JP3293977B2 - Method of manufacturing negative electrode can for button type battery - Google Patents

Method of manufacturing negative electrode can for button type battery

Info

Publication number
JP3293977B2
JP3293977B2 JP26586893A JP26586893A JP3293977B2 JP 3293977 B2 JP3293977 B2 JP 3293977B2 JP 26586893 A JP26586893 A JP 26586893A JP 26586893 A JP26586893 A JP 26586893A JP 3293977 B2 JP3293977 B2 JP 3293977B2
Authority
JP
Japan
Prior art keywords
negative electrode
plating
button
type battery
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26586893A
Other languages
Japanese (ja)
Other versions
JPH0799044A (en
Inventor
景朗 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP26586893A priority Critical patent/JP3293977B2/en
Publication of JPH0799044A publication Critical patent/JPH0799044A/en
Application granted granted Critical
Publication of JP3293977B2 publication Critical patent/JP3293977B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、アルカリマンガン電
池、酸化銀電池、過酸化銀電池及び空気電池等のボタン
型電池用負極缶の製造方法に係り、前記負極缶内面のS
nめっき面プレス加工時の汚染の悪影響がなく、かつ
金属粉の付着がなく、H2ガス発生抑制、耐食性効果の
すぐれたボタン型電池用負極缶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a negative electrode can for a button type battery such as an alkaline manganese battery, a silver oxide battery, a silver peroxide battery and an air battery.
no adverse effects contamination during press working n plated surface, and there is no adhesion of metal powders, H 2 gas generation suppression relates to a method of manufacturing a negative electrode can for excellent button cells of corrosion effects.

【0002】[0002]

【従来の技術】一般に、アルカリ電池、空気電池は、前
者は酸化銀を正極活性物質とし、また後者は空気中の酸
素を正極活性物質とし、前記電池共に亜鉛を負極活性物
質、電解液はアルカリ金属塩、水酸化物と酸化亜鉛の飽
和液から構成される電池であり、その特徴とするところ
は放電電圧が高く安定的であり、エネルギー密度が大き
く使用温度範囲が広いことより、民生用小型電子機器電
源として種々の小型精密電子機器に広く用いられてい
る。
2. Description of the Related Art Generally, in alkaline batteries and air batteries, the former uses silver oxide as a positive electrode active material, the latter uses oxygen in the air as a positive electrode active material, zinc is used as a negative electrode active material, and the electrolyte is alkaline. This battery is composed of a saturated solution of metal salts, hydroxides and zinc oxide. It is characterized by a high discharge voltage and stability, a large energy density and a wide operating temperature range. It is widely used for various small precision electronic devices as an electronic device power supply.

【0003】ボタン型アルカリ電池は図1に示すごと
く、正極1と負極2はセパレーター3を介して配置さ
れ、正極缶4はNiめっきされた鋼板やステンレス鋼が
用いられ、また負極缶5はステンレス鋼の一方主面にC
uを、他主面にNiを圧接法やめっき法により被着した
3層クラッド負極板を前記Cu面が内面に、Ni面が外
面に配するように、Cu面側よりプレス加工、打ち抜き
加工して、ボタン状に形成される。なお、図中6はガス
ケットである。負極活性物質には50〜100メッシュ
の粒状亜鉛が用いられるが、アルカリ電池は保存中に負
極側に下記(1)(2)式の反応により、H2ガス発生
に起因して発泡現象が起こるため、前記H2ガス発生に
よる発泡現象を抑制するために、負極活性物質の粒状亜
鉛に数%のHgを添加してアマルガム化し、亜鉛の水素
過電圧を高めて、前記(2)式の反応を抑制している。
しかし、アルカリ電池を廃却した場合、負極活性物質に
添加されたHgが地球環境汚染の原因となり、負極活性
物質にHgを添加することが問題化してきた。
In a button type alkaline battery, as shown in FIG. 1, a positive electrode 1 and a negative electrode 2 are arranged via a separator 3, a positive electrode can 4 is made of a Ni-plated steel plate or stainless steel, and a negative electrode can 5 is made of stainless steel. C on one main surface of steel
u is pressed and punched from the Cu surface side so that the Cu surface is disposed on the inner surface and the Ni surface is disposed on the outer surface, with a three-layer clad negative electrode plate having Ni applied to the other main surface by pressure welding or plating. Then, it is formed in a button shape. In the figure, reference numeral 6 denotes a gasket. As the negative electrode active material, granular zinc of 50 to 100 mesh is used. In an alkaline battery, a foaming phenomenon occurs on the negative electrode side during storage due to the reaction of the following formulas (1) and (2) due to generation of H 2 gas. Therefore, in order to suppress the foaming phenomenon due to the generation of H 2 gas, several percent of Hg is added to granular zinc as the negative electrode active material to form amalgam, and the hydrogen overpotential of zinc is increased. Restrained.
However, when the alkaline battery is discarded, Hg added to the negative electrode active material causes pollution of the global environment, and adding Hg to the negative electrode active material has become a problem.

【0004】[0004]

【化1】 Embedded image

【0005】[0005]

【発明が解決しようとする課題】そのため、最近ではH
gを添加しないアルカリ電池の負極缶として、銅−ステ
ンレス−ニッケルの3層クラッド負極板を圧接法または
めっき法にて製造後、前記Cu面に電解めっき法あるい
化学還元めっき(いわゆる無電解めっき法、以下無電
解めっき法という)、溶解めっき法にてSnまたはIn
を被着後、前記Sn面またはIn面側より所要形状寸法
にプレス加工、打抜加工して、ボタン状の負極缶を製造
していた。ところが、負極缶の内面のSnめっき面また
はInめっき面はプレス加工時の金属粉の押込、付着が
発生し、さらに、めっき面にマイクロクラックが発生
し、これがH2ガス発生の核となり、H2ガス発生抑制、
更に耐食性の効果が著しく低下し、また、プレス油の汚
染は避けられない。さらに、Sn、Inめっき厚を厚く
すると、Sn、Inめっき被膜が軟らかく、負極缶形成
時のプレス成型において、形状変形や液漏れ等の問題を
招来する欠点があった。
Therefore, recently, H
As a negative electrode can of an alkaline battery to which g is not added, a copper-stainless-nickel three-layer clad negative electrode plate is manufactured by a pressure welding method or a plating method, and then electrolytic plating or chemical reduction plating (so-called electroless plating method) is performed on the Cu surface. , Below
Dissolution plating method), Sn or In
After pressing, a button-shaped negative electrode can was manufactured by pressing and punching into the required shape and dimensions from the Sn surface or In surface side. However, in the Sn-plated or In-plated surface of the inner surface of the negative electrode can, metal powder is pressed and adhered during press working, and further, microcracks are generated on the plated surface, which becomes a nucleus of H 2 gas generation. 2 gas generation suppression,
Furthermore, the effect of corrosion resistance is significantly reduced, and contamination of press oil is inevitable. Further, when the thickness of the Sn and In platings is increased, the Sn and In platings are soft and there is a drawback in that press molding at the time of forming the negative electrode can causes problems such as shape deformation and liquid leakage.

【0006】この発明は、アルカリマンガン電池、酸化
銀電池、過酸化銀電池及び空気電池等のボタン型電池用
負極缶の製造に際し、特に、前記負極缶内面のSnめっ
き面プレス加工時の汚染の悪影響や金属粉の付着がな
く、H2ガスの発生を抑制でき、耐食性にすぐれたボタ
ン型電池用負極缶を容易に製造できる製造方法の提供を
目的としている。
[0006] This invention is an alkaline manganese battery, a silver oxide battery, in the production of the negative electrode can for button-type battery such as a peroxide silver oxide battery and an air battery, in particular, contamination during press working Sn plated surface of the negative electrode can inner surface It is an object of the present invention to provide a production method capable of easily producing a negative electrode can for a button-type battery excellent in corrosion resistance and capable of suppressing the generation of H 2 gas without causing adverse effects or adhesion of metal powder.

【0007】[0007]

【課題を解決するための手段】この発明は、ステンレス
板の1主面にCuを、他主面にNiを被着してなる3層
クラッド板を前記Cu側よりプレス、打ち抜き加工し
て、ボタン型電池用負極缶片に形成した後、前記負極缶
片の内面のCu面を清浄化処理し、アルカノールスルホ
ン酸第1錫30〜50g/l、アルカンスルホン酸65
〜110g/l、酒石酸10〜20g/l、チオ尿素4
0〜120g/l、クエン酸ナトリウム10〜20g/
l、非イオン界面活性剤1〜30g/l、有機イオウ化
合物0.5〜10g/lを含有し、pH0.5〜1.0
の置換Snめっき液にて、該めっき液を撹拌しながら、
前記Cu面に置換Snめっき膜を被着することを特徴と
するボタン型電池用負極缶の製造方法である。
According to the present invention, a three-layer clad plate comprising a stainless steel plate having one main surface coated with Cu and another main surface coated with Ni is pressed and punched from the Cu side. After forming the negative electrode can for a button-type battery, the Cu surface on the inner surface of the negative electrode can is cleaned and alkanol sulfo is removed.
Stannous acid 30-50 g / l, alkanesulfonic acid 65
110110 g / l, tartaric acid 10-20 g / l, thiourea 4
0-120 g / l, sodium citrate 10-20 g /
1, nonionic surfactant 1-30 g / l, organic sulfurization
0.5 to 1.0 g / l, pH 0.5 to 1.0
While stirring the plating solution with the replacement Sn plating solution of
A method for manufacturing a negative electrode can for a button-type battery, comprising applying a substituted Sn plating film to the Cu surface.

【0008】この発明の特徴である置換錫めっき法は、
表1に示す基本的なめっき浴組成が好ましく、めっき条
件としては、温度が50℃、pHが1.0以下が好まし
い。この発明において、Snめっき厚は、0.02μ
m未満ではH2ガス発生抑制効果が乏しく、また5.0
μmを超えると液漏れが発生する恐れがあるので、0.
02μm〜5.0μmが好ましく、さらに好ましいめっ
き厚は0.1μm〜0.5μmである。
[0008] The displacement tin plating method, which is a feature of the present invention, comprises:
The basic plating bath composition shown in Table 1 is preferable, and the plating conditions are preferably a temperature of 50 ° C. and a pH of 1.0 or less. In the present invention, the plating thickness of Sn is 0.02 μm.
If it is less than m, the effect of suppressing the generation of H 2 gas is poor, and 5.0
If it exceeds μm, liquid leakage may occur.
It is preferably from 02 μm to 5.0 μm, and more preferably the plating thickness is from 0.1 μm to 0.5 μm.

【0009】[0009]

【表1】 [Table 1]

【0010】CuとSnの間では(A)〜(C)式が示
すように、Cuの標準酸化還元電位がSnと比較して貴
であるため、通常ではCu上に置換という現象は起こら
ない。しかし、(D)式が示すようにSの存在によりC
uがチオ錯体を形成することによって、標準酸化還元電
位が卑方向にシフトし、従ってSnの置換析出が起こ
る。 Cu++e → Cu E0=0.521……(A) Cu2++2e → Cu E0=0.153……(B) Sn2++2e → Sn E0=−0.136……(C) Cu2S+2e → 2Cu+S2- 0=−0.54 ……(D)
Formulas (A) to (C) are shown between Cu and Sn.
As shown, the standard oxidation-reduction potential of Cu is higher than that of Sn.
Therefore, the phenomenon of substitution on Cu usually occurs.
Absent. However, as shown in equation (D), the presence of S causes C
When u forms a thio complex, the standard oxidation-reduction
Position shifts in the base direction, so that substitutional precipitation of Sn occurs.
You. Cu++ E → Cu E0= 0.521 (A) Cu2++ 2e → Cu E0= 0.153 ... (B) Sn2++ 2e → Sn E0= −0.136 (C) CuTwoS + 2e → 2Cu + S2-  E0= -0.54 (D)

【0011】置換Snめっきを施すに当たり、アルカノ
ールスルホン酸第1錫 30g/l〜50g/l、及び
アルカンスルホン酸 65g/l〜110g/l、酒石
酸10g/l〜20g/lを含む水溶液にチオ尿素 4
0g/l〜120g/l、及びこの発明においては非イ
オン界面活性剤として、HLB5〜16のアルキルポリ
オキシエチレンエーテル型またはポリオキシアルキレン
ブロックコポリマー型非イオン界面活性剤 1g/l〜
30g/l、並びに有機イオウ化合物 0.5g/l〜
10g/lを含有することを特徴とする置換Snめっき
液を用いる。置換Snめっき液は、特に60〜70℃程
度の中温域、さらに50℃以下の低温域においても効果
があり、実用上きわめて有用である
[0011] In carrying out displacement Sn plating, thiourea is added to an aqueous solution containing 30 g / l to 50 g / l of stannous alkanolsulfonate, 65 g / l to 110 g / l of alkanesulfonic acid, and 10 g / l to 20 g / l of tartaric acid. 4
0 g / l to 120 g / l, and in the present invention, as a nonionic surfactant, an alkyl polyoxyethylene ether type or polyoxyalkylene block copolymer type nonionic surfactant of HLB 5 to 16 1 g / l to
30 g / l, and organic sulfur compound 0.5 g / l or more
A substituted Sn plating solution containing 10 g / l is used. The substituted Sn plating solution is effective especially in a medium temperature range of about 60 to 70 ° C. and further in a low temperature range of 50 ° C. or less, and is extremely useful in practical use .

【0012】置換Snめっき液において、アルカノール
スルホン酸第1錫濃度は30g/l〜50g/l、アル
カンスルホン酸は65g/l〜110g/lの範囲にす
ることが必要であり、その濃度がそれぞれ上記範囲外で
あると均一で良好なめっき層を得ることができない。ま
た、錯化剤としての添加量はクエン酸ナトリウムが10
g/l〜20g/l、チオ尿素が40g/l〜120g
/l必要であり、Sの存在によりCuがチオ錯体を形成
することによって、Cuの標準酸化還元電位が卑の方向
にシフトし、Snを析出させるのに必須成分であり、こ
の錯化剤の添加量が少なすぎると安定な浴が得られず、
また多すぎると良好なめっき層の形成を阻害する原因と
なって好ましくない。前記成分の他に浴組成を安定させ
るために発泡性、曇点の低いものが湿潤剤として用いら
れ、HLB5〜16のアルキルポリオキシエチレンエー
テル型またはポリオキシアルキレンブロックコポリマー
型非イオン界面活性剤が1g/l〜30g/l添加され
る。一例として、 1)ポリオキシエチレン−ポリオキシプロピレンアルキ
ルエーテル
In the substituted Sn plating solution, the concentration of stannous alkanolsulfonate must be in the range of 30 g / l to 50 g / l, and the concentration of alkanesulfonic acid must be in the range of 65 g / l to 110 g / l. If it is outside the above range, a uniform and good plating layer cannot be obtained. The amount of the complexing agent added is 10% for sodium citrate.
g / l to 20 g / l, thiourea 40 g / l to 120 g
/ L is required, and Cu forms a thio complex due to the presence of S, so that the standard oxidation-reduction potential of Cu shifts in the base direction, and is an essential component for precipitating Sn. If the amount is too small, a stable bath cannot be obtained,
On the other hand, if the amount is too large, it is unfavorable because it inhibits the formation of a good plating layer. In order to stabilize the bath composition in addition to the above components, a foaming agent having a low cloud point is used as a wetting agent, and an alkyl polyoxyethylene ether type or polyoxyalkylene block copolymer type nonionic surfactant having an HLB of 5 to 16 is used. 1 g / l to 30 g / l are added. As an example, 1) polyoxyethylene-polyoxypropylene alkyl ether

【0013】[0013]

【化2】 A〔(CmH2mO)p(CuH2nO)gB〕r Embedded image A [(CmH 2 mO) p (CuH 2 nO) gB] r

【0014】ただし、式中、A:酸素原子または活性水
素原子を有する化合物残基、B:水素原子、アルキル基
またはアシル基、mおよびnは2〜4で、Vは1〜6、
r、pとr、gのうち疎水性ポリオキシアルキレン鎖の
重合度を示すものは7〜100、他の方は1〜1100
である。
Wherein A is a compound residue having an oxygen atom or an active hydrogen atom, B is a hydrogen atom, an alkyl group or an acyl group, m and n are 2 to 4, V is 1 to 6,
Among r, p, r, and g, those exhibiting the degree of polymerization of the hydrophobic polyoxyalkylene chain are 7 to 100, and the others are 1 to 1100.
It is.

【0015】例えば、プルロニックス型HO(C2
2O)p(C36O)q(C24O)rH (式中、qは15〜50、pおよびrは1〜150であ
る)及びテトロニックス型
For example, Pluronics type HO (C 2 H
2 O) p (C 3 H 6 O) q (C 2 H 4 O) rH ( wherein, q is 15 to 50, p and r are 1 to 150) and Tetoronikkusu type

【0016】[0016]

【化3】 Embedded image

【0017】(式中、qは2〜20、rは1〜20であ
る) 2)ポリオキシプロピレンアルキルエーテル R−O(CH2CH2O)nH(式中、RはC5〜C30
アルキル基、n=3から60) 例えば、ポリオキシプロピレンアルキルエーテル、ポリ
オキシエテチレンセテルエーテル、ポリカキシエチレニ
ステアリルエーテルなど。 3) ポリオキシアルキレンアソールエーテル 4) アルキルエステル型 5) ポリオキシエチレンアルキルアミン 6) ポリオキシエチレンアルキルアミド 7) ポリオキシエチレンソルビタニ脂肪酸エステル などがある。
(Wherein q is 2 to 20 and r is 1 to 20) 2) Polyoxypropylene alkyl ether R—O (CH 2 CH 2 O) nH (where R is C 5 to C 30) Alkyl group of n = 3 to 60) For example, polyoxypropylene alkyl ether, polyoxyethyrene setelether, polycaxethylenystearyl ether and the like. 3) Polyoxyalkylene asole ether 4) Alkyl ester type 5) Polyoxyethylene alkylamine 6) Polyoxyethylene alkylamide 7) Polyoxyethylene sorbitan fatty acid ester.

【0018】これらのうち低曇点および低発泡性、さら
には低温洗浄性の点から、ポリオキシエチレーポリオ
キシプロピレンアルキルエーテルが最も好ましい。
に、これらポリオキシアルキレンエーテル型非イオン界
面活性剤含有量は1g/l〜10g/lが好ましく、
1g/l未満では湿潤効果が乏しく、また10g/lを
超えると湿潤効果が飽和してコスト的に好ましくない。
[0018] Of these low cloud point and low foaming, further in view of low-temperature detergency, polyoxyethylene down over polyoxypropylene alkyl ethers are most preferred. Special
, The content of the polyoxyalkylene ether type nonionic surface active agent is preferably 1g / l ~10g / l,
If it is less than 1 g / l , the wetting effect is poor, and if it exceeds 10 g / l, the wetting effect is saturated, which is not preferable in terms of cost.

【0019】光沢付与剤としては、下記一般式(イ)及
び(ロ)にて表される水溶性有機イオウ化合物を0.5
g/l〜10g/l添加するが、添加量が0.5g/l
未満では、光沢性、平滑性に乏しく、また10g/lを
超えると浴の安定性が悪化するので好ましくない。 (イ) R7 − (S)n − R8 7、R8は − (CH2)m − R9で同一でも、ま
た異なってもよい。 R9 : − OH、− NH2、− COOH、m=1
〜4、n=1〜2 R9が− COOHの場合はC6までのアルカノールアミ
ン塩、またはR9が−NH2の場合は無機酸塩あるいはC
1〜C3の有機酸塩でもよい。R7 : Hまたはアルカリ
金属塩、R8 : − (CH2)m − R10であり、 R10 : − COOH、− OH、− NH2、m=1
〜3、n=1 R10が− COOHの場合はC6までのアルカノールア
ミン塩、または− NH2の場合は無機酸塩あるいはC1
〜C3の有機酸塩でもよい。
As the gloss-imparting agent, the following general formula (a) and
0.5% of the water-soluble organic sulfur compound represented by
g / l to 10 g / l, but the amount added is 0.5 g / l
If less than 10 g / l, gloss and smoothness are poor.
Exceeding this is not preferred because the stability of the bath deteriorates. (B) R7-(S) n-R8  R7, R8Is-(CHTwo) M-R9Even if they are the same,
May be different. R9 : -OH, -NHTwo, -COOH, m = 1
~ 4, n = 1 ~ 2 R9Is -COOH, C6Up to alkanolami
Salt or R9Is -NHTwoIn the case of the above, the inorganic acid salt or C
1~ CThreeMay be used. R7: H or alkali
Metal salt, R8:-(CHTwo) M-RTenAnd RTen: -COOH, -OH, -NHTwo, M = 1
~ 3, n = 1 RTenIs -COOH, C6Up to alkanolua
Min salt, or -NHTwoIn the case of the above, the inorganic acid salt or C1
~ CThreeMay be used.

【0020】[0020]

【化4】 Embedded image

【0021】上記の(ロ)式において、R11、R12は同
一または異なってもよく、各々水素炭素数1〜8のアル
キル基、アルケニル基、アリル基、アルキルアリル基、
アラルキル基、アルカノール基または − (CH2CH2O)u − H n : 1〜20 R13は下記化学式並びに炭素数1〜18のアルキル基、
アルケニル基、アリル基、アルキルアリル基、アラルキ
ル基、またはアルカノール基よりなるグループより選ば
れた少なくとも1種あるいは2種以上の混合物からな
り、水溶性有機イオン化合物はチオグリコール、チオレ
ナミン、チオジェタノール、チオジグリコール酸システ
イン、チオアセトアミド、ジチオジプロピオニ酸のエタ
ノールアミン酸等である。R14、R15はR11、R12と同
一。
In the above formula (B), R 11 and R 12 may be the same or different and each has an alkyl group having 1 to 8 carbon atoms, an alkenyl group, an allyl group, an alkyl allyl group,
Aralkyl group, alkanol group or - (CH 2 CH 2 O) u - H n: 1~20 R 13 is represented by the following formulas and alkyl group having 1 to 18 carbon atoms,
An alkenyl group, an allyl group, an alkyl allyl group, an aralkyl group, or a mixture of two or more selected from the group consisting of alkanol groups, wherein the water-soluble organic ionic compound is thioglycol, thiolenamine, thiojetanol, And cysteine thiodiglycolate, thioacetamide, ethanolamine acid of dithiodipropionic acid and the like. R 14 and R 15 are the same as R 11 and R 12 .

【0022】[0022]

【化5】 Embedded image

【0023】この発明において、置換めっき法は、前記
めっき液を用いて、被めっき物に対して常法どおりのめ
っき処理が施される。すなわち、めっき槽ないしその方
式は従来から知られているバレル式、浸漬式、あるい
は、ベルトコンベア式などそのまま用いることができ、
まず、被めっき物を前記めっき液を入れた槽に配置し、
次いで、めっき条件としてはPH0.5〜1.0、温度
30℃〜70℃が適当であり、かかるめっき処理の液撹
拌はめっき仕上がりに良い結果をもたらす。
In the present invention, in the displacement plating method, an object to be plated is subjected to a usual plating treatment using the plating solution. That is, the plating tank or its method can be used as it is, such as a conventionally known barrel type, immersion type, or belt conveyor type,
First, an object to be plated is placed in a tank containing the plating solution,
Next, as the plating conditions, a pH of 0.5 to 1.0 and a temperature of 30 ° C. to 70 ° C. are appropriate, and the stirring of the solution in the plating process brings good results to the plating finish.

【0024】[0024]

【作用】この発明は、ステンレス板の一方にCuを他方
にNiを被着してなる3層クラッド板をCu側よりプレ
スし打ち抜き加工して、ボタン型電池用負極缶片に形成
した後、置換めっき法にて前記Cu面にSn被着する
ことを特徴とし、打ち抜き加工後に置換めっきするた
め、従来の負極缶の如く、Snめっき面にはプレス加工
時の汚染の悪影響や金属粉の押込み、付着がなく、H2
ガス発生の抑制効果が極めて高く、またCu面に被着さ
れるSnめっき厚0.02μm〜5.0μmであり、
Snめっき被膜厚が薄いため、めっき表面が平滑で液漏
れの恐れもない。
According to the present invention, a three-layer clad plate in which one side of a stainless steel plate is coated with Cu and the other side is coated with Ni is pressed from the Cu side and punched to form a negative electrode can for a button type battery. It is characterized in that Sn is applied to the Cu surface by displacement plating, and displacement plating is performed after punching, so that the Sn plating surface has the adverse effect of contamination during press working and metal powder as in a conventional negative electrode can. No indentation, no adhesion, H 2
The effect of suppressing gas generation is extremely high, and the Sn plating thickness deposited on the Cu surface is 0.02 μm to 5.0 μm,
For Sn plating the film thickness is thin, even no possibility of smooth leakage plated surface.

【0025】[0025]

【実施例】【Example】

実施例1 厚さ比率16:76:8になるように、Cu板、ステン
レス鋼(SUS304)Ni板を圧接後、スリッターで
幅切断して、寸法板厚0.2mm、板幅12mm、長さ
100mのCu−ステンレス鋼−Ni3層クラッド条帯
を得た後、前記3層クラッド板を40Tonプレスを用
いてCu面側よりプレス加工、打抜加工して、内面がC
u、外面がNiの寸法外径10mm×高さ2mmのボタ
ン状負極缶10,000ケを作成した。得られた負極缶
の1ケ当たりの重量は0.2143g、表面積13.1
mm2、この負極缶をプレス時のプレス油除去及び金属
粉除去のため、トリクロールエタンで予備脱脂洗浄し、
次にバレルに入れて、アルカリ電解脱脂ジェットクリー
ナー(福野化学薬品製)を用い、50g/l、温度50
℃、電流密度5A/dm2の条件にて、3分間処理後、
流水による水洗後さらに水洗し、次に酸活性処理として
10%H2SO4溶液中に40℃に30秒浸漬した後、さ
らに水洗した。
Example 1 After pressing a Cu plate and a stainless steel (SUS304) Ni plate so as to have a thickness ratio of 16: 76: 8, the width was cut with a slitter, and the dimensions were a thickness of 0.2 mm, a width of 12 mm, and a length. After obtaining a Cu-stainless steel-Ni three-layer clad strip of 100 m, the three-layer clad plate is pressed and punched from the Cu surface side using a 40-ton press, and the inner surface is C-shaped.
u, 10,000 pieces of button-shaped negative electrode cans having an outer surface of Ni dimensions of outer diameter 10 mm × height 2 mm were prepared. The weight of the obtained negative electrode can was 0.2143 g, and the surface area was 13.1 g.
mm 2 , the negative electrode can was pre-degreased and washed with trichlorethane to remove press oil and metal powder during pressing.
Next, put in a barrel and use an alkaline electrolytic degreasing jet cleaner (manufactured by Fukuno Chemical Co., Ltd.) at 50 g / l and a temperature of 50 g / l.
C. and a current density of 5 A / dm 2 for 3 minutes.
After rinsing with running water, the plate was further washed with water, then immersed in a 10% H 2 SO 4 solution at 40 ° C. for 30 seconds as an acid activation treatment, and further washed with water.

【0026】次に、表2に示す組成からなる置換Snめ
っき液を調整し、得られたpH0.59の置換めっき液
を撹拌し、浴温度50℃で3分間バレルを回転させて浴
に浸漬し、置換Snめっきを行い水洗2回後、遠心脱水
後乾燥を行い、Snめっき厚0.1μmの金属光沢のあ
る負極缶1000ケを得た。次に、Snウイスカー発生
低減のために温度125℃で3時間の熱処理を行った。
得られた負極缶のめっき面の汚染状況、耐食性、電解液
はい上がり高さを表8に示す。
Next, a substituted Sn plating solution having the composition shown in Table 2 was prepared, and the resulting substituted plating solution having a pH of 0.59 was stirred and immersed in the bath by rotating the barrel at a bath temperature of 50 ° C. for 3 minutes. Then, the substrate was subjected to displacement Sn plating, washed twice with water, centrifugally dehydrated, and then dried to obtain 1,000 negative electrode cans having a Sn plating thickness of 0.1 μm and a metallic luster. Next, heat treatment was performed at a temperature of 125 ° C. for 3 hours to reduce the generation of Sn whiskers.
Table 8 shows the contamination status, corrosion resistance, and the height of the overflow of the electrolytic solution on the plating surface of the obtained negative electrode can.

【0027】なお、めっき面の汚染状況はXMAにて分
析測定し、異物数は光学顕微鏡にて、面積0.1mm2
中の0.001mm以上の異物を測定した。また、耐食
性はボタン状負極缶にハンダ付けしてリードを接続しN
i面を絶縁して、ポテンショスタットにて自然電位、孔
食電位(100μA/cm2)を測定した。また、電解
液のはい上がり高さは、はい上がり高さ試験片として寸
法厚さ0.4mm×幅10mm×長さ100mmの無酸
素Cu板を脱脂洗浄処理後、Sn置換めっきにてめっき
厚0.1μmとし、亜鉛粉と電解液を入れた容器に入れ
て、液面より上に濡れる高さを計測した。
The contamination on the plating surface was analyzed and measured by XMA, and the number of foreign substances was determined by an optical microscope using an area of 0.1 mm 2.
The foreign matter of 0.001 mm or more in the inside was measured. The corrosion resistance is determined by soldering to the button-shaped negative electrode can and connecting the lead.
The i-plane was insulated, and the spontaneous potential and pitting potential (100 μA / cm 2 ) were measured with a potentiostat. Further, the rising height of the electrolytic solution was determined by degreasing and cleaning an oxygen-free Cu plate having a thickness of 0.4 mm, a width of 10 mm, and a length of 100 mm as a rising height test piece. 0.1 μm, and placed in a container containing zinc powder and an electrolytic solution, and the height of wetting above the liquid level was measured.

【0028】[0028]

【表2】 [Table 2]

【0029】参考例2 実施例1で作成し、予備脱脂洗浄、電解脱脂洗浄、水洗
後酸活性処理した外径10mm×高さ2mmのボタン状
負極缶1000ケに、表3に示す組成のInめっき浴に
て、pH9(28%NH4OH水添加)、温度80℃の
めっき条件で、めっき液を撹拌し、5分間バレルを回転
させて浴に浸漬し、置換Inめっきを行ない、水洗2回
後、遠心脱水後乾燥を行なった。得られためっき厚0.
1μmの金属光沢のあるInめっきされた負極缶のめっ
き面の汚染状況、耐食性、電解液はい上がり高さを、実
施例1と同様に測定し表8に示す。
REFERENCE EXAMPLE 2 Into 1,000 button-shaped negative electrode cans having an outer diameter of 10 mm and a height of 2 mm prepared in Example 1 and subjected to preliminary degreasing cleaning, electrolytic degreasing cleaning, water washing and acid activation treatment, and having the composition shown in Table 3 In a plating bath, under a plating condition of pH 9 (28% NH 4 OH water addition) and a temperature of 80 ° C., the plating solution is stirred, the barrel is rotated for 5 minutes, immersed in the bath, displacement In plating is performed, and water washing 2 is performed. After that, drying was performed after centrifugal dehydration. Obtained plating thickness
The contamination status, corrosion resistance, and rising height of the electrolytic solution on the plated surface of the negative electrode can plated with In with a 1 μm metallic luster were measured in the same manner as in Example 1 and shown in Table 8.

【0030】[0030]

【表3】 [Table 3]

【0031】実施例3,4,5 表2に示す浴組成を用いて、実施例1で得たボタン状負
極缶に実施例1と同様のめっきを行い、めっき時間を種
々変化させてめっき厚みの異なる負極缶(試料No.3
〜5)を製造し、次に、Snウイスカー発生低減のため
に温度125℃で3時間の熱処理を行い、それぞれ実施
例1と同様に負極缶のめっき面の汚染状況、耐食性、電
解液はい上がり高さを測定し表8に示す。
Examples 3, 4, 5 Using the bath compositions shown in Table 2, the button-shaped negative electrode can obtained in Example 1 was plated in the same manner as in Example 1, and the plating time was variously changed to change the plating thickness. Negative electrode cans (Sample No. 3)
To 5), and then heat-treated at a temperature of 125 ° C. for 3 hours in order to reduce the generation of Sn whiskers. The height was measured and is shown in Table 8.

【0032】比較例6 実施例1で得たCu−ステンレス鋼−Ni3層クラッド
条帯を用いて、実施例1と同様の予備脱脂洗浄、電解脱
脂洗浄、水洗後酸活性処理したのち、表4に示す組成か
らなる無電解Inめっき液にて、pH9(28%NH4
OH水添加)、温度80℃の無電解めっき条件で、In
めっき厚0.5μmの条帯厚さ0.2mm×幅12mm
×長さ20mの素材を作成した。Inめっきした条帯素
材を実施例1と同様にプレス加工、打抜加工して、内面
がInめっき、外面がNiの寸法外径10mm×高さ2
mmのボタン状負極缶1000ケを得た。さらに、プレ
ス時のプレス油除去及び金属粉除去のため、トリクロー
ルエタンで脱脂洗浄後水洗し、遠心脱水後乾燥を行なっ
た。その後、実施例1と同様に得られた負極缶のめっき
面の汚染状況、耐食性、電解液はい上がり高さを測定し
たところ、表8に試料No.6として示す如く、金属粉
の汚染異物は除去されないで残っていた。
Comparative Example 6 Using the Cu-stainless steel-Ni three-layer clad strip obtained in Example 1, the same preliminary degreasing cleaning, electrolytic degreasing cleaning, and water washing as in Example 1 were carried out, followed by acid activation treatment. PH 9 (28% NH 4) with an electroless In plating solution having the composition shown in
OH water addition), under the conditions of electroless plating at a temperature of 80 ° C.,
Plating thickness 0.5μm strip thickness 0.2mm x width 12mm
× A material having a length of 20 m was prepared. The In-plated strip material was pressed and stamped out in the same manner as in Example 1, and the inner surface was In-plated and the outer surface was Ni.
Thus, 1000 mm button-shaped negative electrode cans were obtained. Further, in order to remove press oil and metal powder at the time of pressing, the material was degreased and washed with trichlorethane, washed with water, centrifugally dehydrated, and dried. After that, the contamination state, corrosion resistance, and rising height of the electrolytic solution of the plated surface of the negative electrode can obtained in the same manner as in Example 1 were measured. As shown as No. 6, the contaminant foreign matter of the metal powder remained without being removed.

【0033】[0033]

【表4】 [Table 4]

【0034】比較例7 実施例1で得たCu−ステンレス鋼−Ni3層クラッド
条帯を用いて、実施例1と同様の予備脱脂洗浄した後、
Ni面にInめっき析出防止のためにスコッチ電気絶縁
テープNo.56(住友3M社製)を貼りつけ、次に実
施例1と同様の電解脱脂洗浄、水洗後酸活性処理したの
ち、表5に示す組成からなる電気Inめっき液にて、p
H13、温度50℃、電流密度2A/dm2の電気めっ
き条件で、Inめっき厚1.0μmの条帯厚さ0.2m
m×幅12mm×長さ20mの素材を作成した。Ni面
上のスコッチ電気絶縁テープNo.56(住友3M社
製)を剥離するとエッジ両サイド部にInめっきされる
欠陥が発生していた。このInめっきした条帯素材を実
施例1と同様にプレス加工、打抜加工して、内面がIn
めっき、外面がNiの寸法外径10mm×高さ2mmの
ボタン状負極缶1000ケを得た。さらに、プレス時の
プレス油除去及び金属粉除去のため、トリクロールエタ
ンで脱脂洗浄後水洗し、遠心脱水後乾燥を行なった。そ
の後、実施例1と同様に得られた負極缶のめっき面の汚
染状況、耐食性、電解液はい上がり高さを測定したとこ
ろ、表8に試料No.7として示す如く、金属粉の汚染
異物は除去されないで残っていた。さらに、キャップ内
面Inめっき被覆コーナー部にマイクロクラックが発生
していた。
Comparative Example 7 Using the Cu-stainless steel-Ni three-layer clad strip obtained in Example 1, preliminarily degreased and washed as in Example 1,
Scotch electrical insulation tape No. 56 (manufactured by Sumitomo 3M), and then subjected to the same electrolytic degreasing and water washing as in Example 1, followed by an acid activation treatment.
H13, temperature 50 ° C., current density 2 A / dm 2 under electroplating conditions, In plating thickness 1.0 μm, strip thickness 0.2 m
A material of mx 12 mm wide x 20 m long was prepared. Scotch electrical insulation tape no. When 56 (manufactured by Sumitomo 3M) was peeled off, a defect of In plating occurred on both sides of the edge. This In-plated strip material was pressed and punched in the same manner as in Example 1 so that the inner surface was In.
Plating was performed to obtain 1000 button-shaped negative electrode cans having a Ni outer dimension of 10 mm in outer diameter × 2 mm in height. Further, in order to remove press oil and metal powder at the time of pressing, the material was degreased and washed with trichlorethane, washed with water, centrifugally dehydrated, and dried. After that, the contamination state, corrosion resistance, and rising height of the electrolytic solution of the plated surface of the negative electrode can obtained in the same manner as in Example 1 were measured. As shown by 7, the contaminant foreign matter of the metal powder remained without being removed. Further, microcracks were generated at the corners of the cap inner plating coating.

【0035】[0035]

【表5】 [Table 5]

【0036】比較例8 実施例1で得たCu−ステンレス鋼−Ni3層クラッド
条帯を用いて、実施例1と同様の予備脱脂洗浄した後、
Ni面にSnめっき析出防止のためにスコッチ電気絶縁
テープNo.56(住友3M社製)を貼りつけ、次に実
施例1と同様の電解脱脂洗浄、水洗後酸活性処理したの
ち、表に示す組成からなるSnめっき液にて、pH1
3、温度50℃、電流密度2A/dm2の電気めっき条
件で、Snめっき厚1.0μmの条帯厚さ0.2mm×
幅12mm×長さ20mの素材を作成した。Ni面上の
スコッチ電気絶縁テープNo.56(住友3M社製)を
剥離するとエッジ両サイド部にSnめっきされる欠陥が
発生していた。このSnめっきした条帯素材を実施例1
と同様にプレス加工、打抜加工して、内面がSnめっ
き、外面がNiの寸法外径10mm×高さ2mmのボタ
ン状負極缶1000ケを得た。さらに、プレス時のプレ
ス油除去及び金属粉除去のため、トリクロールエタンで
脱脂洗浄後水洗し、遠心脱水後乾燥を行なった。その
後、実施例1と同様に得られた負極缶のめっき面の汚染
状況、耐食性、電解液はい上がり高さを測定したとこ
ろ、表8に試料No.8として示す如く、金属粉の汚染
異物は除去されないで残っていた。さらに、キャップ内
面Snめっき被覆コーナー部にマイクロクラックが発生
していた。また、2か月後、Snウイスカーが発生し
た。
COMPARATIVE EXAMPLE 8 Using the Cu-stainless steel-Ni three-layer clad strip obtained in Example 1, the same preliminary degreasing and washing as in Example 1 was performed.
Scotch electrical insulation tape No. 56 (manufactured by Sumitomo 3M), followed by electrolytic degreasing and water washing as in Example 1, followed by acid activation treatment, followed by a Sn plating solution having the composition shown in Table 6 to obtain a pH of 1
3. Under electroplating conditions of a temperature of 50 ° C. and a current density of 2 A / dm 2 , a Sn plating thickness of 1.0 μm and a strip thickness of 0.2 mm ×
A material having a width of 12 mm and a length of 20 m was prepared. Scotch electrical insulation tape no. When 56 (manufactured by Sumitomo 3M) was peeled off, Sn plating defects occurred on both sides of the edge. This Sn-plated strip material was used in Example 1.
Pressing and punching were performed in the same manner as in the above to obtain 1,000 button-shaped negative electrode cans having an inner surface of Sn plating and an outer surface of Ni having an outer diameter of 10 mm and a height of 2 mm. Further, in order to remove press oil and metal powder at the time of pressing, the material was degreased and washed with trichlorethane, washed with water, centrifugally dehydrated, and dried. After that, the contamination state, corrosion resistance, and rising height of the electrolytic solution of the plated surface of the negative electrode can obtained in the same manner as in Example 1 were measured. As shown by 8, the contaminant foreign matter of the metal powder remained without being removed. Furthermore, microcracks were generated at the corners of the Sn plating coating on the inner surface of the cap. Two months later, Sn whiskers occurred.

【0037】[0037]

【表6】 [Table 6]

【0038】[0038]

【0039】[0039]

【0040】[0040]

【表8】 [Table 8]

【0041】[0041]

【発明の効果】この発明は、ステンレス板の一方にCu
を他方にNiを被着してなる3層クラッド板をCu側よ
りプレスし打ち抜き加工して、ボタン型電池用負極缶片
に形成した後、置換めっき法にて前記Cu面にSn
着することを特徴とし、打ち抜き加工後に置換めっきす
るため、従来の負極缶の如く、Snめっき面はプレス
加工時の汚染の悪影響や金属粉の押込み、付着がなく、
2ガス発生の抑制効果が極めて高く、またCu面に被
着されるSnめっき厚0.02μm〜5.0μmであ
り、Snめっき被膜が薄いため、めっき表面が平滑で
液漏れの恐れもない。
According to the present invention, one of the stainless steel plates
Is pressed and punched from the Cu side to form a three-layer clad plate on which Ni is adhered on the other side to form a button-type battery negative electrode can. Then, Sn is adhered to the Cu surface by displacement plating. It is characterized by the fact that displacement plating is performed after punching, so there is no adverse effect of contamination at the time of press working, metal powder indentation, adhesion as in the conventional negative electrode can, as in the conventional negative electrode can,
Suppression of H 2 gas generated is very high, also Sn plating thickness to be deposited on the Cu surface is 0.02Myuemu~5.0Myuemu, since Sn plated film is thin, the plated surface may smooth a leakage Nor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ボタン型アルカリ電池の構成を示す縦断説明図
である。
FIG. 1 is a vertical sectional view showing a configuration of a button-type alkaline battery.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレーター 4 正極缶 5 負極缶 6 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Gasket

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ステンレス板の1主面にCuを、他主面
にNiを被着してなる3層クラッド板を前記Cu側より
プレス、打ち抜き加工して、ボタン型電池用負極缶片に
形成した後、前記負極缶片の内面のCu面を清浄化処理
し、アルカノールスルホン酸第1錫30〜50g/l、
アルカンスルホン酸65〜110g/l、酒石酸10〜
20g/l、チオ尿素40〜120g/l、クエン酸ナ
トリウム10〜20g/l、非イオン界面活性剤1〜3
0g/l、有機イオウ化合物0.5〜10g/lを含有
し、pH0.5〜1.0の置換Snめっき液にて、該
っき液を撹拌しながら、前記Cu面に置換Snめっき膜
被着することを特徴とするボタン型電池用負極缶の製
造方法。
1. A three-layer clad plate comprising a stainless steel plate having one main surface coated with Cu and another main surface coated with Ni is pressed and punched from the Cu side to form a button-type battery negative electrode can. After the formation, the Cu surface on the inner surface of the negative electrode can piece was subjected to cleaning treatment, and stannous alkanolsulfonate was 30 to 50 g / l,
Alkanesulfonic acid 65-110 g / l, tartaric acid 10
20 g / l, thiourea 40-120 g / l, sodium citrate
Thorium 10-20 g / l, nonionic surfactants 1-3
0 g / l, containing organic sulfur compounds 0.5 to 10 g / l
Then, while stirring the plating solution with a substitution Sn plating solution having a pH of 0.5 to 1.0 , a substitution Sn plating film is formed on the Cu surface.
Anode can manufacturing method for a button-type battery, characterized by depositing.
JP26586893A 1993-09-28 1993-09-28 Method of manufacturing negative electrode can for button type battery Expired - Fee Related JP3293977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26586893A JP3293977B2 (en) 1993-09-28 1993-09-28 Method of manufacturing negative electrode can for button type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26586893A JP3293977B2 (en) 1993-09-28 1993-09-28 Method of manufacturing negative electrode can for button type battery

Publications (2)

Publication Number Publication Date
JPH0799044A JPH0799044A (en) 1995-04-11
JP3293977B2 true JP3293977B2 (en) 2002-06-17

Family

ID=17423214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26586893A Expired - Fee Related JP3293977B2 (en) 1993-09-28 1993-09-28 Method of manufacturing negative electrode can for button type battery

Country Status (1)

Country Link
JP (1) JP3293977B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955194A (en) * 1995-08-11 1997-02-25 Seiko Instr Inc Alkaline cell

Also Published As

Publication number Publication date
JPH0799044A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
JP4651906B2 (en) Plating bath and method for depositing a metal layer on a substrate
Goh et al. Effects of hydroquinone and gelatin on the electrodeposition of Sn–Bi low temperature Pb-free solder
JP2004339605A (en) Improved tin-plating method
CA2525064C (en) High purity electrolytic sulfonic acid solutions
US6998036B2 (en) Electrolyte and method for depositing tin-silver alloy layers
TWI523978B (en) Thin-tin tinplate
CN110369712A (en) A kind of preparation method for covering silver-bearing copper powder
CN108866583A (en) Tin or tin-lead alloy plating solution applied to leadless electronic component, and preparation method and plating method thereof
KR810002105B1 (en) Plating on aluminium alloys
JP3293977B2 (en) Method of manufacturing negative electrode can for button type battery
TWI328052B (en) Electrolyte and method for depositing tin-bismuth alloy layers
Joseph et al. Effect of surfactant on the bath stability and electrodeposition of Sn–Ag–Cu films
KR100872622B1 (en) METHOD FOR FORMING Sn-Ag-Cu THREE-ELEMENT ALLOY THIN FILM ON BASE
JP2008536011A5 (en)
JP4742677B2 (en) Method for producing tin-plated steel strip
JP2824267B2 (en) Aluminum plating method for metal materials
JPS59119673A (en) Battery
JPH02500602A (en) Method for depositing composite oxide-nickel coating on metal substrate and oxide-nickel electrode
Heong et al. Effects of Sn concentration and current density on Sn-Bi electrodeposition in additive free plating bath
JPS6389695A (en) Neutral ph electrolytic bath for electroplating
JP4012760B2 (en) Aqueous electrolytic stripping solution for tin-silver alloy and electrolytic stripping method
KR102524705B1 (en) Method of producing surface-treated steel sheet and surface-treated steel sheet
JPS6024197B2 (en) Pb alloy insoluble anode for electroplating
US20230383430A1 (en) Tin-indium alloy electroplating solution
JPH10204676A (en) Tin-silver alloy electroplating bath and tin-silver alloy electroplating method

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees