JP3303534B2 - Industrial pure titanium and its production method - Google Patents

Industrial pure titanium and its production method

Info

Publication number
JP3303534B2
JP3303534B2 JP16693094A JP16693094A JP3303534B2 JP 3303534 B2 JP3303534 B2 JP 3303534B2 JP 16693094 A JP16693094 A JP 16693094A JP 16693094 A JP16693094 A JP 16693094A JP 3303534 B2 JP3303534 B2 JP 3303534B2
Authority
JP
Japan
Prior art keywords
less
content
pure titanium
mass
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16693094A
Other languages
Japanese (ja)
Other versions
JPH0835046A (en
Inventor
英明 深井
正和 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15840300&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3303534(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP16693094A priority Critical patent/JP3303534B2/en
Publication of JPH0835046A publication Critical patent/JPH0835046A/en
Application granted granted Critical
Publication of JP3303534B2 publication Critical patent/JP3303534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は工業用純チタンおよびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to industrial pure titanium and a method for producing the same.

【0002】[0002]

【従来の技術】チタンは、優れた耐食性を有するため海
洋環境や化学プラント用の構造材料といった厳しい腐食
環境下で使用される場合が多い。なかでも、工業用純チ
タンは高い加工性も合わせ持っているため、最も汎用的
に使用されている。しかしチタン材料は製造コストが高
いため、優れた耐食性を有するにもかかわらず、ステン
レス鋼など他の競合材料に比べてその使用が制約されて
いるのが現状である。
2. Description of the Related Art Titanium has excellent corrosion resistance and is often used in severe corrosive environments such as marine environments and structural materials for chemical plants. Above all, industrial pure titanium has the highest workability and is most commonly used. However, due to the high manufacturing cost of titanium materials, despite their excellent corrosion resistance, their use is currently restricted compared to other competitive materials such as stainless steel.

【0003】従来よりチタン材料の製造コスト低減のた
めに種々の検討が行われているが、コストに占める比重
の高いチタン鉱石の還元精錬コストを大幅に低減可能な
スクラップ利用の技術が注目されている。
Conventionally, various studies have been made to reduce the production cost of titanium materials. However, attention has been paid to a technique of utilizing scrap, which can significantly reduce the cost of reducing or refining titanium ore, which has a high specific gravity in the cost. I have.

【0004】[0004]

【発明が解決しようとする課題】コスト低減のためには
なるべく安価な低品質のスクラップを利用した方が有利
であるが、低品質のスクラップを用いると不純物元素量
が増える。特にFe濃度が増すと、工業用純チタンの場
合は硫酸や塩酸中などの非酸化性環境下における耐食性
が損なわれるという問題が生じる。
It is advantageous to use inexpensive low-quality scrap as much as possible in order to reduce costs, but using low-quality scrap increases the amount of impurity elements. In particular, when the Fe concentration is increased, in the case of industrial pure titanium, there arises a problem that corrosion resistance in a non-oxidizing environment such as sulfuric acid or hydrochloric acid is impaired.

【0005】本発明はこのような問題を解決するために
なされたもので、低品質のスクラップ利用によりFe濃
度がある程度増えても、非酸化性環境下において優れた
耐食性を有する工業用純チタンおよびその製造方法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem. Even if the Fe concentration is increased to some extent due to the use of low-quality scrap, pure titanium for industrial use which has excellent corrosion resistance in a non-oxidizing environment and It is an object of the present invention to provide a manufacturing method thereof.

【0006】[0006]

【課題を解決するための手段】上記課題は、スクラップ
使用量をコントロールしてFe含有量をmass%で0.1
%以上0.19%以下に調整し、熱間加工を加え、次い
α相からβ相への変態開始温度(以下、Tαと呼
ぶ。)以下で焼鈍し、結晶粒径を30μm以下とする工
業用純チタンの製造方法によって解決される。また上記
Fe含有量を有する熱間加工材であり、かつ結晶粒径が
30μm以下に制御された工業用純チタンによって解決
される。これらの工業用純チタンは、非酸化性環境下に
おいてより優れた耐食性を示す。なお、熱間加工として
は、後述の実施例のように、鍛造、熱間圧延等の熱間に
おける加工を適用することができる。なお、この発明で
「熱間加工を加え、次いでTα以下で焼鈍する」という
のは、後述の実施例のように熱間加工の次に焼鈍を行う
ことである。
Means for Solving the Problems The object of the present invention is to control the amount of scrap used to reduce the Fe content to 0.1% by mass%.
% And 0.19 % or less, add hot working, and then
In transformation start temperature from α phase to β phase (hereinafter, referred to as T [alpha.) Was annealed below, are solved by a manufacturing method of industrial pure titanium of the crystal grain size and 30μm or less. Further, the problem is solved by industrially pure titanium which is a hot-worked material having the above-mentioned Fe content and whose crystal grain size is controlled to 30 μm or less. These industrial grades of titanium exhibit better corrosion resistance in non-oxidizing environments. As the hot working, hot working such as forging and hot rolling can be applied as in the examples described later. In the present invention,
"Add hot working and then anneal below Tα"
Is to perform annealing after hot working as in the examples described later.
That is.

【0007】[0007]

【作用】詳細は実施例で述べるが、Fe含有量の異なる
数種の純チタンを用いて、非酸化性環境下における腐食
速度と焼鈍温度、結晶粒径の関係を鋭意検討した。
The details will be described in Examples, but the relationship between the corrosion rate, the annealing temperature, and the crystal grain size in a non-oxidizing environment was studied by using several types of pure titanium having different Fe contents.

【0008】図1にFe含有量が0.10mass%と0.
15mass(図では0.10wt%と0.15wt%と表示)の純チ
タンの腐食速度と焼鈍温度の関係を示す。いずれの純チ
タンも焼鈍温度が低いほど腐食速度は低下し、耐食性が
向上することがわかる。特にα相からβ相への変態開始
温度Tαより低い焼鈍温度では、30mm/年以下の腐
食速度が得られ、Fe含有量が0.05mass%程度の通
常の工業用純チタンと同等な優れた耐食性を示す。
FIG. 1 shows that the Fe content is 0.10 mass % and 0.1% by mass .
The relationship between the corrosion rate of pure titanium at 15 mass % (shown as 0.10 wt% and 0.15 wt% in the figure) and the annealing temperature is shown. It can be seen that the lower the annealing temperature of any pure titanium, the lower the corrosion rate and the higher the corrosion resistance. In particular, at an annealing temperature lower than the transformation start temperature Tα from the α phase to the β phase, a corrosion rate of 30 mm / year or less is obtained, and an excellent content equivalent to that of ordinary industrial pure titanium having an Fe content of about 0.05 mass %. It shows excellent corrosion resistance.

【0009】Fe含有量の下限値は必ずしも明らかでは
ないが、図1に示す0.10mass%の結果、およびFe
含有量を0.1mass%未満に調整するには、低品質のス
クラップ利用率が50%を切るのでコスト低減の効果が
少なくなることを勘案してFe含有量の下限値を0.1
mass%とする。またFe含有量が0.3mass%を越える
とTα以下の温度で焼鈍しても30mm/年以下の腐食
速度は得られなかった
Although the lower limit of the Fe content is not always clear, the result of 0.10 mass% shown in FIG.
In order to adjust the content to less than 0.1 mass%, the lower limit of the Fe content is set to 0.1 in consideration of the fact that the utilization of low-quality scrap is less than 50% and the effect of cost reduction is reduced.
mass%. When the Fe content exceeds 0.3 mass%, a corrosion rate of 30 mm / year or less was not obtained even when annealing was performed at a temperature of Tα or less .

【0010】焼鈍温度は、図1の結果よりα相からβ相
への変態開始温度Tα以下に限定する。
From the results of FIG. 1, the annealing temperature is limited to the transformation start temperature Tα from α phase to β phase or lower.

【0011】図2にFe含有量が0.10mass%の純チ
タンの腐食速度と結晶粒径の関係を示す。結晶粒径を3
0μm以下にすると腐食速度が10mm/年以下にな
り、極めて優れた耐食性を示すことがわかる。なおFe
含有量が0.3mass%を越えると、結晶粒径を30μm
以下にしても30mm/年以下の腐食速度は得られなか
った。したがって、後述の実施例のように、Fe含有量
をmass%で0.1%以上0.19%以下にし、かつ結晶
粒径を30μm以下にすることが、極めて優れた耐食性
を得るためには望ましい。
FIG. 2 shows the relationship between the corrosion rate of pure titanium having an Fe content of 0.10 mass% and the crystal grain size. 3 grain size
When the thickness is 0 μm or less, the corrosion rate is 10 mm / year or less, and it can be seen that extremely excellent corrosion resistance is exhibited. Note that Fe
When the content exceeds 0.3 mass%, the crystal grain size becomes 30 μm.
Even below, a corrosion rate of 30 mm / year or less could not be obtained. Therefore , in order to obtain extremely excellent corrosion resistance, it is necessary to set the Fe content to 0.1% or more and 0.19 % or less by mass% and the crystal grain size to 30 μm or less as in the examples described later. desirable.

【0012】[0012]

【実施例】表1に示すようなFe含有量を有する6種の
工業用純チタンを溶製し、そのインゴットを1050℃
加熱で分鍛造して200mm厚のスラブとなし、その
後850℃加熱の粗圧延で100mm厚に、次いで85
0℃加熱の仕上げ圧延で10mm厚の熱延板を作成し
た。そして熱延板に種々の温度で1時間保持後空冷の焼
鈍を施した後、厚さ5mm、幅20mm、長さ40mm
の試験片を採取し、#400の湿式研磨で表面研磨後、
腐食試験を行った。腐食試験は2%の沸騰硫酸中に24
時間浸漬する非酸化性環境下で行った。そして試験前後
の重量変化から腐食速度を求め耐食性の評価を行った。
なお前記したようにFe含有量が0.05mass%程度の
通常の工業用純チタンでは、その製造条件によらず常に
30mm/年以下の腐食速度が得られるので、30mm
/年の腐食速度を耐食性の評価基準値とした。
EXAMPLES Six types of industrial pure titanium having Fe contents as shown in Table 1 were melted and ingots were heated at 1050 ° C.
Slabbing forging to 200mm thick slabs and without the heating, the 100mm thickness in rough rolling subsequent 850 ° C. heating, then 85
A hot-rolled sheet having a thickness of 10 mm was prepared by finish rolling at 0 ° C. After holding the hot-rolled sheet at various temperatures for 1 hour and performing air-cooled annealing, the thickness is 5 mm, the width is 20 mm, and the length is 40 mm.
Sample was taken, and the surface was polished by wet polishing of # 400.
A corrosion test was performed. Corrosion tests were conducted in 24% boiling sulfuric acid at 24%.
The test was performed in a non-oxidizing environment immersed for a long time. The corrosion rate was determined from the weight change before and after the test, and the corrosion resistance was evaluated.
As described above, in the case of ordinary industrial pure titanium having an Fe content of about 0.05 mass %, a corrosion rate of 30 mm / year or less is always obtained regardless of the production conditions.
/ Year corrosion rate was used as an evaluation reference value of corrosion resistance.

【0013】結果を表1に示す。この表のサンプルN
o.1〜4では、その焼鈍温度をα相からβ相への変態
開始温度Tα以下にすると30mm/年の腐食速度が得
られ、優れた耐食性を示す。また表1には焼鈍後の結晶
粒径の測定結果も合わせて示してあるが、本発明範囲内
のFe含有量を有するサンプルNo.1〜では、その
結晶粒径を30μmにすると10mm/年の腐食速度が
得られ、極めて優れた耐食性を示す。具体的には、サン
プルNo.1の焼鈍温度550℃、同様にNo.2の5
50℃と600℃、およびNo.3の600℃のサンプ
ルが、腐食速度10mm/年以下の極めて優れた耐食性
を示している。一方、本発明範囲外のFe含有量を有す
るサンプルNo.5は、いずれの条件においても30m
m/年以下の腐食速度が得られ、優れた耐食性を示す
が、このように低いFe含有量に制御するには低品質の
スクラップがほとんど利用できずコストの低減が図れな
い。以上より、スクラップが利用できて極めて優れた耐
食性(腐食速度10mm/年)が得られる条件は、Fe
含有量が0.10〜0.19%、焼鈍温度がTα以下、
かつ結晶粒径が30μm以下となる。なお、表1の備考
欄では、腐食速度が30mm/年以下の場合を「本発明
例」と記載したが、更に腐食速度が10mm/年以下と
なるのは、上記のように結晶粒径が30μm以下のサン
プルに限られる。また本発明範囲外のFe含有量を有す
るサンプルNo.6は、いずれの条件においても30m
m/年以下の腐食速度が得られず、耐食性に劣る。
The results are shown in Table 1. Sample N in this table
o. In Nos. 1 to 4, when the annealing temperature is equal to or lower than the transformation start temperature Tα from α phase to β phase, a corrosion rate of 30 mm / year can be obtained, and excellent corrosion resistance is exhibited. Table 1 also shows the results of the measurement of the crystal grain size after annealing. Sample No. 1 having an Fe content within the range of the present invention is also shown. In Nos. 1 to 3 , a corrosion rate of 10 mm / year was obtained when the crystal grain size was 30 μm, and extremely excellent corrosion resistance was exhibited. Specifically, Sun
Pull No. Annealing temperature of 550 ° C. 2 in 5
50 ° C. and 600 ° C .; 3, 600 ° C sump
Excellent corrosion resistance with a corrosion rate of 10 mm / year or less
Is shown. On the other hand, Sample No. having an Fe content outside the range of the present invention. 5 is 30 m under any conditions
Although a corrosion rate of less than m / year is obtained and excellent corrosion resistance is shown, low-quality scrap can hardly be used to control such a low Fe content, and cost reduction cannot be achieved. From the above, scrap can be used and extremely excellent resistance
Conditions for obtaining corrosion (corrosion rate 10 mm / year) are Fe
Content is 0.10 to 0.19%, annealing temperature is Tα or less,
And the crystal grain size is 30 μm or less. Remarks in Table 1
In the column, the case where the corrosion rate is 30 mm / year or less is referred to as “the present invention.
Example), but the corrosion rate is 10 mm / year or less.
The reason for this is that a sample having a crystal grain size of 30 μm or less as described above.
Limited to pull. Further, Sample No. having an Fe content outside the range of the present invention. 6 is 30 m under any conditions
A corrosion rate of m / year or less cannot be obtained, and the corrosion resistance is poor.

【0014】[0014]

【表1】 [Table 1]

【0015】以上の現象が生じる原因は必ずしも明らか
ではないが、以下のように考えられる。すなわち焼鈍温
度をTα以下にすると、Feを高濃度に含み耐食性の劣
る第二相の形成が抑制されるため耐食性が向上する。ま
た結晶粒径を30μm以下の微細な組織にすると、結晶
粒界の総面積が大きくなり、粒界における単位面積あた
りのFe濃度が低下し、耐食性の劣る第二相の形成が抑
制されるため耐食性が向上する。Fe含有量が0.3ma
ss%を越えると、これらの効果が十分に発揮されず、ま
た0.1mass%未満では、これらの効果を利用する必要
がないほどFeを高濃度に含む耐食性の劣る第二相が形
成されない。
Although the cause of the above phenomenon is not always clear, it is considered as follows. That is, when the annealing temperature is set to Tα or lower, the formation of the second phase having a high Fe content and poor corrosion resistance is suppressed, so that the corrosion resistance is improved. Further, when the crystal grain size is set to a fine structure of 30 μm or less, the total area of the crystal grain boundaries increases, the Fe concentration per unit area at the grain boundaries decreases, and the formation of the second phase having poor corrosion resistance is suppressed. Corrosion resistance is improved. Fe content 0.3 ma
If the content exceeds ss %, these effects are not sufficiently exerted. If the content is less than 0.1 mass %, a second phase having a high concentration of Fe and having poor corrosion resistance is not formed so that it is not necessary to use these effects. .

【0016】なお低品質のスクラップ利用率は、Fe含
有量が0.15mass%のサンプルNo.2の場合で60
%であった。したがって、本発明範囲内のFe含有量に
調整することにより大幅なコスト低減が可能となる。
The low-quality scrap utilization rate is lower than that of the sample No. having an Fe content of 0.15 mass %. 60 for 2
%Met. Therefore, by adjusting the Fe content within the range of the present invention, a significant cost reduction can be achieved.

【0017】[0017]

【発明の効果】本発明は以上説明したように構成されて
いるので、低品質のスクラップ利用によりFe濃度があ
る程度増えても、優れた非酸化性環境下における耐食性
を有する工業用純チタンおよびその製造方法を提供でき
る。
Industrial Applicability Since the present invention is constructed as described above, even if the Fe concentration is increased to some extent due to the use of low-quality scrap, pure titanium for industrial use which has excellent corrosion resistance in a non-oxidizing environment and its titanium. A manufacturing method can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Fe含有量が0.10mass%と0.15mass
の工業用純チタンの腐食速度と焼鈍温度の関係を示す図
である。
FIG. 1 Fe content of 0.10 mass % and 0.15 mass %
FIG. 4 is a graph showing the relationship between the corrosion rate of industrial pure titanium and the annealing temperature.

【図2】Fe含有量が0.10mass%の工業用純チタン
の腐食速度と結晶粒径の関係を示す図である。
FIG. 2 is a graph showing the relationship between the corrosion rate and the crystal grain size of pure titanium for industrial use having an Fe content of 0.10 mass %.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−252747(JP,A) 特開 平5−70913(JP,A) 特開 昭63−270449(JP,A) 日本規格協会編,「JISハンドブッ ク 非鉄」,第1版第1刷,財団法人日 本規格協会,1990年4月20日 (58)調査した分野(Int.Cl.7,DB名) C22F 1/00 - 3/02 C22C 1/00 - 49/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-252747 (JP, A) JP-A-5-70913 (JP, A) JP-A-63-270449 (JP, A) Japan Standards Association, "JIS Handbook Non-Ferrous", 1st edition, 1st printing, Japan Standards Association, April 20, 1990 (58) Fields investigated (Int. Cl. 7 , DB name) C22F 1/00-3 / 02 C22C 1/00-49/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Fe含有量をmass%で0.1%以上0.
19%以下に調整し、熱間加工を加え、次いでα相から
β相への変態開始温度以下で焼鈍し、結晶粒径を30μ
m以下とすることを特徴とする工業用純チタンの製造方
法。
1. The Fe content is 0.1% or more by mass% .
Was adjusted to 19% or less, hot working was added, followed by annealing below the transformation starting temperature to β-phase from the α phase, 30.mu. grain size
m or less .
【請求項2】 Fe含有量がmass%で0.1%以上0.
19%以下の熱間加工材であり、かつ結晶粒径が30μ
m以下であることを特徴とする工業用純チタン。
2. The Fe content is 0.1% or more in mass% .
It is a hot-worked material of 19 % or less and has a crystal grain size of 30μ.
m or less.
JP16693094A 1994-07-19 1994-07-19 Industrial pure titanium and its production method Expired - Fee Related JP3303534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16693094A JP3303534B2 (en) 1994-07-19 1994-07-19 Industrial pure titanium and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16693094A JP3303534B2 (en) 1994-07-19 1994-07-19 Industrial pure titanium and its production method

Publications (2)

Publication Number Publication Date
JPH0835046A JPH0835046A (en) 1996-02-06
JP3303534B2 true JP3303534B2 (en) 2002-07-22

Family

ID=15840300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16693094A Expired - Fee Related JP3303534B2 (en) 1994-07-19 1994-07-19 Industrial pure titanium and its production method

Country Status (1)

Country Link
JP (1) JP3303534B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103069027A (en) * 2010-09-08 2013-04-24 新日铁住金株式会社 Titanium material
JP5668712B2 (en) * 2012-03-05 2015-02-12 新日鐵住金株式会社 A hard pure titanium plate excellent in impact resistance and a method for producing the same.
JP2016023315A (en) * 2014-07-16 2016-02-08 株式会社神戸製鋼所 Titanium plate and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本規格協会編,「JISハンドブック 非鉄」,第1版第1刷,財団法人日本規格協会,1990年4月20日

Also Published As

Publication number Publication date
JPH0835046A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
JP5625646B2 (en) Titanium plate excellent in rigidity in the rolling width direction and method for producing the same
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
US20220389557A1 (en) Aluminum alloy precision plates
JPH01252747A (en) High strength titanium material having excellent ductility and its manufacture
Guo et al. Evolution of microstructure and texture during recrystallization of the cold-swaged Ti-Nb-Ta-Zr-O alloy
US4968356A (en) Method of producing hardened aluminum alloy forming sheet having high strength and superior corrosion resistance
JP3303534B2 (en) Industrial pure titanium and its production method
JP6432328B2 (en) High strength titanium plate and manufacturing method thereof
US5019188A (en) Process for forming an aluminum alloy thin sheet by hot and cold rolling
JPH04143236A (en) High strength alpha type titanium alloy excellent in cold workability
Rough An evaluation of data on zirconium-uranium alloys
JP4019668B2 (en) High toughness titanium alloy material and manufacturing method thereof
Tan et al. Ti-content and annealing temperature dependence of deformation characteristics of TiXNi (92− X) Cu8 shape memory alloys
JP2001003143A (en) Ferritic stainless steel sheet excellent in workability and surface characteristics, and its manufacture
JPH0363442B2 (en)
JPS6339661B2 (en)
JP2936899B2 (en) Titanium alloy with excellent corrosion resistance and workability to non-oxidizing acids
JPS6410584B2 (en)
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP3398261B2 (en) Method for producing Al-containing ferritic stainless steel strip
JPH10230346A (en) Finish treatment for silicon steel produced by direct casting method
JP3110116B2 (en) High strength magnesium based alloy
JP4065146B2 (en) Titanium alloy having excellent corrosion resistance and method for producing the same
JPS63161148A (en) Manufacture of aluminum foil excellent in strength and workability
JP4454117B2 (en) Method for producing Cr-containing thin steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees