JP3292049B2 - 車両用動力伝達制御装置 - Google Patents
車両用動力伝達制御装置Info
- Publication number
- JP3292049B2 JP3292049B2 JP19559796A JP19559796A JP3292049B2 JP 3292049 B2 JP3292049 B2 JP 3292049B2 JP 19559796 A JP19559796 A JP 19559796A JP 19559796 A JP19559796 A JP 19559796A JP 3292049 B2 JP3292049 B2 JP 3292049B2
- Authority
- JP
- Japan
- Prior art keywords
- control
- control amount
- road
- vehicle
- road surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Retarders (AREA)
- Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
Description
動輪である場合には駆動力をその配分を制御しながら左
右輪へ伝達し、この左右輪が従動輪である場合には左右
輪の回転に伴う回転力を左右輪間で授受させる、或い
は、この駆動力の配分制御又は回転に伴う回転力の授受
を左右輪間又は前後輪間で行なう車両用動力伝達制御装
置に関する。
に、旋回時等に生じる差動を許容するための差動機構が
設けられているが、この差動機構では、左右輪のうちの
一方の車輪が例えば砂にはまるなどして空転すると、こ
の一方の車輪のみが回転して他方の車輪はほとんど回転
しなくなって、路面に駆動トルクを伝達できない状態が
生じることがある。
限できる差動制限機構(LSD=リミテットスリップデ
フ)が開発されている。このような左右輪の差動制限機
構には、左右輪の回転速度差に比例するタイプのもの
や、入力トルクに比例するタイプのものがある。左右輪
回転速度差比例タイプには、液体の粘性を利用したVC
(ビスカスカップリング)式LSDなどのものがあり、
車両の走行安定性を向上しうる利点がある。一方、入力
トルク比例タイプのものには、一般的なLOM(ロック
オートマチック)式LSDなどのフリクションタイプの
ものなどのメカニカルタイプのものがあり、車両の旋回
性能を向上しうる利点がある。
限機構では、その差動制御特性が物性などによって定ま
っており、必ずしも常に適切に差動制御を行なえるよう
に差動制御特性を調整できるようにはなっていない。ま
た、LSDを電子制御化したいわゆる電子制御LSDと
呼ばれるシステムもあるが、このようなものにおいても
車輪間のトルク移動は、高速側から低速側へのみに限ら
れており、したがって、例えば特に車両の旋回走行中等
に、その走行性能を十分に高めることまではできないも
のと考えられる。
エネルギロスを招かずに車両の種々の走行状態において
左右輪間でのトルク配分を行なえるようにすべく、例え
ば特開平5−131855号,特開平7−108840
号,特開平7−108841号,7−108842号,
特開平7−108843号,特開平7−156681号
の各公報等に開示されているような、車両用左右輪間ト
ルク移動制御装置を提案した。
上に配設された2つの回転体を互いに回転速度の異なる
状態で摺接させると、回転速度の高い方の回転体から回
転速度の低い方の回転体へとトルクが伝達するという特
性を利用したものである。すなわち、この装置は、例え
ば、差動装置に入力された回転速度又は一方の車輪軸の
回転速度を高速並びに低速に変速して出力する変速機構
と、この変速機構のそれぞれの出力を受けて差動装置又
は一方の車輪軸とは異なる回転速度で回転する複数の変
速連動部材と、左右輪のうちの他方の車輪軸と等しい速
度で回転する等速連動部材と、これらの変速連動部材と
等速連動部材との間に設けられた湿式多板クラッチ等の
複数のトルク伝達カップリングをそなえたものである。
回転していても、トルク伝達カップリングにおいては、
変速連動部材側と等速連動部材側とで回転速度が異なる
ため、湿式多板クラッチを係合させるなどしてトルク伝
達カップリングを作用させれば、変速連動部材側と等速
連動部材側とのうち速度の高い方から速度の低い方へと
トルクが伝達される。変速機構による変速度合を一定以
上に大きくしておけば、旋回時に回転速度の低い内輪側
から回転速度の高い外輪側へのトルク伝達も実現する。
ルク伝達カップリングでは、それぞれの湿式多板クラッ
チの係合の切換並びに係合度合等の制御を行なうことに
より、一方の車輪軸への伝達トルクを増加又は減少させ
たり、他方の車輪軸への伝達トルクを増加又は減少させ
たりすることができる。したがって、伝達トルク容量を
可変制御できるため、左右輪において所望の方向へ所望
の伝達トルク容量でトルクを伝達させることができる。
ても従動輪であっても適用でき、左右輪が駆動輪であれ
ば、エンジンからの駆動力の左右輪への配分を調整する
ことができ、左右輪が従動輪であれば、トルク伝達によ
って、トルク伝達をされる側の車輪は駆動力を受けるこ
とになり、トルク伝達をする側の車輪は制動力を受ける
ことになる。
間で発揮される駆動力又は制動力の大きさを左右不均衡
にし、これにより、車両にヨーモーメントを発生させて
車両の挙動を制御することができる。また、このような
トルク伝達制御は左右輪間のみならず前後輪間でも考え
られる。
な車両の左右輪間(又は前後輪間)でトルクの伝達を行
なえる装置では、車両にヨーモーメントを発生させて車
両の挙動を制御するにあたり、車両の走行状態に応じて
車両に加えるべきヨーモーメントの方向や強さが異なっ
てくるため、左右輪間(又は前後輪間)でのトルク伝達
の方向や大きさをどのような観点から制御するかが重要
な課題となる。
即ち、路面摩擦抵抗の状態(これは、路面摩擦係数とし
てあらわすことができる)によっても、制御効果が異な
ってくるものと考えられ、このような路面状態に応じた
制御をどのように行なうかが課題となる。本発明は、上
述の課題に鑑み創案されたもので、左右車輪間又は前後
車輪間での動力伝達制御を路面状態に応じて適切に行な
えるようにした、車両用動力伝達制御装置を提供するこ
とを目的とする。
の本発明の車両用動力伝達制御装置は、車両の前後車軸
間又は左右車輪間に設けられ、該前後車軸又は該左右車
輪の各回転推進力を調整可能な回転推進力配分調整機構
と、上記回転推進力配分調整機構の出力制御量を算出す
る制御量算出手段と、上記制御量算出手段で算出された
上記出力制御量に基づいて上記回転推進力配分調整機構
を制御する制御手段と、をそなえた車両用動力伝達制御
装置において、上記制御量算出手段が、路面の摩擦抵抗
に応じた摩擦係数を算出する路面摩擦係数算出手段と、
第1のパラメータに基づく第1制御量を設定するための制
御マップとして、高路面摩擦抵抗対応制御量を与える高
路面摩擦抵抗用マップと、低路面摩擦抵抗対応制御量を
与える低路面摩擦抵抗用マップとを有し、上記高路面摩
擦抵抗対応制御量と上記低路面摩擦抵抗対応制御量とを
上記路面摩擦係数に応じて補間的に反映させながら上記
出力制御量を算出するとともに、上記補間に関わる上記
高路面摩擦抵抗対応制御量の反映度合を、低路面摩擦係
数側よりも高路面摩擦係数側で大きく設定し、且つ、全
ての路面摩擦係数領域において連続して比例増大するよ
うに設定される反映度合とは異なるように設定されてい
ることを特徴としている。
目標車輪速差と実車輪速差との差に応じて制御量を設定
するものである。請求項2記載の本発明の車両用動力伝
達制御装置は、請求項1記載の装置において、上記第1
のパラメータが上記左右車輪の車輪速度差であり、該車
輪速度差に対する上記高路面摩擦抵抗対応制御量が上記
低路面摩擦抵抗対応制御量よりも大きくなるように上記
高路面摩擦抵抗用マップと上記低路面摩擦抵抗用マップ
とが設定され、上記補間に関わる上記高路面摩擦抵抗対
応制御量の反映度合が、全ての路面摩擦係数領域におい
て連続して比例増大するように設定される反映度合に対
して高路面摩擦係数と低路面摩擦係数との間の所定の路
面摩擦係数領域で大きく設定されていることを特徴とし
ている。
制御量を設定しない不感帯を設ける。さらに、この不感
帯は高摩擦抵抗対応制御量の方が低摩擦抵抗対応制御量
よりも大きく設定することが好ましい。また、横加速度
の大きい領域においては、高摩擦抵抗対応制御量の方が
低摩擦抵抗対応制御量よりも制御量を大きく設定される
ことが好ましい。
御装置は、請求項1記載の装置において、上記第1のパ
ラメータが横加速度であり、該横加速度が小さい領域に
おける上記低路面摩擦抵抗対応制御量が上記高路面摩擦
抵抗対応制御量よりも大きくなるように上記高路面摩擦
抵抗用マップと上記低路面摩擦抵抗用マップとが設定さ
れ、上記補間に関わる上記高路面摩擦抵抗対応制御量の
反映度合が、全ての路面摩擦係数領域において連続して
比例増大するように設定される反映度合に対して高路面
摩擦係数と低路面摩擦係数との間の所定の路面摩擦係数
領域で大きく設定されていることを特徴としている。
段の制御マップは、左右輪の目標車輪速差と実車輪速差
との差に応じて制御量を設定するものである。また、好
ましくは、上記制御マップには、制御量を設定しない不
感帯を設ける。さらに、この不感帯は高摩擦抵抗対応制
御量の方が低摩擦抵抗対応制御量よりも大きく設定する
ことが好ましい。また、横加速度の大きい領域において
は、高摩擦抵抗対応制御量の方が低摩擦抵抗対応制御量
よりも制御量を大きく設定されることが好ましい。
御装置は、車両の前後車軸間又は左右車輪間に設けら
れ、該前後車軸又は該左右車輪の各回転推進力を調整可
能な回転推進力配分調整機構と、上記回転推進力配分調
整機構の出力制御量を算出する制御量算出手段と、上記
制御量算出手段で算出された上記出力制御量に基づいて
上記回転推進力配分調整機構を制御する制御手段と、を
そなえた車両用動力伝達制御装置において、上記制御量
算出手段が、第1のパラメータに基づく第1制御量を設
定するための制御マップを第2のパラメータに応じて複
数有し、上記第1のパラメータに基づき上記複数の制御
マップから得られるそれぞれの制御量を上記第2のパラ
メータに応じて補間して上記第1制御量を算出する第1
制御量算出手段と、第3のパラメータに基づく第2制御
量を設定するための制御マップを上記第2のパラメータ
に応じて複数有し、上記第3のパラメータに基づき上記
複数の制御マップから得られるそれぞれの制御量を上記
第2のパラメータに応じて補間して上記第2制御量を算
出する第2制御量算出手段と、を有し、上記第1制御量
と上記第2制御量とを総合して上記出力制御量を算出す
るように構成され、上記第2のパラメータの所定領域に
対応した制御マップより得られる制御量の反映度合が、
上記第1制御量に関する場合と上記第2制御量に関する
場合とで異なるように設定されていることを特徴として
いる。
御装置は、請求項4記載の装置において、上記第1のパ
ラメータが上記左右車輪の車輪速度差であり、上記第2
のパラメータが路面摩擦係数であり、上記第3のパラメ
ータが横加速度であって、上記第1の制御量算出手段
が、少なくとも高路面摩擦抵抗対応制御量を与える高路
面摩擦抵抗用マップと、上記車輪速度差に対して上記高
路面摩擦抵抗対応制御量よりも小さい低路面摩擦抵抗対
応制御量を与える低路面摩擦抵抗用マップとを有し、上
記第2の制御量算出手段が、少なくとも高路面摩擦抵抗
対応制御量を与える高路面摩擦抵抗用マップと、上記横
加速度が小さい領域においては上記高路面摩擦抵抗対応
制御量よりも大きい低路面摩擦抵抗対応制御量を与える
低路面摩擦抵抗用マップとを有し、上記第1制御量を算
出するための補間に関わる上記高路面摩擦抵抗対応制御
量の反映度合が、上記第2制御量を算出するための補間
に関わる上記高路面摩擦抵抗対応制御量の反映度合より
も大きく設定されていることを特徴としている。
の回転速度差や車速又は前後及び横加速度などの車両挙
動を示すものや、スロットル開度やハンドル角などの運
転操作状態を示すものが好ましく、また、第2の制御パ
ラメータは、車両固有の定数に基づくものであることが
好ましい。
本車両用左右輪間動力伝達制御装置(本車両用動力伝達
制御装置)は、同軸上に配設された2つの回転体を互い
に回転速度の異なる状態で摺接させると、回転速度の高
い方の回転体から回転速度の低い方の回転体へとトルク
が伝達するという特性を利用したものである。
上に設置された左輪側回転部材と右輪側回転部材とのう
ち一方(ここでは左輪側)の回転速度NLが他方(ここ
では右輪側)の回転速度NRよりも大きいと、このとき
の速度差、即ち、スリップ速度(=NL−NR)と、摺
接力、即ち、左輪側回転部材と右輪側回転部材との押圧
力Pとに応じた大きさTcのトルクが、左輪側(図5
中、左側)から右輪側(図5中、右側)へと伝達され
る。
側の方が右輪側よりも大きい状態であれば、左輪側から
右輪側へのトルク伝達を容易に行なうことが、右輪側の
方が左輪側よりも大きい状態とであれば、右輪側から左
輪側へのトルク伝達を容易に行なうことができる。そこ
で、本来、左右輪が等速で回転する領域においても、左
輪側の方が右輪側よりも大きい状態を実現するには、例
えば左輪側に左輪側の回転速度VLを高速に変速する変
速機構を設ければ、左右輪が等速で回転していても、こ
の変速機構の出力を受ける左輪側部材と、右輪と等しい
速度VRで回転する右輪側部材との間では、左輪側の回
転速度が右輪側よりも大きい状態を実現できる。また、
例えば右輪側に右輪側の回転速度VRを低速に変速する
変速機構を設ければ、左右輪が等速で回転していても、
左輪と等しい速度VLで回転する左輪側部材と、この変
速機構の出力を受ける右輪側部材との間では、左輪側の
回転速度が右輪側よりも大きい状態を実現できる。
に構成すれば、右輪側の方が左輪側よりも大きい状態を
常に実現することができる。車両の旋回時には、旋回内
輪は旋回外輪よりも低速回転になるが、変速機構の変速
比の設定に応じて、車両の旋回時にも、内輪側の回転部
材を外輪側の回転部材よりも高い速度に変速することが
できる。
輪側回転部材と右輪側回転部材との間にトルク伝達カッ
プリングを設ければ、このトルク伝達カップリングを適
当に作用させることで、一定の走行条件下では、左輪側
から右輪側へも、右輪側から左輪側へも常時トルク伝達
を行なうことができる。もちろん、最大舵角での旋回時
にも内輪側の駆動トルクが外輪側に伝達されるように、
変速機構による変速比を設定すれば、全走行条件下で、
左輪側から右輪側へも、右輪側から左輪側へも常時トル
ク伝達を行なうことができる。
伝達容量可変型のカップリングでは、係合圧力(押圧力
P)等に応じて伝達トルク量を調整することができる。
ところで、右輪側と左輪側との間に介装する変速機構及
びカップリングは、右輪側と左輪側との間に直接設ける
他に、例えば駆動輪の場合には、デファレンシャルの入
力部分と車輪側(右輪側又は左輪側)との間に、これら
の変速機構及びカップリングを設けるようにして、デフ
ァレンシャルの入力部分を介して、左輪側と右輪側との
間での動力伝達(トルク移動)を実現してもよい。
動力伝達(トルク移動)は、左右輪が駆動輪であっても
従動輪であっても適用でき、左右輪が駆動輪であれば、
エンジンからの駆動力の左右輪への配分を調整すること
になり、左右輪が従動輪であれば、トルク伝達によっ
て、トルク伝達をされる側の車輪は駆動力を受けること
になり、トルク伝達をする側の車輪は制動力を受けるこ
とになる。いずれにしても、左右の各車輪と路面との間
で発揮される駆動力又は制動力の大きさを左右不均衡に
制御して、これにより、車両にヨーモーメントを発生さ
せて車両の挙動を制御することができる。
制御装置のハードウェア構成について図1,図2を参照
して説明する。 1.2.1本装置にかかる車両の動力伝達系の構成 本実施形態の車両用左右輪間動力伝達制御装置は、図1
に示すように、四輪駆動車の後輪にそなえられる。
このエンジン2の出力はトランスミッション4及び中間
ギア機構6を介して差動歯車機構(=センタディファレ
ンシャル、以下、センタデフという)8に伝達されるよ
うになっている。このセンタデフ8の出力は、一方にお
いて前輪用の差動歯車機構(=フロントディファレンシ
ャル、以下、フロントデフという)10を介して車軸1
2L,12Rから左右の前輪14,16に伝達され、他
方においてベベルギヤ機構18,プロペラシャフト20
及びベベルギヤ機構22,後輪用の差動歯車装置(=リ
ヤディファレンシャル、以下、リヤデフという)24を
介して車軸26L,26Rから左右の後輪28,30に
伝達されるようになっている。本左右輪間動力伝達制御
装置の回転推進力配分調整機構(又は、回転力調整手
段、以下、トルク移動機構という)50はこのリヤデフ
24の部分に設けられている。
に、デファレンシャルピニオン8A,8Bと、これらの
デファレンシャルピニオン8A,8Bと噛合するサイド
ギヤ8C,8Dとからなり、デファレンシャルピニオン
8A,8Bから入力された回転トルクは、サイドギヤ8
C,8Dに伝達され、サイドギヤ8Cからは前輪側へ、
サイドギヤ8Dからは後輪側へと、それぞれの差動を許
容されながら伝達されるようになっている。
力軸32を介して前輪側のフロントデフ10へ、サイド
ギヤ8Dからは後輪用出力軸34及びベベルギヤ機構1
8を介してプロペラシャフト20から後輪側へトルクが
伝達される。このセンタデフ8には、その前輪側出力部
と後輪側出力部との差動を拘束(又は制限)することに
より前輪側と後輪側とのエンジンの出力トルクの配分を
制御しうる差動制限手段〔即ち、リミテッドスリップデ
フ(LSD)〕としてビスカスカップリングユニット
(VCU)36が付設されている。
輪用出力軸34との間に介装されており、差動状態に応
じた力で、前輪側と後輪側との差動を制限することで、
前後輪の軽負荷側だけが空転して重負荷側に回転トルク
が伝達されないような事態を回避しうるようになってい
る。 1.2.2本装置の回転推進力配分調整機構の構成 ところで、本左右輪間動力伝達制御装置は、デフキャリ
ア51内に設けられた回転推進力配分調整機構(トルク
移動機構)50と、その制御手段(又は回転推進力配分
制御手段)である油圧ユニット38及び電子制御ユニッ
ト(以下、ECUという)42とから構成されるが、こ
こで、リヤデフ24及びこのリヤデフ24と車軸26
L,26Rとの間に嵌挿されたトルク移動機構50の構
成を、図2を参照して説明する。
シャフト20の後端に結合されており、入力軸52には
ドライブピニオンギヤ54が一体回転するように結合さ
れている。このドライブピニオンギヤ54には、デファ
レンシャルケース(デフケース)58の外周に設けられ
たクラウンギヤ56が噛合しており、エンジンの出力
は、入力軸52からドライブピニオンギヤ54,クラウ
ンギヤ56を介してリヤデフ24に伝えられるようにな
っている。
に、デフケース58内に設けられた2対のピニオン、即
ち、デファレンシャルピニオン60A,60Bと、これ
らのデファレンシャルピニオン60A,60Bと噛合す
るサイドギヤ62,64とからなり、デファレンシャル
ピニオン60A,60Bから入力された回転トルクは、
サイドギヤ62,64に伝達され、サイドギヤ62から
は左輪側の回転軸66へ、サイドギヤ64からは右輪側
の回転軸68へと、それぞれの差動を許容されながら伝
達されるようになっている。また、左右の回転軸66,
68は、図1に示すように、左右の後輪28,30に結
合した車軸26L,26Rに連結されている。
の左右駆動輪で駆動力を配分するリヤデフ24のデフケ
ース58と右輪側回転軸68との間に設けられており、
変速機構70と伝達容量可変制御式トルク伝達機構90
とから構成され、デフケース58を介して、左輪側と右
輪側との間での回転推進力の伝達、即ち、動力伝達(ト
ルク移動)を行なうようになっている。
即ちデフケース58の回転速度を増速して左右輪の一方
側(ここでは、右輪側)に出力する増速機構70Aと、
減速して一方側(右輪側)に出力する減速機構70Bと
を一体にそなえているので、増減速機構とも称する。ま
た、伝達容量可変制御式トルク伝達機構90は、制御油
圧に応じて伝達容量を調整できる湿式油圧多板クラッチ
機構(以下、クラッチとも称する)が用いられており、
変速機構70の減速機構70Bの出力側と右輪側との間
に設けられて左輪側へトルク伝達をするクラッチ(左ク
ラッチ)90Lと、変速機構70の増速機構70Aの出
力側と右輪側との間に設けられて右輪側へトルク伝達を
するクラッチ(右クラッチ)90Rとが一体に形成され
ている。このような伝達容量可変制御式トルク伝達機構
90を、一体式カップリング又は単にカップリングとも
称する。
機構70は、デフケース58と一体回転するように結合
された中空の中間軸72と、右クラッチ90Rに接続さ
れた中空の中間軸74と、左クラッチ90Lに接続され
た中空の中間軸76との間に介装されている。なお、こ
れらの中間軸72,74,76はいずれも中空軸であ
り、中間軸72,74は、右輪側回転軸68の外周に相
対回転できるように装備され、中間軸76は、中間軸7
4のさらに外周にこれも相対回転できるように装備され
ている。
れぞれギヤ78A,80A,82Aが設けられて、ま
た、これらの中間軸72,74,76の外周にはカウン
タシャフト84が配設され、このカウンタシャフト84
には3連ギヤ86がそなえられている。3連ギヤ86
は、ギヤ78B,80B,82Bから構成され、ギヤ7
8Bは中間軸72のギヤ78Aに、ギヤ80Bは中間軸
74のギヤ80Aに、ギヤ82Bは中間軸76のギヤ8
2Aに、それぞれ噛合している。
A,80A,82Aを有する中間軸72,74,76
と、カウンタシャフト84と、ギヤ78B,80B,8
2Bを有する3連ギヤ86とから構成されている。な
お、カウンタシャフト84は、図3に示すように、中間
軸72,74,76の外周にドライブピニオン54と位
相をずらして複数(ここでは3つ)そなえられている。
これにより、リングギヤをそなえないが、ギヤ78A,
80A,82Aをサンギヤとしてギヤ78B,80B,
82Bをプラネタリピニオンとする、3連式の遊星歯車
機構と同様の配列に構成されている。
ャリア51に設けられた壁部51Aに固定されている。
したがって、ギヤ78B,80B,82Bはカウンタシ
ャフト84を軸心として自転のみ行なう。これにより、
中間軸72,74,76のラジアル方向への支持は、ギ
ヤ78A,80A,82Aとギヤ78B,80B,82
Bとの噛合を通じて、上述のように壁部51Aに固定さ
れた複数のカウンタシャフト84によっても行なわれて
いる。
て、これらのギヤ78A,80A,82Aの歯数をそれ
ぞれZ1 ,Z2 ,Z3 とすると、Z2 <Z1 <Z3 の関
係に設定されている。また、ギヤ78B,80B,82
Bの歯数をそれぞれZ4 ,Z5 ,Z6 とすると、Z6 <
Z4 <Z5の関係に設定されている。
では、ギヤ78A,ギヤ78B,ギヤ80A,ギヤ80
Bの組み合わせで、リヤデフ24に入力された回転を増
速して右輪側へ出力する増速機構70Aが構成され、ギ
ヤ78A,ギヤ78B,ギヤ82A,ギヤ82Bの組み
合わせで、リヤデフ24に入力された回転を減速して右
輪側へ出力する減速機構70Bが構成される。
は、リヤデフ24に入力された回転トルクによりデフケ
ース58が回転すると、このデフケース58の回転は、
中間軸72を介してギヤ78Aからギヤ78Aの外周の
複数のギヤ78Bへと伝達される。そして、各ギヤ78
Bと共に各ギヤ80B,82Bがカウンタシャフト84
を軸心として回転して、各ギヤ80B,82Bと噛合す
るギヤ80A,82Aが回転する。
一体に等速回転するが、これらのギヤ78B,80B,
82Bと噛合するギヤ78A,80A,82Aは上述の
ような端数の設定により、互いに異なる速度で回転す
る。つまり、増速機構70Aに関するギヤ78A,80
A,78B,80Bについては、ギヤ78A,80Aの
歯数Z1 ,Z2 は、Z1 >Z2 の関係にあり、ギヤ78
B,80Bの歯数Z4 ,Z5 は、Z4 <Z5 の関係にあ
るので、ギヤ80Aはギヤ78Aよりも高速に増速され
て回転する。
ヤ78Aに対する回転速度比を考えると、ギヤ78B,
80Bの回転数(即ち、3連ギヤ86の回転数)とギヤ
78Aの回転数との比(ギヤ78Aが1回転する際のギ
ヤ78B,80Bの回転数の値)は、Z1 /Z4 、ギヤ
80Aの回転数とギヤ78B,80Bの回転数(即ち、
3連ギヤ86の回転数)との比(ギヤ78B,80Bが
1回転する際のギヤ80Aの回転数の値)は、Z5 /Z
2 であり、ギヤ80Aのギヤ78Aに対する回転速度比
は、(Z1 ・Z5 )/(Z2 ・Z4 )となる。
A,82A,78B,82Bについては、ギヤ78A,
82Aの歯数Z1 ,Z3 は、Z1 <Z3 の関係にあり、
ギヤ78B,82Bの歯数Z4 ,Z6 は、Z4 >Z6 の
関係にあるので、ギヤ82Aはギヤ78Aよりも低速に
減速されて回転する。この場合の減速比、即ち、ギヤ8
2Aのギヤ78Aに対する回転速度比を考えると、ギヤ
78B,82Bの回転数(即ち、3連ギヤ86の回転
数)とギヤ78Aの回転数との比(ギヤ78Aが1回転
する際のギヤ78B,82Bの回転数の値)は、Z1 /
Z4 、ギヤ82Aの回転数とギヤ78B,82Bの回転
数(即ち、3連ギヤ86の回転数)との比(ギヤ78
B,82Bが1回転する際のギヤ82Aの回転数の値)
は、Z6 /Z3 であり、ギヤ82Aのギヤ78Aに対す
る回転速度比は、(Z1 ・Z6 )/(Z3 ・Z4 )とな
る。
を入力される伝達容量可変制御式トルク伝達機構90、
即ち、左クラッチ90L及び右クラッチ90Rは、図2
に示すように、デフキャリア51内の増減速機構70よ
りも右輪側の空間部に設置されている。これらの油圧多
板クラッチ90L,90Rは、右輪側回転軸68と一体
回転するようにクラッチケース92に結合されたクラッ
チ板90AL,90ARと、中間軸74及び76と一体
回転するように結合されたクラッチ板90BR,90B
Lと、各クラッチ90L,90Rにそれぞれ油圧(クラ
ッチ圧)を加える図示しない2つのピストンとをそなえ
ており、コントローラ42の電子制御によって2つの油
圧ピストンの駆動油圧が油圧ユニット38を通じて調整
されて、クラッチ90L,90Rの係合状態が調整され
るようになっている。
一体回転する右輪側クラッチ板90ALと、中間軸76
と一体回転するように結合された減速機構70Bの出力
側のクラッチ板90BLとから構成される。クラッチ板
90BLは、中間軸76とともに減速機構70Bで減速
されたギヤ82Aと一体回転するので、右輪に対する左
輪の速度比が大きくならないかぎり、クラッチ板90B
Lは、右輪側回転軸68と一体回転する右輪側クラッチ
板90ALよりも低速回転する。
ば、右旋回時であって右輪が左輪よりも低速回転してい
ても、右輪側クラッチ板90AL側からクラッチ板90
BLへと、即ち、右輪側からリヤデフの入力側へとトル
クが伝達されることになり、エンジンからのトルクの右
輪側への配分量を減少させて、左輪側への配分量を増加
させることができる。
68と一体回転する右輪側クラッチ板90ARと、中間
軸74と一体回転するように結合された増速機構70A
の出力側のクラッチ板90BRとから構成される。クラ
ッチ板90BRは、中間軸74とともに増速機構70A
で増速されたギヤ80Aと一体回転するので、左輪に対
する右輪の速度比が大きくならないかぎり、クラッチ板
90BRは、右輪側回転軸68と一体回転する右輪側ク
ラッチ板90ARよりも高速回転する。
ば、左旋回時であって左輪が右輪よりも低速回転してい
ても、クラッチ板90BR側から右輪側クラッチ板90
AR側へと、即ち、リヤデフの入力部側から右輪側へと
トルクが伝達されることになり、エンジンからのトルク
の右輪側への配分量を増加させて、左輪側への配分量を
減少させることができる。
としては、伝達トルク容量が可変制御できる機構であれ
ばよく、この実施形態の機構のほかに、電磁式油圧多板
クラッチ機構等の他の湿式多板クラッチ機構や、これら
の多板クラッチ機構の他に、油圧式又は電磁式の摩擦ク
ラッチや、油圧式又は電磁式の制御可能なVCU(ビス
カスカップリングユニット)や、油圧式又は電磁式の制
御可能なHCU(ハイドーリックカップリングユニット
=差動ポンプ式油圧カップリング)、さらには、電磁流
体式あるいは電磁粉体式クラッチ等の他のカップリング
を用いることもできる。
L,90Rが係合されると、係合する各クラッチ板間
(90ALと90BL,90ARと90BR)の差動量
の大小と、係合の強さに応じて、トルクが伝達される。
すなわち、クラッチ板間の差動量を考慮しながら制御油
圧を調整してクラッチ機構90L,90Rの係合の強さ
を調整すれば、トルクの移動量を確実に制御することが
できる。
チ90L,90Rへの油圧調整部も、左右の後輪へトル
ク配分が所望の状態になるように、ECU42を通じて
制御される。この場合、ECU42では、エンジン情
報,車輪速情報,ハンドル角情報(操舵角情報),車体
の横加速度や前後加速度に関する情報等に基づいて油圧
ユニット38の所要部を制御する。
輪回転軸66により多く配分したい場合には、その配分
したい程度(配分比)に応じて左クラッチ90Lを適当
な制御圧力で係合させればよく、入力軸52からの駆動
トルクを右輪回転軸68により多く配分したい場合に
は、その配分したい程度(配分比)に応じて右クラッチ
90Rを適当な制御圧力で係合させればよい。
同時に完全係合することのないように設定されており、
左右のクラッチ90L,90Rのうち一方が完全係合し
たら他方は係合しないようになっている。つまり、クラ
ッチ90L,90Rの作動モードは、左クラッチ90L
のみが係合するモードと、右クラッチ90Rのみが係合
するモードと、何れも係合しない中立モードとがある。
ルクを移動させることで左右トルクの配分を調整できる
ので、単に片輪を制動することで左右トルクの配分を調
整する場合に比べてトルクロスが極めて少なく、トルク
の配分調整もより広範囲で行なえ、例えば車両にヨーモ
ーメントを生じさせることも違和感なく行なえるという
特徴がある。
構成 ここで、油圧ユニット38の構成を図4を参照して説明
する。この油圧ユニット38は、図4に示すように、作
動油を蓄圧する蓄圧部101と、蓄圧部101に蓄圧さ
れた作動油を適宜圧力調整してクラッチ90L,90R
の油室(図示省略)に供給する制御圧出力部102とか
らなる。
と、アキュムレータ103内の作動油を所定圧に加圧す
るモータポンプ104と、モータポンプ104で加圧さ
れた差動油圧を監視する圧力スイッチ105とをそなえ
ている。また、制御圧出力部102は、モータポンプ1
04を通じて圧力調整されたアキュムレータ103内の
作動油を、圧力調整する電磁比例圧力制御弁(比例弁と
略す)106と、この比例弁106で調圧された作動油
を左右いずれのクラッチ90L,90Rの油室(図示省
略)に供給するかを切り換える電磁方向制御弁(方向切
換弁)107とをそなえている。
2により作動を制御されるが、ECU42には、車輪速
センサ48A,ハンドル角センサ48B,前後加速度セ
ンサ(前後Gセンサ)48C,横加速度センサ(横Gセ
ンサ)48D,スロットルポジションセンサ(TPS)
48E及び圧力スイッチ105等のセンサ類が接続され
ている。
類からの情報に基づいて、車両の走行状態、即ち、車速
や操舵状態や車体の運動状態等に応じて、油圧ユニット
38のモータポンプ104や比例弁106や方向切換弁
107の制御を行なうようになっている。この比例弁1
06や方向切換弁107の制御を通じた差動制限制御、
即ち、トルク移動制御の詳細については後述する。
09はモータリレーであり、モータポンプ104の制御
は、このモータリレー109を通じたバッテリ108か
らの電力の供給制御により行なわれ、蓄圧部101によ
る蓄圧管理は、圧力スイッチ105の検出情報に基づい
てモータリレー109を通じてモータポンプ104の作
動を制御しながら行なうようになっている。また、符号
110は、油圧ユニット38による差動制限制御、即
ち、トルク移動制御を行なっているか否かを表示するイ
ンジケータランプである。
制御は、エンジン出力制御と連係させる必要があるの
で、ここでは、ECU42からは、油圧ユニット38へ
制御指令を出力するとともに、エンジン出力制御を制御
する図示しないエンジン用ECUへも出力低減情報が送
られるようになっている。なお、ECU42は、図示し
ないが後述する制御に必要なCPU,ROM,RAM,
インタフェイス等をそなえている。
御ブロック図を参照して、本装置の制御概要について説
明する。図6に示すように、本制御による処理は、セン
サ入力を受けるセンサ入力処理と、これらのセンサ入力
値に基づいて各種の値の演算を行なう演算処理と、演算
処理結果に基づいて車両の運動制御の各制御量を算出す
る制御量算出処理と、算出された各制御量に基づいて各
アクチュエータを駆動する駆動処理とに分けることがで
きる。
輪速センサ48A,ハンドル角センサ48B,前後加速
度センサ(前後Gセンサ)48C,横加速度センサ(横
Gセンサ)48D,スロットルポジションセンサ(TP
S)48E等からのセンサ入力を受ける。演算処理で
は、後輪の左右輪の速度差について、その実測値とその
理論値とが算出される。実測値(実回転数差)は4輪の
車輪速センサ48Aからの車輪速値に基づいて、また、
理論値(目標値,理論回転数差)はハンドル角センサ4
8Bからの操舵角と、4輪の車輪速センサ48Aからの
車輪速値から得られる車体速度(車速)とに基づいて、
それぞれ算出される。また、前後Gセンサ48C,横G
センサ48Dからの検出値に基づいて、計算前後G(g
b),計算横G(gy)が計算される。また、演算処理
では、さらに、ドリフト判定及び路面μ推定が行なわれ
る。
果に基づいて車両の運動制御の各制御量を算定するが、
本制御では、通常旋回時の制御に関する目標回転数差追
従制御(目標ΔN追従制御)の制御量(目標ΔN追従制
御量)と、加速旋回時に関する加速旋回制御の制御量
(加速旋回制御量)と、車両のタックイン時に関するタ
ックイン対応制御の制御量(タックイン対応制御量)
と、操舵過渡時に関する操舵過渡応答制御の制御量(操
舵過渡応答制御量)とがそれぞれ設けられ、これらの各
制御量を加算してこの加算制御量(出力制御量)を出力
するようになっている。
量算出手段と呼び、この機能(制御量算出手段)の中で
も、目標ΔN追従制御に関する制御量を設定する機能、
又は、この設定機能及びこの設定により得られた制御量
に基づき制御信号を出力する機能をΔN追従制御手段又
は目標回転数差追従制御手段、加速旋回制御の制御量を
設定する機能、又は、この設定機能及びこの設定により
得られた制御量に基づき制御信号を出力する機能を加速
旋回制御手段、タックイン対応制御の制御量を設定する
機能、又は、この設定機能及びこの設定により得られた
制御量に基づき制御信号を出力する機能をタックイン対
応制御手段、操舵過渡時に関する操舵過渡応答制御の制
御量(過渡的制御量)を設定する機能、又は、この設定
機能及びこの設定により得られた制御量に基づき制御信
号を出力する機能を操舵過渡応答制御手段とそれぞれい
う。特に、目標回転数差追従制御手段,加速旋回制御手
段,タックイン対応制御手段などの車両挙動に対応した
制御量(車両挙動対応制御量)を算出する手段を車両挙
動対応制御量算出手段、ハンドル操作やスロットル操作
などの運転操作状態に基づく制御量(過渡的制御量)を
算出する手段を過渡的制御量手段ともいう。
の旋回状態に対応したヨー角又は左右車輪回転数差の目
標値を算出又は記憶する機能(目標値算出手段)を有
し、さらに、定常旋回時における目標値に応じた制御量
を算出する機能(定常旋回制御手段)を有している。ま
た、駆動処理では、トルク移動量を調整するために比例
弁106に指令信号を出力する比例弁出力と、トルク移
動方向を設定するために方向弁(方向切換弁)107に
指令信号を出力する方向弁出力と、インジケータランプ
110に表示指令信号を出力するインジケータ表示出力
とを行なうようになっている。
前に、本装置の制御により得ようとする作用及び効果を
説明する。 1.4本装置の制御により得ようとする作用及び効果 本装置は、(1)旋回性能の向上、(2)旋回減速時の
車両の安定性の確保、(3)発進性能,加速性能の向上
を目標として開発したものであり、これらの観点からそ
の制御原理を説明する。
るので、ドライバの意図した急旋回を行ない難い。特
に、前輪にもエンジンの駆動力を伝達すると前輪の駆動
力負担に応じて前輪に生じるコーナリングフォースが減
少してアンダステア化が強まりやすい。
旋回外輪側へトルクを移動させることで、旋回方向へ向
けてヨーモーメントを発生させて、前後加速度の大きい
領域での前輪のコーナリングフォースを増大させてアン
ダステア化を抑制する。これにより、同様な加速旋回操
作を行なった場合で、加速旋回時の車両の走行軌跡を比
較すると、図7に示すように、制御無の状態から制御有
の状態へと向上する。
G)に応じた操舵比(=θh/θh0,θh:実ハンド
ル角,θh0:理論的に要求されるハンドル角)の一例
を示すもので、図中の操舵比が急増する領域が旋回限界
領域に相当する。図示するように、旋回外輪側へのトル
ク移動制御により、旋回限界が向上することがわかる。
また、このような旋回性能の向上のための制御開始は、
制御無で操舵比が非線形的に増加した場合に行なうよう
にすることで、制御頻度を低減することができる。
保 減速旋回時には、加速旋回とは逆に、車両の操舵特性が
オーバステア側に強まるので、車両がタックインを生じ
やすくなる。そこで、減速旋回時には、加速旋回とは逆
に、旋回内輪側へトルクを移動させることで、旋回抑制
方向へ向けてヨーモーメントを発生させて、前輪のコー
ナリングフォースを減少させてオーバステア化を抑制す
る。これにより、図9に制御無として示す状態から制御
有として示す状態へと示すように、車両のタックインが
抑制される。
例を示すもので、実線は制御有を示し鎖線は制御無を示
す。図示するように、アクセルオフの直後に、制御無で
はヨーレイトが大きくなって車両姿勢が急変したことが
わかり、制御有ではヨーレイトが大きくなることなく滑
らかに収束しており、車両姿勢の安定が保持されること
がわかる。
上 本制御では、車両がドリフトしようとしているか否かを
判定して、この判定結果を左右輪のトルク移動制御を通
じた車両の旋回制御に用いる。すなわち、車両がドリフ
トした場合には、車輪が横滑りを生じ、車両の走行状態
は通常時とは大きく異なる走行状態となる。そこで、上
述のようなステア特性を調整しうるトルク移動制御やよ
り基本的なトルク移動制御である左右輪の回転数差(回
転速度差)の目標値〔後輪基準回転速度差(dvh
f)〕に応じたトルク移動制御等の旋回制御に、このド
リフト走行であるか否かの判定結果を反映させて、より
適切な制御を行なえるようにするものである。つまり、
ドリフトしようとしている場合には、左右輪の差動を制
限する側に制御を行なって、トルク移動制御による旋回
力の発生を抑制して、グリップ力が低下した車輪のグリ
ップ力を回復させるようにするのである。これにより、
ドリフト走行時の旋回性能を高めようとするものであ
る。
発進性能や加速性能を向上できるように、トルク制御を
行なう。つまり、左右輪の一方の車輪の接触する路面が
他方の車輪の接触する路面に比べて低μである場合に
は、発進時(これをμスプリット発進という)や加速時
に、低μ側の車輪の負荷が小さくなるため差動機構が働
き、低μ側の車輪へ駆動力が増す一方で高μ路側の車輪
への駆動力が減少する。
駆動力の大部分を供給されながらもスリップして路面へ
駆動力を十分に伝達できず、また、高μ路側の車輪はエ
ンジンからの駆動力がほとんど供給されないためやは
り、図11に制御無として示すように、路面へ駆動力を
十分に伝達することができずに、車両がなかなか進まな
い。
は、低μ車輪側から高μ路車輪側へとトルクを移動させ
る。これにより、図11に制御有として示すように、高
μ路側の車輪から路面へ伝達される駆動力が増大するよ
うになり、車両の発進や加速をより速やかに、また、効
率よく行なうことができる。例えば図12はμスプリッ
ト発進による加速Gの時間変化の一例を示すもので、実
線は制御有を示し鎖線は制御無を示す。図示するよう
に、トルク移動制御により、加速Gが向上することがわ
かる。
理、ドリフト判定ロジック、車両運動制御ロジック、路
面μ推定、アクチュエータ駆動の順に、より具体的に説
明する。 2.1入力演算処理 入力演算処理では、図13に示すように、後左車輪速度
vrl,後右車輪速度vrr,ハンドル角度θh,車体
速度vb,ハンドル角速度dθh,前左車輪速度vf
l,前右車輪速度vfrにかかる検出信号を各センサか
ら受けるとともに、前回の計算値(トルク移動量ta,
路面μ判定係数γ)及び圧力スイッチ,アイドルスイッ
チ,横Gセンサ,TPS(スロットルポジションセン
サ)等からの検出信号を受けて、以下のような数値の演
算処理を行なう。
算して、旋回時やトルク移動制御によって発生する後輪
左右の実速度差dvrd(=vrl−vrr)を得る。 2.1.2後輪左右の速度差のデジタルフィルタ値(d
vrf) 実速度差dvrdは、トルク移動制御の作動状態を判別
するために用いるため、実速度差dvrdをデジタルフ
ィルタでフィルタ処理して、ノイズ影響を取り除く。こ
こでは、式(2.1.2.1)のようにスムージング処理を行な
う式(2.1.2.2)に示すようにフィルタ処理を行なう。
ることで、後輪の平均速度vr〔=(vrl+vrr)
/2〕を得て、トルク移動制御の作動状態を判別するた
めに用いる。
(RR) 推定車体速vbは、左右前輪及び左右後輪の4輪のうち
の3番目に速い車輪速v3に基づいて算出する。これ
は、本自動車は4輪駆動車のため各車輪とも駆動輪とな
り、このような駆動輪は、駆動力を路面に伝達する際に
路面との間で滑りを生じるので、駆動輪に基づいて車体
速を求めると例え僅かであっても実際の車体速よりも速
い値となる。そこで、4つの駆動輪のうちで最も遅い車
輪速が実際の車体速に最も対応する。しかし、車輪速の
検出値がノイズ等により適正な値とならない場合も考え
られるので、検出値の信頼性を考慮して、4つの駆動輪
のうちで2番目に遅い車輪速(即ち、3番目に速い車輪
速)v3を採用して、推定車体速vbを求めている。
定の比率で対応するので、例えば車輪の回転速度に車輪
外周長を乗算して得られる車体速(単純算出車体速)v
bdを車体速vbとできるが、旋回時には旋回半径に応
じた補正が必要になる。すなわち、旋回時には、3番目
に速い車輪速は後輪の内輪となり、この内輪側が単純算
出車体速vbdとなるものと考えられるので、車体中心
の車体速vbは、図14に示すような幾何学的関係から
求められる。つまり、内輪側の旋回半径RRiは内輪側
の車体速vbdに基づいて、次式(2.1.3.1)により算出
できる。
回半径RRiと車体中心の旋回半径RRとの比に等し
く、旋回半径RRは旋回半径RRiを用いて次式(2.1.
4.1)のように示すことができるので、車体速vbは、車
両の右旋回時,直進時,左旋回時に分けて、次式(2.1.
4.2)〜(2.1.4.4)のように、車体速vbdとハンドル角
θhとから求めることができる。
に基づき次式(2.1.4.5)のように示すことができる。
される単純算出車体速vbdの変化から算出し、こうし
て求められた前後加速度gxdは変動が激しいため、ロ
ーパスフィルタで処理して〔(2.1.5.2)参照〕、前後加
速度gxを得る。
体速vbd gx=LPF〔gxd〕 ・・・(2.1.5.2) 2.1.6基準横加速度(gy) 基準横加速度(gy)は、旋回時の車両に働く遠心力と
考えると、半径RRiと推定車体速vbとから算出で
き、半径RRiは上述のようにハンドル角θhから求め
られるので、基準横加速度(gy)は、次式(2.1.6.1)
のようにして、ハンドル角θh,推定車体速vbから計
算で求める。この基準横加速度(gy)を計算横Gとも
いう。
に応じて、図15に示すような関係から幾何学的に算出
できる後輪の回転速度差であり、式(2.1.4.5)の関係を
利用して、まず、次式(2.1.7.1)のような推定車体速度
vb,ハンドル角度θhの関数により回転速度差dvh
rを求める。前述した後左車輪速度vrl,後右車輪速
度vrrはローパスフィルタ処理が施されており、これ
らと位相を合わせるために、回転速度差dvhrをロー
パスフィルタで処理して〔(2.1.7.2)参照〕、後輪基準
回転速度差dvrfを得る。なお、このような後輪基準
回転速度差dvrfを算出する機能を、目標値算出手段
という。
R,舵角δに応じて、図15に示すような関係から幾何
学的に算出できる前輪の回転速度差であり、式(2.1.4.
5)の関係を利用して、まず、次式(2.1.8.1)のように、
推定車体速度vb,ハンドル角度θhの関数から、回転
速度差dvhを求めて、これを、ローパスフィルタで処
理して〔(2.1.8.2)参照〕、前輪基準回転速度差dvr
ffを得る。
算して、旋回時等に発生する後輪左右の実速度差dvf
d(=vfl−vfr)を得る。
遅れ値) トルク移動は、その指令値が出力されてから実際の車両
挙動として現れるまでに時間遅れが生じることから、ト
ルク移動の指令値taにローパスフィルタをかけて位相
を合わせ〔(2.1.10.1)参照〕、トルク移動量tafを得
る。 taf=LPF〔ta〕 ・・・(2.1.10.1) 2.2ドリフト判定ロジック 本制御では、車両がドリフトしようとしているか否かを
判定して、この判定結果を左右輪のトルク移動制御を通
じた車両の運動制御に用いる。このため、本制御では、
図16に示すような各処理によってドリフト判定を行な
っている。なお、車両がドリフト状態であるか非ドリフ
ト状態であるかの判定を行なう機能については、ドリフ
ト判定手段(旋回状態判定手段)という。
滑りを生じた場合にドリフトが発生すると判定する。タ
イヤの横滑りは、計算横Gと実横Gとの関係が非線形に
なった場合に判定でき、タイヤの縦滑りは、推定車体速
度vbと後述する前後G推定車体速度vbsとの関係が
非線形になった場合に判定できる。通常は、車両のドリ
フト時には、横滑りや縦滑りを伴うので、本制御では両
者を考慮する。
に、タイヤの横滑り状態に応じた係数(タイヤの横滑り
係数)dgy及びタイヤの縦滑り状態に応じた係数(タ
イヤの縦滑り係数)dvvbsに基づいて、車輪の滑り
度合としてのドリフト判定係数srpを設定(算出)し
これを出力するとともに、さらに、このドリフト判定係
数srpに基づいてドリフト補正係数srp1〜srp
5を設定する。なお、このような車輪の滑り度合として
のドリフト判定係数srpを設定する機能を、滑り度合
検出手段という。また、このようなドリフト判定係数s
rpをトルク移動制御に反映させる制御については、滑
り対応制御ともいう。
速vbとから計算横G、即ち、基準横加速度gyを計算
するが、この一方で、横Gセンサにより、実際の横加速
度(実横G)rgyを検出する。車両が横滑りすること
なく走行している場合には、計算横Gと実横Gとの関係
が線形になる。そこで、ドリフト判定を行なうために、
計算横Gと実横Gとを比較する。
θh等の入力情報から横Gを算出しており、ハンドルに
応じて車両に横Gが生じるまでには、位相遅れが生じる
ので、本制御では、計算横Gをローパスフィルタでフィ
ルタ処理して、位相合わせを行なう〔(2.2.1.1)参
照〕。 gyf=LPF〔gy〕 ・・・(2.2.1.1) また、タイヤの影響やギヤ比等の違いにより、線形領域
でも計算横G(gy)と実横G(rgy)との間に、誤
差が生じるので、次式(2.2.1.2)のように係数kにより
実横G(rgy)を補正して係数合わせを行なう。
を合わせた実横G(rgyh)とを比較することができ
るが、ここでは、次式(2.2.1.3)で算出される計算横G
(gyf)と実横G(rgyh)とを無次元化した値
(タイヤの横滑り係数)dgyに基づいて、計算横Gと
実横Gとの間に生じる非線形、即ち、タイヤの横方向に
生じる非線形を判定する。
対応例を示す図であり、タイヤの横滑り等がなければ、
直線Aのように、実横G(rgy)と計算横Gとが線形
の関係になるが、実際には、タイヤのグリップ限界を過
ぎると横滑り等を生じて、実横Gは計算横Gのようには
増加しない。高μ路では曲線Bのように横Gの高い領域
まで線形が保たれるが、低μ路では曲線Cのように横G
の低い領域で線形を保てなくなってしまう。
1.3)のように定義する。 dgy=|(gyf−rgyh)/rgyh| ・・・(2.2.1.3) ただし、このようなタイヤの横滑り係数dgyの計算に
は、次式(2.2.1.4)のような計算開始条件、及び、次式
(2.2.1.5)のようなクリヤ条件が設けられている。これ
は、実横G(rgyh)の大きさや、計算横Gと実横G
との差(gyf−rgyh)の大きさが、一定以上大き
くならないと車両にドリフトが生じるおそれがないの
で、このような場合には、横滑り係数dgyの計算を行
なわないようにして、計算頻度を低減しているのであ
る。
横Gは計算横Gのようには増加しないので、上式(2.2.
1.3)は、次のように変形できる。
ていき、上式(2.2.1.3.a)の関係は、例えば図17中の
直線Dのように示すことができる。そこで、理論上は、
横滑り係数dgyが0以外になったら線形がくずれたと
も判定できるが、実際には、実横Gや計算横Gについて
位相合わせや係数合わせを行なっても、常に完全にマッ
チングさせることは困難なので、実際に線形領域にあっ
ても、横滑り係数dgyが生じる(0以外になる)こと
が多い。このため、本制御では、図18に示すように、
横滑り係数dgyが第1所定値(dgy1)以下ならば
線形領域、横滑り係数dgyが第2所定値(dgy2)
以上ならば完全非線形領域として、横滑り係数dgyが
第1所定値と第2所定値との間にあると、第2所定値に
近づくにしたがって、非線形度合が高まっているものと
する。
s) 本制御では、前述のように、4輪のうちの3番目に速い
車輪速v3に基づいて推定車体速vbを算出するが、タ
イヤが大きくスリップしたらこのような車輪速v3に基
づく車体速vbは実車速よりも大きいものになってしま
う。そこで、タイヤのスリップ発生を推定したら、車輪
速ではなくこの時の車速と前後Gとに基づいて、前後G
推定車体速度vbsを算出する。
センサで検出した車体の前後Gに基づいてタイヤのスリ
ップ発生時における車体速vbSLと前後G(gx)SLの
検出値とから次式(2.2.2.1)により算出する。なお、t
はスリップ発生後の経過時間であり、車輪速(例えば、
3番目に速い車輪速v3)が急増した場合にスリップが
発生したと推定することができる。
れる前後G推定車体速度vbsと、これと同時に検出さ
れる3番目に速い車輪速v3とに基づいて次式(2.2.2.
2)により算出するが、この算出値dvvbsdに関する
ノイズ影響等を考慮して、これを更にローパスフィルタ
でフィルタリングして〔(2.2.2.3)参照〕、タイヤの縦
滑り係数dvvbsを求める。
い車輪速v3)及び前後G推定車体速度vbsの推移し
ていく一例を示す図である。ここでは、実際の車体速度
VRがほぼ一定で走行中に極低μ路に進入してタイヤに
スリップが発生しその後このスリップが収束していく場
合を示している。図示するように、タイヤにスリップが
発生すると車輪速v3が急増し、前後G推定車体速度v
bsが算出されるようになる。
が増加するため、この車輪速v3と前後G推定車体速度
vbsとの差、即ち、タイヤの縦滑り係数dvvbsが
増大する。そして、スリップが収束していくと車輪速v
3が減少して前後G推定車体速度vbsに接近してくる
ので、タイヤの縦滑り係数dvvbsが減少する。した
がって、タイヤの縦滑り係数dvvbsに基づいて、タ
イヤのスリップ状態、即ち、タイヤがスリップしていな
い線形域か、或いは、タイヤがスリップしている非線形
域かを推定することができる。
が0以外になったら非線形になったとも判定できるが、
実際には、スリップ発生の推定や前後G推定車体速度v
bsの推定にも誤差が生じるので、本制御では、図20
に示すように、縦滑り係数dvvbsが第1所定値(d
vvbs1)以下ならば線形領域、縦滑り係数dvvb
sが第2所定値(dvvbs2)以上ならば完全非線形
領域として、縦滑り係数dvvbsが第1所定値と第2
所定値との間にあると、第2所定値に近づくにしたがっ
て、非線形度合が高まっているものとする。
数dvvbsとを共に考慮してドリフト判定を行なう。
そこで、次式(2.2.3.1)により、横滑り係数dgyと縦
滑り係数dvvbsとを合成した値(これを、ドリフト
判定係数という)srp(=srpd2 )を算出して、
ドリフト判定に用いる。
リフト判定円(摩擦円)によって評価することができ
る。図21は、横滑り係数dgyを係数調整した値(a
・dgy),縦滑り係数dvvbsを係数調整した値
(b・dvvbs)をそれぞれ横軸,縦軸として直行座
標を示し、ドリフト判定係数srpは、この座標におけ
る原点からの距離の二乗に相当する。
を中心とした円であって、第1の半径r1 ,第2の半径
r2 (r1 <r2 )の各円からなる。そして、半径r1
の円内を線形領域(タイヤがスリップしていない領
域)、半径r1 の円外を非線形領域(タイヤがスリップ
している)、そして、非線形領域のうちの半径r2 の円
外をドリフト領域と設定している。
(srp1/2 )が半径r1 内(即ち、srp1/2 ≦r
1 )であれば線形領域、srp1/2 が半径r1 よりも大
(即ち、srp1/2 >r1 )であれば非線形領域、さら
に、srp1/2 が半径r2 よりも大(即ち、srp1/2
>r2 )であればドリフト領域にあるとしている。な
お、非線形領域のうち、r1 <srp1/2 ≦r2 の領域
は、完全なドリフトではないが、ドリフト判定係数sr
pに相応した度合のドリフト傾向にあるものとする。
に対するドリフト判定の対応を示すもので、srpが半
径r1 2以下(即ち、srp≦r1 2)であれば線形領域、
srpが半径r2 2よりも大(即ち、srp>r2 2)であ
ればドリフト領域、srpがr1 2<srp≦r2 2の領域
は、完全なドリフトではないが、ドリフト判定係数sr
pに相応したドリフト度合であるとしている。
定係数srpが所定値以上で、且つ、カウンタステアが
切られてこのカウンタステアのハンドル角速度が所定速
度以上に速ければ、ドリフト走行と判定する(ドリフト
判定手段又は旋回状態判定手段)。なお、カウンタステ
アが切られたと判定するのは操舵角が中立位置を越えた
場合、即ち、計算横Gの方向と実横Gの方向とが逆の場
合とする。即ち、次の3つの式の条件がいずれも同時に
成立した場合に、ドリフト走行と判定してドリフト対応
制御(滑り対応制御)を開始する。なお、このようなド
リフト対応制御(滑り対応制御)の開始を判定する機能
を開始判定手段という。 ・ドリフト判定係数srpが所定値以上であること srp>srp0 ・・・(2.2.6.1) ・計算横G(gy)の方向と実横G(rgyh)の方向
とが逆であること gy・rgyh<0 ・・・(2.2.6.2) ・ハンドル角速度Δθhが所定速度Δθ1 以上であるこ
と Δθh≧Δθ1 (deg/s) ・・・(2.2.6.3) また、上記3つの式の条件が同時に成立しない場合であ
っても、ドリフト判定係数srpが所定値以上のときに
ドリフト走行と判定してもよい。なお、ハンドル角速度
Δθh,Δθ1 はそれぞれdθh,dθ1 とも表記す
る。
び中立位置に戻ったときに、即ち、計算横Gの方向と実
横Gの方向とが等しくなったとき、ドリフト走行終了と
判定して、ドリフト対応制御を中止する。なお、このよ
うなドリフト対応制御(滑り対応制御)の終了を判定す
る機能を終了判定手段という。 ・計算横G(gy)の方向と実横G(rgyh)の方向
とが同方向であること gy・rgyh>0 ・・・(2.2.6.4) また、上述の条件式によりドリフト走行でない判定され
ると、ドリフト判定係数srpは零に設定される(sr
p=0)。
1) ドリフト補正係数1(srp1)は、図23に示すよう
なマップを用いてドリフト判定係数srpに基づき設定
される。そして、ドリフト判定時には目標ΔN追従制御
にこのドリフト補正係数1(srp1)を乗算すること
で補正を施す。これにより、基準となる後輪左右の速度
差dvhfに補正係数srp1により補正をかけること
で、ヨーレイトフィードバック制御をやめて、回転数差
に反応するLSD(リミテッドスリップデフ)機能、即
ち差動制限とする。また、操舵速度によりゲインを落と
す操舵過渡応答係数(kdh)に補正をかけて、ゲイン
を落とさないようにする。また、ドリフト対応制御の開
始・終了条件により、ドリフト走行でないと判定される
とドリフト判定係数srpは零(srp=0)となるの
で、図23に示すように、ドリフト補正係数1(フィー
ドバックゲインsrp1)は、srp1=srp1max
(即ち、1)となる。
p2〜5) ドリフト補正係数2及び3(フィードバックゲインsr
p2,3)は、目標ΔN追従制御によるLSDの効きの
強さを設定するものであり、図24,図25に示すよう
なマップを用いてドリフト判定係数srpに基づき設定
される。このうち、ドリフト補正係数2(srp2)は
高μ路用ゲインを設定するためのものであり、ドリフト
補正係数3(srp3)は低μ路用ゲインを設定するた
めのものである。
により、ドリフト走行でないと判定されるとドリフト判
定係数srpは零(srp=0)となるので、図24,
図25に示すように、ドリフト補正係数2及び3(フィ
ードバックゲインsrp2及びsrp3)は、srp2
=srp2max =1,srp3=1と、いずれも1に設
定されて、目標ΔN制御はゲイン調整されない。また、
ドリフト時には、高μ路用ゲイン、つまり、ドリフト補
正係数2(フィードバックゲインsrp2)は減少さ
せ、低μ路用ゲイン、つまり、ドリフト補正係数3(フ
ィードバックゲインsrp3)は増大させる。
に対するトルク移動量を示すものである。この図28に
示すように、ドリフト補正係数2(srp2)は本装置
の高μ路用ゲインを下げることで、又、ドリフト補正係
数3(srp3)は低μ路用ゲインを上げることで、い
ずれも機械式LSDの特性に近づけようとするものであ
る。
制御時(ドリフト時以外)には機械式LSDよりも伝達
トルク量が大きくなるようにすることにより、フィード
バック制御の反応遅れをカバーすることができ、ドリフ
ト時には左右輪がスリップしているため制御のハンチン
グが生じやすくなるが、このときにはゲインを減少させ
ることにより制御のハンチングをすることができる。
御時(ドリフト時以外)には機械式LSDよりも伝達ト
ルク量が小さくなるようにすることにより、車輪のスリ
ップを防止することができ、ドリフト時にはゲインを増
大させることにより左右輪の回転速度差を速やかに無く
すことができ、これにより安定した旋回走行を行なうこ
とができる。
フト判定時に、操舵角速度比例制御項の制御ゲインを適
性な制御ゲインに調整するためのものであり、図26に
示すようなマップを用いてドリフト判定係数srpに基
づき設定される。
フト判定時に、加速旋回制御項及びタックイン対応制御
項の制御ゲインを適性な制御ゲインに調整するためのも
のであり、図27に示すようなマップを用いてドリフト
判定係数srpに基づき設定される。 2.2.6旋回横G(ドリフト対応,ggy) ところで、本制御では、旋回時に車両に加わる横加速度
(旋回横G)に基づいたトルク移動制御があり、例えば
タックイン対応制御や加速旋回制御がこれに相当する。
この旋回横Gは前述の計算横Gや実横Gが対応するが、
タイヤが路面をしっかりとグリップして走行している時
(グリップ走行時)には計算横Gと実横Gとの差がない
ので、計算横Gも実横Gとともに車両の挙動に対応する
ものになり、旋回横Gとして実横Gよりも処理速度の速
い計算横Gを用いることができる。しかし、ドリフト走
行時には計算横Gと実横Gとの間に大きな差が生じるの
で、計算横Gは用いることができず、この場合には、旋
回横Gとして車両の挙動に対応した実横Gを用いる必要
がある。
用して、この計算横Gでは実情に対応できない場合に実
横Gを用いるようにしている。このため、ドリフト対応
制御開始条件でドリフト走行と判定されると、旋回横G
として計算横Gの採用から実横Gの採用へと切り替わ
り、ドリフト対応制御終了条件でドリフト走行終了と判
定されると、実横Gの採用から計算横Gの採用へと復帰
するように設定されている。
iにより表し、計算横G選択時にはdori=0とし、
実横G選択時にはdori=dori1(定数)とす
る。ドリフト対応の旋回横G:ggyは、横G選択係数
doriにより、次式のように示すことができる。 ggy=〔dori・rgyh+(dori1−dor
i)・gy〕/dori1 ただし、gy:計算横G,rgyh:実横G さらに、このようなドリフト対応にかかる旋回横Gの選
択例を図53を参照して説明する。図53中、実線は計
算横G(gy)を、破線は実横G(rgyh)を示し、
図示するように、車両の旋回時には車両に横Gが発生
し、グリップ走行時には計算横Gと実横Gとの差がない
が、ドリフト状態になると実横Gは大きな変化がないの
に計算横Gは急変する。このように計算横Gが急変する
のは、ドリフト状態になるとドライバがハンドル操作を
加えるためであり、ハンドル操作が加えられると、式
(2.1.6.1)のようにハンドル角θhに基づいて算出され
る計算横Gが大きく変化するのである。特に、ドリフト
時に、カウンタステアが切られると計算横Gは、実横G
と逆方向へ変化する。この計算横Gが実横Gと逆方向へ
変化して、計算横Gが実横Gと同方向になるまでの間だ
け、即ち、図53中に「ドリフト制御中」と示す期間だ
け、計算横Gに代えて実横G入力を採用する。
して、目標回転数差追従制御(目標ΔN追従制御)と、
加速旋回制御と、タックイン対応制御と、操舵過渡応答
制御とが設けられているが、ここで、これらの各制御に
ついて詳細に説明する。
しての作用(ヨーレートFBC作用)とLSDとしての
作用(LSD作用)との両方を狙った制御であり、式
(2.1.7.2)により前述のようにして得られる後輪基準回
転速度差(理論値,dvhf)と後輪の左右輪の速度差
(実速度差,dvrd)との差をなくすようにゲイン調
整を行なう。このため、図29,図30の破線のブロッ
クB31内に示すようにして、各制御量(高μ路用制御
量tbh,低μ路用制御量tbl)が設定される。
ティが非線形となり後輪基準回転速度差(理論値、dv
hf)と後輪の左右輪の実際の速度差(実速度差、dv
rd)との差ddvr(=dvhf−dvrd)が異な
るため、理論値dvhfと実速度差dvrdとの差dd
vrを解消するように制御を行なう。つまり、加速旋回
時には、車両の操舵特性がアンダステア側に強まって差
ddvrが負の値となるため、この差ddvrを増加さ
せる方向つまり旋回外輪側へトルクを移動させるように
制御を行なう。また、減速旋回時には、車両の操舵特性
がオーバステア側に強まって差ddvrが正の値となる
ため、この差ddvrを減少させる方向つまり旋回内輪
側へトルクを移動させるように制御を行なう。
bld) まず、下式(2.3.1.1)により、後輪基準回転速度差(理
論値,dvhf)と後輪の左右輪の実際の速度差(実速
度差,dvrd)との差ddvrを求め、この差ddv
rに関して、図31に示すような高μ路用マップ(即
ち、高路面摩擦抵抗対応制御量を与える高路面摩擦抵抗
用マップ),及び,図42に示すような低μ路用マップ
(即ち、低路面摩擦抵抗対応制御量を与える低路面摩擦
抵抗用マップ)から差ddvrに対応する制御量(基本
制御量)、即ち、高μ路用基本制御量(高路面摩擦抵抗
対応制御量)tbhd,低μ路用基本制御量(低路面摩
擦抵抗対応制御量)tbldを設定する。
dvrに対して高路面摩擦抵抗用マップの方が低路面摩
擦抵抗用マップよりも大きい制御量を与える(即ち、同
様な差ddvrに対しては高μ路用基本制御量(高路面
摩擦抵抗対応制御量)tbhdの方が低μ路用基本制御
量(低路面摩擦抵抗対応制御量)tbldよりも大きく
なる傾向に設定されている。また、図31,図42に示
すように、各マップには、差ddvrの小さい領域で制
御量を0とする不感帯領域が設けられ、制御の安定化が
図られている。
後輪基準回転速度差(dvhf)に前記ドリフト補正係
数1(srp1)を乗算することで、ヨーレイトFBC
作用を無くして回転速度差に反応するLSD作用のみの
制御にする。 dvhf=dvhf・srp1/srp1max ・・・・・・(2.3.1.2) そして、この基本制御量tbd(tbhd,tbld)
に、図29,図30に示すように、スムージング処理,
フィルタ処理や、操舵過渡応答係数(kbh,kb
l),車速係数(kbh2,kbl2),ドリフト補正
係数2,3(srp2,srp3)を乗算することによ
る補正を施して、最終的な制御量tb(tbh,tb
l)を得るようになっている。
(tbhdf2,tbldf2) 制御ハンチングの抑制のために、スムージング処理とリ
ミッタ型フィルタ処理とを行なう。スムージング処理は
例えば次式(2.3.1.3)のように、前回の制御量tb(n
−1)、即ち、tbh(n−1)又はtbl(n−1)
と、今回の基本制御量tbd(n)、即ち、tbhd
(n)又はtbld(n)とを、平均化することで行な
う。
で異なる勾配のものを使用する。そして、フィルタリン
グした値を、tbdf2(即ち、高μ路用はtbhdf
2,低μ路用はtbldf2)とする。
l1) 急操舵を行なった場合、目標ΔN追従制御では、遅れて
信号を出力することから車両の挙動に悪影響を及ぼす。
そこで、ハンドル角速度のピークホールド値を用いて、
速い操舵の後は、しばらくの間、このハンドル角速度に
応じて目標ΔN追従制御にかかる制御ゲインを低下させ
る。
fは、検出されたハンドル角速度dθhの絶対値(|d
θh|)に関して、次式(2.3.1.4)のような条件が成立
すると次式(2.3.1.5)のように設定され、この条件が成
立しなければ次式(2.3.1.6)のように設定される。 条件:dstf≦|dθh|+2 ・・・・・・(2.3.1.4) dstf=|dθh| ・・・・・・(2.3.1.5) dstf≦dstf−2 ・・・・・・(2.3.1.6) また、ドリフト制御中は、ハンドル操舵の影響を取り除
くため、ピークホールドした値dstfに、次のように
ドリフト補正係数1(srp1)を乗算する。
ド係数に応じて、ハンドル角速度dθhの推移は、図5
4に示すような特性として現れ、ピークホールド係数が
小さいほどハンドル角速度dθhは緩やかに0へ戻る。
操舵過渡応答係数(kbh,kbl)については、この
ようにドリフト補正係数1(srp1)で補正したピー
クホールド値dstfに基づいて、図32,図43に示
すようなマップから対応する値を設定する。なお、図3
2は高μ路用マップ(即ち、高路面摩擦抵抗用マッ
プ)、図43は低μ路用マップ(即ち、低路面摩擦抵抗
用マップ)であり、これらのマップにそれぞれ基づいて
ハンドル角速度のピークホールド値dstfに対応する
補正係数(操舵過渡応答係数)、即ち、高μ路用操舵過
渡応答係数kbh1,低μ路用操舵過渡応答係数kbl
1を設定する。ここでは、これらのマップ(図32,図
43)は同様に構成される。
への影響が強くなるので、車速が高まると、車両の挙動
安定性を重視するようにして目標ΔN追従制御のゲイン
を低下させるようにしている。このゲインを、ここでは
車速係数(kbh2,kbl2)とするが、車速係数
(kbh2,kbl2)は、例えば図33,図44に示
すようなマップから推定車体速度vbに基づいて設定す
る。そして、設定された車速係数(kbh2,kbl
2)を乗算する。なお、図33は高μ路用マップ(即
ち、高路面摩擦抵抗用マップ)、図44は低μ路用マッ
プ(即ち、低路面摩擦抵抗用マップ)であり、これらの
マップにそれぞれ基づいて車速vbに対応する補正係数
(車速係数)、即ち、高μ路用車速係数kbh2,低μ
路用車速係数kbl2を設定する。
2,srp3) このドリフト補正係数2及び3(srp2,3)は、前
述のように目標ΔN追従制御によるLSDの効きの強さ
を設定するものである。ドリフト補正係数2(srp
2)は高μ路用ゲインを設定するためのものであり、ド
リフト時にはゲインを落とす。ドリフト補正係数3(s
rp3)は低μ路用ゲインを設定するためのもので、ド
リフト時にはゲインを上げる。
傾向の増加を抑制する制御であり、この制御が必要とな
るのは、車両のスタビリティが非線形となる場合であ
る。つまり、図55に示すように、球心加速度(即ち、
旋回Gに相当する)と操舵比との関係が線形領域を外れ
た場合(破線部参照)には、図56に破線で示すよう
に、車両の旋回半径が拡大してしまう。これは、急旋回
時には車両の操舵特性がアンダステア側に強まるためで
ある。
追従制御において、旋回外輪側へトルクを移動させて旋
回方向のモーメントを発生させて前輪のコーナリングフ
ォースを増大させているが、目標ΔN追従制御はフィー
ドバック制御のため若干の反応遅れが生じる。そこで、
このような急旋回時には、旋回外輪側へトルクを移動さ
せる加速旋回制御を行なって、旋回方向へ向けてヨーモ
ーメントを発生又は増加させ、前後加速度の大きい領域
での前輪のコーナリングフォースを増大させてアンダス
テア化を抑制するようにしているのである。
ように、旋回横G(ggy)が所定値以上のとき、加速
旋回時制御の基本制御量tehd,teldを設定し、
これに、加速度又はアクセル開度に応じた補正(即ち、
加速度係数keh1,keh2,kel1,kel2の
乗算)及び車速に応じた補正(即ち、車速係数keh
3,kel3の乗算)を行なって、ドリフト補正係数
〔ドリフト補正係数5(srp5)〕による補正を行な
って、最終的な加速旋回時制御量teh,telを得る
ようになっている。また、この制御量はタックイン対応
制御中でないことを条件に出力される。なお、基本制御
量tehd,teldは、図34,図45に示すような
マップにより旋回横G(ggy)が所定値以上のときに
急旋回と判定して旋回横G(ggy)に基づいて設定さ
れるので、操舵応答性が良くなる。なお、図34は高μ
路用マップ(即ち、高路面摩擦抵抗用マップ)、図45
は低μ路用マップ(即ち、低路面摩擦抵抗用マップ)で
あり、これらのマップにそれぞれ基づいて旋回横G(g
gy)に対応する基本制御量(制御量)、即ち、高μ路
用基本制御量(高路面摩擦抵抗対応制御量)tehd,
低μ路用基本制御量(低路面摩擦抵抗対応制御量)te
ldを設定する。
y)の小さい領域においては同様な旋回横G(ggy)
に対して低路面摩擦抵抗用マップの方が高路面摩擦抵抗
用マップよりも大きい制御量を、横G(ggy)の大き
い領域においては同様な旋回横G(ggy)に対して高
路面摩擦抵抗用マップの方が低路面摩擦抵抗用マップよ
りも大きい制御量を与える。また、図34,図45に示
すように、各マップには、旋回横G(ggy)の小さい
領域で制御量を0とする不感帯領域が設けられ、制御の
安定化が図られている。なお、図34中の鎖線は低路面
摩擦抵抗用マップ(図45参照)の特性を示し、図45
中の鎖線は高路面摩擦抵抗用マップ(図34参照)の特
性を示す。
(ggy)が所定値以上のときに急旋回と判定している
が、旋回横G(ggy)が微小でも検出されると旋回外
輪の回転推進力を増大せしめるように制御量を算出して
もよい。 (2)加速度係数(keh1,keh2,kel1,k
el2) 急加速時には、前輪のコーナリングフォースが小さくな
り、強アンダステアとなるため、加速旋回制御にかかる
制御量teh,telのゲインを上げて、前輪のコーナ
リングフォースを増大させる。このため、加速度係数k
eh1,keh2,kel1,kel2を設定して、基
本制御量tehd,teldにこの加速度係数keh
1,keh2,kel1,kel2を乗算することで制
御量teh,telのゲインを上げるようにしている。
加速度係数(スロットル開度係数)keh1,kel1
は、図35,図46に示すようなマップによりスロット
ル開度(tps)に基づいて設定され、加速度係数ke
h2,kel2は、図36,図47に示すようなマップ
により計算前後G(gb)に基づいて設定される。
路面摩擦抵抗用マップ)、図46は低μ路用マップ(即
ち、低路面摩擦抵抗用マップ)であり、これらのマップ
にそれぞれ基づいて加速度(スロットル開度tps)に
対応する補正係数(加速度係数)、即ち、高μ路用補正
係数keh1,低μ路用補正係数kel1を設定する。
路面摩擦抵抗用マップ)、図47は低μ路用マップ(即
ち、低路面摩擦抵抗用マップ)であり、これらのマップ
にそれぞれ基づいて計算前後G(gb)に対応する補正
係数(加速度係数)、即ち、高μ路用補正係数keh
2,低μ路用補正係数kel2を設定する。
って操舵応答性が良くなるとともに、スロットル開度に
よるゲイン調整により、前後加速度によるゲイン調整の
応答遅れをカバーでき、さらに、操舵応答性が良くな
る。言うまでもなく、前後加速度又はスロットル開度の
どちらか一方によるゲイン調整だけでも、操舵応答性が
良くなる。
性が低下し易いので、車両の安定性を保持できるよう
に、加速旋回制御量teh,telのゲインを減少させ
る。そこで、このゲインにかかる車速係数keh3,k
el3を設定して、制御量(基本制御量tehd,te
ldに加速度係数keh1,keh2,kel1,ke
l2を乗算したもの)にこの車速係数keh3,kel
3を乗算することで制御量teh,telのゲインを下
げるようにしている。車速係数keh3,kel3は、
図37,図48に示すようなマップにより推定車体速度
(vb)に基づいて設定する。よって、所定車速以上で
制御を禁止又は弱めることによりオーバステア現象を抑
えることができる。
路面摩擦抵抗用マップ)、図48は低μ路用マップ(即
ち、低路面摩擦抵抗用マップ)であり、これらのマップ
にそれぞれ基づいて推定車体速度(vb)に対応する補
正係数(車速係数)即ち、高μ路用車速係数keh3,
低μ路用車速係数kel3を設定する。
チ 前述のように、タックイン対応制御中には、加速旋回制
御を停止する。これは、加速旋回制御よりもタックイン
対応制御を確実に優先させて、タックイン防止というよ
り緊急な制御を確実に行なうためのものである。そこ
で、図29,図30に示すように、以下のように作動す
るスイッチ(スイッチ機能)が設けられている。
d≠0のとき SW:オフ tdld=0のとき SW:オン,tdld≠0のとき
SW:オフ (tdgd,tdld:後述するタックイン対応制御の
基本制御量) なお、加速旋回制御用の制御量と後述するタックイン対
応制御用の制御量とは、上述の如く択一的に使用するこ
ともできるが、車両の状況に応じてタックイン対応の必
要度合が高いときに後者の制御量の反映度合が大きくな
るようにして両データを総合して制御データを求めても
よい。
横G入力に切り替えるので、制御量(基本制御量teh
d,teldに加速度係数keh1,keh2,kel
1,kel2,車速係数keh3,kel3を乗算した
もの)に、前述のドリフト補正係数5を乗算することで
制御量teh,telのゲインを適正なものに調整して
いる。
コーナリングフォースの増大に伴って車両の操舵特性が
オーバステア傾向に強まり、車両がタックインを生じや
すくなる。前述したように、減速旋回時には、目標ΔN
追従制御において、旋回内輪側へトルク移動させて旋回
抑制方向のヨーモーメントを発生させて、これにより、
オーバステア化を抑制しているが、目標ΔN追従制御
は、フィードバック制御のため、若干の反応遅れが生じ
る。
ルクを移動させることで、旋回抑制方向へのヨーモーメ
ントを発生又は増加させるタックイン対応制御を行な
い、前輪のコーナリングフォースを減少させてオーバス
テア化を抑制する。これにより、車両の旋回挙動を、図
57に破線で示す状態から実線で示す状態へと制御し
て、車両のタックインやタックインによるスピン等を回
避する。
l) そこで、このような減速旋回時には、旋回内輪側へトル
クを移動させるタックイン抑制の制御を行なうが、本制
御では、図29,図30のブロックB32内に示すよう
に、タックイン対応制御の基本制御量tdhd,tdl
dを設定し、これに、タックイン対応制御条件に応じた
操作、つまり、タックイン対応制御条件が成り立てば基
本制御量tdhd,tdldをそのまま採用し、タック
イン対応制御条件が成り立たなければ基本制御量tdh
d,tdldを0とする。そして、さらに、ドリフト補
正係数〔ドリフト補正係数5(srp5)〕を含めた各
種補正を行なって、最終的なタックイン対応制御量td
h,tdlを得るようになっている。また、この制御量
はセット・クリヤ指令に応じて出力される。なお、基本
制御量tdhd,tdldは、図38,図49に示すよ
うなマップにより旋回横G(ggy)に基づいて設定す
る。
路面摩擦抵抗用マップ)、図49は低μ路用マップ(即
ち、低路面摩擦抵抗用マップ)であり、これらのマップ
にそれぞれ基づいて旋回横G(ggy)に対応する基本
制御量(制御量)、即ち、高μ路用基本制御量(高路面
摩擦抵抗対応制御量)tdhd,低μ路用基本制御量
(低路面摩擦抵抗対応制御量)tdldを設定する。
了条件(kdhd,kdld) タックイン対応制御は、その開始条件が成立したら開始
し、終了条件が成立したら終了するが、ここでは、タッ
クイン対応制御の条件に応じた補正係数kdhd,kd
ldを基本制御量tdhd,tdldに乗算すること
で、条件に応じた制御量を出力させるようにしている。
時に減速が開始された場合に必要となるため運転者によ
る減速指令操作や実際の車両の減速挙動の開始等をとら
えて、タックイン対応制御の開始条件としている。一例
としては、スロットルポジションセンサ(TPS)48
Eで検出されたスロットル開度tpsと共にスロットル
開度の時間変化dtpsを各閾値tps1,dtps1
(dtps1<0)と比較し、次の条件が成立すると、
タックイン対応制御の開始条件が成立したとして補正係
数kdhd,kdldを1とする。
dtps1 (終了条件) タックイン対応制御は、旋回時に減速が終了した場合や
旋回自体が終了した場合に不要となるので、ここでは、
減速操作が終了したこと又は旋回横Gがなくなったこと
をタックイン対応制御の終了条件としている。減速操作
が終了したか否かは、スロットル開度が所定開度tps
2(この開度tps2は、開始条件開度tps1よりも
大)よりも大きくなったか否かで判定できる。
ョンセンサ(TPS)48Eで検出されたスロットル開
度tpsが閾値tps2よりも大が成立するか、又は、
旋回横G(ggy)が0となるかのいずれかが戦慄すれ
ばタックイン対応制御の終了条件が成立したとして補正
係数kdh1,kdl1を0とする。 tps>tps2 又は ggy=0 (3)タックイン対応制御の禁止に関するスイッチ(f
td) タックイン対応制御を効かせたくない場合のために、ス
イッチが設けられており、スイッチ信号ftdに応じて
以下のようにスイッチ指令が行なわれ、スイッチSWが
オンなら制御量tdh,tdlが出力され、オフなら出
力されない。
=1のとき SW:オン (4)ドリフト補正係数5(srp5) ドリフト制御中には、旋回横Gの入力を計算横Gから実
横G入力に切り替えるので、制御量tdh,tdlに、
前述のドリフト補正係数5を乗算することで制御量td
h,tdlのゲインを適正なものに調整している。
旋回制御と同様に、旋回横G(ggy)の小さな領域に
おいては、低路面摩擦抵抗用マップ(低μ路用マップ)
の方が高路面摩擦抵抗用マップ(高μ路用マップ)より
も大きい制御量を与えるようにしてもよい。あるいは、
旋回横G(ggy)の小さな領域に不感帯を設け、高路
面摩擦抵抗用マップ(高μ路用マップ)の方が低路面摩
擦抵抗用マップ(低μ路用マップ)よりも大きい制御量
を与えるようにしてもよい。
図29,図30のブロックB33内に示すように操舵角
の変化、即ち、操舵角速度に比例するように制御を行な
う。つまり、ECU42内には、操舵過渡応答制御量
(過渡的制御量)を設定する機能、即ち、手段操舵過渡
応答制御量設定手段(過渡的制御量算出手段)を有して
おり、操舵過渡応答制御量(操舵角速度比例制御量)t
cを設定しうるようになっている。このため、まず、操
舵角速度dθhに応じた基本制御量tchd,tcld
を設定し、これに、車速に応じた補正、ハンドルの切り
込みや切り戻しに応じた補正、及びドリフト補正係数4
(srp4)によりドリフト補正を施し、こうして得ら
れた制御量tch,tclにより制御を行なう。
dを設定するが、ここでは、図39,図50に示すよう
なマップを用いて操舵角速度dθhにほぼ比例するよう
に操舵角速度dθhに応じて基本制御量tchd,tc
ldを設定する。これにより、操舵角速度dθhに応じ
たトルク移動制御を行なえることになり、過渡特性、即
ち、ハンドル操舵に対する初期応答性が向上する。
路面摩擦抵抗用マップ)、図50は低μ路用マップ(即
ち、低路面摩擦抵抗用マップ)であり、これらのマップ
にそれぞれ基づいて操舵角速度dθhに対応する基本制
御量(制御量)、即ち、高μ路用基本制御量(高路面摩
擦抵抗対応制御量)tchd,低μ路用基本制御量(低
路面摩擦抵抗対応制御量)tcldを設定する。
がって操舵過渡応答制御の要求度は低いため、操舵過渡
応答制御量関するゲインを低減させ、一方、高速時に
は、ハンドルの切り込み時や切り戻し時に操舵角速度d
θhに応じたトルク移動制御を行なうと、却って車両の
挙動を不安定にするおそれがあるので、このような不安
定性を招来しないように、高速時にもゲインを低減させ
るように、車速係数kch,kclを設定する。
えば、切り込み時には、図40(A),図51(A)に
示すようなマップを用いて設定し、切り戻し時には、図
40(B),図51(B)に示すようなマップを用いて
設定する。図40(A),図40(B)は高μ路用マッ
プ(即ち、高路面摩擦抵抗用マップ)、図51(A),
図51(B)0は低μ路用マップ(即ち、低路面摩擦抵
抗用マップ)であり、これらのマップにそれぞれ基づい
て車速に対応する車速係数(補正係数)、即ち、高μ路
用車速係数kch,低μ路用車速係数kclを設定す
る。
ついては、例えば図58に示すように、ハンドル角(操
舵角)θhとハンドル角速度(操舵角速度)dθhとが
同符号(同方向)のときに切り込みと判定し、ハンドル
角θhとハンドル角速度dθhとが異符号(異方向)の
ときに切り戻しと判定する。即ち、ハンドル角θhとハ
ンドル角速度dθhとの積(θh・dθh)が正〔即
ち、θh・dθh≧0〕のときには切り込み、負〔即
ち、θh・dθh<0〕のときには切り戻しと判定す
る。
l2) ハンドルの切り込みや切り戻しに対してゲインアップす
ると、旋回時の応答性が高まるので、ハンドル角速度d
θhに応じてゲインアップkch2,kcl2を設定し
て制御量を補正する。ゲインアップ係数kch2,kc
l2は、例えば、切り込み時には、図41(A),図5
2(A)に示すようなマップを用いて設定し、切り戻し
時には、図41(B),図52(B)に示すようなマッ
プを用いて設定する。切り戻し時は、ヨーレイトの応答
遅れが生じるので、この応答遅れを解消するように、切
り戻し時の方が切り込み時よりもゲインアップ係数が大
きく設定されている。また、低μ路の方がヨーレイトの
遅れが大きいので、低μ路の方が高μ路よりもゲインア
ップ係数が大きく設定されている。
路用マップ(即ち、高路面摩擦抵抗用マップ)、図52
(A),図52(B)0は低μ路用マップ(即ち、低路
面摩擦抵抗用マップ)であり、これらのマップにそれぞ
れ基づいてハンドル角速度dθhに対応するゲインアッ
プ係数(補正係数)、即ち、高μ路用ゲインアップ係数
kch,低μ路用ゲインアップ係数kclを設定する。
量tchd,tcldに車速係数kch,kclを乗算
したもの)にドリフト補正係数srp4を乗算すること
で、制御量tch,tclのゲインを適正なものに調整
している。 2.4路面μ推定 トルク移動制御において、走行する道路が滑りやすいか
否か、即ち、路面摩擦抵抗の状態によっても、制御効果
が異なってくるので、路面摩擦抵抗をあらわす路面摩擦
係数(以下路面μともいう)μを推定する。
のμ推定,発進時のμ推定,非線形時のμ推定の3
段階について行なう。これらの定常旋回時,発進
時,非線形時の各段階は、旋回横Gと車速とに関して
図59に示すような領域に存在する。なお、の発進時
のμ推定は、路面μに関する初期値を設定するものであ
る。また、の非線形時とは、車両がハンドル操舵に対
して非線形となる場合である。ここでは、これらの各場
合において、路面μ判定係数(路面摩擦係数、即ち、路
面μの度合を表す係数)γを求め、この路面μ判定係数
γ値より各制御量の出力値を決定する。なお、路面μを
検出する機能、即ち、路面μ判定係数γを求める機能
を、路面摩擦係数検出手段ともいう。
tbh,tbl,加速旋回制御量teh,tel,タッ
クイン対応制御量tdh,tdl,操舵過渡応答制御量
tch,tclと、それぞれ、高μ路用制御量(高路面
摩擦抵抗対応制御量)と低μ路用制御量(低路面摩擦抵
抗対応制御量)とが設定されるが、これらの両制御量
を、路面摩擦係数算出手段で算出された路面摩擦係数と
しての路面μ判定係数γに応じて補間的に反映させなが
ら出力制御量tadを算出するように構成されている。
用のものと低μ路用のものとの間で、路面μ判定係数γ
の値に応じて無段階に調整した値を出力値とする。
用制御量をtxlとすると、出力値txは、路面μ判定
係数γから次式で算出する。なお、路面μ判定係数γは
0〜γmax の値とする。なお、ここでは、路面μ判定係
数γが0の場合を低μ路、路面μ判定係数γがγmax の
場合を高μ路とし、低μ路と高μ路との間、即ち、路面
μ判定係数γは0〜γmax の中間の値の場合を中μ路と
いう。
ように設定したり、低μ路側にシフトするように設定し
たりして、出力値の微調整を行なっている。
b) 高μ側への出力値微調整式は、補正後の出力値をtx
a,出力値微調整係数をa(a>1)とすると、次式の
ようになる。 txa={a(txh−txl)・γ+γmax ・txl}/γmax ={a・γ・txh+(γmax −a・γ)・txl}/γmax ただし、0≦a・γ≦γmax ・・・・・・(2.4.1.2) なお、0≦a・γ≦γmax により、txaはtxhで上
限クリップされる。
的反映に際し、高μ路用制御量の反映度合が低μ路用制
御量よりも大きくなるように設定されているが、このよ
うな高μ側への設定は、目標ΔN追従制御の制御量tb
に関して行なう。 制御ゲインを高μ側と低μ側との中間に設定〔操舵角
速度比例制御(過渡応答制御):tc,タックイン対応
制御:td〕 この場合は、実質的には出力値微調整は行なわず、上式
(2.4.1.1)を用いて制御量txを算出する。このよう
な算出は、操舵角速度比例制御(過渡応答制御)の制御
量tc,タックイン対応制御の制御量tdに関してそれ
ぞれ行なう。
b,出力値微調整係数をb(b>1)とすると、次式の
ようになる。 txb={b(txl−txh)・(γmax −γ)+γmax ・txh} /γmax =〔b・(γmax −γ)・txl +{γmax −b・(γmax −γ)}・txh〕/γmax ・・・・・・(2.4.1.3) なお、0≦b・γ≦γmax として、txbはtxlで下
限クリップされる。
的反映に際し、低μ路用制御量の反映度合が高μ路用制
御量よりも大きくなるように設定されているが、このよ
うな低μ側への設定は、加速旋回制御の制御量teに関
して行なう。このような出力値微調整を適宜行なって得
られる出力値tx,txa,txb(tb,tc,t
d,te)について、路面μに関して図示すると、図7
0のように示すことができる。図70において、の一
点鎖線は制御ゲインを高μ側に出力値微調整した出力値
txa(即ち、目標ΔN追従制御制御量tb)の特性を
示し、の実線は制御ゲインを出力値微調整し無い場合
の出力値tx(即ち、タックイン対応制御td,操舵過
渡応答制御量tc)の特性を示し、の破線は制御ゲイ
ンを低μ側に出力値微調整した出力値txb(即ち、加
速旋回制御量te)の特性を示している。
ほど(路面μ判定係数γが小さいほど)制御量(出力
値)txが小さくなるが、これは路面μが低いほど制御
効果が高くなるので、同様な制御効果を得るためには路
面μが低いほど制御量(出力値)txが小さくする必要
があるためである。また、目標ΔN追従制御量tbを中
μ路で高めているのは、目標ΔN追従制御は比較的路面
μが低くても車両の挙動安定性を保持しうる制御であ
り、むしろ中μ路ではこの目標ΔN追従制御を重視して
車両の挙動を積極的に安定させるようにしたいからであ
る。そして、加速旋回制御量teを中μ路で低下させて
いるのは、加速旋回制御量teは路面μが低くなると車
両の挙動安定性を確保しにくい性質があるためである。
おいて、例えば車両固有の定数などのパラメータによ
り、傾きを変更することも可能である。これにより、車
両に応じて制御のマッチング即ち出力値微調整を行なう
ことができ、より安定した制御を行なうことができる。
