JP3291278B2 - Optoelectronic component manufacturing method - Google Patents

Optoelectronic component manufacturing method

Info

Publication number
JP3291278B2
JP3291278B2 JP29747399A JP29747399A JP3291278B2 JP 3291278 B2 JP3291278 B2 JP 3291278B2 JP 29747399 A JP29747399 A JP 29747399A JP 29747399 A JP29747399 A JP 29747399A JP 3291278 B2 JP3291278 B2 JP 3291278B2
Authority
JP
Japan
Prior art keywords
light
resin
optoelectronic component
substrate
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29747399A
Other languages
Japanese (ja)
Other versions
JP2001118865A (en
Inventor
敦史 奥野
芳照 宮脇
紀隆 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyu Rec Co Ltd
Original Assignee
Sanyu Rec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyu Rec Co Ltd filed Critical Sanyu Rec Co Ltd
Priority to JP29747399A priority Critical patent/JP3291278B2/en
Publication of JP2001118865A publication Critical patent/JP2001118865A/en
Application granted granted Critical
Publication of JP3291278B2 publication Critical patent/JP3291278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for an optical part wherein a very small and light photoelectric part which is excellent in optical characteristics while its form is constant is efficiently mass-produced at a low cost. SOLUTION: A process S14 where a transparent sealing resin is printed on a substrate where a photoelectric part element is provided using a stencil, a process S18 where a part of the transparent sealing resin is cut to form a groove, and a process S20 where the groove is filled with a light-shielding resin, are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光電子部品の製造
方法に係り、特に、LED( Light Emitting Didod
e)、LD(Laser Diode)等の発光素子、若しくはフォ
トトランジスタ、CCD(Charge Coupled Device)等
の受光素子、又は超LSI(Large Scale Integratio
n)素子等を樹脂にて封止して製造される光電子部品の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optoelectronic component, and more particularly, to an LED (Light Emitting Didod).
e), a light emitting element such as an LD (Laser Diode) or a light receiving element such as a phototransistor or a CCD (Charge Coupled Device), or a super LSI (Large Scale Integratio).
n) A method of manufacturing an optoelectronic component manufactured by sealing an element or the like with a resin.

【0002】[0002]

【従来の技術】発光素子や受光素子は指向性が狭く極め
て小型なデバイスであるとともに酸化等により特性が劣
化するため、デバイスの光軸を固定し、取り扱いを容易
にするとともに、信頼性向上の観点から透明樹脂により
封止されるのが一般的である。従来、発光素子や受光素
子の透明樹脂による封止は、リードフレームを用いたケ
ース注型や金型成型により行うことが主流であった。
2. Description of the Related Art Light-emitting elements and light-receiving elements are extremely small devices having narrow directivity and deteriorate in characteristics due to oxidation or the like. Therefore, the optical axis of the device is fixed, handling is facilitated, and reliability is improved. It is common to seal with a transparent resin from a viewpoint. Conventionally, sealing of a light emitting element and a light receiving element with a transparent resin has been mainly performed by case casting or die molding using a lead frame.

【0003】しかしながら、リードフレームを用いた場
合には、基本的に封止を行って得られた光電子部品の外
形を小型化し且つ軽量化を図ることが困難であるという
問題点があった。また、金型成型によって光電子部品を
形成する場合には、金型を形成するためのコストが高く
なるという問題があった。これらの問題点を解消すべく
本出願の発明者は、印刷封止による電子部品の製造方法
を案出している。
However, when a lead frame is used, there has been a problem that it is basically difficult to reduce the size and weight of an optoelectronic component obtained by sealing. Further, when an optoelectronic component is formed by mold molding, there is a problem that the cost for forming the mold increases. To solve these problems, the inventor of the present application has devised a method for manufacturing an electronic component by printing and sealing.

【0004】印刷封止による電子部品の製造方法は、基
板上に配置された複数の光電子部品素子の位置に対応し
た位置に孔が設けられた孔版とスキージとを用い、孔版
上に透明樹脂を滴下した後、スキージを孔版に対して平
行に移動させて孔版の孔内に透明樹脂を充填して基板上
に透明樹脂を印刷することにより光電子部品素子を封止
するというものである。そして、印刷を終了した後に、
孔版と基板とを分離して印刷された透明樹脂を硬化させ
ることにより、各光電子部品素子が別々に封止される。
また、予め基板上に配置された複数の光電子部品素子の
周囲にダムを形成しておき、そのダムの内側へ孔版を用
いて透明樹脂を流し込んで硬化させることにより光電子
部部品を製造する方法も提案している。これらの技術の
詳細については、特開平10−65219号公報を参照
されたい。
[0004] A method of manufacturing an electronic component by printing encapsulation uses a stencil and a squeegee provided with holes at positions corresponding to a plurality of optoelectronic component elements arranged on a substrate, and a transparent resin is formed on the stencil. After dropping, the squeegee is moved in parallel to the stencil, the transparent resin is filled in the holes of the stencil, and the transparent resin is printed on the substrate to seal the optoelectronic component element. And after finishing printing,
By separating the stencil and the substrate and curing the printed transparent resin, each optoelectronic component element is separately sealed.
Further, a method of manufacturing an optoelectronic component by forming a dam around a plurality of optoelectronic components arranged in advance on a substrate, pouring a transparent resin into the dam using a stencil, and curing the resin. is suggesting. For details of these techniques, refer to Japanese Patent Application Laid-Open No. H10-65219.

【0005】また、基板上に配置された多数個の電子部
品素子に対して液状樹脂を印刷することにより、多数個
の電子部品素子を一括封止して、液状樹脂を硬化させた
後、切断工程を経て個々の電子部品を形成する方法も案
出している。この方法では、2つの電子部品素子を楕円
状の透明封止樹脂で封止してレンズを形成し、このレン
ズを遮光性の樹脂で封止した後に各々の電子部品を切断
し、透明封止樹脂の切断面が出射面又は受光面となる電
子部品を形成している。しかし、透明封止樹脂を封止す
る際に、各レンズ間の間隔が1〜2mmと狭い場合、透
明封止樹脂の僅かなダレや流動によって、各レンズ間の
間隔が更に狭くなって遮光性樹脂を封止する幅が確保さ
れないため、完成した電子部品から光漏れが生じ、ひど
い場合にはレンズ同士が接触してしまう不具合が発生す
ることがある。この技術については、特開平11−67
799号公報を参照されたい。更に、孔版及びスキージ
を用いて基板上に液状樹脂を印刷する際に、真空下で液
状樹脂の印刷を行い、印刷を行った後に大気圧に戻して
印刷した液状樹脂を硬化させることで液状樹脂内に気泡
を含まずに封止を行う電子部品の製造方法を案出してい
る。この技術は、孔版に形成された孔内に液状樹脂をス
キージで押し込んで充填する際に、空気が混入しないの
で液状樹脂内に気泡が含まれない。この技術の詳細につ
いては、特開平5−114620号公報を参照された
い。
Further, by printing a liquid resin on a large number of electronic component elements arranged on a substrate, a large number of electronic component elements are collectively sealed, the liquid resin is cured, and then cut. A method of forming individual electronic components through a process has also been devised. In this method, two electronic component elements are sealed with an elliptical transparent sealing resin to form a lens, the lens is sealed with a light-shielding resin, and then each of the electronic components is cut. An electronic component in which the cut surface of the resin serves as an emission surface or a light receiving surface is formed. However, when sealing the transparent sealing resin, if the distance between the lenses is as narrow as 1 to 2 mm, a slight dripping or flow of the transparent sealing resin further narrows the distance between the lenses, so that the light shielding property is reduced. Since the width for sealing the resin is not ensured, light leakage occurs from the completed electronic component, and in severe cases, a problem that the lenses come into contact with each other may occur. This technique is disclosed in Japanese Patent Laid-Open No. 11-67.
See No. 799. Furthermore, when printing the liquid resin on the substrate using a stencil and a squeegee, the liquid resin is printed under vacuum, and after printing, the pressure is returned to atmospheric pressure and the printed liquid resin is cured to cure the liquid resin. We have devised a method of manufacturing an electronic component that performs sealing without containing air bubbles. In this technique, when the liquid resin is pushed into the holes formed in the stencil with a squeegee and filled, no air is mixed, so that no bubbles are contained in the liquid resin. For details of this technique, refer to Japanese Patent Application Laid-Open No. 5-114620.

