JP3304191B2 - Method for producing high-strength galvannealed steel sheet with excellent secondary work brittleness resistance - Google Patents

Method for producing high-strength galvannealed steel sheet with excellent secondary work brittleness resistance

Info

Publication number
JP3304191B2
JP3304191B2 JP05889194A JP5889194A JP3304191B2 JP 3304191 B2 JP3304191 B2 JP 3304191B2 JP 05889194 A JP05889194 A JP 05889194A JP 5889194 A JP5889194 A JP 5889194A JP 3304191 B2 JP3304191 B2 JP 3304191B2
Authority
JP
Japan
Prior art keywords
mass
less
temperature
steel sheet
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05889194A
Other languages
Japanese (ja)
Other versions
JPH07268584A (en
Inventor
金晴 奥田
一洋 瀬戸
坂田  敬
俊之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP05889194A priority Critical patent/JP3304191B2/en
Publication of JPH07268584A publication Critical patent/JPH07268584A/en
Application granted granted Critical
Publication of JP3304191B2 publication Critical patent/JP3304191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、高強度で、かつプレ
ス成形性、表面処理性にすぐれる高強度冷延鋼板に好適
な溶融亜鉛めっきを施して耐二次加工脆性に優れる高強
度合金化溶融亜鉛めっき鋼板を製造する方法を提案する
ものである。この発明にかかる高強度合金化溶融亜鉛め
っき表面処理鋼板は、プレス加工をした後、例えば、自
動車車体用などに使用されるものであり、特にそれらに
要求される成形性と強度を同時に付与することができる
ため、鋼板の薄肉化ひいてはそれらの製品の軽量化が達
成できるという効果を有する。
BACKGROUND OF THE INVENTION The present invention relates to a high-strength alloy which has high strength and excellent hot pressability and surface treatment properties, and is subjected to hot-dip galvanizing suitable for high-strength cold-rolled steel sheets and has excellent secondary work brittleness resistance. The present invention proposes a method for producing a galvannealed steel sheet. The high-strength alloyed hot-dip galvanized surface-treated steel sheet according to the present invention is used, for example, for an automobile body after being subjected to press working, and particularly simultaneously imparts the required formability and strength to them. Therefore, there is an effect that the thickness of the steel sheet can be reduced, and the weight of those products can be reduced.

【0002】[0002]

【従来の技術】従来より、製鋼段階で十分に脱炭処理を
行い極低炭素とし、鋼中の固溶Cや、固溶Nを、Ti, Nb
などの炭窒化物形成成分を含有させることにより、これ
らの炭窒化物として析出させ、C,Nを固定した鋼をベ
ース鋼とし、これに、Si,P及びMnなどを固溶させ、強
度を上げた高張力冷延鋼板についてはすでに多くの提案
がなされている。たとえば、特公昭63−190141号公報に
おいては上記極低炭素Ti添加鋼に、多量のMn,Pを添加
させた冷延鋼板が開示されている。この場合において
は、適量のMn,Pを添加することにより、焼鈍後、少量
の固溶Cが残存し、これが、平均r値を著しく向上さ
せ、しかも、粒界に存在する固溶Cのため二次加工脆性
が効果的に防止されるとしている。
2. Description of the Related Art Conventionally, decarburization has been sufficiently performed in a steel making stage to obtain extremely low carbon, and solute C and solute N in steel are reduced to Ti, Nb.
By containing carbonitride forming components, such as carbonitride, these are precipitated as carbonitrides, and a steel to which C and N are fixed is used as a base steel. Many proposals have already been made for the raised high-tensile cold-rolled steel sheets. For example, Japanese Patent Publication No. 63-190141 discloses a cold-rolled steel sheet obtained by adding a large amount of Mn and P to the ultra-low carbon Ti-added steel. In this case, by adding an appropriate amount of Mn and P, a small amount of solid solution C remains after annealing, which significantly improves the average r value and further increases the amount of solid solution C existing at the grain boundary. It is stated that secondary working brittleness is effectively prevented.

【0003】この他にも、上記極低炭素鋼に、Si, Mn,
Pの固溶強化成分を複合添加する冷延板について、いく
つかの開示例がある。しかしながら、これらの成分はめ
っき性に影響を及ぼすことが知られていて、特にこれら
の成分を含む鋼板を溶融亜鉛めっきすることは非常に困
難であった。
[0003] In addition, Si, Mn,
There are several disclosed examples of cold rolled sheets to which a solid solution strengthening component of P is added in combination. However, these components are known to affect the plating properties, and it has been very difficult to hot-dip galvanize a steel sheet containing these components.

【0004】[0004]

【発明が解決しようとする課題】以上のことから、発明
者らはもちろんのこと当業界おいても、溶融亜鉛めっき
特性に優れ、引張強さが38kgf/mm2 以上で、平均r値が
1.5 以上の溶融亜鉛めっき鋼板を得ること、および、こ
れを低コストの合金添加でしかも通常の連続焼鈍により
目標とする特性が得られる製造方法が求められている。
From the above, the present inventors, of course, have excellent galvanizing properties, a tensile strength of 38 kgf / mm 2 or more, and an average r-value of
There is a demand for a hot-dip galvanized steel sheet of 1.5 or more, and a production method that can obtain the desired properties by adding a low-cost alloy and ordinary continuous annealing.

【0005】したがって、この発明の目的とするところ
は、前記した問題点を有利に解決し、極低炭素Ti, Nb,
B複合添加鋼をベース鋼とし、引張強さが38kgf/mm2
上で、耐二次加工脆性及び溶融亜鉛めっき特性に優れ、
かつ、平均r値が1.5 以上となる高平均r値の高強度合
金化溶融亜鉛めっき鋼板の製造方法を提案することにあ
る。
[0005] Accordingly, an object of the present invention is to solve the above-described problems advantageously, and to achieve a very low carbon Ti, Nb,
The B-complex-containing steel as a base steel, a tensile strength of 38kgf / mm 2 or more, excellent resistance to secondary work embrittlement and hot-dip galvanizing properties,
Another object of the present invention is to propose a method for producing a high-strength alloyed hot-dip galvanized steel sheet having a high average r-value with an average r-value of 1.5 or more.

【0006】[0006]

【課題を解決するための手段】発明者らは、かかる目的
達成のため、上記の極低炭素Ti, Nb, B複合添加鋼に注
目し、鋭意研究を進めてきた。その結果、極低炭素Ti,
Nb, B複合添加鋼に、Si,P含有量にたいして、Mnの含
有量を適当なバランスに保たせることにより、高い平均
r値が得られることを見いださしたが、このような鋼板
ではSi, Mnが表面に濃化し、溶融亜鉛めっき時に不鍍金
を生じやすくなるという問題がありこれを克服する手段
としてNOF (無酸化炉)処理やブラシング後酸洗処理が
考えられた。
Means for Solving the Problems In order to achieve the above object, the inventors have paid close attention to the ultra-low carbon Ti, Nb, and B composite added steels and have conducted intensive research. As a result, extremely low carbon Ti,
It has been found that a high average r value can be obtained by maintaining the content of Mn in the Nb, B composite added steel in an appropriate balance with respect to the Si, P content. There is a problem that iron is concentrated on the surface and non-plating tends to occur during hot-dip galvanizing. To overcome this problem, NOF (non-oxidizing furnace) treatment and pickling after brushing have been considered.

【0007】そしてさらに研究を重ねた結果、焼鈍・ブ
ラシング酸洗・めっきプロセスにおいて、1次及び2次
の焼鈍を行い、かつめっき直前の2次焼鈍温度を最適化
しないと耐二次加工脆性が非常に悪化することを新規に
知見し、この発明を達成したものである。なおこれは、
Pによる偏析が主要な原因と考えられるが詳細な理由は
不明である。すなわち、この発明の要旨は以下の通りで
ある。 C:0.001 mass%以上、 0.007 mass %以下、 Si:0.05 mass %以上、 0.5 mass %以下、 Mn:0.5 mass%以上、 2.0 mass %以下、 Ni:0.8 mass%以下、 Ti:0.01 mass %以上、 0.2 mass %以下、 Nb:0.001 mass%以上、0.1 mass%以下、 B:0.0002 mass %以上、0.005 mass%以下、 Cu:1.0 mass%以下、 P:0.03 mass %以上、0.12 mass %以下、 sol Al:0.1 mass%以下、 S:0.02 mass %以下 及び N:0.005 mass%以下 を含み、残部はFeおよび不可避的不純物の組成になる鋼
スラブを素材として、Ar3 点 (℃) 以上、Ar3 点 (℃)
+100 ℃以下の圧延仕上げ温度範囲で熱間圧延を終了し
たのち650 ℃以下の温度域でコイルに巻きとり、スケー
ル除去後冷間圧延し、750 ℃以上の温度で1次連続焼鈍
を行ったのち、酸洗又はブラシング後酸洗し温度T
(℃)が500 ℃以上で、かつ上記Pの含有量の値を(%
P)としてあらわす下記式(1) 又は(2) を満たす温度域
での2次焼鈍に続いて溶融亜鉛めっきを行い合金化処理
を施すことを特徴とする耐二次加工脆性に優れる高強度
合金化溶融亜鉛めっき鋼板の製造方法である。 〔記〕 T (℃) ≦700(℃) −[(%P)−0.03]×1000 (℃) --- (1) T (℃) ≧700(℃) +[(%P)−0.03]×1000 (℃) --- (2)
[0007] As a result of further studies, the primary and secondary annealing in the annealing, brushing and pickling / plating processes, and the secondary annealing brittleness must be optimized unless the secondary annealing temperature immediately before plating is optimized. The inventor has newly found that the present invention is greatly deteriorated, and has achieved the present invention. This is
Segregation by P is considered to be the main cause, but the detailed reason is unknown. That is, the gist of the present invention is as follows. C: 0.001 mass% or more, 0.007 mass% or less, Si: 0.05 mass% or more, 0.5 mass% or less, Mn: 0.5 mass% or more, 2.0 mass% or less, Ni: 0.8 mass% or less, Ti: 0.01 mass% or more, 0.2 mass% or less, Nb: 0.001 mass% or more, 0.1 mass% or less, B: 0.0002 mass% or more, 0.005 mass% or less, Cu: 1.0 mass% or less, P: 0.03 mass% or more, 0.12 mass% or less, sol Al : 0.1 mass% or less, S: 0.02 mass% or less and N: comprises 0.005 mass% or less, the balance as material a steel slab comprising the composition of Fe and unavoidable impurities, Ar 3 point (℃) above, Ar 3 point (℃)
After hot rolling is completed at a rolling finishing temperature range of + 100 ° C or less, it is wound around a coil at a temperature range of 650 ° C or less, scale-removed, cold-rolled, and subjected to primary continuous annealing at a temperature of 750 ° C or more. Temperature T after pickling or brushing
(° C) is 500 ° C or more, and the content of P
A high-strength alloy excellent in secondary work brittleness resistance, characterized by subjecting to secondary annealing in a temperature range satisfying the following formula (1) or (2) expressed as P), followed by galvanizing and alloying treatment. This is a method for producing a galvannealed steel sheet. [Note] T (° C) ≤ 700 (° C)-[(% P)-0.03] x 1000 (° C) --- (1) T (° C) ≥ 700 (° C) + [(% P)-0.03] × 1000 (℃) --- (2)

【0008】[0008]

【作用】この発明において鋼の成分組成および製造条件
を限定する理由について説明する。
The reasons for limiting the steel composition and the production conditions in the present invention will be described.

【0009】C:0.001 〜0.007 mass%、Cは、再結晶
時に固溶Cが多量に残存した場合、平均r値を大きく劣
化させる。また、固溶Cを固定させるTi, NbもC量に応
じて含有させる必要があるため、C含有量はできるだけ
低いことが好ましいが、許容できる上限を0.007mass %
とする。一方、C含有量の下限は、低い程良いのである
が、現在の製鋼技術から、0.001 mass%とする。
C: 0.001 to 0.007 mass%, C greatly deteriorates the average r value when a large amount of solid solution C remains during recrystallization. In addition, since Ti and Nb for fixing solid solution C must also be contained in accordance with the C content, the C content is preferably as low as possible, but the allowable upper limit is 0.007 mass%.
And On the other hand, the lower limit of the C content is preferably as low as possible, but is set to 0.001 mass% from the current steelmaking technology.

【0010】Si:0.05〜0.5 mass%、Siは、固溶強化能
が大きく、平均r値をそれほど劣化させないため、固溶
強化成分としては最適である。このためには0.05mass%
以上を含有させる必要がある。しかしながら、含有量が
多くなると表面処理性が悪くなるためその上限を0.5mas
s%とする。
Si: 0.05 to 0.5 mass%, Si has a large solid solution strengthening ability and does not significantly deteriorate the average r value, and is therefore an optimal solid solution strengthening component. 0.05mass% for this
It is necessary to contain the above. However, when the content increases, the surface treatment property deteriorates, so the upper limit is 0.5 mas.
s%.

【0011】Mn:0.5 〜2.0 mass%、Mnは、Si,Pとは
異なり、変態点を下げる成分であるため、これを有効に
活用することにより、熱延板の粒径を非常に細かくする
ことができる。熱延板の細粒化は、熱延板の結晶粒界よ
り、焼鈍板の(111) 集合組織が発達し、平均r値の向上
に非常に有効である。その効果は含有量が0.5 mass%以
上で得られる。一方、Mn自体は平均r値を劣化させる成
分であるため、多量に含有させることは有効でなく、そ
の含有量が2mass%超えでは、めっき性が低下するこ
と、また低温変態相が現れやすくなってフェライト組織
でなくなり、平均r値を大きく劣化させる。したがっ
て、その含有量は0.5 mass%以上、2.0mass %以下とす
る。また、上記Si、下記するNi, Cu及びPの含有量との
バランスについては 0.2 ≦(Si(mass%) +P(mass%))/(Mn(mass%) +Cu
(mass%) +Ni(mass %))≦1.0 とすることが望ましい。これは、上記バランスが0.2 よ
り小さくなると平均r値が劣化し、反対に1.0 より多く
なると変態点が高くなり、熱延板の細粒化が望めないか
らである。
Mn: 0.5 to 2.0 mass%, unlike Si and P, Mn is a component that lowers the transformation point, and by making effective use of this, the grain size of the hot-rolled sheet is made extremely fine. be able to. The grain refinement of the hot-rolled sheet is very effective in improving the average r-value by developing the (111) texture of the annealed sheet from the grain boundaries of the hot-rolled sheet. The effect is obtained when the content is 0.5 mass% or more. On the other hand, since Mn itself is a component that deteriorates the average r value, it is not effective to include a large amount of Mn. If the content exceeds 2 mass%, the plating property is reduced, and a low-temperature transformation phase tends to appear. As a result, the material does not have a ferrite structure, and the average r value is greatly deteriorated. Therefore, the content is 0.5 mass% or more and 2.0 mass% or less. In addition, the balance with the contents of Si, Ni, Cu and P described below is 0.2 ≦ (Si (mass%) + P (mass%)) / (Mn (mass%) + Cu
(mass%) + Ni (mass%)) ≦ 1.0. This is because when the above-mentioned balance is smaller than 0.2, the average r-value is deteriorated, and when the above-mentioned balance is more than 1.0, the transformation point is increased, and it is not possible to reduce the grain size of the hot-rolled sheet.

【0012】Ni:0.8 mass%以下、Niは、主としてCu添
加にともなって含有させる。Cuを含有させると熱延時に
低融点相ができ、これが胡麻へげ欠陥となる。これを回
避するにはCuと全率固溶体を作るNi添加が有効である。
しかも、Niは、Cu、Mnと同様に変態点を下げる成分であ
るため、これらの成分と同様の効果が期待できる。しか
しながら、含有量が0.8 mass%を超えると低温変態相が
現れやすくなってフェライト組織がなくなり、平均r値
を大きく劣化させる。したがって、その含有量の上限を
0.8 mass%とする。
Ni: 0.8 mass% or less, Ni is mainly contained with the addition of Cu. When Cu is contained, a low-melting phase is formed during hot rolling, which becomes a sesame shedding defect. In order to avoid this, it is effective to add Ni to form a solid solution with Cu.
Moreover, Ni is a component that lowers the transformation point similarly to Cu and Mn, and therefore, the same effect as these components can be expected. However, when the content exceeds 0.8 mass%, a low-temperature transformation phase is likely to appear and the ferrite structure disappears, and the average r value is greatly deteriorated. Therefore, the upper limit of the content
0.8 mass%.

【0013】Ti:0.01〜0.2 mass%、Tiは、固溶C,
N,SをTiC, TiN, TiS として固定するために含有させ
る。その効果は含有量が0.01 mass %未満では十分でな
く、0.2 mass%超えでは、燐化物が発生し、伸び及び平
均r値を劣化させる。したがって、その含有量は0.01ma
ss%以上、0.2 mass%以下とする。
Ti: 0.01 to 0.2 mass%, Ti is a solid solution C,
N and S are contained for fixing as TiC, TiN and TiS. If the content is less than 0.01 mass%, the effect is not sufficient. If the content exceeds 0.2 mass%, phosphide is generated, and the elongation and the average r value are deteriorated. Therefore, its content is 0.01ma
ss% or more and 0.2 mass% or less.

【0014】Nb:0.001 〜0.1mass %、Nbは、Tiと同様
CをNbC として固溶Cを固定するのに利用される。Tiの
みでも固溶Cの固定はできるが、Nbを複合添加すること
によりより有効に固溶Cを固定することができ、平均r
値の向上が望める。その効果は含有量が0.001mass %未
満では十分でなく0.1mass %を超えて含有させるとオー
ステナイト未再結晶状態で熱間圧延することになって焼
鈍材の成形性に悪影響をおよぼす。したがって、その含
有量は0.001mass 以上、0.1mass %以下とする。
Nb: 0.001 to 0.1 mass%, Nb is used to fix solid solution C by using C as NbC as in Ti. Although solid solution C can be fixed by Ti alone, solid solution C can be fixed more effectively by adding Nb in combination, and the average r
The value can be improved. The effect is not sufficient if the content is less than 0.001 mass%, and if the content is more than 0.1 mass%, hot rolling is performed in an austenite non-recrystallized state, adversely affecting the formability of the annealed material. Therefore, the content is set to 0.001 mass% or more and 0.1 mass% or less.

【0015】B:0.0002〜0.005 mass%、Bは、二次加
工脆性を防止するために含有させる。とくに極低炭素鋼
板に固溶強化成分を含有させると、耐二次加工脆性が劣
化するためBを含有させることを必須とする。その効果
は含有量が 0.0002 mass%以上で発現するが、0.005 ma
ss%を超えて過剰に含有させると、熱間圧延時にオース
テナイトの再結晶を遅らせ、圧延時の負荷が大きくな
り、しかも、焼鈍板の材質を劣化させる。したがって、
その含有量は0.0002 mass %以上、0.005 mass%以下と
する。
B: 0.0002 to 0.005 mass%, B is contained to prevent secondary working embrittlement. In particular, when a solid solution strengthening component is contained in an ultra-low carbon steel sheet, secondary work embrittlement resistance is deteriorated, so that B must be contained. The effect is manifested when the content is 0.0002 mass% or more.
If it is contained in excess of ss%, recrystallization of austenite is delayed during hot rolling, the load during rolling is increased, and the material of the annealed sheet is deteriorated. Therefore,
Its content should be 0.0002 mass% or more and 0.005 mass% or less.

【0016】Cu:1.0 mass%以下、Cuは、Mn, Niと同様
に変態点を下げる成分であるため、これを有効に活用す
ることにより、熱延板の粒径を非常に細かくすることが
できる。また、Cuはめっき性を劣化させない成分である
ため、表面処理性の面から非常に有効である。しかしな
がら、1.0 mass%超えでは、低温変態相が現れやすくな
ってフェライト組織でなくなり、平均r値を大きく劣化
させる。したがって、その含有量の上限を1.0 mass%と
する。
Cu: 1.0 mass% or less, Cu is a component that lowers the transformation point like Mn and Ni. By effectively utilizing this, it is possible to make the grain size of the hot-rolled sheet extremely fine. it can. Further, Cu is a component that does not deteriorate the plating property, and therefore is very effective in terms of surface treatment properties. However, if the content exceeds 1.0 mass%, a low-temperature transformation phase is likely to appear, and the ferrite structure is not obtained, and the average r value is greatly deteriorated. Therefore, the upper limit of the content is set to 1.0 mass%.

【0017】P:0.03〜0.12 mass % Pは、固溶強化成分としては重要であり、固溶強化能は
Si, Mnにくらべて高く、平均r値を上昇させる成分でも
ある。それらの効果を得るためには0.03mass%以上含有
させる必要があるが、0.12mass%を超えて含有させる
と、粒界に偏析してその粒界を脆化させる。また、凝固
時の中心偏析の原因となること、さらに、合金化溶融亜
鉛めっきの際、合金化速度を遅延させる。したがって、
その含有量は0.03mass%以上、0.12 mass %以下とす
る。
P: 0.03 to 0.12 mass% P is important as a solid solution strengthening component, and has a solid solution strengthening ability.
It is higher than Si and Mn and also increases the average r value. In order to obtain these effects, the content needs to be 0.03 mass% or more. However, if the content exceeds 0.12 mass%, segregation occurs at the grain boundaries and the grain boundaries are embrittled. Further, it causes center segregation at the time of solidification, and further slows down the alloying speed during galvannealing. Therefore,
Its content should be 0.03 mass% or more and 0.12 mass% or less.

【0018】sol Al:0.1 mass%以下、Alは、脱酸に必
要な成分であるが、sol Al含有量が0.1 mass%を超える
と脱酸効果が飽和するだけでなく、介在物が増加し、成
形性に悪影響を及ぼす。したがって、その含有量は0.1
mass%以下とする。
Sol Al: 0.1 mass% or less, Al is a component necessary for deoxidation. When the sol Al content exceeds 0.1 mass%, not only the deoxidation effect is saturated, but also inclusions increase. Adversely affects moldability. Therefore, its content is 0.1
mass% or less.

【0019】S:0.02mass%以下、Sは、平均r値に影
響を及ぼさないが、含有量が0.02mass%超えるとMnS 等
の介在物が増加し、伸びフランジ性に代表される局部延
性を低下させる原因となる。したがって、その含有量は
0.02mass%以下、とする。
S: not more than 0.02 mass%, S does not affect the average r value, but if the content exceeds 0.02 mass%, inclusions such as MnS increase, and local ductility represented by stretch flangeability is reduced. May cause a decrease. Therefore, its content is
0.02 mass% or less.

【0020】N:0.005 mass%以下、Nは、不可避的に
鋼中に混入する不純物成分であるが、Ti添加によりTiN
として固定し成形性を向上させる。しかしながら、多量
のTiN が形成されると加工性の劣化をまねく。その許容
できる含有量の上限を0.005 mass%とする。
N: 0.005 mass% or less, N is an impurity component unavoidably mixed into steel.
To improve moldability. However, when a large amount of TiN is formed, workability is deteriorated. The upper limit of the allowable content is set to 0.005 mass%.

【0021】次に、製造条件の限定理由について述べ
る。 熱間圧延終了温度:Ar3 点〜Ar3 点+100 ℃ 熱間圧延終了温度は、変態点に応じて変化させる必要が
ある。Ar3 変態点未満では、二相域圧延となり、焼鈍板
の平均r値に悪影響をおよぼす集合組織が発達してしま
う。一方、Ar3 変態点に対して相対的に高い温度、すな
わち100 ℃を超えて高くなると、熱延板組織の粒径が粗
くなり、焼鈍時に深絞り性に有効な集合組織が発達しな
くなるために不適である。したがって、熱間圧延終了温
度は、Ar 3 点 (℃) からAr3 点 (℃) +100 ℃の温度範
囲とする。 巻取り温度:650℃以下 巻取り温度は、この発明のようにTi,Pが複合添加され
ている場合、650 ℃を超えると平均r値が大きく劣化す
ることを見いだしたことにより限定するものである。こ
れは、650 ℃を超える巻取り温度では、TiおよびFeの燐
化物が熱延板に多量に析出し、詳細は不明であるが、こ
れが焼鈍材の平均r値に悪影響を及ぼすためと推測され
る。
Next, the reasons for limiting the manufacturing conditions will be described.
You. Hot rolling end temperature: ArThreeDot to ArThreePoint + 100 ° C The hot rolling end temperature must be changed according to the transformation point
is there. ArThreeBelow the transformation point, it becomes two-phase rolling and annealed sheet
Texture that adversely affects the average r value of
U. On the other hand, ArThreeHigh temperature relative to transformation point,
That is, when the temperature exceeds 100 ° C, the grain size of the hot-rolled sheet structure becomes coarse.
And the texture effective for deep drawability does not develop during annealing.
It is not suitable for becoming. Therefore, the hot rolling end temperature
The degree is Ar ThreeFrom point (° C) to ArThreePoint (° C) + 100 ° C temperature range
Enclose. Winding temperature: 650 ° C or less The winding temperature is determined by adding Ti and P as in the present invention.
If the temperature exceeds 650 ° C, the average r
It is limited by finding things. This
This is because at winding temperatures above 650 ° C, the phosphorus
Chloride precipitates in large quantities on the hot-rolled sheet, the details of which are unknown.
It is presumed that this adversely affects the average r value of the annealed material.
You.

【0022】冷間圧延は常法にしたがって行えばよく、
その圧下率も通常常識の範囲でよい。1次焼鈍は連続焼
鈍が望ましい。その場合の焼鈍温度は再結晶が完了する
ように750 ℃以上とし、その上限はAc1 点+50℃以下に
することが好ましい。
The cold rolling may be performed according to a conventional method.
The rolling reduction may be in the range of common sense. The primary annealing is preferably continuous annealing. In this case, the annealing temperature is set to 750 ° C. or higher so that recrystallization is completed, and the upper limit is preferably set to 1 point of Ac + 50 ° C. or lower.

【0023】2次焼鈍温度T(℃):500 ℃以上で、かつT
(℃) ≦ 700 (℃) −[(%P)−0.03]×1000 (℃)
又はT (℃) ≧700(℃) +[(%P)−0.03]×1000
(℃) 図1に(%P)と2次焼鈍温度の関係において、この発明
の限定範囲のグラフを示す。2次焼鈍温度は、この成分
系においては700 ℃近傍では脆化が激しく、その温度域
はP含有量により左右される。この詳細な理由は不明で
あるがその温度域での燐の粒界偏析が非常に促進される
ことが大きな原因と思われる。したがって、2次焼鈍温
度T (℃) は、T (℃) ≦ 700 (℃) −[(%P)−0.
03]×1000 (℃) 又はT (℃) ≧700(℃) +[(%P)
−0.03]×1000 (℃) とする。また、500 ℃以上でない
と鋼板表面の還元が不十分となりめっき性が悪くなる。
Secondary annealing temperature T (° C.): 500 ° C. or higher and T
(° C) ≤ 700 (° C)-[(% P)-0.03] x 1000 (° C)
Or T (° C) ≧ 700 (° C) + [(% P) -0.03] × 1000
(° C.) FIG. 1 shows a graph of the limited range of the present invention in relation to (% P) and the secondary annealing temperature. Regarding the secondary annealing temperature, in this component system, the brittleness is severe near 700 ° C., and the temperature range is affected by the P content. Although the detailed reason for this is unknown, it is considered that the major cause is that the grain boundary segregation of phosphorus in the temperature range is greatly promoted. Therefore, the secondary annealing temperature T (° C.) is T (° C.) ≦ 700 (° C.) − [(% P) −0.
03] × 1000 (℃) or T (℃) ≧ 700 (℃) + [(% P)
−0.03] × 1000 (℃). On the other hand, if the temperature is not higher than 500 ° C., the reduction of the surface of the steel sheet becomes insufficient, and the plating property deteriorates.

【0024】[0024]

【実施例】表1に示す化学成分組成になる鋼スラブを圧
延開始温度:1250℃で熱間圧延してコイルに巻取り、酸
洗後、80%の圧下率にて冷間圧延を行い、表2に示す焼
鈍温度に40秒間のアランダムバス処理を施す1次焼鈍を
行い、酸洗後表2に示す焼鈍温度での2次焼鈍に続いて
溶融亜鉛めっきし合金化処理を施した。
EXAMPLE A steel slab having the chemical composition shown in Table 1 was hot-rolled at a rolling start temperature of 1250 ° C., wound around a coil, pickled, and then cold-rolled at a rolling reduction of 80%. The primary annealing was performed by performing an alundum bath treatment at the annealing temperature shown in Table 2 for 40 seconds. After the acid washing, the secondary annealing was performed at the annealing temperature shown in Table 2, followed by galvanizing and alloying.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 かくして得られた合金化溶融亜鉛めっき鋼板について、
引張特性、耐2次加工脆性(脆性遷移温度)などを調査
し、亜鉛めっきについて、めっき性、めっき密着性、合
金化速度などについて評価した。これらの調査結果を表
2に併せて示した。
[Table 2] About the alloyed hot-dip galvanized steel sheet thus obtained,
Tensile properties, secondary work brittleness resistance (brittle transition temperature), and the like were investigated, and zinc plating was evaluated for plating properties, plating adhesion, alloying speed, and the like. The results of these surveys are also shown in Table 2.

【0027】ここに、引張り試験は、0.8 %の調質圧延
をほどこし圧延方向に採取したJIS 5号試験片(平行部
幅25mm、標点間距離50mm) を用いて行った。r値の測定
は、圧延方向(L)圧延45°方向(D)および圧延直角
方向(T)から採取したJIS 5号試験片を用いて標点間
距離25mmで15%引張歪みを与えて行った。そして平均r
値は 平均r値=(rL +rT +2rD )/4 より求めた。耐二次加工脆性は、絞り比1.8 のカップに
成形後、所定の温度で80cm−5kgの衝撃をあたえ割れが
入り始める温度を遷移温度とした。
Here, the tensile test was performed using a JIS No. 5 test piece (parallel width 25 mm, gauge length 50 mm) sampled in the rolling direction after temper rolling of 0.8%. The r value was measured using a JIS No. 5 test piece taken from the rolling direction (L), the 45 ° direction (D) and the direction perpendicular to the rolling direction (T), with a gauge length of 25 mm and a 15% tensile strain. Was. And the average r
Values were determined from the average r value = (r L + r T + 2r D) / 4. The secondary working brittleness was determined as the transition temperature at which a cup was formed into a cup with a drawing ratio of 1.8 and then subjected to an impact of 80 cm-5 kg at a predetermined temperature and cracking started.

【0028】また、亜鉛めっきの評価及び判定基準は、
下記にしたがって行った。 ・めっき性 溶融亜鉛めっき後の外観目視判定により評価した。 ○ 不めっきなし × 不めっき発生 ・めっき密着性 デュポン衝撃試験(半球直径:6.35 mm (1/4インチ) 、
おもり:1kg、高さ:500mm ) により評価した。 ○ めっき剥離なし × めっき剥離あり ・合金化速度 合金化亜鉛めっき鋼板表面に亜鉛のη相が残存している
か否かで合金化速度を評価した。 ○ η相なし × η相あり
In addition, the evaluation and judgment criteria for zinc plating are as follows:
It went according to the following. -Plating property Evaluation was made by visual inspection after hot-dip galvanizing. ○ No plating × No plating ・ Plating adhesion Dupont impact test (hemispherical diameter: 6.35 mm (1/4 inch)
Weight: 1 kg, height: 500 mm). ○ No plating peeling × Plating peeling ・ Alloying speed The alloying speed was evaluated based on whether or not the η phase of zinc remained on the surface of the galvannealed steel sheet. ○ Without η phase × With η phase

【0029】表1及び表2から明らかなように、この成
分組成、製造条件ともこの発明に適合する適合例は全
て、引張強さ:40 kgf/mm2 以上、平均r値:1.5 以
上、脆性遷移温度:−50℃以下で亜鉛めっきの評価も良
好な合金化溶融亜鉛めっき鋼板が得られている。
As is clear from Tables 1 and 2, all of the conforming examples conforming to the present invention in terms of the composition of the components and the manufacturing conditions are all tensile strength: 40 kgf / mm 2 or more, average r value: 1.5 or more, brittle An alloyed hot-dip galvanized steel sheet having a transition temperature of −50 ° C. or less and good evaluation of galvanization is obtained.

【0030】つぎに表1に示した鋼No.1について、2
次焼鈍温度を変えてそれらの脆性遷移温度を測定した。
なお、1次焼鈍温度は850 ℃と一定にした。それらの結
果を図2にまとめて示す。図2は2次焼鈍温度と脆性遷
移温度の関係を示すグラフで、2次焼鈍温度がこの発明
の限定範囲にある場合は、脆性遷移温度は判定基準とし
た−45℃以上になっていて耐二次加工脆性に優れている
ことを示している。
Next, regarding steel No. 1 shown in Table 1, 2
The brittle transition temperatures were measured at different annealing temperatures.
The primary annealing temperature was fixed at 850 ° C. The results are shown in FIG. FIG. 2 is a graph showing the relationship between the secondary annealing temperature and the brittle transition temperature. When the secondary annealing temperature is within the limited range of the present invention, the brittle transition temperature is equal to or higher than -45 ° C., which is the criterion. It shows that it is excellent in secondary working brittleness.

【0031】[0031]

【発明の効果】この発明は、極低炭素Ti , Nb , B複合
添加鋼の成分組成を限定し、めっき直前の2次焼鈍温度
域を特定することにより、耐二次加工脆性に優れる高強
度合金化溶融亜鉛めっき鋼板を得るものであり、この発
明による鋼板は、自動車用、家電製品用などに有利に適
用でき、それらの軽量化に貢献できる。
According to the present invention, a high-strength steel with excellent secondary work brittleness resistance is provided by limiting the composition of the ultra-low carbon Ti, Nb, B composite added steel and specifying the secondary annealing temperature range immediately before plating. An alloyed hot-dip galvanized steel sheet is obtained. The steel sheet according to the present invention can be advantageously applied to automobiles, home electric appliances, and the like, and can contribute to their weight reduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(%P)と2次焼鈍温度の関係において、この発
明の限定範囲を示すグラフである。
FIG. 1 is a graph showing a limited range of the present invention in relation to (% P) and a secondary annealing temperature.

【図2】2次焼鈍温度と脆性遷移温度の関係を示すグラ
フである。
FIG. 2 is a graph showing a relationship between a secondary annealing temperature and a brittle transition temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C23C 2/28 C23C 2/28 2/40 2/40 (72)発明者 加藤 俊之 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究本部内 (56)参考文献 特開 平6−179922(JP,A) 特開 平7−70723(JP,A) 特開 平7−70724(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 - 9/48 C21D 8/00 - 8/04 C22C 38/00 - 38/60 C23C 2/00 - 2/40 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI C23C 2/28 C23C 2/28 2/40 2/40 (72) Inventor Toshiyuki Kato 1 Kawasakicho, Chuo-ku, Chiba-shi, Chiba Kawasaki (56) References JP-A-6-179922 (JP, A) JP-A-7-70723 (JP, A) JP-A-7-70724 (JP, A) (58) Field (Int.Cl. 7 , DB name) C21D 9/46-9/48 C21D 8/00-8/04 C22C 38/00-38/60 C23C 2/00-2/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.001 mass%以上、 0.007 mass %
以下、 Si:0.05 mass %以上、 0.5 mass %以下、 Mn:0.5 mass%以上、 2.0 mass %以下、 Ni:0.8 mass%以下、 Ti:0.01 mass %以上、 0.2 mass %以下、 Nb:0.001 mass%以上、 0.1 mass %以下、 B:0.0002 mass %以上、0.005 mass%以下、 Cu:1.0 mass%以下、 P:0.03 mass %以上、0.12 mass %以下、 sol Al:0.1 mass%以下、 S:0.02 mass %以下 及び N:0.005 mass%以下を含み、残部はFeおよび不可避的
不純物の組成になる鋼スラブを素材として、 Ar3 点 (℃) 以上、Ar3 点 (℃) +100 ℃以下の圧延仕
上げ温度範囲で熱間圧延を終了したのち650 ℃以下の温
度域でコイルに巻きとり、スケール除去後冷間圧延し、
750 ℃以上の温度で1次連続焼鈍を行ったのち、酸洗又
はブラシング後酸洗し温度T(℃)が500 ℃以上で、か
つ上記Pの含有量の値を(%P)としてあらわす下記式
(1) 又は(2) を満たす温度域での2次焼鈍に続いて溶融
亜鉛めっきを行い合金化処理を施すことを特徴とする耐
二次加工脆性に優れる高強度合金化溶融亜鉛めっき鋼板
の製造方法。 〔記〕 T (℃) ≦700(℃) −[(%P)−0.03]×1000 (℃) --- (1) T (℃) ≧700(℃) +[(%P)−0.03]×1000 (℃) --- (2)
[Claim 1] C: 0.001 mass% or more, 0.007 mass%
Below, Si: 0.05 mass% or more, 0.5 mass% or less, Mn: 0.5 mass% or more, 2.0 mass% or less, Ni: 0.8 mass% or less, Ti: 0.01 mass% or more, 0.2 mass% or less, Nb: 0.001 mass% 0.1 mass% or less, B: 0.0002 mass% or more, 0.005 mass% or less, Cu: 1.0 mass% or less, P: 0.03 mass% or more, 0.12 mass% or less, sol Al: 0.1 mass% or less, S: 0.02 mass % And N: 0.005 mass% or less, with the balance being a steel slab having a composition of Fe and unavoidable impurities, and a rolling finish temperature of at least 3 points (° C) and not more than 3 points (° C) + 100 ° C After completing the hot rolling in the range, it is wound around a coil in a temperature range of 650 ° C or less, and after the scale is removed, it is cold rolled.
After performing primary continuous annealing at a temperature of 750 ° C. or more, pickling or brushing and then pickling, the temperature T (° C.) is 500 ° C. or more, and the value of the above P content is expressed as (% P) below. formula
High-strength alloyed galvanized steel sheet with excellent secondary work brittleness characterized by subjecting it to hot dip galvanizing followed by alloying treatment after secondary annealing in a temperature range that satisfies (1) or (2) Production method. [Note] T (° C) ≤ 700 (° C)-[(% P)-0.03] x 1000 (° C) --- (1) T (° C) ≥ 700 (° C) + [(% P)-0.03] × 1000 (℃) --- (2)
JP05889194A 1994-03-29 1994-03-29 Method for producing high-strength galvannealed steel sheet with excellent secondary work brittleness resistance Expired - Fee Related JP3304191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05889194A JP3304191B2 (en) 1994-03-29 1994-03-29 Method for producing high-strength galvannealed steel sheet with excellent secondary work brittleness resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05889194A JP3304191B2 (en) 1994-03-29 1994-03-29 Method for producing high-strength galvannealed steel sheet with excellent secondary work brittleness resistance

Publications (2)

Publication Number Publication Date
JPH07268584A JPH07268584A (en) 1995-10-17
JP3304191B2 true JP3304191B2 (en) 2002-07-22

Family

ID=13097416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05889194A Expired - Fee Related JP3304191B2 (en) 1994-03-29 1994-03-29 Method for producing high-strength galvannealed steel sheet with excellent secondary work brittleness resistance

Country Status (1)

Country Link
JP (1) JP3304191B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276021A4 (en) * 2015-03-27 2018-03-14 JFE Steel Corporation High-strength steel sheet and production method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410163B1 (en) 1998-09-29 2002-06-25 Kawasaki Steel Corporation High strength thin steel sheet, high strength alloyed hot-dip zinc-coated steel sheet, and method for producing them
KR100470644B1 (en) * 2000-12-06 2005-03-07 주식회사 포스코 A method for manufacturing deep drawing cold-rolled steel sheet with excellent secondary working brittleness resistance and press formability
US20070259203A1 (en) * 2003-11-26 2007-11-08 Bluescope Steel Limited Coated Steel Strip
JP5151227B2 (en) * 2007-04-17 2013-02-27 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3276021A4 (en) * 2015-03-27 2018-03-14 JFE Steel Corporation High-strength steel sheet and production method therefor
US11001906B2 (en) 2015-03-27 2021-05-11 Jfe Steel Corporation High-strength steel sheet and production method therefor

Also Published As

Publication number Publication date
JPH07268584A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
CN108431273B (en) High-strength hot-dip galvanized steel sheet having excellent surface quality and spot weldability, and method for producing same
JP5504643B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
CN110662854B (en) Steel sheet having excellent liquid metal embrittlement cracking resistance and method for producing same
JP2003064444A (en) High strength steel sheet with excellent deep drawability, and manufacturing method therefor
CA2729790C (en) High strength galvannealed steel sheet with excellent appearance and method for manufacturing the same
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP5192704B2 (en) High strength steel plate with excellent strength-elongation balance
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP3473480B2 (en) Hot-dip galvanized steel sheet excellent in strength and ductility and method for producing the same
JP3304191B2 (en) Method for producing high-strength galvannealed steel sheet with excellent secondary work brittleness resistance
JP4150277B2 (en) High strength galvannealed steel sheet excellent in press formability and method for producing the same
JP3882679B2 (en) Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance
JP2004143470A (en) Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process
JP2003003216A (en) Method for producing high strength galvanized steel sheet having excellent deep drawability and secondary working brittleness resistance
CN114945694A (en) Steel sheet and method for producing same
JP3023875B2 (en) Method for producing hot-dip galvanized steel sheet with excellent surface properties
JP3967868B2 (en) High-strength hot-rolled steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in formability, and manufacturing method thereof
JPH06122939A (en) Cold rolled steel sheet or galvanized cold rolled steel sheet excellent in baking hardenability and formability and production thereof
JP2820819B2 (en) High strength thin steel sheet excellent in stretch flange formability and method for producing the same
JP3898925B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and method for producing the same
JP3044641B2 (en) Room temperature non-ageing cold rolled steel sheet with remarkably high paint bake hardening performance
JPH0657337A (en) Production of high strength galvannealed steel sheet excellent in formability
JP3288514B2 (en) Manufacturing method of high-strength cold-rolled steel sheet for deep drawing
JP3921101B2 (en) Manufacturing method of high strength and high ductility hot dip galvanized steel sheet with excellent shape freezing property
JP2755014B2 (en) Method for producing high-strength cold-rolled steel sheet for deep drawing with excellent secondary work brittleness resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees