion 14 while being disturbed. .. In the axial blower 10, the noise characteristics are deteriorated as the separation vortex 29 and the wake vortex 34 are increased and the turbulence of the air flow 33 is increased.
 実施の形態1では、前方へ向けて先細りとした先端部20が設けられることで、翼前縁部13から負圧面32側へ回り込む縦渦が負圧面32に付着して、翼前縁部13にて発生する剥離渦29が安定した縦渦となる。剥離渦29が安定することによって、気流33の乱れを抑制させ、後流渦34を小さくすることができる。これにより、軸流送風機10は、騒音特性の悪化を抑制することができる。 In the first embodiment, since the forwardly tapered tip portion 20 is provided, the longitudinal vortex that wraps around from the blade leading edge portion 13 to the suction surface 32 side is attached to the suction surface 32, and the blade leading edge portion 13 is formed. The separation vortex 29 generated at 1 becomes a stable vertical vortex. By stabilizing the separation vortex 29, the turbulence of the air flow 33 can be suppressed and the wake vortex 34 can be reduced. As a result, the axial blower 10 can suppress deterioration of noise characteristics.
 次に、先端部20の形状と翼1の強度との関係について説明する。図5は、図3に示す翼1の形状と翼1の強度との関係について説明する図である。図5では、翼弦中心線30の湾曲が大きくなるように翼1の形状を異ならせた場合における翼1の平面形を示している。図5における左の状態から右の状態へ翼弦中心線30の湾曲が大きくなるにしたがい、先端部20における前方への突出が大きくなる。なお、図5では、翼1の形状を簡略化して示すとともに、説明に不要な構成についての図示を省略している。 Next, the relationship between the shape of the tip portion 20 and the strength of the blade 1 will be described. FIG. 5 is a diagram for explaining the relationship between the shape of the blade 1 and the strength of the blade 1 shown in FIG. FIG. 5 shows the planar shape of the blade 1 when the shape of the blade 1 is changed so that the curvature of the chord centerline 30 becomes large. As the curvature of the chord centerline 30 increases from the left state to the right state in FIG. 5, the forward projection of the tip portion 20 increases. Note that, in FIG. 5, the shape of the blade 1 is shown in a simplified manner, and illustrations of configurations unnecessary for the description are omitted.
 線分35は、翼前縁部13のうち任意の半径R上の位置36と翼外周部15上の位置37とを結ぶ直線である。線分35は、位置37における翼外周部15の接線に垂直であるものとする。前方への先端部20の突出が大きくなるにしたがい、角度θ1は小さくなる。角度θ1が小さいほど、線分35が短くなる。線分35が短いほど、翼前縁部13の付近における応力集中が顕著となることから、翼1の変形が生じ易くなる。 The line segment 35 is a straight line connecting a position 36 on an arbitrary radius R of the blade leading edge portion 13 and a position 37 on the blade outer peripheral portion 15. The line segment 35 is assumed to be perpendicular to the tangent line of the blade outer peripheral portion 15 at the position 37. The angle θ1 becomes smaller as the protrusion of the tip portion 20 toward the front becomes larger. The smaller the angle θ1, the shorter the line segment 35. As the line segment 35 is shorter, the stress concentration in the vicinity of the blade leading edge portion 13 becomes more remarkable, so that the blade 1 is more likely to be deformed.
 仮に、翼前縁部13に上記の凹凸が設けられない場合において、翼弦中心線30の前方への湾曲を大きくすることにより角度θ1を小さくした場合、上記のように剥離渦29の安定による騒音特性の改善を図り得る一方、応力集中によって翼1の変形が生じ易くなる。実施の形態1では、翼前縁部13に凹凸が設けられることによって、翼1における応力集中を緩和させる。 If the above-mentioned unevenness is not provided on the blade leading edge portion 13, if the angle θ1 is reduced by increasing the forward curve of the chord centerline 30, the separation vortex 29 is stabilized as described above. While noise characteristics can be improved, deformation of the blade 1 is likely to occur due to stress concentration. In the first embodiment, unevenness is provided on the blade leading edge portion 13 to reduce stress concentration on the blade 1.
 図6は、図2に示す翼車11のうちの負圧面32側を示す平面図である。図7は、図2に示す翼車11のうちの圧力面31側を示す平面図である。各翼1のうち破線により囲われた部分40において、翼車11の回転によって生じた応力が集中する。部分40は、翼前縁部13の付近であって、取付部4に湾曲板3が接合されている位置に近い部位である。湾曲板3のうち取付部4に接合されている位置が支点となって翼1が変形することから、各翼1の部分40にて応力が集中する。 6 is a plan view showing the suction surface 32 side of the impeller 11 shown in FIG. FIG. 7 is a plan view showing the pressure surface 31 side of the impeller 11 shown in FIG. The stress generated by the rotation of the impeller 11 is concentrated in the portion 40 of each blade 1 surrounded by the broken line. The portion 40 is a portion near the blade leading edge portion 13 and near a position where the curved plate 3 is joined to the mounting portion 4. Since the blade 1 is deformed with the position of the curved plate 3 joined to the mounting portion 4 serving as a fulcrum, stress concentrates on the portion 40 of each blade 1.
 ここで、同じ角度θ1の先端部20を有する翼1であって翼前縁部13に凹凸を設けない場合と翼前縁部13に凹凸を設けた実施の形態1の場合とにおいて応力を測定した例について説明する。ここで説明する応力の例は、翼車11の回転数が1800min-1、湾曲板3の厚さが1mm、スパイダー5の厚さが3mm、湾曲板3およびスパイダー5の材料が一般的な鋼材である場合における応力とする。翼前縁部13に凹凸を設けない場合において、翼1が受ける最大応力は57.2MPaである。一方、翼前縁部13に凹凸を設けた実施の形態1の場合において、翼1が受ける最大応力は48.2MPaである。翼1が受ける最大応力は、翼前縁部13に凹凸が設けられることによって、凹凸が設けられない場合よりもおよそ15.7%低減する。このように、翼車11は、第1の湾曲部17と第2の湾曲部18と第3の湾曲部19とが翼前縁部13に設けられることによって、翼1における応力集中を緩和させることができる。 Here, the stress is measured in the case of the blade 1 having the tip portion 20 of the same angle θ1 and in the case where the blade leading edge portion 13 is not provided with unevenness and in the case of the first embodiment in which the blade leading edge portion 13 is provided with unevenness. An example will be described. Examples of the stress described here are a steel material in which the rotational speed of the impeller 11 is 1800 min −1 , the thickness of the curved plate 3 is 1 mm, the thickness of the spider 5 is 3 mm, and the materials of the curved plate 3 and the spider 5 are general. And the stress when When the blade leading edge portion 13 is not provided with irregularities, the maximum stress that the blade 1 receives is 57.2 MPa. On the other hand, in the case of the first embodiment in which the blade leading edge portion 13 is provided with irregularities, the maximum stress received by the blade 1 is 48.2 MPa. The maximum stress received by the blade 1 is reduced by about 15.7% as compared with the case where the unevenness is not provided by providing the blade leading edge portion 13 with the unevenness. As described above, in the impeller 11, the first curved portion 17, the second curved portion 18, and the third curved portion 19 are provided in the blade leading edge portion 13, so that stress concentration in the blade 1 is relaxed. be able to.
 翼車11は、翼1における応力集中の緩和によって、翼1の変形を抑制することができる。翼車11は、翼1の強度向上のために翼1の厚みを増加させる場合に比べて、軽量化が可能であって、かつ材料の量を少なくできることで製造コストの低減が可能である。また、翼車11は、翼1の強度向上のために高強度で高価な材料を翼1の材料に使用する場合に比べて、材料のコストを抑えることができる。 The impeller 11 can suppress the deformation of the blade 1 by relaxing the stress concentration on the blade 1. The impeller 11 can be made lighter in weight and can be manufactured at a lower cost as compared with the case where the thickness of the blade 1 is increased to improve the strength of the blade 1. Further, the impeller 11 can reduce the material cost as compared with the case of using a high-strength and expensive material for the material of the blade 1 in order to improve the strength of the blade 1.
 次に、上記の角度θ1および角度θ2と翼車11の特性との関係について説明する。図8は、実施の形態1にかかる翼車11の騒音特性について説明する図である。図9は、実施の形態1にかかる翼車11の風量-静圧特性について説明する図である。図10は、実施の形態1にかかる翼車11について、図2に示す角度θ1と角度θ2との例を示す図である。図8に示したグラフは、風量と比騒音のレベルとの関係の例を表している。図9に示したグラフは、風量と静圧との関係の例を表している。 Next, the relationship between the angles θ1 and θ2 and the characteristics of the impeller 11 will be described. FIG. 8 is a diagram illustrating noise characteristics of the impeller 11 according to the first embodiment. FIG. 9 is a diagram illustrating the air flow-static pressure characteristics of the impeller 11 according to the first embodiment. FIG. 10 is a diagram showing an example of the angles θ1 and θ2 shown in FIG. 2 for the impeller 11 according to the first embodiment. The graph shown in FIG. 8 represents an example of the relationship between the air volume and the level of specific noise. The graph shown in FIG. 9 represents an example of the relationship between the air volume and the static pressure.
 「翼車A1」は、実施の形態1にかかる翼車11であって、角度θ1が42.1度かつ角度θ2が130.0度である。「翼車A2」は、実施の形態1にかかる翼車11であって、角度θ1が29.4度かつ角度θ2が111.6度である。「翼車A3」は、実施の形態1にかかる翼車11であって、角度θ1が20.2度かつ角度θ2が90.0度である。「翼車B1」は、比較例にかかる翼車であって、上記の凹凸を有しないものとする。「翼車B1」において角度θ1は67.6度である。「翼車A1」、「翼車A2」、「翼車A3」および「翼車B1」は、260mmの直径を有するものとする。実施の形態1にかかる翼車11において、角度θ1は、20.2度から42.1度の範囲に含まれる。 The “impeller A1” is the impeller 11 according to the first embodiment, and the angle θ1 is 42.1 degrees and the angle θ2 is 130.0 degrees. The “impeller A2” is the impeller 11 according to the first embodiment, and the angle θ1 is 29.4 degrees and the angle θ2 is 111.6 degrees. The “impeller A3” is the impeller 11 according to the first embodiment, and the angle θ1 is 20.2 degrees and the angle θ2 is 90.0 degrees. The "impeller B1" is an impeller according to a comparative example, and does not have the above-mentioned unevenness. In the “impeller B1”, the angle θ1 is 67.6 degrees. The "impeller A1", "impeller A2", "impeller A3" and "impeller B1" have a diameter of 260 mm. In the impeller 11 according to the first embodiment, the angle θ1 is included in the range of 20.2 degrees to 42.1 degrees.
 翼1は、角度θ2が90度以上とされていることによって、第1の湾曲部17と第2の湾曲部18と第3の湾曲部19とが滑らかに接続されている。これにより、翼車11は、翼前縁部13に凹凸を設けたことによる翼前縁部13における気流の流入への影響を少なくすることができる。 The blade 1 has an angle θ2 of 90 degrees or more, so that the first bending portion 17, the second bending portion 18, and the third bending portion 19 are smoothly connected. As a result, the impeller 11 can reduce the influence of the unevenness on the blade leading edge portion 13 on the inflow of the airflow at the blade leading edge portion 13.
 図8において、縦軸は全圧基準の比騒音K(dB)を表し、横軸は風量Q(m/min)を表す。図9において、縦軸は静圧P(Pa)を表し、横軸は風量Q(m/min)を表す。比騒音Kと風量Qとの関係は、次の式(1)によって表される。式(1)において、SPLはA特性による補正が施された騒音レベルを表す。Pは全圧を表す。
=SPL-10・log(Q・P 2.5)  ・・・(1)
In FIG. 8, the vertical axis represents the specific noise K T (dB) based on the total pressure, and the horizontal axis represents the air volume Q (m 3 /min). In FIG. 9, the vertical axis represents the static pressure P S (Pa), and the horizontal axis represents the air volume Q (m 3 /min). The relationship between the specific noise K T and the air volume Q is expressed by the following equation (1). In the equation (1), SPL A represents the noise level corrected by the A characteristic. P T represents total pressure.
K T =SPL A −10·log(Q·P T 2.5 ) (1)
 図9によると、「翼車A1」と「翼車A2」と「翼車A3」との風量-静圧特性は、「翼車B1」の風量-静圧特性と同様とみなせる。図8によると、「翼車A1」と「翼車A2」と「翼車A3」との騒音特性関係は、「翼車B1」の場合と比較して、最大で2dB程度騒音が低くなるように改善されている。 According to FIG. 9, the airflow-static pressure characteristics of "impeller A1", "impeller A2" and "impeller A3" can be regarded as the same as the airflow-static pressure characteristics of "impeller B1". According to FIG. 8, the noise characteristic relationship between "impeller A1", "impeller A2", and "impeller A3" is such that noise is reduced by about 2 dB at the maximum as compared with the case of "impeller B1". Has been improved.
 図11は、実施の形態1にかかる翼車11の角度θ1と風量Qとの関係の例を示す図である。図11に示すグラフは、静圧がゼロである開放点における角度θと風量比ΔQとの関係の例を表している。風量比ΔQは、角度θ1が67.6度である「翼車B1」の風量Qに対する各翼車11の風量Qの比を表す。図11において、縦軸は風量比ΔQ(%)を表し、横軸は角度θ1(度)を表す。図11のグラフにおけるプロットは、「翼車A1」、「翼車A2」、「翼車A3」および「翼車B1」についての角度θ1と風量比ΔQとの関係を表している。角度θと風量比ΔQとの関係を表す曲線は、プロット間における角度θと風量比ΔQとの関係を補間することによって求められる。 FIG. 11 is a diagram showing an example of the relationship between the angle θ1 of the impeller 11 and the air volume Q according to the first embodiment. The graph shown in FIG. 11 represents an example of the relationship between the angle θ and the air volume ratio ΔQ at the open point where the static pressure is zero. The air volume ratio ΔQ represents the ratio of the air volume Q of each impeller 11 to the air volume Q of the “impeller B1” whose angle θ1 is 67.6 degrees. In FIG. 11, the vertical axis represents the air volume ratio ΔQ (%), and the horizontal axis represents the angle θ1 (degrees). The plot in the graph of FIG. 11 represents the relationship between the angle θ1 and the air volume ratio ΔQ for “impeller A1”, “impeller A2”, “impeller A3”, and “impeller B1”. The curve representing the relationship between the angle θ and the air volume ratio ΔQ is obtained by interpolating the relationship between the angle θ and the air volume ratio ΔQ between the plots.
 図11によると、角度θ1が小さくなるにしたがって風量比ΔQは小さくなる傾向が確認される。ただし、67.6度から20.2度までの角度範囲にて角度θ1を変化させる場合において、風量比ΔQの減少幅は最大で0.6%に抑えられている。これにより、実施の形態1にかかる翼車11は、角度θ1を小さくすることによる風量の減少は限定的であるといえる。 According to FIG. 11, it is confirmed that the air volume ratio ΔQ tends to decrease as the angle θ1 decreases. However, when the angle θ1 is changed in the angle range of 67.6 degrees to 20.2 degrees, the reduction width of the air volume ratio ΔQ is suppressed to 0.6% at the maximum. As a result, it can be said that the impeller 11 according to the first embodiment has a limited decrease in the air volume by reducing the angle θ1.
 図12は、実施の形態1にかかる翼車11の角度θ1と最小比騒音KTminとの関係の例を示す図である。図12において、縦軸は最小比騒音差ΔKTmin(dB)を表し、横軸は角度θ1(度)を表す。最小比騒音差ΔKTminは、角度θ1が67.6度である「翼車B1」の最小比騒音KTminと各翼車11の最小比騒音KTminとの差を表す。図12のグラフにおけるプロットは、「翼車A1」、「翼車A2」、「翼車A3」および「翼車B1」についての角度θ1と最小比騒音差ΔKTminとの関係を表している。角度θ1と最小比騒音差ΔKTminとの関係を表す曲線は、プロット間における角度θ1と最小比騒音差ΔKTminとの関係を補間することによって求められる。 FIG. 12 is a diagram showing an example of the relationship between the angle θ1 of the impeller 11 and the minimum specific noise K Tmin according to the first embodiment. In FIG. 12, the vertical axis represents the minimum specific noise difference ΔK Tmin (dB), and the horizontal axis represents the angle θ1 (degrees). Minimum specific noise difference [Delta] K Tmin, the angle θ1 represents the difference between the minimum ratio noise K Tmin and minimum specific noise K Tmin of each wheel 11 of the "wheel B1" is 67.6 degrees. The plot in the graph of FIG. 12 represents the relationship between the angle θ1 and the minimum specific noise difference ΔK Tmin for “impeller A1”, “impeller A2”, “impeller A3” and “impeller B1”. Curve representing the relationship between the angle θ1 and the minimum ratio noise difference [Delta] K Tmin is determined by interpolating the relation between the angle θ1 and the minimum ratio noise difference [Delta] K Tmin between plots.
 図12によると、角度θ1が15度から55度までの範囲である場合には、翼車11の騒音特性は、最小比騒音差ΔKTminが0.5dB以上低くなるように改善されている。また、角度θ1が29.4度である場合には、翼車11の騒音特性は、最小比騒音差ΔKTminが2dB低くなるように改善されている。 According to FIG. 12, when the angle θ1 is in the range of 15 degrees to 55 degrees, the noise characteristic of the impeller 11 is improved so that the minimum specific noise difference ΔK Tmin becomes 0.5 dB or more lower. When the angle θ1 is 29.4 degrees, the noise characteristic of the impeller 11 is improved so that the minimum specific noise difference ΔK Tmin becomes 2 dB lower.
 図13は、実施の形態1にかかる翼車11の角度θ1と最大応力σmaxとの関係の例を示す図である。図13において、縦軸は最大応力比Δσmax(%)を表し、横軸は角度θ1(度)を表す。最大応力比Δσmaxは、角度θ1が67.6度である「翼車B1」の最大応力σmaxに対する各翼車11の最大応力σmaxの比を表す。図13のグラフにおけるプロットは、「翼車A1」、「翼車A2」、「翼車A3」および「翼車B1」についての角度θ1と最大応力比Δσmaxとの関係を表している。角度θ1と最大応力比Δσmaxとの関係を表す曲線は、プロット間における角度θ1と最大応力比Δσmaxとの関係を補間することによって求められる。 FIG. 13 is a diagram showing an example of the relationship between the angle θ1 of the impeller 11 and the maximum stress σmax according to the first embodiment. In FIG. 13, the vertical axis represents the maximum stress ratio Δσmax (%), and the horizontal axis represents the angle θ1 (degrees). The maximum stress ratio Δσmax represents the ratio of the maximum stress σmax of each impeller 11 to the maximum stress σmax of the “impeller B1” having the angle θ1 of 67.6 degrees. The plot in the graph of FIG. 13 represents the relationship between the angle θ1 and the maximum stress ratio Δσmax for “impeller A1”, “impeller A2”, “impeller A3”, and “impeller B1”. The curve representing the relationship between the angle θ1 and the maximum stress ratio Δσmax is obtained by interpolating the relationship between the angle θ1 and the maximum stress ratio Δσmax between the plots.
 図13によると、角度θ1が20.2度から55度までの範囲に含まれる場合に、最大応力σmaxは4%から9%低下する。翼車11は、20.2度から42.1度の範囲に含まれる角度θ1が設定されることによって、騒音の低減と応力集中の緩和とが可能となる。さらに、上述するように角度θ2が90度以上とされるため、θ2<θ1の関係が成り立つ。以上により、翼車11は、角度θ1が角度θ2よりも小さい場合において、騒音の低減と応力集中の緩和とが可能となる。 According to FIG. 13, when the angle θ1 is included in the range of 20.2 degrees to 55 degrees, the maximum stress σmax decreases from 4% to 9%. By setting the angle θ1 included in the range of 20.2 degrees to 42.1 degrees, the impeller 11 can reduce noise and alleviate stress concentration. Furthermore, as described above, the angle θ2 is set to 90 degrees or more, so that the relationship of θ2<θ1 is established. As described above, the impeller 11 can reduce noise and alleviate stress concentration when the angle θ1 is smaller than the angle θ2.
 実施の形態1によると、翼車11は、各翼1の翼前縁部13に第1の湾曲部17と第2の湾曲部18と第3の湾曲部19とが設けられている。翼車11は、翼1の平面形を角度θ2よりも小さい角度θ1を有する形状とすることにより、騒音の低減と応力集中の低減とが可能となる。これにより、翼車11は、騒音の低減と応力集中の低減とが可能となるという効果を奏する。 According to the first embodiment, the impeller 11 is provided with the first curved portion 17, the second curved portion 18, and the third curved portion 19 at the blade leading edge portion 13 of each blade 1. The impeller 11 can reduce noise and stress concentration by making the plane shape of the blade 1 a shape having an angle θ1 smaller than the angle θ2. As a result, the impeller 11 has an effect of reducing noise and stress concentration.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations described in the above embodiments are examples of the content of the present invention, and can be combined with another known technique, and the configurations of the configurations are not departing from the scope of the present invention. It is also possible to omit or change parts.
 1 翼、2 ボス部、3 湾曲板、4 取付部、5 スパイダー、6 回転軸、10 軸流送風機、11 翼車、12 モータ、13 翼前縁部、14 翼後縁部、15 翼外周部、16 翼内周部、17 第1の湾曲部、18 第2の湾曲部、19 第3の湾曲部、20 先端部、21,22,23 線分、24 頂点、25,26,27,36,37 位置、28 翼端渦、29 剥離渦、30 翼弦中心線、31 圧力面、32 負圧面、33 気流、34 後流渦、40 部分、C 回転方向。 1 blade, 2 boss portion, 3 curved plate, 4 mounting portion, 5 spider, 6 rotating shaft, 10 axial blower, 11 impeller, 12 motor, 13 blade leading edge portion, 14 blade trailing edge portion, 15 blade outer peripheral portion , 16 blade inner peripheral portion, 17 first curved portion, 18 second curved portion, 19 third curved portion, 20 tip portion, 21, 22, 23 line segment, 24 vertex, 25, 26, 27, 36 , 37 position, 28 blade tip vortex, 29 separation vortex, 30 chord centerline, 31 pressure surface, 32 suction surface, 33 airflow, 34 wake vortex, 40 part, C rotation direction.

Claims (5)

  1.  回転軸周りに回転可能なボス部と、
     前記ボス部から放射状に延びた翼と、
     を備え、
     前記回転軸に垂直な面に前記翼を投影させた場合における前記翼の平面形にて、前記翼の外縁のうち前記ボス部の回転による前記翼の進行方向へ向けられた翼前縁部は、前記進行方向とは逆の方向へ湾曲する第1の湾曲部と、前記第1の湾曲部よりも前記回転軸の側に設けられており前記進行方向へ湾曲する第2の湾曲部と、前記第1の湾曲部よりも前記回転軸とは逆の側に設けられており前記進行方向へ湾曲する第3の湾曲部と、を有することを特徴とする翼車。
    A boss that can rotate around the axis of rotation,
    Wings extending radially from the boss portion,
    Equipped with
    In the planar shape of the wing when the wing is projected on a plane perpendicular to the rotation axis, a wing leading edge portion of the outer edge of the wing directed in the traveling direction of the wing due to rotation of the boss portion is A first bending portion that bends in a direction opposite to the traveling direction, and a second bending portion that is provided closer to the rotating shaft than the first bending portion and that bends in the traveling direction, An impeller, comprising: a third bending portion that is provided on a side opposite to the rotation axis with respect to the first bending portion and bends in the traveling direction.
  2.  前記翼は、前記進行方向へ向けて突出した先端部を有し、
     前記翼の平面形のうち前記回転軸とは逆の側へ向けられた翼外周部のうち前記先端部に含まれる位置における接線を第1の接線、前記第3の湾曲部のうち前記先端部に含まれる位置における接線を第2の接線、前記第1の湾曲部のうち前記第2の湾曲部の側の端にある位置における接線を第3の接線、前記第1の接線と前記第2の接線とがなす角度であって前記先端部を含む範囲における角度を第1の角度、前記第2の接線と前記第3の接線とがなす角度であって前記第1の湾曲部を含む範囲における角度を第2の角度、として、前記第1の角度が前記第2の角度よりも小さいことを特徴とする請求項1に記載の翼車。
    The blade has a tip portion protruding in the traveling direction,
    The tangent line at a position included in the tip portion of the blade outer peripheral portion facing the side opposite to the rotation axis in the planar shape of the blade is a first tangent line, and the tip portion of the third curved portion is the tangent line. A tangent line at a position included in the second tangent line, a tangent line at a position at the end of the first bending portion on the side of the second bending portion is a third tangent line, the first tangent line and the second tangent line. The angle formed by the tangent of the first tangent to the range including the tip, and the angle formed by the second tangent and the third tangent including the first curved portion. 2. The impeller according to claim 1, wherein the first angle is smaller than the second angle, where the angle in is the second angle.
  3.  前記第1の角度は、20.2度から42.1度の範囲に含まれることを特徴とする請求項2に記載の翼車。 The impeller according to claim 2, wherein the first angle is included in a range of 20.2 degrees to 42.1 degrees.
  4.  前記第2の角度は、90度以上であることを特徴とする請求項2または3に記載の翼車。 The impeller according to claim 2 or 3, wherein the second angle is 90 degrees or more.
  5.  請求項1から4のいずれか1つに記載の翼車と、
     前記翼車を回転駆動するモータと、
     を備えることを特徴とする軸流送風機。
    The impeller according to any one of claims 1 to 4,
    A motor for rotationally driving the impeller,
    An axial-flow blower comprising:
PCT/JP2018/043355 2018-11-26 2018-11-26 Impeller and axial flow fan WO2020110167A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020557411A JPWO2020110167A1 (en) 2018-11-26 2018-11-26 Impellers and axial blowers
PCT/JP2018/043355 WO2020110167A1 (en) 2018-11-26 2018-11-26 Impeller and axial flow fan
CN201880099511.XA CN113039366B (en) 2018-11-26 2018-11-26 Impeller and axial flow fan
TW108114283A TWI742364B (en) 2018-11-26 2019-04-24 Impeller and axial fan
JP2022044255A JP2022075846A (en) 2018-11-26 2022-03-18 Impeller and axial air blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043355 WO2020110167A1 (en) 2018-11-26 2018-11-26 Impeller and axial flow fan

Publications (1)

Publication Number Publication Date
WO2020110167A1 true WO2020110167A1 (en) 2020-06-04

Family

ID=70853909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043355 WO2020110167A1 (en) 2018-11-26 2018-11-26 Impeller and axial flow fan

Country Status (4)

Country Link
JP (2) JPWO2020110167A1 (en)
CN (1) CN113039366B (en)
TW (1) TWI742364B (en)
WO (1) WO2020110167A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039241B1 (en) * 1970-02-06 1975-12-16
JPS5990798A (en) * 1982-11-15 1984-05-25 Toshiba Corp Impeller
JPH06264897A (en) * 1993-03-11 1994-09-20 Yamaha Motor Co Ltd Axial flow fan
JP2004346775A (en) * 2003-05-20 2004-12-09 Hitachi Constr Mach Co Ltd Propeller fan, engine cooling device, and construction machine
JP2010101223A (en) * 2008-10-22 2010-05-06 Sharp Corp Propeller fan, fluid feeding device, and molding die
JP2015031249A (en) * 2013-08-06 2015-02-16 三菱電機株式会社 Propeller fan
JP2015190332A (en) * 2014-03-27 2015-11-02 三菱電機株式会社 Axial blower, ventilation device, and refrigeration cycle device
WO2016021555A1 (en) * 2014-08-07 2016-02-11 三菱電機株式会社 Axial flow fan, and air conditioner having said axial flow fan
WO2017077575A1 (en) * 2015-11-02 2017-05-11 三菱電機株式会社 Blower, outdoor unit, and refrigeration cycle apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222811B2 (en) * 1973-08-11 1977-06-20
JP5990798B2 (en) 2012-09-18 2016-09-14 アクアフェアリー株式会社 Power generator
JP5980180B2 (en) * 2013-08-08 2016-08-31 三菱電機株式会社 Axial flow fan and air conditioner having the axial flow fan
CN205136124U (en) * 2015-11-12 2016-04-06 珠海格力电器股份有限公司 Axial fan and axial compressor fan blade thereof
US10859095B2 (en) * 2016-06-16 2020-12-08 Mitsubishi Electric Corporation Impeller and axial flow fan

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039241B1 (en) * 1970-02-06 1975-12-16
JPS5990798A (en) * 1982-11-15 1984-05-25 Toshiba Corp Impeller
JPH06264897A (en) * 1993-03-11 1994-09-20 Yamaha Motor Co Ltd Axial flow fan
JP2004346775A (en) * 2003-05-20 2004-12-09 Hitachi Constr Mach Co Ltd Propeller fan, engine cooling device, and construction machine
JP2010101223A (en) * 2008-10-22 2010-05-06 Sharp Corp Propeller fan, fluid feeding device, and molding die
JP2015031249A (en) * 2013-08-06 2015-02-16 三菱電機株式会社 Propeller fan
JP2015190332A (en) * 2014-03-27 2015-11-02 三菱電機株式会社 Axial blower, ventilation device, and refrigeration cycle device
WO2016021555A1 (en) * 2014-08-07 2016-02-11 三菱電機株式会社 Axial flow fan, and air conditioner having said axial flow fan
WO2017077575A1 (en) * 2015-11-02 2017-05-11 三菱電機株式会社 Blower, outdoor unit, and refrigeration cycle apparatus

Also Published As

Publication number Publication date
TWI742364B (en) 2021-10-11
TW202020314A (en) 2020-06-01
JP2022075846A (en) 2022-05-18
CN113039366A (en) 2021-06-25
JPWO2020110167A1 (en) 2021-05-13
CN113039366B (en) 2023-06-02

Similar Documents

Publication Publication Date Title
JP5549772B2 (en) Propeller fan and air conditioner equipped with the same
JP4396775B2 (en) Centrifugal fan
CN110431311B (en) Propeller fan
JP5430754B2 (en) Axial blower
JP6218862B2 (en) Axial blower
JP6914371B2 (en) Axial blower
JP6604981B2 (en) Axial blower impeller and axial blower
EP3473860A1 (en) Turbine and axial blower
JP4818310B2 (en) Axial blower
JP3127850B2 (en) Impeller for propeller fan
JP5127854B2 (en) Blower and heat pump device
JP6739656B2 (en) Impeller, blower, and air conditioner
JP5366532B2 (en) Axial fan and air conditioner outdoor unit
WO2020110167A1 (en) Impeller and axial flow fan
KR20170102097A (en) Fan of axial flow suppress for vortex and leakage flow
JP2019127865A (en) Centrifugal fan
WO2021220469A1 (en) Blower
KR20170116754A (en) High pressure centrifugal impeller
JP6330738B2 (en) Centrifugal blower and air conditioner using the same
JP7069406B2 (en) Propeller fan and blower
KR101826348B1 (en) Cross-flow fan and air conditioner equipped therewith
WO2023157271A1 (en) Impeller, blower, and air conditioner
WO2023199731A1 (en) Centrifugal fan
CN113167290B (en) Impeller, blower, and air conditioner
WO2019202641A1 (en) Propeller fan

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18941349

Country of ref document: EP

Kind code of ref document: A1