【0006】[0006]

【発明が解決しようとする課題】ところで、LED( L
ight Emitting Didode)、LD(Laser Diode)等の発
光素子、若しくはフォトトランジスタ、CCD(Charge
Coupled Device)等の受光素子等の光デバイスが様々
な分野に用いられており、その用途は様々である。光電
子部品は、種々の用途での使用に耐えられるように光学
的な特性に優れ、外形が極めて小さく且つ軽量であり、
しかもその形状が一定であるものが求められている。こ
こで、光学的な特性に優れるとは、不要な光漏れがない
ことを含む意味で用いている。
By the way, LED (L
Light-emitting elements such as light emitting diodes (LDs) and laser diodes (LDs), phototransistors, and CCDs (Charges).
Optical devices such as light receiving elements such as coupled devices are used in various fields, and their applications are various. Opto-electronic components have excellent optical characteristics so that they can be used in various applications, and have an extremely small outer shape and light weight.
In addition, there is a demand for one having a constant shape. Here, “excellent in optical characteristics” is used to mean that there is no unnecessary light leakage.

【0007】例えば、LEDで表示装置を構成する場合
には、その表示装置のドット数分のLEDが必要とな
り、しかもフルカラー表示を行う場合には、赤、緑、及
び青のLEDが必要となるため、ドット数×3個のLE
Dが必要となる。これらの用途に用いられる光電子部品
の場合には、光学的な特性に優れ、外形が極めて小さく
且つ軽量であり、しかもその形状が一定であるものが得
られることはもちろんであるが、更に安価に且つ大量に
効率よく電子部品を製造する必要がある。
For example, when a display device is constituted by LEDs, LEDs corresponding to the number of dots of the display device are required, and when full-color display is performed, red, green, and blue LEDs are required. Therefore, the number of dots x 3 LEs
D is required. In the case of optoelectronic components used in these applications, it is possible to obtain a component having excellent optical characteristics, an extremely small outer shape, light weight, and a constant shape, but at a lower cost. In addition, it is necessary to efficiently manufacture electronic components in large quantities.

【0008】本発明は、上記事情に鑑みてなされたもの
であり、光学的な特性に優れ、外形が極めて小さく且つ
軽量であり、しかもその形状が一定である光電子部品を
安価に且つ大量に効率よく製造することができる光部品
の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides an inexpensive and mass-efficient optoelectronic component having excellent optical characteristics, an extremely small outer shape, light weight, and a uniform shape. An object of the present invention is to provide a method for manufacturing an optical component that can be manufactured well.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、複数の光電子部品素子が配置された基板
上に孔版を用いて透明封止樹脂を真空下において印刷
し、当該複数の光電子部品素子を一括封止する工程(S
14)と、前記基板上の透明封止樹脂を切削し、前記光
電子部品素子の周囲に溝を形成する工程(S18)と、
前記切削を行って形成した溝に遮光性の樹脂を充填する
工程(S20)と、前記溝に充填された遮光性の樹脂及
び前記基板を切断する工程(S28)とを有することを
特徴とする。また、本発明は、前記溝が対とされた光電
子部品素子の周囲に形成されることを特徴とする。ここ
で、本発明は、前記遮光性の樹脂の充填が、前記溝に対
応した位置に孔が形成された孔版を用いて印刷により行
われるか、又は、前記溝に前記遮光性の樹脂を充填する
際に、併せて前記基板上の透明封止樹脂を覆うように前
記遮光性の樹脂を印刷することを特徴とする。このと
き、本発明は、前記対とされた光電子部品素子間におけ
る前記基板、前記透明封止樹脂、及び前記透明封止樹脂
を覆うように印刷された前記遮光性の樹脂を切断する工
程を更に有することを特徴とする。また、本発明は、前
記遮光性の樹脂の印刷が、真空下で行われることを特徴
とする。更に、本発明は、前記溝に充填された遮光性の
樹脂及び前記基板の切断が、前記溝の略中心に沿って行
われることを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a method of printing a transparent sealing resin under vacuum using a stencil on a substrate on which a plurality of optoelectronic component elements are arranged.
Then, a step of sealing the plurality of optoelectronic component elements at once (S
14) cutting the transparent sealing resin on the substrate,
Forming a groove around the electronic component element (S18);
Filling a groove formed by performing the cutting with a light-shielding resin (S20) ;
And a step of cutting the substrate (S28) . The present invention also provides a photoelectric conversion device in which the groove is paired.
It is characterized in that it is formed around the child component element. here
According to the present invention, the filling of the light-shielding resin is performed in the groove.
Performing by printing using a stencil with a hole formed at the corresponding position
Or filling the groove with the light-blocking resin
At the same time, before covering the transparent sealing resin on the substrate,
It is characterized by printing a light-shielding resin. This and
In the present invention, the present invention provides a
The substrate, the transparent sealing resin, and the transparent sealing resin
Cutting the light-shielding resin printed so as to cover the
It is characterized by having further steps. In addition, the present invention
Printing of light-shielding resin is performed under vacuum
And Further, the present invention provides a light shielding property filled in the groove.
Cutting of the resin and the substrate is performed along substantially the center of the groove.
It is characterized by being performed.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態による光電子部品の製造方法について詳細に説明
する。 〔第1実施形態〕図1は、本発明の第1実施形態による
光電子部品の製造方法の工程を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing an optoelectronic component according to an embodiment of the present invention will be described in detail with reference to the drawings. [First Embodiment] FIG. 1 is a diagram showing the steps of a method for manufacturing an optoelectronic component according to a first embodiment of the present invention.

【0011】本実施形態においては、まず基板上に光電
子部品素子を載置する工程が行われ(工程S10)、次
に基板上に形成された電気回路と光電子部品素子とを電
気的に接続する工程が行われる(工程S12)。図2
は、工程S12を終えた時点の基板を示す断面図であ
る。図2において、12は、例えば厚さが0.5mmの
ガラスエポキシ製の基板である。この基板12には例え
ば光電子部品素子14,14,…に電源を供給するため
の電気回路が形成されている。光電子部品素子14,1
4,…は、例えばLED( Light Emitting Didode)素
子、LD(Laser Diode)素子等の発光素子、若しくは
フォトトランジスタ素子、CCD(Charge Coupled Dev
ice)素子である。
In this embodiment, first, a step of mounting an optoelectronic component element on a substrate is performed (step S10), and then an electric circuit formed on the substrate is electrically connected to the optoelectronic component element. A step is performed (Step S12). FIG.
Is a cross-sectional view showing the substrate at the time when step S12 is completed. In FIG. 2, reference numeral 12 denotes a glass epoxy substrate having a thickness of, for example, 0.5 mm. An electric circuit for supplying power to the optoelectronic component elements 14, 14,... Is formed on the substrate 12, for example. Optoelectronic component element 14, 1
Reference numerals 4,... Denote light emitting elements such as LED (Light Emitting Dido) elements, LD (Laser Diode) elements, or phototransistor elements, and CCD (Charge Coupled Dev).
ice) element.

【0012】光電子部品素子14,14,…が発光素子
である場合には、図中符号ORを付した方向に光を出射
するように、また、受光素子である場合には、図中符号
IRを付した方向から入射する光を受光するように、出
射面又は入射面が図中上側を向けて配置される。16,
16,…は、基板12に形成された電気回路と光電子部
品素子14,14,…とを電気的に接続するワイヤであ
り、例えば金線が用いられる。以下、本明細書では工程
S12までの処理が行われた基板を初期基板と称し、図
面においては符号10を付して説明する。
When the optoelectronic component elements 14, 14,... Are light-emitting elements, light is emitted in the direction indicated by the symbol OR in the figure. The outgoing surface or the incident surface is arranged facing upward in the figure so as to receive light incident from the direction marked with. 16,
Are wires for electrically connecting an electric circuit formed on the substrate 12 and the optoelectronic component elements 14, 14,..., For example, gold wires are used. Hereinafter, in the present specification, the substrate on which the processing up to the step S12 has been performed is referred to as an initial substrate, and the description is given with reference numeral 10 in the drawings.

【0013】次に、孔版を用いて光電子部品素子14,
14,…を透明封止樹脂により封止する工程が行われる
(工程S14)。図3は、孔版を用いて光電子部品素子
14,14,…を透明封止樹脂により封止する工程を説
明する断面図である。図3において、18は孔版であ
り、その一部に孔19が形成されている。孔版18は、
例えばステンレス製であり、その厚さは0.1〜10m
m程度である。但し、孔版18は光電子部品素子14,
14,…の高さに応じて異なる厚みのものが用いられ
る。
Next, the optoelectronic component element 14,
Are sealed with a transparent sealing resin (step S14). FIG. 3 is a cross-sectional view illustrating a step of sealing the optoelectronic component elements 14, 14,... With a transparent sealing resin using a stencil. In FIG. 3, reference numeral 18 denotes a stencil, in which a hole 19 is formed. The stencil 18
For example, it is made of stainless steel and has a thickness of 0.1 to 10 m.
m. However, the stencil 18 is the optoelectronic component element 14,
14, different thicknesses are used depending on the height.

【0014】孔版18に形成された孔19は、図3に示
すように、初期基板10と孔版18とを接触させたとき
に、初期基板10上に配置された光電子部品素子14,
14,…が孔19内に配置される位置に形成される。孔
19内に配置される光電子部品素子14,14,…の数
は任意であり、例えば基板12上に配置された全ての光
電子部品素子14,14,…が1つの孔19内に配置さ
れても良く、孔版18に孔19を複数個形成し、各孔1
9内に数個の光電子部品素子14,14,…が配置され
るようにしても良い。
As shown in FIG. 3, when the initial substrate 10 and the stencil 18 are brought into contact with each other, the holes 19 formed in the stencil 18
Are formed at positions where they are arranged in the holes 19. The number of optoelectronic component elements 14, 14,... Arranged in the hole 19 is arbitrary. For example, all the optoelectronic component elements 14, 14,. Alternatively, a plurality of holes 19 may be formed in the
9 may be provided with several optoelectronic component elements 14, 14,...

【0015】図3において、20は液体の透明封止樹脂
であり、紫外線硬化性樹脂や熱硬化性樹脂であって、硬
化後に透明となる樹脂である。例えば、日本レック
(株)製の透明エポキシ樹脂組成物の「NLD−71」
を用いると好適である。22は、透明封止樹脂20を孔
19内に押し込んで充填を行うためのスキージであり、
孔版18の表面に平行な方向に往復運動が可能な構成と
なっている。
In FIG. 3, reference numeral 20 denotes a liquid transparent sealing resin, which is an ultraviolet-curing resin or a thermosetting resin, which is a resin which becomes transparent after curing. For example, "NLD-71" of a transparent epoxy resin composition manufactured by Nippon Lec Co., Ltd.
It is preferable to use Reference numeral 22 denotes a squeegee for pushing the transparent sealing resin 20 into the hole 19 to perform filling.
The reciprocating motion can be performed in a direction parallel to the surface of the stencil 18.

【0016】孔版18を用いて透明封止樹脂20の印刷
を行うときは、孔版18やスキージ22を備えた印刷装
置を用いるが、この印刷装置は真空下で印刷を行うこと
ができるものが好ましい。その理由は、透明封止樹脂2
0の印刷を行った際に、気泡が混入して透明封止樹脂2
0の未充填部分があったり、透明封止樹脂20内に気泡
が残存するのを防止するためである。印刷装置は印刷室
の真空度を0.1〜10torrの範囲内で任意に保持
設定することができ、この真空度下で孔版印刷が可能な
ものを用いるのが好ましい。例えば日本レック(株)製
の真空孔版印刷機「VPES」で印刷を行うのが好適で
ある。
When printing the transparent sealing resin 20 using the stencil 18, a printing device provided with the stencil 18 and the squeegee 22 is used, and it is preferable that the printing device can perform printing under vacuum. . The reason is that the transparent sealing resin 2
When printing is performed on the transparent sealing resin 2
This is in order to prevent an unfilled portion of 0 or bubbles from remaining in the transparent sealing resin 20. The printing apparatus can arbitrarily maintain and set the degree of vacuum in the printing room within the range of 0.1 to 10 torr, and it is preferable to use an apparatus capable of performing stencil printing under this degree of vacuum. For example, it is preferable to perform printing using a vacuum stencil printing machine “VPES” manufactured by Nippon Lec Co., Ltd.

【0017】透明封止樹脂20を真空下で印刷する場合
には、まず初期基板10を印刷室(図示省略)内に搬入
し、印刷室の真空度を所定の真空度、例えば0.1to
rrに設定した後、初期基板10と孔版18とを接触さ
せ、光電子部品素子14,14,…が孔19内に配置さ
れるようにする。次に、孔版18の上面から透明封止樹
脂20を所定量滴下し、スキージ22を図中符号D1が
付された方向に移動させて、透明封止樹脂20を孔19
内に押し込んで充填する。
When printing the transparent sealing resin 20 under vacuum, first, the initial substrate 10 is carried into a printing room (not shown), and the degree of vacuum in the printing room is set to a predetermined degree of vacuum, for example, 0.1 ton.
After setting to rr, the initial substrate 10 is brought into contact with the stencil 18 so that the optoelectronic component elements 14, 14,... Next, a predetermined amount of the transparent sealing resin 20 is dropped from the upper surface of the stencil 18, and the squeegee 22 is moved in the direction indicated by the symbol D <b> 1 in FIG.
Press in and fill.

【0018】透明封止樹脂20の印刷を終了すると、孔
版18と初期基板10とを分離し、透明封止樹脂20が
印刷された初期基板10を真空室から搬出して印刷され
た透明封止樹脂20を硬化させる工程が行われる(工程
S16)。透明封止樹脂20として熱硬化性樹脂を用い
た場合には、熱風乾燥機や遠赤外線炉を用いて硬化させ
る。遠赤外線炉を用いて硬化させる場合には、まず初期
基板10を炉内に搬入し、炉内の温度を例えば80〜1
50℃に設定して1〜4時間程度かけて乾燥させ、透明
封止樹脂20を硬化させる。
When the printing of the transparent sealing resin 20 is completed, the stencil 18 and the initial substrate 10 are separated, and the initial substrate 10 on which the transparent sealing resin 20 is printed is carried out of the vacuum chamber and printed. A step of curing the resin 20 is performed (Step S16). When a thermosetting resin is used as the transparent sealing resin 20, the resin is cured using a hot air dryer or a far-infrared oven. When hardening using a far-infrared furnace, first, the initial substrate 10 is loaded into the furnace, and the temperature in the furnace is set to, for example, 80 to 1.
The transparent encapsulating resin 20 is cured by setting it to 50 ° C. and drying it for about 1 to 4 hours.

【0019】炉内の設定温度や乾燥のための時間は、光
電子部品素子14,14,…や透明封止樹脂20の熱に
対する反応特性に応じて設定される。また、透明封止樹
脂20として紫外線硬化性樹脂を用いた場合には、UV
炉を用いる。UV炉は、炉内に紫外線を放出する紫外線
ランプが設けられた炉である。UV炉を用いて透明封止
樹脂20を硬化させる場合には紫外線の積算露光量を1
000〜3000J程度とする。図4は、工程S16を
終えた時点の初期基板10を示す断面図である。この時
点においては、図4に示されるように、光電子部品素子
14,14,…及びワイヤ16,16,…が透明封止樹
脂20で封止された状態となる。
The set temperature in the furnace and the time for drying are set in accordance with the reaction characteristics of the optoelectronic component elements 14, 14,... And the transparent sealing resin 20 to heat. When an ultraviolet curable resin is used as the transparent sealing resin 20, the UV
Use a furnace. The UV furnace is a furnace provided with an ultraviolet lamp that emits ultraviolet light in the furnace. When the transparent sealing resin 20 is cured by using a UV furnace, the integrated exposure amount of the ultraviolet ray is set to 1
Approximately 000-3000J. FIG. 4 is a cross-sectional view showing the initial substrate 10 at the time when the step S16 has been completed. At this point, as shown in FIG. 4, the optoelectronic component elements 14, 14,... And the wires 16, 16,.

【0020】次に、封止された光電子部品素子14,1
4,…の周囲の封止樹脂を切削して溝を形成する工程が
行われる(工程S18)。光電子部品が発光素子の場合
は光の出射面に対してほぼ垂直な方向に光を出射し、受
光素子の場合は受光面にほぼ垂直な方向にから入射する
光を受光するものが一般的である。工程S18は、透明
封止樹脂20内において光電子部品素子14,14,…
から出射した光が散乱し、出射面に対してほぼ垂直な方
向以外の方向へ出射されるのを防止するための遮光壁、
又は、受光面に対してほぼ垂直な方向以外の方向から光
が入射するのを防止する遮光壁を形成するために行われ
る。
Next, the sealed optoelectronic component elements 14, 1
A step of forming a groove by cutting the sealing resin around (step S18) is performed (step S18). If the optoelectronic component is a light-emitting element, it emits light in a direction substantially perpendicular to the light emitting surface, and if it is a light-receiving element, it generally receives light incident from a direction substantially perpendicular to the light-receiving surface. is there. In step S18, the optoelectronic component elements 14, 14,.
A light-shielding wall for preventing light emitted from the light from being scattered and emitted in a direction other than a direction substantially perpendicular to the emission surface,
Alternatively, it is performed to form a light shielding wall that prevents light from entering from a direction other than a direction substantially perpendicular to the light receiving surface.

【0021】図5は、工程S18において、溝を形成す
る様子を示す断面図である。溝の形成は、切削刃24、
例えば幅が0.8〜4mm程度のブレードを用いて行わ
れる。尚、溝を形成する場合、透明封止樹脂20のみを
切削するのではなく、透明封止樹脂20とともに基板1
2を僅かに切削しても良い。図5において、符号26,
26,…は、光電子部品素子14,14,…の周囲に形
成された溝を示している。
FIG. 5 is a cross-sectional view showing how a groove is formed in step S18. The groove is formed by cutting blade 24,
For example, it is performed using a blade having a width of about 0.8 to 4 mm. When forming the groove, the substrate 1 is not cut together with the transparent sealing resin 20, instead of cutting only the transparent sealing resin 20.
2 may be slightly cut. In FIG. 5, reference numerals 26,
26,... Indicate grooves formed around the optoelectronic component elements 14, 14,.

【0022】次に、工程S18が終了すると、工程S1
8で形成した溝内に遮光性の樹脂を充填する工程が行わ
れる(工程S20)。遮光性の樹脂は、液体状の熱硬化
性の樹脂であって、光学的に不透光性の樹脂が用いられ
る。例えば、日本レック(株)製の遮光性エポキシ樹脂
組成物の「NPR−783W」を用いると好適である。
遮光性の樹脂の充填は、図5に示した溝26,26,…
が形成された透明封止樹脂20表面上に遮光性の樹脂を
滴下し、透明封止樹脂20表面に対してスキージを平行
移動させて遮光性の樹脂を溝26,26,…内に押し込
むことにより行われる。
Next, when Step S18 is completed, Step S1
A step of filling the groove formed in Step 8 with a light-shielding resin is performed (Step S20). The light-shielding resin is a liquid thermosetting resin, and an optically opaque resin is used. For example, it is preferable to use “NPR-783W”, a light-shielding epoxy resin composition manufactured by Nippon Lec Co., Ltd.
The light-blocking resin is filled in the grooves 26, 26,... Shown in FIG.
The light-shielding resin is dropped on the surface of the transparent sealing resin 20 on which is formed, and the squeegee is moved in parallel to the surface of the transparent sealing resin 20 to push the light-shielding resin into the grooves 26, 26,. It is performed by

【0023】また、工程S14で用いた真空下において
印刷を行う印刷装置を用い、溝26,26,…に応じた
位置に孔が形成され、厚さが0.1〜0.5mm程度の
孔版を用いて充填を行っても良い。この方法を用いた場
合には、充填を真空下で行うことができるので、未充填
部分や気泡が混入せず、しかも遮光性の樹脂が溝26,
26,…上にのみ印刷されるので透明封止樹脂20上が
汚染されることがないので極めて好適である。
Further, a hole is formed at a position corresponding to the grooves 26, 26,... Using a printing device for printing under vacuum used in the step S14, and a stencil having a thickness of about 0.1 to 0.5 mm. The filling may be performed by using. When this method is used, filling can be performed under vacuum, so that unfilled portions and bubbles do not enter, and the light-shielding resin is formed in the grooves 26,
.. Are printed only on the transparent sealing resin 20, so that it is very suitable because the transparent sealing resin 20 is not contaminated.

【0024】遮光性の樹脂の充填を大気圧下において行
った場合には、溝26,26,…内における未充填部分
や遮光性の樹脂内に残存した気泡を除去する工程が行わ
れる(工程S22)。この工程は、遮光性の樹脂が溝2
6,26,…内に充填された後の初期基板10を真空室
(図示省略)に搬入して、減圧することにより行われ
る。つまり、溝26,26,…や遮光性の樹脂内の気泡
が気圧差により遮光性の樹脂表面から放出されるため、
未充填部分や残存した気泡を除去することができる。
尚、孔版を用いずに、遮光性の樹脂を透明封止樹脂20
上に直接滴下してスキージを用いて充填を行った場合に
は、透明封止樹脂20上の余剰な遮光性の樹脂を取り除
く工程(工程S24)を行う必要がある。
When the light-shielding resin is filled at atmospheric pressure, a step of removing unfilled portions in the grooves 26, 26 and bubbles remaining in the light-shielding resin is performed (step). S22). In this step, the light-shielding resin is
Are loaded into the vacuum chamber (not shown) and reduced in pressure. That is, air bubbles in the grooves 26, 26,... And the light-shielding resin are released from the light-shielding resin surface due to a pressure difference.
Unfilled portions and remaining air bubbles can be removed.
It should be noted that, without using a stencil, the light-shielding resin is replaced with the transparent sealing resin
In the case where the squeegee is used to fill the transparent sealing resin directly, it is necessary to perform a step of removing excess light-shielding resin on the transparent sealing resin 20 (Step S24).

【0025】図6は、遮光性の樹脂の充填を終えた後の
様子を示す断面図である。図6中符号28は、溝26,
26,…内に充填された遮光性の樹脂を示している。溝
26,26,…内に遮光性の樹脂28,28,…の充填
を完了すると、充填した遮光性の樹脂28,28,…を
硬化する処理が行われる(工程S26)。この工程にお
いては、熱風乾燥機や遠赤外線炉を用いて硬化させる。
硬化させる場合には、まず遮光性の樹脂28,28,…
が充填された初期基板10を炉内に搬入し、炉内の温度
を例えば100〜150℃に設定して1〜4時間程度か
けて乾燥させ、遮光性の樹脂を硬化させる。このとき、
温度を段階的に上昇させてもよい。
FIG. 6 is a cross-sectional view showing a state after the filling of the light-shielding resin is completed. The reference numeral 28 in FIG.
The light-shielding resin filled in 26,... When the filling of the grooves 26, 26,... With the light-shielding resins 28, 28,... Is completed, a process of curing the filled light-shielding resins 28, 28,. In this step, curing is performed using a hot-air dryer or a far-infrared oven.
In the case of curing, first, light-shielding resins 28, 28,.
Is loaded into the furnace, the temperature in the furnace is set to, for example, 100 to 150 ° C., and the substrate is dried for about 1 to 4 hours to cure the light-shielding resin. At this time,
The temperature may be increased stepwise.

【0026】最後に、遮光性の樹脂28が充填された溝
26の略中心に沿って基板12を切断し、個々の光電子
部品を形成する工程が行われる(工程S28)。図7
は、個々の光電子部品を形成する工程を説明するための
断面図である。この工程では、エポキシ樹脂及びガラス
エポキシ、セラミック等の基板12を任意の幅で切断す
ることが可能であり、切断の深さも任意に調整できる切
断機30が用いられる。切断機30として、例えば
(株)ディスコ製のダイサーを用いるのが好ましい。図
7においては、切断機30を用いて溝26,26,…内
に充填された遮光性の樹脂28,28,…の略中心に沿
って切断される様子が示されている。
Finally, a step of cutting the substrate 12 along substantially the center of the groove 26 filled with the light-blocking resin 28 to form individual optoelectronic components is performed (step S28). FIG.
FIG. 4 is a cross-sectional view for explaining a step of forming individual optoelectronic components. In this step, a cutting machine 30 capable of cutting the substrate 12 of epoxy resin, glass epoxy, ceramic, or the like at an arbitrary width and adjusting the cutting depth arbitrarily is used. As the cutting machine 30, for example, it is preferable to use a dicer manufactured by Disco Corporation. FIG. 7 shows a state in which cutting is performed along substantially the center of the light-shielding resins 28, 28,... Filled in the grooves 26, 26,.

【0027】図8は、工程S10〜工程S28を経て形
成された光電子部品32の断面図であり、図9は、光電
子部品32の斜視図である。図9から分かるように、光
電子部品素子14及びワイヤ16は透明封止樹脂20で
封止されているため、上面から透視できる状態である。
しかし、透明封止樹脂20の周囲は遮光性の樹脂28が
あるため、斜め方向から見た場合、光電子部品素子14
の一部が不可視となっている。
FIG. 8 is a cross-sectional view of the optoelectronic component 32 formed through steps S10 to S28, and FIG. 9 is a perspective view of the optoelectronic component 32. As can be seen from FIG. 9, since the optoelectronic component element 14 and the wire 16 are sealed with the transparent sealing resin 20, they can be seen through from the top.
However, since there is a light-shielding resin 28 around the transparent sealing resin 20, when viewed from an oblique direction, the optoelectronic component 14
Are invisible.

【0028】尚、上記工程S28においては、切断機3
0として0.05〜0.5mmのブレードを用い、予め
初期基板10の裏面31に粘着テープを貼付しておき、
この粘着テープの半分の厚さまで切断するのが好まし
い。なぜならば、切断後の光電子部品32がバラバラに
ならず、しかも切断時の位置固定が可能であるからであ
る。以上説明した工程によって形成された光電子部品3
2は、液晶画面用の照明(例えば、バックライト、サイ
ドライト等)、LED表示盤、電気浮子、ペンライト、
カメラ等の機器に応用することができる。
In the step S28, the cutting machine 3
Using a blade of 0.05 to 0.5 mm as 0, an adhesive tape is pasted on the back surface 31 of the initial substrate 10 in advance,
It is preferred to cut to half the thickness of this adhesive tape. This is because the optoelectronic component 32 after cutting does not fall apart, and the position at the time of cutting can be fixed. Optoelectronic component 3 formed by the process described above
2 is an illumination for a liquid crystal screen (for example, a backlight, a sidelight, etc.), an LED display panel, an electric float, a penlight,
It can be applied to devices such as cameras.

【0029】以上、本発明の第1実施形態による光電子
部品の製造方法について説明したが、本発明は、以上の
実施形態に制限されるものではなく、本発明の範囲内で
自由に変更が可能である。例えば、上記実施形態におい
ては、各々の光電子部品素子14,14,…の周囲に溝
26を形成して、遮光性の樹脂28を充填するようにし
ていたが、光電子部品素子14,14,…数個を1つの
単位とし、この単位の周囲に溝26を形成するようにし
てもよい。この場合、形成された光電子部品32の遮光
性の樹脂28内には複数個の光電子部品素子14,1
4,…が配置されることになる。
Although the method for manufacturing the optoelectronic component according to the first embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and can be freely modified within the scope of the present invention. It is. For example, in the above embodiment, the groove 26 is formed around each of the optoelectronic component elements 14, 14,..., And is filled with the light-blocking resin 28. However, the optoelectronic component elements 14, 14,. Several units may be used as one unit, and the groove 26 may be formed around this unit. In this case, a plurality of optoelectronic component elements 14, 1 are provided in the light-shielding resin 28 of the formed optoelectronic component 32.
4,... Are arranged.

【0030】〔第2実施形態〕次に、本発明の第2実施
形態による光電子部品の製造方法について詳細に説明す
る。本発明の第2実施形態による光電子部品の製造方法
は、基本的に本発明の第1実施形態による光電子部品の
製造方法と同様である。前述した本発明の第1実施形態
においては、図8や図9に示すように、基板12とほぼ
平行に光の出射面又は入射面が形成された光電子部品を
製造する方法について説明したが、本発明の第2実施形
態においては、基板に対して光の出射面又は入射面がほ
ぼ垂直に形成された光電子部品を製造する方法について
説明する。
[Second Embodiment] Next, a method for manufacturing an optoelectronic component according to a second embodiment of the present invention will be described in detail. The method for manufacturing the optoelectronic component according to the second embodiment of the present invention is basically the same as the method for manufacturing the optoelectronic component according to the first embodiment of the present invention. In the above-described first embodiment of the present invention, as shown in FIGS. 8 and 9, a method of manufacturing an optoelectronic component having a light emitting surface or a light incident surface substantially parallel to the substrate 12 has been described. In the second embodiment of the present invention, a method for manufacturing an optoelectronic component in which a light emitting surface or a light incident surface is formed substantially perpendicular to a substrate will be described.

【0031】図10は、本発明の第2実施形態による光
電子部品の製造方法に用いられる基板の上面図である。
図10中の基板42は、図2中の基板12と同様に、例
えば厚さが0.5mmのガラスエポキシ製の基板であ
り、光電子部品素子44,44,…に電源を供給するた
めの電気回路が形成されている。光電子部品素子44,
44,…は、例えばLED素子、LD素子等の発光素
子、又はフォトトランジスタ素子、CCD素子である。
本実施形態において光電子部品素子44,44,…は、
出射面又は入射面が対向するように、2つの光電子部品
素子44,44が対になって基板42上に配置されてい
る。
FIG. 10 is a top view of a substrate used in the method for manufacturing an optoelectronic component according to the second embodiment of the present invention.
The substrate 42 in FIG. 10 is, for example, a glass epoxy substrate having a thickness of 0.5 mm, similar to the substrate 12 in FIG. 2, and is used to supply power to the optoelectronic component elements 44, 44,. A circuit is formed. Optoelectronic component element 44,
Reference numerals 44, ... denote light emitting elements such as LED elements and LD elements, or phototransistor elements and CCD elements.
In the present embodiment, the optoelectronic component elements 44, 44,.
The two optoelectronic component elements 44 are arranged on the substrate 42 in pairs such that the emission surface or the incidence surface faces each other.

【0032】例えば、図10中に示した光電子部品素子
44,44,…が発光素子であるとすると、図中符号P
1で示された2つの光電子部品素子は、その出射面PL
1と出射面PL2とが互いに対向するように対になって
配置される。また、各々対になって配置された光電子部
品素子は互いに所定距離離間して配置される。図10中
46,46,…は、基板42に形成された電気回路と光
電子部品素子44,44,…とを電気的に接続するワイ
ヤであり、例えば金線が用いられる。以下、図10に示
した基板を初期基板と称し、符号40を付して説明す
る。
For example, if the optoelectronic component elements 44, 44,... Shown in FIG.
The two optoelectronic component elements indicated by 1 have their exit surfaces PL
1 and the emission surface PL2 are arranged in pairs so as to face each other. The optoelectronic component elements arranged in pairs are arranged at a predetermined distance from each other. In FIG. 10, reference numerals 46, 46,... Are wires for electrically connecting the electric circuit formed on the substrate 42 and the optoelectronic component elements 44, 44,. Hereinafter, the substrate shown in FIG. 10 will be referred to as an initial substrate, and will be described with reference numeral 40.

【0033】まず、図10に示された初期基板40に対
し、孔版を用いて光電子部品素子44,44,…を透明
封止樹脂により封止する工程が行われる。図11は、本
発明の第2実施形態において、孔版を用いて光電子部品
素子44,44,…を透明封止樹脂により封止する工程
を説明する断面図である。この工程は、図3に示した孔
版18やスキージ22を用いて透明封止樹脂20を封止
する工程(図1中の工程S14)と同様の工程である。
この工程は、図1中に示した工程S14と同様に真空下
で行うことが好ましい。
First, a step of sealing the optoelectronic component elements 44, 44,... With a transparent sealing resin is performed on the initial substrate 40 shown in FIG. FIG. 11 is a cross-sectional view illustrating a step of sealing the optoelectronic component elements 44, 44,... With a transparent sealing resin using a stencil in the second embodiment of the present invention. This step is similar to the step of sealing the transparent sealing resin 20 using the stencil 18 and the squeegee 22 shown in FIG. 3 (step S14 in FIG. 1).
This step is preferably performed under vacuum as in step S14 shown in FIG.

【0034】透明封止樹脂20の印刷を終了すると、孔
版18と初期基板40とを分離し、印刷された透明封止
樹脂20を硬化させる工程が行われる。図12は、透明
封止樹脂20を硬化させる工程を終えた時点の初期基板
40を示す断面図である。この時点においては、図12
示されるように、光電子部品素子44,44,…及びワ
イヤ46,46,…が透明封止樹脂20で封止された状
態となる。
When the printing of the transparent sealing resin 20 is completed, a step of separating the stencil 18 from the initial substrate 40 and curing the printed transparent sealing resin 20 is performed. FIG. 12 is a cross-sectional view showing the initial substrate 40 at the time when the step of curing the transparent sealing resin 20 has been completed. At this point, FIG.
As shown, the optoelectronic component elements 44, 44,... And the wires 46, 46,.

【0035】次に、封止された光電子部品素子44,4
4,…の周囲の封止樹脂を切削して溝を形成する工程が
行われる。図13は、第2実施形態において、溝を形成
する様子を示す断面図である。図13において、符号4
8,48,…は、対になって配置された光電子部品素子
44,44,…の周囲に形成された溝を示している。こ
こで、溝48,48,…の形成は、対になって配置され
た光電子部品を単位として、その周囲の封止樹脂を切削
することにより行われる。また、溝の形成は、切削刃2
4、例えば幅が0.8〜4mm程度のブレードを用いて
行われる。尚、溝を形成する場合、透明封止樹脂20の
みを切削するのではなく、透明封止樹脂20とともに基
板42を僅かに切削しても良い。
Next, the sealed optoelectronic component elements 44, 4
The step of cutting the sealing resin around 4 to form a groove is performed. FIG. 13 is a cross-sectional view showing a state of forming a groove in the second embodiment. In FIG.
8, 48,... Indicate grooves formed around the optoelectronic component elements 44, 44,. Here, the grooves 48, 48,... Are formed by cutting the sealing resin around the optoelectronic components arranged in pairs. Further, the formation of the groove is performed by using the cutting blade 2.
4, for example, using a blade having a width of about 0.8 to 4 mm. When forming the groove, the substrate 42 may be slightly cut together with the transparent sealing resin 20 instead of cutting only the transparent sealing resin 20.

【0036】切削により溝の形成が終了すると透明封止
樹脂20の周囲を遮光性の樹脂で覆うとともに、溝48
の内部に遮光性の樹脂を充填する工程が行われる。遮光
性の樹脂は、図13に示した溝48,48,…が形成さ
れた透明封止樹脂20表面上に遮光性の樹脂を滴下し、
透明封止樹脂20表面に対して所定距離スキージを離間
させた状態で平行移動させて遮光性の樹脂を溝48,4
8,…内に押し込むことにより行われる。この場合、真
空下で遮光性の樹脂の充填を行うことが好ましい。遮光
性の樹脂の充填を大気圧下において行った場合には、溝
48,48,…内における未充填部分や遮光性の樹脂内
に残存した気泡を除去する工程が行われる。
When the formation of the groove is completed by cutting, the periphery of the transparent sealing resin 20 is covered with a light-shielding resin and
Is filled with a light-shielding resin. Light-shielding resin is dropped on the surface of the transparent sealing resin 20 on which the grooves 48, 48,... Shown in FIG.
The squeegee is moved in parallel with a predetermined distance from the surface of the transparent sealing resin 20 so that the light-shielding resin is formed in the grooves 48 and 4.
8,... Is pressed. In this case, it is preferable to fill the light-shielding resin under vacuum. When the light-shielding resin is filled at atmospheric pressure, a step of removing unfilled portions in the grooves 48, 48, and air bubbles remaining in the light-shielding resin is performed.

【0037】図14は、遮光性の樹脂の充填を終えた後
の様子を示す断面図である。図14中符号50は、溝4
8,48,…内に充填された遮光性の樹脂を示してい
る。溝48,48,…内に遮光性の樹脂50の充填を完
了すると、充填した遮光性の樹脂50を硬化する処理が
行われる。以上の工程が終了すると、遮光性の樹脂50
が充填された溝48の略中心に沿って基板42を切断す
るとともに、対になって配置された光電子部品素子4
4,44,…の中間位置の基板42を切断して個々の光
電子部品を形成する工程が行われる。光電子部品素子4
4,44,…の中間位置の基板42を切断するのは、光
の出射面又は光の入射面を形成するためである。
FIG. 14 is a sectional view showing a state after the filling of the light-shielding resin is completed. The reference numeral 50 in FIG.
The light-shielding resin filled in 8, 48,... When the filling of the grooves 48, 48,... With the light-shielding resin 50 is completed, a process of curing the filled light-shielding resin 50 is performed. When the above steps are completed, the light-shielding resin 50
The substrate 42 is cut along substantially the center of the groove 48 in which the optoelectronic component elements 4 are arranged in pairs.
The step of cutting the substrate 42 at the intermediate position of 4, 44,... To form individual optoelectronic components is performed. Optoelectronic component element 4
The purpose of cutting the substrate 42 at the intermediate position of 4, 44,... Is to form a light emitting surface or a light incident surface.

【0038】図15は、第2実施形態において、個々の
光電子部品を形成する工程を説明するための断面図であ
る。この工程では、エポキシ樹脂及びガラスエポキシ、
セラミック等の基板42を任意の幅で切断することが可
能であり、切断の深さも任意に調整できる切断機30が
用いられる。図15においては、切断機30を用いて溝
48,48,…内に充填された遮光性の樹脂50の略中
心に沿って、及び対になって配置された光電子部品素子
44,44,…の中間位置に沿って基板42を切断する
様子が示されている。
FIG. 15 is a cross-sectional view for explaining a step of forming individual optoelectronic components in the second embodiment. In this step, epoxy resin and glass epoxy,
The cutting machine 30 which can cut the substrate 42 made of ceramic or the like at an arbitrary width and can also adjust the cutting depth arbitrarily is used. 15, the optoelectronic component elements 44, 44,... Arranged substantially along the center of the light-blocking resin 50 filled in the grooves 48, 48,. 2 shows a state in which the substrate 42 is cut along the middle position.

【0039】図16は、以上の工程を経て形成された光
電子部品54の断面図であり、図17は、光電子部品5
4の斜視図である。図16から分かるように、光電子部
品素子44は透明封止樹脂20で封止されているため、
光電子部品54の側面(図16及び図17中符号Rが付
された方向)から透視できる状態である。
FIG. 16 is a cross-sectional view of the optoelectronic component 54 formed through the above steps, and FIG.
4 is a perspective view of FIG. As can be seen from FIG. 16, since the optoelectronic component element 44 is sealed with the transparent sealing resin 20,
It is in a state where it can be seen through from the side surface of the optoelectronic component 54 (the direction indicated by the symbol R in FIGS. 16 and 17).

【0040】以上、本発明の第2実施形態について説明
したが、本実施形態によれば、溝48を形成して遮光性
の樹脂を充填し、基板42の切断を溝48のほぼ中央部
において行っているので、遮光性は確実に確保される。
しかも、遮光性の樹脂の幅や厚さも所定の値に規定され
るため、生産歩留まりが飛躍的に向上する。ところで、
製造された光電子部品における遮光性の樹脂50の内壁
は曲面にならないため、光の集光性の面では多少性能は
劣るが、遮光性の樹脂50として、酸化チタン等の白色
顔料を配合したエポキシ樹脂を使用することで、内壁面
での光の反射を利用して、発光素子の場合には輝度を向
上させることができ、受光素子の場合には、集光率を向
上させることができる。
As described above, according to the second embodiment of the present invention, according to the present embodiment, the groove 48 is formed and filled with a light-shielding resin, and the substrate 42 is cut substantially at the center of the groove 48. As a result, light-shielding properties are reliably ensured.
In addition, since the width and thickness of the light-shielding resin are also set to predetermined values, the production yield is dramatically improved. by the way,
Since the inner wall of the light-blocking resin 50 in the manufactured optoelectronic component does not have a curved surface, the performance is somewhat inferior in light-collecting properties. By using the resin, it is possible to improve the luminance in the case of a light emitting element and to improve the light collection rate in the case of a light receiving element by utilizing the reflection of light on the inner wall surface.

【0041】尚、本発明の第2実施形態においても、切
断機30として0.05〜0.5mmのブレードを用
い、予め初期基板40の裏面52に粘着テープを貼付し
ておき、この粘着テープの半分の厚さまで切断するのが
好ましい。以上説明した工程によって形成された光電子
部品54は、液晶画面用の照明(例えば、バックライ
ト、サイドライト等)、LED表示盤、電気浮子、ペン
ライト、カメラ等の機器に応用することができる。
In the second embodiment of the present invention, a 0.05-0.5 mm blade is used as the cutting machine 30, and an adhesive tape is applied to the back surface 52 of the initial substrate 40 in advance. Is preferably cut to half the thickness of The optoelectronic component 54 formed by the process described above can be applied to devices such as lighting for a liquid crystal screen (for example, a backlight and a sidelight), an LED display panel, an electric float, a penlight, and a camera.

【0042】[0042]

【発明の効果】以上、説明したように、本発明によれば
外形が極めて小さく且つ軽量であり、しかもその形状が
一定である光電子部品を安価に且つ大量に効率よく製造
することができる。また、透明封止樹脂や遮光性の樹脂
を真空下で印刷していることにより、気泡が残存するこ
とがないので光学的な特性が優れ、高い信頼性を有する
という効果がある。
As described above, according to the present invention, it is possible to efficiently and inexpensively mass-produce optoelectronic components having an extremely small outer shape, a light weight and a constant shape. Further, since the transparent sealing resin or the light-shielding resin is printed under vacuum, no air bubbles remain, so that there is an effect that the optical characteristics are excellent and the reliability is high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態による光電子部品の製
造方法の工程を示す図である。
FIG. 1 is a diagram showing steps of a method for manufacturing an optoelectronic component according to a first embodiment of the present invention.

【図2】 工程S12を終えた時点の基板を示す断面図
である。
FIG. 2 is a cross-sectional view showing the substrate at the time when a step S12 has been completed.

【図3】 孔版を用いて光電子部品素子14,14,…
を透明封止樹脂により封止する工程を説明する断面図で
ある。
FIG. 3 shows an optoelectronic component element 14, 14,.
FIG. 5 is a cross-sectional view illustrating a step of sealing the substrate with a transparent sealing resin.

【図4】 工程S16を終えた時点の初期基板10を示
す断面図である。
FIG. 4 is a cross-sectional view showing the initial substrate 10 at the time when a step S16 has been completed.

【図5】 工程S18において、溝を形成する様子を示
す断面図である。
FIG. 5 is a cross-sectional view showing how a groove is formed in step S18.

【図6】 遮光性の樹脂の充填を終えた後の様子を示す
断面図である。
FIG. 6 is a cross-sectional view showing a state after filling with a light-shielding resin is completed.

【図7】 個々の光電子部品を形成する工程を説明する
ための断面図である。
FIG. 7 is a cross-sectional view illustrating a step of forming individual optoelectronic components.

【図8】 工程S10〜工程S28を経て形成された光
電子部品32の断面図である。
FIG. 8 is a cross-sectional view of the optoelectronic component 32 formed through steps S10 to S28.

【図9】 光電子部品32の斜視図である。9 is a perspective view of the optoelectronic component 32. FIG.

【図10】 本発明の第2実施形態による光電子部品の
製造方法に用いられる基板の上面図である。
FIG. 10 is a top view of a substrate used in the method for manufacturing an optoelectronic component according to the second embodiment of the present invention.

【図11】 本発明の第2実施形態において、孔版を用
いて光電子部品素子44,44,…を透明封止樹脂によ
り封止する工程を説明する断面図である。
FIG. 11 is a cross-sectional view illustrating a step of sealing the optoelectronic component elements 44, 44,... With a transparent sealing resin using a stencil in the second embodiment of the present invention.

【図12】 透明封止樹脂20を硬化させる工程を終え
た時点の初期基板40を示す断面図である。
FIG. 12 is a cross-sectional view showing the initial substrate 40 at the time when the step of curing the transparent sealing resin 20 has been completed.

【図13】 第2実施形態において、溝を形成する様子
を示す断面図である。
FIG. 13 is a cross-sectional view showing how a groove is formed in the second embodiment.

【図14】 遮光性の樹脂の充填を終えた後の様子を示
す断面図である。
FIG. 14 is a cross-sectional view showing a state after filling with a light-shielding resin is completed.

【図15】 第2実施形態において、個々の光電子部品
を形成する工程を説明するための断面図である。
FIG. 15 is a cross-sectional view for explaining a step of forming individual optoelectronic components in the second embodiment.

【図16】 形成された光電子部品54の断面図であ
る。
16 is a sectional view of the formed optoelectronic component 54. FIG.

【図17】 光電子部品54の斜視図である。17 is a perspective view of the optoelectronic component 54. FIG.

【符号の説明】[Explanation of symbols]

14,14,…,44,44,… 光電子部品素子 12,42 基板 18 孔版 26,48 溝 28,50 遮光性の樹脂 14, 14,..., 44, 44,... Optoelectronic component element 12, 42 substrate 18 stencil 26, 48 groove 28, 50

フロントページの続き (56)参考文献 特開 平10−93132(JP,A) 特開 平11−67799(JP,A) 特開 平5−114620(JP,A) 特開 平7−326797(JP,A) 特開 平11−8337(JP,A) 特開2001−35972(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/56 H01L 23/28 - 23/31 H01L 33/00 Continuation of front page (56) References JP-A-10-93132 (JP, A) JP-A-11-67799 (JP, A) JP-A-5-114620 (JP, A) JP-A-7-326797 (JP) , A) JP-A-11-8337 (JP, A) JP-A-2001-35972 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/56 H01L 23/28-23 / 31 H01L 33/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の光電子部品素子が配置された基板
上に孔版を用いて透明封止樹脂を真空下において印刷
し、当該複数の光電子部品素子を一括封止する工程と、 前記基板上の透明封止樹脂を切削し、前記光電子部品素
子の周囲に溝を形成する工程と、 前記切削を行って形成した溝に遮光性の樹脂を充填する
工程と 前記溝に充填された遮光性の樹脂及び前記基板を切断す
る工程と を有することを特徴とする光電子部品の製造方
法。
1. A transparent sealing resin is printed under vacuum on a substrate on which a plurality of optoelectronic component elements are arranged by using a stencil.
And a step of encapsulating the plurality of optoelectronic component elements at once , and cutting a transparent encapsulating resin on the substrate to form the optoelectronic component element.
Be cut and forming a groove around the child, and filling a light-shielding resin in a groove formed by performing the cutting, the resin and the substrate of the light-shielding property filled in the groove
Method for producing an optoelectronic component and having a that step.
【請求項2】 前記溝は、対とされた光電子部品素子の
周囲に形成されることを特徴とする請求項1記載の光電
子部品の製造方法。
2. The device according to claim 1, wherein the groove is formed in a pair of optoelectronic component elements.
The method for manufacturing a photoelectric component according to claim 1, wherein the component is formed around the periphery .
【請求項3】 前記遮光性の樹脂の充填は、前記溝に対
応した位置に孔が形成された孔版を用いて印刷により行
われることを特徴とする請求項1記載の光電子部品の製
造方法。
3. The filling of the light-shielding resin with respect to the groove is performed.
Performing by printing using a stencil with a hole formed at the corresponding position
The method for manufacturing an optoelectronic component according to claim 1, wherein
【請求項4】 前記溝に前記遮光性の樹脂を充填する際
に、併せて前記基板上の透明封止樹脂を覆うように前記
遮光性の樹脂を印刷することを特徴とする請求項2記載
光電子部品の製造方法。
4. When filling the groove with the light-shielding resin.
To cover the transparent sealing resin on the substrate.
3. A light-shielding resin is printed.
The method of manufacturing an optical electronic components.
【請求項5】 前記対とされた光電子部品素子間におけ
る前記基板、前記透明封止樹脂、及び前記透明封止樹脂
を覆うように印刷された前記遮光性の樹脂を切断する工
程を更に有することを特徴とする請求項4記載の光電子
部品の製造方法。
5. A device as claimed in claim 1, further comprising a pair of optoelectronic component elements.
The substrate, the transparent sealing resin, and the transparent sealing resin
Cutting the light-shielding resin printed so as to cover
5. The method according to claim 4, further comprising the step of:
【請求項6】 前記遮光性の樹脂の印刷は、真空下で行
われることを特徴とする請求項3から請求項5の何れか
一項に記載の光電子部品の製造方法。
6. The printing of the light-shielding resin is performed under vacuum.
The method according to any one of claims 3 to 5, wherein
A method for producing an optoelectronic component according to claim 1 .
【請求項7】 前記溝に充填された遮光性の樹脂及び前
記基板の切断は、前記溝の略中心に沿って行われること
を特徴とする請求項1から請求項6の何れか一項に記載
光電子部品の製造方法。
7. A light-shielding resin filled in the groove and a light-shielding resin.
The cutting of the substrate is performed substantially along the center of the groove.
The method according to any one of claims 1 to 6, wherein
The method of manufacturing an optical electronic components.
JP29747399A 1999-10-19 1999-10-19 Optoelectronic component manufacturing method Expired - Lifetime JP3291278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29747399A JP3291278B2 (en) 1999-10-19 1999-10-19 Optoelectronic component manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29747399A JP3291278B2 (en) 1999-10-19 1999-10-19 Optoelectronic component manufacturing method

Publications (2)

Publication Number Publication Date
JP2001118865A JP2001118865A (en) 2001-04-27
JP3291278B2 true JP3291278B2 (en) 2002-06-10

Family

ID=17846962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29747399A Expired - Lifetime JP3291278B2 (en) 1999-10-19 1999-10-19 Optoelectronic component manufacturing method

Country Status (1)

Country Link
JP (1) JP3291278B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608922A (en) * 2011-06-22 2014-02-26 欧司朗光电半导体有限公司 Method for producing a plurality of optoelectronic semiconductor components in combination, semiconductor component produced in such a way, and use of said semiconductor component
CN103608922B (en) * 2011-06-22 2016-11-30 欧司朗光电半导体有限公司 For manufacturing the method for multiple opto-electronic semiconductor module, the semiconductor device so manufactured and application thereof in composite construction

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3844196B2 (en) 2001-06-12 2006-11-08 シチズン電子株式会社 Manufacturing method of light emitting diode
JP4785021B2 (en) * 2001-07-13 2011-10-05 スタンレー電気株式会社 7-segment LED numeric display and manufacturing method thereof
JP4006578B2 (en) * 2002-03-22 2007-11-14 サンユレック株式会社 Method for manufacturing two side-emitting LEDs
MY151065A (en) 2003-02-25 2014-03-31 Kaneka Corp Curing composition and method for preparing same, light-shielding paste, light-shielding resin and method for producing same, package for light-emitting diode, and semiconductor device
JP4667803B2 (en) * 2004-09-14 2011-04-13 日亜化学工業株式会社 Light emitting device
US20060082297A1 (en) * 2004-10-19 2006-04-20 Eastman Kodak Company Method of preparing a lens-less LED
JP2007053352A (en) * 2005-07-22 2007-03-01 Showa Denko Kk Light emitting diode light source
JP2006245626A (en) * 2006-06-19 2006-09-14 Citizen Electronics Co Ltd Manufacturing method of light-emitting diode
US9061450B2 (en) 2007-02-12 2015-06-23 Cree, Inc. Methods of forming packaged semiconductor light emitting devices having front contacts by compression molding
GB0711684D0 (en) * 2007-06-18 2007-07-25 Barco Nv Method and device for improving optical LED performance
WO2009060958A1 (en) 2007-11-09 2009-05-14 Kaneka Corporation Process for production of cyclic polyorganosiloxane, curing agent, curable composition, and cured product of the curable composition
WO2009075233A1 (en) 2007-12-10 2009-06-18 Kaneka Corporation Alkali-developable curable composition, insulating thin film using the same, and thin film transistor
JP4744573B2 (en) * 2008-01-23 2011-08-10 サンユレック株式会社 Manufacturing method of electronic device
JP4966931B2 (en) 2008-08-26 2012-07-04 シャープ株式会社 Electronic element wafer module and manufacturing method thereof, electronic element module and manufacturing method thereof, electronic information device
CN104497272B (en) 2008-10-02 2017-06-23 株式会社钟化 Photocurable composition and solidfied material
JP5173940B2 (en) * 2009-06-02 2013-04-03 アピックヤマダ株式会社 Semiconductor package manufacturing method and cutting apparatus
KR101583833B1 (en) * 2009-12-31 2016-01-11 엘지이노텍 주식회사 Method for manufacturing light emitting device package and mask for manufacturing light emitting device package
US9172001B2 (en) * 2011-12-08 2015-10-27 Koninklijke Philips N.V. Semiconductor light emitting device with thick metal layers
DE102012109905B4 (en) * 2012-10-17 2021-11-11 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Process for the production of a large number of optoelectronic semiconductor components
TWI562405B (en) * 2013-09-23 2016-12-11 Brightek Optoelectronic Shenzhen Co Ltd Method of manufacturing led package structure for preventing lateral light leakage
JP6331376B2 (en) * 2013-12-17 2018-05-30 日亜化学工業株式会社 Light emitting device manufacturing method and light emitting device
US10693048B2 (en) * 2015-10-07 2020-06-23 Lumileds Llc Flip-chip SMT LEDs with variable number of emitting surfaces
JP2017092426A (en) * 2015-11-17 2017-05-25 株式会社デンソー Electronic device
JP6734654B2 (en) * 2016-01-21 2020-08-05 浜松ホトニクス株式会社 Light receiving module and method of manufacturing light receiving module
CN107994109A (en) * 2016-10-27 2018-05-04 佛山市国星光电股份有限公司 A kind of COB display modules and its manufacture method
US10410997B2 (en) 2017-05-11 2019-09-10 Cree, Inc. Tunable integrated optics LED components and methods
JP7150547B2 (en) 2018-09-27 2022-10-11 日亜化学工業株式会社 Method for manufacturing light emitting device
JP7291811B2 (en) * 2020-01-28 2023-06-15 ローム株式会社 Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103608922A (en) * 2011-06-22 2014-02-26 欧司朗光电半导体有限公司 Method for producing a plurality of optoelectronic semiconductor components in combination, semiconductor component produced in such a way, and use of said semiconductor component
US9269848B2 (en) 2011-06-22 2016-02-23 Osram Opto Semiconductors Gmbh Method for producing a plurality of optoelectronic semiconductor components in combination, semiconductor component produced in such a way, and use of said semiconductor component
CN103608922B (en) * 2011-06-22 2016-11-30 欧司朗光电半导体有限公司 For manufacturing the method for multiple opto-electronic semiconductor module, the semiconductor device so manufactured and application thereof in composite construction

Also Published As

Publication number Publication date
JP2001118865A (en) 2001-04-27

Similar Documents

Publication Publication Date Title
JP3291278B2 (en) Optoelectronic component manufacturing method
KR102339021B1 (en) Light emitting device with beveled reflector and manufacturing method of the same
US9978915B2 (en) Manufacturing method of a flip-chip light emitting diode package module
JP5632824B2 (en) Overmold lens on LED die
EP3355368B1 (en) Beveled chip reflector for chip-scale packaging light-emitting device and manufacturing method of the same
EP0561964B1 (en) Optoelectronic device component package and method of making the same
KR101890457B1 (en) Opto-electronic module and method for manufacturing the same
US9258467B2 (en) Camera module
EP1730791B1 (en) Semiconductor light emitting device including flexible film having therein an optical element, and method of assembling the same
KR100621154B1 (en) Manufacturing method of light emitting diode
CN101241921B (en) Optical device and method for manufacturing optical device, and camera module and endoscope module
CN108365075B (en) Wafer level packaging light-emitting device with inclined wafer reflection structure and manufacturing method thereof
US20060105484A1 (en) Molded lens over LED die
JP2007189116A (en) Resin-sealed molding method of optical element
JP2000156528A (en) Luminous element
EP3203534B1 (en) Light emitting device with beam shaping structure and manufacturing method of the same
JP2007317719A (en) Imaging device and its manufacturing method
JPH07297324A (en) Semiconductor device and manufacture thereof
US5216805A (en) Method of manufacturing an optoelectronic device package
JP2007035779A (en) Leadless hollow package and its manufacturing method
JP2013004699A (en) Optical semiconductor element and method for manufacturing the same
KR101607305B1 (en) method of manufacturing LED module controlable optical character

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020212

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11