車両に応じて同じ基本ロジックを使用することができる
利点もある。
うに、目標ΔN追従制御量tb,タックイン対応制御量
td,加速旋回制御量teについて、ハイパス処理を行
なうようになっている。この処理は、例えば速い操舵に
よる高周波入力に対する制御遅れをハイパス処理によっ
て補正して、これらの各制御項の位相を進めるために行
なう。
調整機構)の駆動に際して、制御信号の出力に対してア
クチュエータの応答遅れが生じることは回避できない。
そこで、このアクチュエータの応答遅れが制御性能を低
下させないような処理を行なう必要がある。また、制御
信号の中には、例えばハンドル角又は操舵角(操舵角速
度を含む)θhやスロットル開度tpsといった運転操
作状態に基づいて算出された制御量(過渡的制御量)、
例えば操舵過渡応答制御量(操舵角速度比例制御量)t
cや、例えば左右輪回転速度差や車両に生じる横加速度
等の車両挙動に基づいて算出された制御量(車両挙動対
応制御量)、例えば目標ΔN追従制御量tb,タックイ
ン対応制御量td,加速旋回制御量teがある。運転操
作は本来制御指令の主要素であり、運転操作に応じた制
御量には特に指令の遅れは問題にはならないが、車両の
挙動は制御指令の結果として生じるものであるため、車
両挙動に基づいて設定される制御量は、制御信号を発し
た時点で既に遅れが生じており、これが問題となる場合
がある。
な制御量の出力の遅れが制御性能を大きく低下させるこ
とになる。そこで、本装置では、例えば操舵入力に対す
る各制御応答の遅れを補正するために、車両挙動に応じ
た制御量、つまり、目標ΔN追従制御量tb,タックイ
ン対応制御量td,加速旋回制御量teについて、ハイ
パス処理を行なって、制御信号の出力を速めるようにし
ているのである。なお、上述のように、操舵過渡応答制
御量(操舵角速度比例制御量)tcは、位相を進める制
御なので補正の必要はなく、ハイパス処理は行なわな
い。
te,tcを加算することで最終出力値tadを決定す
るようにしている。即ち、ECU42は、各種のパラメ
ータに基づいて各制御量tb,te,tdやtcを個々
に演算した上で、これらを統合して出力値tadを得る
出力制御量算出手段としての機構を果たしている。そこ
で、ここでは、ハイパス処理の必要な制御量tb,t
d,teについてはこれらを予め加算した上で、この加
算値tfd(=tb+td+te)にハイパス処理を行
なうようにしている。
うちの高周波成分のみを取り出す処理であるが、ここで
は、ハイパス処理を行なう制御量tb,td,teの加
算値tfdについてハイパス処理を行ない、ハイパス処
理値tffを得る。
御出力信号tfdから図75(B)に示すようなハイパ
ス処理信号tffが出力される。つまり、ハイパス処理
では、制御出力信号tfdの微分値のうち大きさの大き
い部分のみが信号として出力されるようになる(ハイパ
ス処理値算出手段)。
理値tffをハイパス処理の対象となった制御出力信号
tfd(=tb+td+te)に加算して〔図75
(C)参照〕、出力制御量(総合値)tfを得る(出力
制御量演算手段)。 tf=tfd+tff ・・・・・・(2.4.1.6) なお、図75に示すように、処理値tffをゲイン(ハ
イパス係数)kfにより補正して(即ち、tff*kf
として)、他の制御量とのバランスを調整してもよい。
にハイパス処理を行なわない操舵過渡応答制御量(操舵
角速度比例制御量)tcとを加算することにより、最終
的な出力制御量(最終出力値)tadを算出する。 tad=tf+tc ・・・・・・(2.4.1.7) ・リミッタ 左右輪間でのトルク移動制御では、トルク移動量が大き
過ぎると却って車両の挙動安定性を低下させるおそれが
あるので、本制御では、路面の摩擦係数状態(路面μ状
態)に応じて、左右輪間でのトルク移動量の大きさを最
大値(これを、limitとする)以内に制限するよう
にしている。
4中のブロックB83内の図に示すように、路面μ判定
係数γに対応して直線LIMの関係に設定するようにな
っている。つまり、制限値limitは、次式により算
出する。 limit=mg・γ+tal1 ・・・・・・(2.4.1.8) ただし、mgは直線LIMの傾きであり、tal1はl
imitの最小値である。図74のブロックB83内に
示すように、この最小値tal1は、低μ路の路面μ判
定係数1に対応した制限値limitであり、さらに、
tal2は中μ路の路面μ判定係数γmid に対応した制
限値limitであり、tal3は高μ路の路面μ判定
係数γmax に対応した制限値limitである。なお、
中μ路の路面μ判定係数γmid は高μ路の路面μ判定係
数γmax の1/2に設定される(γmid =γmax /
2)。
出力値tadは、次のように制限される。なお、次式は
最終出力値tadがトルク移動方向により負になる場合
も考慮したものである。 −limit≦tad≦limit ・・・・・・(2.4.1.9)
切換制御処理)では、図60に示すように、上記の出力
値(トルク移動量)tadを受けて、この出力値tad
から出力値tadに応じた方向及び量のトルク移動を行
なうためのアクチュエータ駆動信号に変換して、トルク
移動量に応じて比例弁106に比例弁制御信号を出力
し、トルク移動方向に応じて方向弁(方向切換弁)10
7に方向弁制御信号を出力して、これらの比例弁10
6,方向弁107を駆動させる。また、同時に、インジ
ケータランプ110に表示指令信号を出力する(符号1
06,107,110は図4参照)。
参照)及び電流補正マップ(図62参照)を用いて、目
標電流basehに変換する。 (2)方向弁出力 左右駆動力移動機構は、低速大舵角旋回やμスプリット
路走行などでは、左右回転速度差(dvrf)が増減速
ギヤ比以上の速度になると、高回転側車輪へトルクが移
動できなくなる。そこで、以降の表1に示すように、デ
フ差動状態に応じて場合分けして、適切なクラッチを選
択しこれを結合してトルク移動を行なう。
ヤ比を示す速度比Sm,デフケースの回転速度vr,
後輪左右の速度差(デジタルフィルタ処理した値)d
vhfであり、これらの値は、図63に示すように、後
輪の左輪速度,右輪速度をそれぞれvrl,vrr、ギ
ヤ78A,80A,82Aの歯数をそれぞれZ1,Z
2,Z3、ギヤ78B,80B,82Bの歯数をそれぞ
れZ4,Z5,Z6とすると、次式(2.5.2.1)〜(2.5.
2.3)の関係から算出することができる。
リヤデフの差動状態を5つに判別して、制御を行なう
が、ここで、デフの差動状態の判別について、説明す
る。
る。この速度線図では、横軸がギヤ78Bと78A,8
0Bと80A,82Bと82Aに関するギヤ比(Z6/
Z3,Z5/Z2,Z4/Z1)であり、縦軸が速度を
示し、ここでは、後輪の左右輪速度vrl,vrr,増
速ギヤ80Bの速度A,減速ギヤ82Bの速度B,デフ
ケース58の速度Cが示されている。
時には、後輪の左右輪速度vrl,vrrの差dvrf
の大きさ(|dvrf|)が小さいため、左クラッチ9
0Lを接触させれば、右輪30側から左輪28側へとト
ルク移動が行なわれ、、右クラッチ90Rを接触させれ
ば、左輪28側から右輪30側へとトルク移動が行なわ
れることがわかる。
f|)が大きくなって、2Sm・vrを越えると、一方
へのトルク移動が行なえなくなる。つまり、|dvrf
|=2Sm・vrを境界に、トルク移動制御の内容を変
更する必要がある。ここでは、回転速度差dvrfが、
−2Sm・vr又は2Sm・vrの付近で増減すると制
御にハンチングが生じて好ましくないので、|dvrf
|=2Sm・vrに一定の不感帯領域(±δ,δは微小
係数)を設けて、以下のように場合分けしている。
δ −2・Sm・vr+δ≧dvrf≧−2・Sm・vr
−δ −2・Sm・vr−δ≧dvrf これらの差動条件は、図65のように示すこともでき
る。図65において横軸は後輪左右の速度差dvrfで
あり縦軸はデフケースの回転速度vrである。
るクラッチ板間の速度関係が逆転した場合であり、図6
6の速度線図に示すような場合である。なお、この速度
線図(以下の図67〜図69も同様)では、左輪速度を
L,右輪速度をRと示す。このような場合には、左右い
ずれのクラッチを接続しても、左輪から右輪へとトルク
移動するため、表1に示すように、最終出力値tadが
負(tad<0)の場合、即ち、右輪へトルク移動させ
たい場合には、左クラッチを接続する(表1中では、L
と示す)。これは、左クラッチの方が、クラッチ板間の
速度差が小さいのでクラッチ接続ショックの少ない滑ら
かなトルク移動を実現することができるためである。最
終出力値tadが0(tad=0)又は正(tad>
0)の場合には、左右両クラッチとも接続しない(表1
中では、Nと示す)。特に、最終出力値tadが正(t
ad>0)の場合にいずれのクラッチも接続しないの
は、左輪へトルク移動は実現しないからであり、この場
合は制御禁止を行なうことになる。
の速度関係がほぼ0の場合であり、図67の速度線図に
示すような場合である。このような場合には、右クラッ
チを接続することで左輪から右輪へとトルク移動させる
ことができるため、表1に示すように、最終出力値ta
dが、負(tad<0)の場合、即ち、右輪へトルク移
動させたい場合には、右クラッチを接続する(表1中で
は、Rと示す)。その他、つまり、最終出力値tadが
0(tad=0)又は正(tad>0)の場合には、左
右両クラッチとも接続しない(表1中では、Nと示
す)。特に、最終出力値tadが正(tad>0)の場
合にいずれのクラッチも接続しないのは、制御ハンチン
グが生じるのを防止するためであり、この場合は制御禁
止を行なうことになる。
すると左側へトルクが移動し右クラッチを接続すると右
側へトルクが移動する場合であり、図64の速度線図に
示すような場合である。このような場合には、表1に示
すように、最終出力値tadが正(tad>0)の場合
には、左クラッチを接続することで右輪から左輪へとト
ルク移動させ、最終出力値tadが0(tad=0)の
場合には、左右両クラッチとも接続ぜずに、最終出力値
tadが負(tad<0)の場合には、右クラッチを接
続して左輪から右輪へトルク移動させる。
の速度関係がほぼ0の場合であり、図68の速度線図に
示すような場合である。このような場合には、左クラッ
チを接続することで右輪から左輪へとトルク移動させる
ことができるため、表1に示すように、最終出力値ta
dが、正(tad<0)の場合、即ち、左輪へトルク移
動させたい場合には、左クラッチを接続し、その他、つ
まり、最終出力値tadが0(tad=0)又は負(t
ad<0)の場合には、左右両クラッチとも接続しな
い。特に、最終出力値tadが正(tad>0)の場合
にいずれのクラッチも接続しないのは、制御ハンチング
が生じるのを防止するためであり、この場合は制御禁止
を行なうことになる。
るクラッチ板間の速度関係が逆転した場合であり、図6
9の速度線図に示すような場合である。このような場合
には、左右いずれのクラッチを接続しても、右輪から左
輪へとトルク移動するため、表1に示すように、最終出
力値tadが正(tad>0)の場合、即ち、左輪へト
ルク移動させたい場合には、右クラッチを接続する。こ
れは、右クラッチの方が、クラッチ板間の速度差が小さ
いのでクラッチ接続ショックの少ない滑らかなトルク移
動を実現することができるためである。これ以外、つま
り、最終出力値tadが0(tad=0)又は負(ta
d<0)の場合には、左右両クラッチとも接続しない。
特に、最終出力値tadが正(tad>0)の場合にい
ずれのクラッチも接続しないのは、右輪へトルク移動は
実現しないからであり、この場合は制御禁止を行なうこ
とになる。
止条件とが設けられている。 (作動条件)圧力スイッチ105(図4参照)が所定値
以下の場合には、以下の場合を除き、モータリレーを作
動させる。 ・油圧ポンプ系のフェイル時 ・イグニッションスイッチのオン後所定時間)以内 ・制御中でない時(即ち、tad=0) 圧力スイッチ105が所定値以上という条件、及び、油
圧ポンプ系のフェイル時以外という条件から、過大な油
圧がクラッチに作用することを回避することができ、ま
た、イグニッションスイッチのオン後所定時間以後とい
う条件から、機関のスタート直後に油圧ポンプに十分な
油圧が発するのを待って制御することになり、確実な制
御を実現することができる。また、制御中でない時には
モータリレーを作動させないことで、油圧ポンプモータ
の不要な作動を回避して効率よい運転を行なうことがで
きる。
以上の場合、及び、以下の場合には、モータリレーを停
止させる。 ・モータリレーを作動させてから所定時間以上経過した
とき、油圧ポンプ系のフェイルが確定したとき 圧力スイッチ105が所定値以上でモータリレーを停止
することで、過大な油圧がクラッチに作用することを回
避することができ、モータリレーを作動させてから所定
時間以上経過したとき停止することで、油圧ポンプの負
荷を軽減することができ、油圧ポンプ系のフェイルが確
定したとき停止することで、過大な油圧がクラッチに作
用することや制御の混乱を回避することができる。
置にかかるインジケータ表示制御について説明する。本
車両用左右輪間動力伝達制御装置には、左右輪間でトル
ク移動制御(即ち、動力伝達制御)を行なっている際の
制御状態を、ドライバが把握できるように、図71に示
すような表示部202を有する表示装置(以下、インジ
ケータという)201がそなえられている。
成された3つの点灯部202A,202B,202Cか
らなる3ドット表示として構成されている。そして、制
御状態が弱(即ち、トルク移動量が小)のときには、第
1点灯部(LED1)202Aのみが点灯し、制御状態
が中(即ち、トルク移動量が中)のときには、第1点灯
部(LED1)202Aと第2点灯部(LED2)20
2Bとが点灯し、制御状態が強(即ち、トルク移動量が
大)のときには、第1点灯部(LED1)202A〜第
3点灯部(LED3)202Cまでの全てが点灯するよ
うになっている。これにより、制御状態を、点灯したド
ット数(LED数)として把握できるようになってい
る。
(LED1)202Aのみ、制御状態が中では第2点灯
部(LED2)202Bのみ、制御状態が強では第3点
灯部(LED3)202Cのみをそれぞれ表示させるこ
とも考えられるが、状態をより素早く把握できるように
するには、制御状態の強さに応じて表示ドット数を増加
させるほうが好ましい。
表示や電灯表示等のLED以外の表示手段を用いてもよ
く、また、ドット表示ではなくグラフ表示(例えば棒グ
ラフ)や数値表示等を用いてもよい。また、左輪用及び
右輪用の表示装置をそれぞれ備えるようにしてもよい。
この場合、トルク移動状態を明確に把握できる利点があ
る。
の程度の度合でトルク移動制御(動力伝達制御)を行な
っているかといった制御度合であるが、ドライバにとっ
て運転操作に役立つのは、トルク移動制御(動力伝達制
御)がどの程度に車両の挙動に作用しているかといった
制御効果である。そこで、この制御効果を把握できるよ
うに制御状態表示を行ないたい。
終的な制御量である出力値tadを用いるのが適してお
り、また、容易でもある。しかしなしがら、「発明が解
決しようとする課題」の欄でも述べたように、このよう
な制御量tadは、必ずしも制御効果に対応したものと
はならない。つまり、制御量tadは、車両の走行環境
の一種である路面μ(路面摩擦係数)に応じて設定され
るが、低μ路では高μ路に比べて制御効果が高くなるの
で、前述のように路面μが低いほど制御量tadは小さ
く設定される。したがって、このように制御量tadに
比例するように制御度合を表示した場合、低μ路では、
表示される制御度合が低いのに実際に現れる制御効果は
大きいといった事態を招いてしまう。逆に言えば、高μ
路では、表示される制御度合が高いのに実際に現れる制
御効果は小さいといった事態を招いてしまう。
のものに直接対応するのではなく、その路面μ(路面摩
擦係数)における最大の制御量tadmax に対する設定
制御量tadの比(=tad/tadmax )に基づいた
表示量の表示を行なうようになっている。この最大制御
量tadmax は路面μに対応し、また、本装置では、路
面μ(路面摩擦係数)を示す量として、路面μ判定係数
γを用いているので、本表示装置では、制御量tadと
路面μ判定係数γとから表示量を設定するようになって
いる。なお、このように制御量tad等から表示量を設
定する(表示量に変換する)機能を、変換手段という。
制御量tadの表示量判定基準値として、路面μ判定係
数γに応じて6種類のものが与えられるようになってい
る。図72においては、横軸が路面μ判定係数γをその
最大係数値γmax で除算した値(γ/γmax )となって
おり、縦軸が制御量tadの値となっている。そして、
図中の直線t1 〜t6 が各路面μ判定係数対応値(γ/
γmax )に対する表示量判定基準値を示している。特
に、低μ路(路面μ判定係数γが0の路面)では、表示
量判定基準値はtL1〜tL6となり、高μ路(路面μ判定
係数γがγmax の路面)では、表示量判定基準値はtH1
〜tH6となっている。なお、表示量判定基準値を示す直
線t1 〜t6 は、それぞれ点tL1〜tL6と点tH1〜tH6
とを結んだ直線となっている。
2 (tL2,tH2を含む)はLED1を点灯するための基
準値(表示値)であり、t1 (tL1,tH1を含む)はL
ED1を消灯するための基準値(消灯値)である。ま
た、t4 (tL4,tH4を含む)はLED2を点灯するた
めの基準値(表示値)であり、t3 (tL3,tH3を含
む)はLED2を消灯するための基準値(消灯値)であ
る。そして、t6 (tL6,tH6を含む)はLED3を点
灯するための基準値(表示値)であり、t5 (tL5,t
H5を含む)はLED3を消灯するための基準値(消灯
値)である。
いほど小さな制御量tadでも表示量が大きくなるよう
に設定されている。これは、路面μ判定係数γが小さい
ほど制御効果が大きくなるので、同様な制御効果を得る
ためには、路面μ判定係数γが小さいほど制御量tad
を小さく(勿論、最大制御量tadmax も小さく)設定
しているので、制御効果に着目すれば、路面μ判定係数
γが小さいほど小さな制御量tadでも表示量を大きく
する必要があるからである。
γが小さいほど最大制御量tadmax が小さく設定され
るが、制御量tadから表示量に変換する変換ゲインを
考えると、これとは逆に、路面μ判定係数γが小さいほ
ど大きくなるように設定されることになる。また、点灯
するための基準値(表示値)が消灯するための基準値
(消灯値)よりも大きい値に設定されているのは、表示
を安定させるための所謂ヒステリシスを設けているので
あり、これにより、制御量tadが基準値の付近で微小
に変動しても表示状態は何ら変化せず安定した表示を実
現することができる。
に示すように、制御が行なわれる。つまり、まず、各種
初期設定入力のもとに制御が開始され、まず、ステップ
S10で、図13に示すような入力演算処理を実行する
(項目2.1入力演算処理を参照)。ついで、ステップ
S20で、この入力演算処理の結果に基づいて図16に
示すようなドリフト判定ロジックを実行する(項目2.
2ドリフト判定ロジックを参照)。さらに、ステップS
30に進み、入力演算処理,ドリフト判定の結果に基づ
いて車両運動制御ロジックを実行する(項目2.3車両
運動制御ロジックを参照)。
追従制御(項目2.3.1目標ΔN追従制御を参照),
加速旋回制御(項目2.3.2加速旋回制御を参照),
タックイン対応制御(項目2.3.3タックイン対応制
御を参照),操舵過渡応答制御(項目2.3.4操舵過
渡応答制御を参照)の各制御量tb,td,te,tc
を算出するが、これらの各制御量tb,td,te,t
cは、図29に示すような高μ路制御ロジックと、図3
0に示すような低μ路制御ロジックとにより、高μ路に
おける各制御量tbh,tdh,teh,tch及び低
μ路における各制御量tbl,tdl,tel,tcl
として算出する。
ジックを実行する(項目2.4路面μ推定を参照)。こ
のμ判定ロジックでは、路面μ判定係数γを設定して
(ステップS50)、路面μ判定を行ない(ステップS
60)、各種出力値の設定を行なう(ステップS7
0)。ついで、ステップS80に進み、図60に示すよ
うにアクチュエータ駆動ロジックを実行する(項目2.
5アクチュエータ駆動を参照)。つまり、出力値(トル
ク移動量)tadを受けて、この出力値tadに応じた
トルク移動量に応じて比例弁106に比例弁制御信号を
出力し、出力値tadに応じたトルク移動方向に応じて
方向弁(方向切換弁)107に方向弁制御信号を出力
し、これらの比例弁106,方向弁107を駆動させ
る。また、同時に、インジケータランプ110に表示指
令信号を出力する。
通じて、所要周期T1 毎に行なう。 3.2本装置による効果 以上のようにして、目標ΔN追従制御によれば、基準車
輪速度差に追従したトルク移動制御を、適切に実現する
ことができ、車両の定常旋回特性、即ち、ステア特性を
好みの状態に設定できる。
クを移動させることで、旋回方向へ向けてヨーモーメン
トを発生させて、前後加速度の大きい領域での前輪のコ
ーナリングフォースを増大させてアンダステア化を抑制
して、図7に示すように、制御無の状態から制御有の状
態へと向上する。
旋回とは逆に、旋回内輪側へトルクを移動させること
で、旋回抑制方向へ向けてヨーモーメントを発生させ
て、前輪のコーナリングフォースを減少させてオーバス
テア化を抑制することで、図9に示すように、車両のタ
ックインが抑制される。また、操舵過渡制御によれば、
運転者の操舵操作つまり操舵角速度に応じたトルク移動
制御を適正に実現することができ、車両の旋回性能を向
上させることができる。
より、μスプリット状態では、低μ車輪側から高μ路車
輪側へとトルクを移動させる。これにより、図11に示
すように、高μ路側の車輪から路面へ伝達される駆動力
が増大するようになり、車両の発進や加速をより速やか
に、また、効率よく行なうことができる。また、目標Δ
N追従制御と加速旋回制御とタックイン抑制制御と操舵
過渡制御とについての各制御量を加算することで最終制
御量tadを決定して、制御を行なうので、目標ΔN追
従制御と加速旋回制御とタックイン抑制制御と操舵過渡
制御とがいずれも反映されたトルク移動制御が実現す
る。
73に示すフローチャートのように制御量を設定するこ
とになる。つまり、図73に示すように、まず、ドリフ
ト度合(ドリフト判定係数)srpを算出し(ステップ
D10)、ドリフト制御中であるか否かを判定し(ステ
ップD20)、ドリフト制御中でなければ、Noルート
からステップD30,D40,D50に進み、ドリフト
対応制御開始条件を判定する。
(ドリフト判定係数)srpが所定値srp0よりも大
きいか否か(即ち、srp>srp0か否か)を判定す
る。ドリフト度合srpが所定値srp0よりも大きく
なければ、ドリフト対応制御開始条件は成立しないの
で、Noルートから通常制御ステップ(ステップD7
0)に進む。
0よりも大きければ、YesルートからステップD40
に進み、計算横G(gyf)の方向と実横G(rgy
h)の方向とが逆であるか否か(即ち、gyf・rgy
h<0か否か)を判定する。計算横G(gyf)の方向
と実横G(rgyh)の方向とが逆でなければ、ドリフ
ト対応制御開始条件は成立しないので、Noルートから
通常制御ステップ(ステップD70)に進む。
(rgyh)の方向とが逆であれば、Yesルートから
ステップD50に進み、ハンドル角速度dθhが所定速
度dθ1 以上であるか否か(即ち、dθh≧dθ1 か否
か)を判定する。ハンドル角速度dθhが所定速度dθ
1 以上でなければ、ドリフト対応制御開始条件は成立し
ないので、Noルートから通常制御ステップ(ステップ
D70)に進む。
θ1 以上であれば、Yesルートからドリフト対応制御
開始条件が成立することになり、ステップD60に進
む。また、ステップD20で、ドリフト制御中であると
判定された場合には、YesルートからステップD60
に進む。ステップD60では、ドリフト対応制御終了条
件が判定される。つまり、計算横G(gyf)の方向と
実横G(rgyh)の方向とが同方向であるか否か(即
ち、gyf・rgyh>0か否か)が判定される。
とされ、ステップD30,ステップD40,ステップD
50を経てステップD60に進んだ場合は、当然、No
ルートからドリフト制御ステップ(ステップD130)
に進む。また、ステップD20でドリフト制御中である
と判定されてステップD60に進んだ場合は、計算横G
(gyf)の方向と実横G(rgyh)の方向とが同方
向であれば、通常制御ステップ(ステップD70)に進
み、ドリフト制御を停止することになり、計算横G(g
yf)の方向と実横G(rgyh)の方向とが同方向で
なければ、ステップD130に進みドリフト制御を継続
する。
は、まず、ステップD80で、過渡制御量tcを操舵角
速度dθhに応じて設定する〔tc=f(dθh)〕。
そして、ステップD90で、後輪基準回転速度差dvh
fを、車両のトレッド幅Lt,車体速vb,車体中心の
旋回半径RRとから、次式により算出することができ
る。
ゲイン、つまり、ドリフト補正係数2及び3(srp
2,srp3)が算出される。このとき、前述したよう
に、制御ゲインsrp2,srp3はいずれも1に設定
される(srp2=1,srp3=1)。
場合には、まず、ステップD140で、過渡制御量tc
を0に設定する〔tc=f(0)〕。これは、図27に
示すように、ドリフト判定係数srp5が0となり、図
29,図30のブロックB33内に示すように、この係
数srp5によって過渡制御量tcが0になるためであ
る。そして、ステップD150で、基準回転速度差dv
hfにドリフト補正係数1(srp1)による補正を行
なう〔dvhf=f(Lt,vb,RR)×srp
1〕。
係数srpが所定値srp0以上のときには、ドリフト
判定係数1(srp1)が0となり、図29,図30の
ブロックB31内に示すように、この係数srp1によ
って基準回転速度差dvhfが0とされる。そして、ス
テップD170で、目標ΔN追従制御の制御ゲイン、つ
まり、ドリフト判定係数2,3(srp2,srp3)
が算出される。すなわち、まず、図24に示すように、
ドリフト判定係数srpに応じて高μ路用制御ゲインs
rp2が算出される。つまり、以下に示すように、ドリ
フト時の制御ゲインは非ドリフト時の制御ゲイン(sr
p2=1)よりも小さく設定される。また、図25に示
すように、ドリフト判定係数srpに応じて低μ路用制
御ゲインsrp3が算出される。つまり、以下に示すよ
うに、ドリフト時の制御ゲインは非ドリフト時の制御ゲ
イン(srp2=1)よりも大きく設定される。 ・非ドリフト時 srp2=1, srp3=1 ・ドリフト時 0<srp2<1<srp3 このように、過渡制御量tc,基準回転速度差dvh
f,目標ΔN追従制御の制御ゲイン(ドリフト判定係
数)srp2,srp3が設定されたら、ステップD1
90へ進み、基準回転速度差dvhfと実回転速度差d
vrdとの差ΔN(=dvhf−dvrd=ddvr)
を算出する。そして、ステップD200へ進み、差ΔN
(=ddvr)に制御ゲイン(ドリフト判定係数)sr
p2,srp3を乗算して、ΔN追従制御の高μ路用制
御量tbhと低μ路用制御量tblとを算出して、前述
のように路面μ判定係数γの値に応じて無段階にゲイン
調整したちΔN追従制御量tbとして出力する(次式参
照)。
従制御量tbと過渡制御量tcとその他の制御量tot
her(つまり、タックイン対応制御td,加速旋回制
御量te)とを加算して、総合制御量tを算出する。
度合即ち車輪の滑り度合に応じて、目標ΔN追従制御,
操舵角速度比例制御(操舵過渡応答制御),加速旋回制
御及びタックイン対応制御が行なわれるので、次のよう
な利点がある。つまり、ドリフト補正係数1(srp
1)によって、ドリフト走行度合が高いと、目標ΔN追
従制御によるLSDの効きが強められて、車輪のグリッ
プ力の回復が早まって安定した旋回走行を行なえるよう
になる。
は本装置の高μ路用ゲインを下げることで、制御のハン
チングを防止することができ、また、ドリフト補正係数
3(srp3)では低μ路用ゲインを上げることで、早
く左右輪の回転速度差を無くすことができ、いずれも機
械式LSDの特性に近づけることができて、安定した旋
回走行を行なえるようになる。
では、ドリフト判定時に、操舵角速度比例制御(操舵過
渡応答制御)の制御ゲインを適性な制御ゲインに調整す
ることができ、操舵過渡時にも安定した旋回走行を行な
えるようになる。そして、ドリフト制御中には、加速旋
回制御及びタックイン対応制御にかかる旋回横Gの入力
を計算横Gから実横G入力に切り替えるとともに、制御
量を、ドリフト補正係数5(srp5)でゲイン修正す
ることで、ゲインを適正なものに調整することができ
る。
フト対応制御(滑り対応制御)の開始条件は、ドリフト
判定係数srpが所定値以上であること、計算横G(g
y)の方向と実横G(rgyh)の方向とが逆であるこ
と、ハンドル角速度Δθhが所定速度Δθ1 以上である
こと、の3条件が同時に成立したこととされ、ドリフト
終了判定条件、即ち、ドリフト対応制御終了条件は、計
算横Gの方向と実横Gの方向とが等しくなったときとさ
れており、滑り対応制御の開始判定と終了判定とを異な
るパラメータに基づいて行なわれ、特に、一旦滑り対応
制御が開始されたらば終了判定条件が確実に成立するま
では滑り対応制御を続行されるので、制御が安定し、車
両の旋回性能もより安定する。
合、車両挙動に対する制御信号の出力タイミングが遅れ
るため、制御信号に対する各アクチュエータの応答遅れ
が生じ、また、油圧などによりアクチュエータを作動さ
せる場合、制御信号に対してハード的な応答遅れが生じ
るが、このアクチュエータの応答遅れが制御性能を低下
させないように、制御信号にハイパス処理を行なってい
る(図74参照)ので、アクチュエータの応答遅れが抑
制されて、適切な制御を実現することができる。
舵角速度を含む)θhやスロットル開度tpsといった
運転操作状態に基づいて算出された制御量、即ち、例え
ば操舵過渡応答制御量(操舵角速度比例制御量)tcに
ついては、特に制御指令の遅れは問題にはならないが、
車両挙動に基づいて算出された制御量、即ち、目標ΔN
追従制御量tb,タックイン対応制御量td,加速旋回
制御量teについては、制御信号の出力タイミングがア
クチュエータの応答遅れを増幅しやすい。
両挙動に応じた制御量、即ち、目標ΔN追従制御量t
b,タックイン対応制御量td,加速旋回制御量teに
ついて、ハイパス処理を行なって、制御信号の出力を速
めるようにしているので、車両挙動に対する各制御応答
の遅れが補正される。すなわち、図75に示すように制
御出力信号tfdに、ハイパス処理を行ない、制御出力
信号tfdにこれに応じたハイパス処理値tffが加算
されるので、制御出力信号tfdの増加や減少が速まる
ことになり、この分だけアクチュエータの応答遅れが抑
制されるのである。したがって、車両の挙動が急変した
場合、例えば急旋回操作が行なわれた場合にも、適切な
トルク移動制御が速やかに行なわれることになり、旋回
性能を向上させることができるのである。
って実際に把握したい制御効果に対応した制御度合が表
示されるので、ドライバが的確に制御状況を認識するこ
とができる利点がある。特に、路面μに応じて制御量を
綿密に設定して適切に制御を行なえるようにしながら、
この路面μに応じた制御量の設定に付随して招きやすき
制御状況の表示矛盾を回避できるようになる。
は、路面μが低いほど(即ち、路面μ判定係数γが小さ
いほど)制御量は低く設定されるが、路面μが低いほど
制御量がの割りに制御効果は高くなる。これに対して、
路面μが低いほど制御状況の表示ゲインを上げているの
で、路面μが低い場合、制御量は低くても、その制御効
果に応じた分の高い表示量で表示が行なわれることにな
り、ドライバが、制御効果に対応した制御度合から的確
に制御状況を認識することができるようになる。
値)と消灯値とでヒステリシスを設けているので、表示
が安定するようになる利点もある。なお、本実施形態で
は、通常制御時(ドリフト制御時以外)においては、路
面摩擦係数が低いときには制御量が小さくなるように路
面摩擦係数が高いときには制御量が大きくなるように設
定されるとともに、ドリフト制御時には、このような路
面摩擦係数に応じた制御量変化が少なくなるように制御
量として中間的な値となるような補正(ゲイン調整)を
行なうことで、路面摩擦係数に応じた補正を抑制するよ
うにしているが、本装置は、これに限らず、ドリフト制
御時には、この路面摩擦係数に応じた制御量補正を禁止
して路面摩擦係数によって制御量が変化しないようにし
た、中間的な制御量を与えるようにしてもよい。
御量が設定され、ドリフト制御時以外の通常制御時に
は、路面摩擦係数が低いときにはこの基本制御量を小さ
くなるような補正係数αで補正するとともに、ドリフト
制御時には、路面摩擦係数と関係ない値(補正係数β)
でこの基本制御量の補正を行ない中間的な値となるよう
にする。この場合、補正係数αは、路面摩擦係数に応じ
て1から最小値αmax (αmax <1)まで連続的に変化
し、補正係数βは、1よりも小さく最小値αmaxよりも
大きい固定値とする。
面摩擦抵抗対応制御量)と低μ路用制御量(低路面摩擦
抵抗対応制御量)とを設定して、これらの制御量を、路
面摩擦係数算出手段で算出された路面摩擦係数としての
路面μ判定係数γに応じて補間的に反映させながら出力
制御量tadを算出するが、特に、目標ΔN追従制御量
tbについては、同様な差ddvrに対して高路面摩擦
抵抗用マップの方が低路面摩擦抵抗用マップよりも大き
い制御量を与え、且つ、高μ路用制御量の反映度合が路
面摩擦係数に比例して設定される反映度合よりも大きく
なるように、高μ路用制御量と低μ路用制御量とを路面
μ判定係数γに対する比例配分値よりもより高μ側へ設
定しているので、目標ΔN追従制御の制御ゲインtbが
比較的高めなものになる。
を間にしながらの制御なので、路面摩擦係数が低い場合
にもその制御影響は想定領域から逸脱しにくい。そこ
で、そこで、上述のように、目標ΔN追従制御では、路
面摩擦係数に対する制御量を大きめに設定しながら、比
較的大きなトルク移動を行なうようにすることで、車両
挙動を速やかに目標のものにできるようになる利点が得
られるのである。
G(ggy)の小さい領域においては同様な旋回横G
(ggy)に対して低路面摩擦抵抗用マップの方が高路
面摩擦抵抗用マップよりも大きい制御量を与え、且つ、
低μ路用制御量の反映度合が路面摩擦係数に比例して設
定される反映度合よりも大きくなるように、高μ路用制
御量と低μ路用制御量とを路面μ判定係数γに対する比
例配分値よりもより低μ側へ設定しているので、加速旋
回制御量の制御ゲインteが比較的低めなものになる。
とするものは、特に、路面摩擦係数が低い場合には、図
17に示すように、計算横Gと実横Gとの関係が直ぐに
非線形領域にはいって制御影響が想定領域から逸脱し易
い。そこで、上述のように、加速旋回制御では、横Gの
小さい領域において低路面摩擦抵抗用マップの方が高路
面摩擦抵抗用マップよりも大きい制御量を与え、且つ、
低μ路用制御量(低路面摩擦抵抗対応制御量)の反映度
合が路面摩擦係数に比例して設定される反映度合よりも
大きくなるように設定しており、これにより、路面摩擦
係数が低い場合でも速やかに安定した制御を行なうこと
ができる。
路用制御量(高路面摩擦抵抗対応制御量)の反映度合を
路面摩擦係数に比例して設定される反映度合よりも大き
くすることにより、横Gの小さい領域における制御を極
力減少させることができ、その分、エネルギロスを抑制
することができる。また、タックイン対応制御において
も、加速旋回制御と同様に設定することも可能であり、
この場合にも加速旋回制御の場合と同様の効果が得られ
る。
御量の微小調整は、目標ΔN追従制御や加速旋回制御に
限らず、路面摩擦係数の影響の出にくいものや出やすい
ものにそれぞれ適用することができる。また、制御量設
定マップには、不感帯領域が設けられているので、制御
が安定したものになる。
調整は、上述した実施形態に限定される必要はない。例
えば、左右輪間に回転速度差や横加速度などのパラメー
タに基づいて制御量を設定するための制御マップとし
て、高路面摩擦抵抗対応制御量を与える高路面摩擦抵抗
用マップと、低路面摩擦抵抗対応制御量を与える低路面
摩擦抵抗用マップとを設け、高路面摩擦抵抗対応制御量
及び低路面摩擦抵抗対応制御量を、路面摩擦係数に応じ
て補間的に反映させながら出力制御量を算出するととも
に、この両制御量の補間的な反映に際し、中路面摩擦抵
抗における高路面摩擦抵抗対応制御量及び低路面摩擦抵
抗対応制御量の反映度合を、車両固有の定数などのパラ
メータに応じて変化させるようにして調整してもよい。
この場合には、車両に応じたより適正な制御量を与える
ことができる。
御量tbと加速旋回制御量teとを加算して加速急旋回
の旋回性能を確保するように構成したが、これについて
は、加速急旋回の開始直後は一時的に加速旋回制御量に
より制御を行ない、その後は、定常制御用の目標ΔN追
従制御量に切り換えるような制御にしてもよい。要する
に、急旋回開始直後から旋回外輪の回転力が増大される
ように制御することが重要なのである。
に説明したが、本車両用左右輪間動力伝達制御装置は、
前輪駆動車や後輪駆動車といった2輪駆動車の左右駆動
輪間や左右の従動輪間にそなえることができるほか、4
輪駆動車の前後輪間に適用することが考えられ、この場
合は、車両用動力伝達制御装置として構成される。
発明の車両用動力伝達制御装置によれば、制御量の微小
調整、例えば車両とのマッチングを簡単な制御ロジック
によって、より適正に行なうことができるという効果が
得られる。請求項2記載の本発明の車両用動力伝達制御
装置によれば、路面摩擦状態に応じて制御量が調整され
ることになり、車両挙動を速やかに目標のものにするこ
とができ、制御効果を制御効果を速やかに得られるよう
になる。
伝達制御装置によれば、路面摩擦係数が低い場合でも速
やかに安定した制御を行なうことができ、また、路面摩
擦係数が高い場合には制御頻度を下げることができ、エ
ネルギロスを抑制することができるという効果が得られ
る。請求項4記載の本発明の車両用動力伝達制御装置に
よれば、路面摩擦状態に応じて制御量が調整されること
になり、路面摩擦状態の影響が少ない場合には、制御効
果を速やかに得られるようになり、路面摩擦状態の影響
が大きい場合には、より安定した制御を実現することが
できる。
御装置によれば、路面摩擦状態に応じて制御量が調整さ
れることになり、車両挙動を速やかに目標のものにする
ことができ、制御効果を制御効果を速やかに得られるよ
うになる。
力伝達制御装置をそなえた車両の駆動系の模式的な全体
構成図である。
力伝達制御装置の回転推進力配分調整機構(トルク移動
機構)を示す模式的な構成図である。
力伝達制御装置の回転推進力配分調整機構(トルク移動
機構)の軸配置構成を示す模式的な配置図である。
力伝達制御装置を回転推進力配分調整機構(トルク移動
機構)の油圧ユニット及び制御系の構成を示す模式図で
ある。
力伝達制御装置を回転推進力配分調整機構(トルク移動
機構)の作動原理を説明する模式図である。
力伝達制御装置の制御ブロック図である。
力伝達制御装置の目的とする制御内容を説明する図であ
る。
力伝達制御装置の目的とする制御内容を説明する図であ
る。
力伝達制御装置の目的とする制御内容を説明する図であ
る。
動力伝達制御装置の目的とする制御内容を説明する図で
ある。
動力伝達制御装置の目的とする制御内容を説明する図で
ある。
動力伝達制御装置の目的とする制御内容を説明する図で
ある。
動力伝達制御装置の入力演算処理に関する制御ブロック
図である。
動力伝達制御装置の入力演算処理に関して説明する図で
ある。
動力伝達制御装置の入力演算処理に関して説明する図で
ある。
動力伝達制御装置のドリフト判定処理に関する制御ブロ
ック図である。
動力伝達制御装置のドリフト判定処理に関して説明する
図である。
動力伝達制御装置のドリフト判定処理に関して説明する
図である。
動力伝達制御装置のドリフト判定処理に関して説明する
図である。
動力伝達制御装置のドリフト判定処理に関して説明する
図である。
動力伝達制御装置のドリフト判定処理に関して説明する
図である。
動力伝達制御装置のドリフト判定処理に関して説明する
図である。
動力伝達制御装置のドリフト判定処理に関するドリフト
補正係数を示す図である。
動力伝達制御装置のドリフト判定処理に関するドリフト
補正係数を示す図である。
動力伝達制御装置のドリフト判定処理に関するドリフト
補正係数を示す図である。
動力伝達制御装置のドリフト判定処理に関するドリフト
補正係数を示す図である。
動力伝達制御装置のドリフト判定処理に関するドリフト
補正係数を示す図である。
動力伝達制御装置のドリフト判定処理に関するドリフト
補正係数について説明する図である。
動力伝達制御装置の制御量算出処理(高μ路用処理)に
関する制御ブロック図である。
動力伝達制御装置の制御量算出処理(低μ路用処理)に
関する制御ブロック図である。
動力伝達制御装置のΔN追従制御にかかるマップ(高μ
路用マップ)を示す図である。
動力伝達制御装置のΔN追従制御にかかるマップ(高μ
路用マップ)を示す図である。
動力伝達制御装置のΔN追従制御にかかるマップ(高μ
路用マップ)を示す図である。
動力伝達制御装置の加速旋回制御にかかるマップ(高μ
路用マップ)を示す図である。
動力伝達制御装置の加速旋回制御にかかるマップ(高μ
路用マップ)を示す図である。
動力伝達制御装置の加速旋回制御にかかるマップ(高μ
路用マップ)を示す図である。
動力伝達制御装置の加速旋回制御にかかるマップ(高μ
路用マップ)を示す図である。
動力伝達制御装置のタックイン対応制御にかかるマップ
(高μ路用マップ)を示す図である。
動力伝達制御装置の操舵過渡応答制御にかかるマップ
(高μ路用マップ)を示す図である。
動力伝達制御装置の操舵過渡応答制御にかかるマップ
(高μ路用マップ)を示す図である。
動力伝達制御装置の操舵過渡応答制御にかかるマップ
(高μ路用マップ)を示す図である。
動力伝達制御装置のΔN追従制御にかかるマップ(低μ
路用マップ)を示す図である。
動力伝達制御装置のΔN追従制御にかかるマップ(低μ
路用マップ)を示す図である。
動力伝達制御装置のΔN追従制御にかかるマップ(低μ
路用マップ)を示す図である。
動力伝達制御装置の加速旋回制御にかかるマップ(低μ
路用マップ)を示す図である。
動力伝達制御装置の加速旋回制御にかかるマップ(低μ
路用マップ)を示す図である。
動力伝達制御装置の加速旋回制御にかかるマップ(低μ
路用マップ)を示す図である。
動力伝達制御装置の加速旋回制御にかかるマップ(低μ
路用マップ)を示す図である。
動力伝達制御装置のタックイン対応制御にかかるマップ
(低μ路用マップ)を示す図である。
動力伝達制御装置の操舵過渡応答制御にかかるマップ
(低μ路用マップ)を示す図である。
動力伝達制御装置の操舵過渡応答制御にかかるマップ
(低μ路用マップ)を示す図である。
動力伝達制御装置の操舵過渡応答制御にかかるマップ
(低μ路用マップ)を示す図である。
動力伝達制御装置のドリフト対応制御を説明する図であ
る。
動力伝達制御装置のΔN追従制御を説明する図である。
動力伝達制御装置の加速旋回制御を説明する図である。
動力伝達制御装置の加速旋回制御を説明する図である。
動力伝達制御装置のタックイン対応制御を説明する図で
ある。
動力伝達制御装置の操舵過渡応答制御を説明する図であ
る。
動力伝達制御装置の路面μ判定を説明する図である。
動力伝達制御装置の駆動処理に関する制御ブロック図で
ある。
動力伝達制御装置の駆動処理に関して説明するマップを
示す図である。
動力伝達制御装置の駆動処理に関して説明するマップを
示す図である。
動力伝達制御装置の駆動処理の差動判別を説明するため
の図である。
動力伝達制御装置の駆動処理の差動判別を説明するため
の図である。
動力伝達制御装置の駆動処理の差動判別を説明するため
の図である。
動力伝達制御装置の駆動処理の差動判別を説明するため
の図である。
動力伝達制御装置の駆動処理の差動判別を説明するため
の図である。
動力伝達制御装置の駆動処理の差動判別を説明するため
の図である。
動力伝達制御装置の駆動処理の差動判別を説明するため
の図である。
動力伝達制御装置の出力値微調整を説明する図である。
動力伝達制御装置の表示装置を示す模式的な図である。
動力伝達制御装置の表示制御を説明する図である。
動力伝達制御装置のドリフト制御を説明するフローチャ
ートである。
動力伝達制御装置の路面μ判定(路面摩擦係数判定)に
よる出力値に関する要部制御ブロック図である。
動力伝達制御装置のハイパス処理を説明する図である。
動力伝達制御装置の動作の概要を示すフローチャートで
ある。
デフ)〕 8A,8B デファレンシャルピニオン 8C,8D サイドギヤ 10 前輪用差動歯車機構〔フロントディファレンシャ
ル(フロントデフ)〕 12L,12R 車軸 14,16 前輪 18 ベベルギヤ機構 20 プロペラシャフト 22 ベベルギヤ機構 24 後輪用の差動歯車装置〔リヤディファレンシャル
(リヤデフ)〕 26L,26R 車軸 28,30 後輪 32 前輪用出力軸 34 後輪用出力軸 36 差動制限手段としてのビスカスカップリングユニ
ット(VCU) 42 制御手段(回転推進力配分制御手段)としての電
子制御ユニット(ECU,又はコントローラ) 48A 車輪速センサ 48B ハンドル角センサ 48C 前後加速度センサ(前後Gセンサ) 48D 横加速度センサ(横Gセンサ) 48E スロットルポジションセンサ(TPS) 50 回転推進力配分制御機構(回転力調整手段,トル
ク移動機構) 51 デフキャリア 51A 壁部 52 入力軸 54 ドライブピニオンギヤ 56 クラウンギヤ 58 デファレンシャルケース(デフケース) 60A,60B デファレンシャルピニオン 62,64 サイドギヤ 66 左輪側回転軸 68 右輪側回転軸 70 変速機構 70A 増速機構 70B 減速機構 72,74,76 中間軸 78A,80A,82A ギヤ(サンギヤ) 78B,80B,82B ギヤ(プラネタリピニオン) 84 カウンタシャフト 86 3連ギヤ 90 伝達容量可変制御式トルク伝達機構 90L クラッチ(左クラッチ) 90R クラッチ(右クラッチ) 90AL,90AR,90BL,90BR クラッチ板 92 クラッチケース 96 ころ軸受け 38 油圧ユニット 101 蓄圧部 102 制御圧出力部 103 アキュムレータ 104 モータポンプ 105 圧力スイッチ 106 電磁比例圧力制御弁(比例弁) 107 電磁方向制御弁(方向切換弁) 108 バッテリ 109 モータリレー 110 インジケータランプ
Claims (5)
- 【請求項1】 車両の前後車軸間又は左右車輪間に設け
られ、該前後車軸又は該左右車輪の各回転推進力を調整
可能な回転推進力配分調整機構と、上 記回転推進力配分調整機構の出力制御量を算出する制
御量算出手段と、 上記制御量算出手段で算出された上記出力制御量に基づ
いて上記回転推進力配分調整機構を制御する制御手段
と、 をそなえた車両用動力伝達制御装置において、上記制御量算出手段が、 路面の摩擦抵抗に応じた摩擦係数を算出する路面摩擦係
数算出手段と、 第1のパラメータに基づく第1制御量を設定するための制
御マップとして、高路面摩擦抵抗対応制御量を与える高
路面摩擦抵抗用マップと、低路面摩擦抵抗対応制御量を
与える低路面摩擦抵抗用マップとを有し、 上記高路面摩擦抵抗対応制御量と上記低路面摩擦抵抗対
応制御量とを上記路面摩擦係数に応じて補間的に反映さ
せながら上記出力制御量を算出するとともに、 上記補間に関わる上記高路面摩擦抵抗対応制御量の反映
度合を、 低路面摩擦係数側よりも高路面摩擦係数側で大きく設定
し、且つ、全ての路面摩擦係数領域において連続して比
例増大するように設定される反映度合とは異なるように
設定されている ことを特徴とする、車両用動力伝達制御
装置。 - 【請求項2】 上記第1のパラメータが上記左右車輪の
車輪速度差であり、該車輪速度差に対する上記高路面摩
擦抵抗対応制御量が上記低路面摩擦抵抗対応制御量より
も大きくなるように上記高路面摩擦抵抗用マップと上記
低路面摩擦抵抗用マップとが設定され、 上記補間に関わる上記高路面摩擦抵抗対応制御量の反映
度合が、全ての路面摩擦係数領域において連続して比例
増大するように設定される反映度合に対して高路面摩擦
係数と低路面摩擦係数との間の所定の路面摩擦係数領域
で大きく設定されていることを特徴とする、請求項1記
載の車両用動力伝達制御装置 。 - 【請求項3】 上記第1のパラメータが横加速度であ
り、該横加速度が小さい領 域における上記低路面摩擦抵
抗対応制御量が上記高路面摩擦抵抗対応制御量よりも大
きくなるように上記高路面摩擦抵抗用マップと上記低路
面摩擦抵抗用マップとが設定され、 上記補間に関わる上記高路面摩擦抵抗対応制御量の反映
度合が、全ての路面摩擦係数領域において連続して比例
増大するように設定される反映度合に対して高路面摩擦
係数と低路面摩擦係数との間の所定の路面摩擦係数領域
で大きく設定されていることを特徴とする、請求項1記
載の車両用動力伝達制御装置。 - 【請求項4】 車両の前後車軸間又は左右車輪間に設け
られ、該前後車軸又は該左右車輪の各回転推進力を調整
可能な回転推進力配分調整機構と、上 記回転推進力配分調整機構の出力制御量を算出する制
御量算出手段と、 上記制御量算出手段で算出された上記出力制御量に基づ
いて上記回転推進力配分調整機構を制御する制御手段
と、 をそなえた車両用動力伝達制御装置において、 上記制御量算出手段が、 第1のパラメータに基づく第1制御量を設定するための
制御マップを第2のパラメータに応じて複数有し、上記
第1のパラメータに基づき上記複数の制御マップから得
られるそれぞれの制御量を上記第2のパラメータに応じ
て補間して上記第1制御量を算出する第1制御量算出手
段と、 第3のパラメータに基づく第2制御量を設定するための
制御マップを上記第2のパラメータに応じて複数有し、
上記第3のパラメータに基づき上記複数の制御マップか
ら得られるそれぞれの制御量を上記第2のパラメータに
応じて補間して上記第2制御量を算出する第2制御量算
出手段と、を有し、 上記第1制御量と上記第2制御量とを総合して上記出力
制御量を算出するように構成され、 上記第2のパラメータの所定領域に対応した制御マップ
より得られる制御量の反映度合が、上記第1制御量に関
する場合と上記第2制御量に関する場合とで異なるよう
に設定されていることを特徴とする、車両用動力伝達制
御装置。 - 【請求項5】 上記第1のパラメータが上記左右車輪の
車輪速度差であり、上記第2のパラメータが路面摩擦係
数であり、上記第3のパラメータが横加速度であって、 上記第1の制御量算出手段が、少なくとも高路面摩擦抵
抗対応制御量を与える高路面摩擦抵抗用マップと、上記
車輪速度差に対して上記高路面摩擦抵抗対応制御量より
も小さい低路面摩擦抵抗対応制御量を与える低路面摩擦
抵抗用マップとを有し、 上記第2の制御量算出手段が、少なくとも高路面摩擦抵
抗対応制御量を与える高路面摩擦抵抗用マップと、上記
横加速度が小さい領域においては上記高路面摩擦抵抗対
応制御量よりも大きい低路面摩擦抵抗対応制御量を与え
る低路面摩擦抵抗用マップとを有し、上記第1制御量を算出するための補間に関わる上記高路
面摩擦抵抗対応制御量の反映度合が、上記第2制御量を
算出するための補間に関わる上記高路面摩擦抵抗対応制
御量の反映度合よりも大きく設定されている ことを特徴
とする、請求項4記載の車両用動力伝達制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19559796A JP3292049B2 (ja) | 1996-07-05 | 1996-07-05 | 車両用動力伝達制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19559796A JP3292049B2 (ja) | 1996-07-05 | 1996-07-05 | 車両用動力伝達制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1016600A JPH1016600A (ja) | 1998-01-20 |
JP3292049B2 true JP3292049B2 (ja) | 2002-06-17 |
Family
ID=16343803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19559796A Expired - Fee Related JP3292049B2 (ja) | 1996-07-05 | 1996-07-05 | 車両用動力伝達制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3292049B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006232115A (ja) * | 2005-02-25 | 2006-09-07 | Jtekt Corp | 車両用操舵装置 |
JP4894609B2 (ja) * | 2007-05-10 | 2012-03-14 | トヨタ自動車株式会社 | 車両用駆動力制御装置 |
JP6115718B2 (ja) | 2013-07-23 | 2017-04-19 | 株式会社ジェイテクト | 駆動力伝達制御装置及び車両の制御方法 |
JP6787060B2 (ja) * | 2016-11-11 | 2020-11-18 | 株式会社ジェイテクト | 駆動力制御装置及び車両の制御方法 |
-
1996
- 1996-07-05 JP JP19559796A patent/JP3292049B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1016600A (ja) | 1998-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8019518B2 (en) | Vehicle behavior control device | |
US6442469B1 (en) | Apparatus and method for controlling vehicle behavior | |
JP5257414B2 (ja) | 四輪駆動車両の駆動力配分制御装置 | |
US6131054A (en) | Yaw moment control system in vehicle | |
US6064930A (en) | Yaw moment control system in vehicle | |
JP3572920B2 (ja) | 車両用路面摩擦係数推定装置 | |
US7386383B2 (en) | Differential limiting control apparatus for a vehicle and the method thereof | |
EP2116410B1 (en) | Controller for limited slip differential devices for vehicles | |
EP0314389A2 (en) | A transmission system for a four-wheel drive vehicle | |
JP3424456B2 (ja) | 車両用路面摩擦係数推定装置 | |
JP2882474B2 (ja) | 車両用左右輪間動力伝達制御装置 | |
EP2591939B1 (en) | Device for controlling torque distribution to left and right wheels on a vehicle | |
JP3292040B2 (ja) | 車両用左右輪間動力伝達制御装置 | |
JP3292049B2 (ja) | 車両用動力伝達制御装置 | |
JP2924802B2 (ja) | 車両用動力伝達制御装置 | |
JP3063628B2 (ja) | 車体速演算装置 | |
JP4662060B2 (ja) | 車両の駆動力分配制御装置 | |
JP3405075B2 (ja) | 車両用旋回状態判定装置及び車両用動力伝達制御装置 | |
JP2882471B2 (ja) | 車両用動力伝達制御装置の表示装置 | |
EP2591940B1 (en) | Device for controlling torque distribution to left and right wheels on a vehicle | |
EP2591933B1 (en) | Device for controlling torque distribution to left and right wheels on a vehicle | |
JP5299368B2 (ja) | 車両の左右輪駆動力配分制御装置 | |
JP4000438B2 (ja) | 車両用差動制限装置 | |
JP2848107B2 (ja) | 車両用差動制限制御装置 | |
JP2734286B2 (ja) | 四輪駆動車の駆動力配分制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020226 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090329 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090329 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100329 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100329 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110329 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110329 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120329 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120329 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130329 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140329 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |