JP3289842B2 - Coated WC based cemented carbide - Google Patents

Coated WC based cemented carbide

Info

Publication number
JP3289842B2
JP3289842B2 JP08631792A JP8631792A JP3289842B2 JP 3289842 B2 JP3289842 B2 JP 3289842B2 JP 08631792 A JP08631792 A JP 08631792A JP 8631792 A JP8631792 A JP 8631792A JP 3289842 B2 JP3289842 B2 JP 3289842B2
Authority
JP
Japan
Prior art keywords
cemented carbide
coated
tic
based cemented
tac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08631792A
Other languages
Japanese (ja)
Other versions
JPH05255795A (en
Inventor
良平 野口
裕介 井寄
進 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP08631792A priority Critical patent/JP3289842B2/en
Publication of JPH05255795A publication Critical patent/JPH05255795A/en
Application granted granted Critical
Publication of JP3289842B2 publication Critical patent/JP3289842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、切削工具用に適した超
硬工具上に、皮膜を形成した被覆超硬合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated cemented carbide having a coating formed on a cemented carbide tool suitable for cutting tools.

【0002】[0002]

【従来の技術及び課題が解決しようとする問題点】従来
より、鋼及び鋳物加工では、用途により乾式、湿式切削
どちらかが用いられてきた。従来工具としては、P種
(JIS−B4053−1987)表面に物理的蒸着法
(PVD)により蒸着された工具が主に使用されてき
た。近年加工上の問題から湿式切削に移りつつある。
2. Description of the Related Art Conventionally, in steel and casting processing, either dry cutting or wet cutting has been used depending on the application. As a conventional tool, a tool mainly deposited on a P-type (JIS-B4053-1987) surface by physical vapor deposition (PVD) has been mainly used. In recent years, there has been a shift to wet cutting due to processing problems.

【0003】即ち加工物の寸法変化及び材質的変化とい
う現象を湿式切削で押さえることが出来るからである。
従来のP種表面にPVD法により蒸着された工具では、
熱亀裂(ヒートクラック)、から影響される変形等によ
り寿命や寸法精度等劣るという問題があった。
That is, the phenomenon of dimensional change and material change of a workpiece can be suppressed by wet cutting.
In the case of conventional tools that are deposited on the P-type surface by the PVD method,
There has been a problem that the life and dimensional accuracy are inferior due to deformation and the like affected by heat cracks (heat cracks).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、湿式切
削を行うには高性能の切削工具が必要とされる。ところ
で、従来から使用されてきている。P種表面上にPVD
法により蒸着された工具では、切削時の熱サイクル等の
問題なとで、工具にヒートクラックが多数発生し微少ク
ラックから始まり大クラックに発展し最終的には欠損に
至る。その弊害として寸法精度及び工具寿命が低下し使
用に耐え得るものではなかった。そこでP種超硬合金よ
り強度に優れるWC基超硬合金に注目し硬質相中のWC
の粒度を変化させヒートクラックの発生から大クラック
に進展しくいく過程でのクラック伝播を抑制させる。さ
らに基体との密着性に優れる化学的蒸着法(CVD)を
施し、耐ヒートクラック及び耐欠損性に対し優れた切削
工具を提供することにある。
However, high performance cutting tools are required for performing wet cutting. By the way, it has been used conventionally. PVD on P-type surface
In a tool deposited by the method, a large number of heat cracks occur in the tool due to a problem such as a heat cycle at the time of cutting, and the tool starts from a minute crack, develops into a large crack, and finally reaches a chip. As an adverse effect, the dimensional accuracy and tool life were reduced, and the tool could not be used. Therefore, paying attention to WC-based cemented carbide which is superior in strength to P-type cemented carbide,
The crack propagation in the process of changing from the generation of a heat crack to a large crack is suppressed by changing the particle size of the heat crack. It is another object of the present invention to provide a cutting tool which is subjected to a chemical vapor deposition method (CVD) having excellent adhesion to a substrate and has excellent heat crack resistance and chipping resistance.

【0005】[0005]

【課題を解決するための手段】本発明は、上記問題点を
解決するものであり、WC−Co系超硬合金の強さに注
目し、硬質相としてWCと4a、5a、6a族の中から
選び出された1種叉は、2種以上の炭化物及び炭窒化物
で構成され、さらに硬質相として80〜95%、残りを
Co及びNi結合相と不可避不純物からなるWC基超硬
合金である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and focuses on the strength of WC-Co based cemented carbide, and uses WC as a hard phase in the 4a, 5a, 6a group. WC-based cemented carbide composed of one or more carbides and carbonitrides selected from the group consisting of 80-95% of a hard phase and the remainder consisting of Co and Ni bonded phases and unavoidable impurities. is there.

【0006】さらに硬質相として7μm以上の粗粒WC
10〜30%、3〜7μmの中粒WC30〜40%、残
り3μm以下の細粒WCで構成されるα相(WC相)と
4a、5a、6a族より選び出されたTaC 0.20
〜6.00%、TiC 0.10〜3.80%、かつT
iC−TiN 0.50〜3.75%でβ相〔(WTi
Ta)C相〕を構成し、さらに分散強化としてZrCを
0.10〜1.35%を添加するWC基超硬合金であ
る。
[0006] Further, as a hard phase, coarse WC of 7 μm or more
Α-phase (WC phase) composed of 10 to 30%, 30 to 40% of medium-grain WC of 3 to 7 μm, and fine WC of 3 μm or less, and TaC 0.20 selected from groups 4a, 5a, and 6a
6.00%, TiC 0.10 to 3.80%, and T
iC-TiN 0.50 to 3.75% with β phase [(WTi
Ta) C phase], and further adding 0.10 to 1.35% of ZrC as dispersion strengthening.

【0007】さらに上記WC基超硬合金を基体とし、表
面にTiC、TiCN、TiN、Al23などを1層以
上に被覆する。
Further, the above-mentioned WC-base cemented carbide is used as a substrate, and the surface is coated with at least one layer of TiC, TiCN, TiN, Al 2 O 3 or the like.

【0008】[0008]

【作用】湿式切削時における熱サイクルから受ける影響
からヒートクラックが発生し、欠損に至る問題に対し超
硬合金の硬質相に注目し、その硬質相を形成するWC、
TaC、TiC、TiC−TiN、ZrCを使用しヒー
トクラックから発生するクラック伝播を押さえる効果を
もたせる事が出来た。
[Action] Attention is paid to the hard phase of cemented carbide to solve the problem of heat cracks occurring due to the effects of the thermal cycle during wet cutting and causing defects, and WC, which forms the hard phase,
Using TaC, TiC, TiC-TiN, and ZrC, the effect of suppressing crack propagation generated from heat cracks could be obtained.

【0009】まず、WCに粗粒を使用しクラック伝播を
押さえる効果を持たせた。TaC及びTiCで、耐熱性
及び耐化学反応性を向上させる。TiC−TiNで、組
織の微細化を行いZrCで、耐熱塑性変形性を向上させ
た。粗粒WC7μm以上10〜30%、中粒WC3〜7
μm30〜40%、残り細粒WC3μmでクラック伝播
の抑制効果がある。
First, coarse grains are used in WC to have the effect of suppressing crack propagation. TaC and TiC improve heat resistance and chemical reactivity. The structure was refined with TiC-TiN, and the heat-resistant plastic deformation property was improved with ZrC. Coarse-grain WC 7 μm or more 10-30%, medium-grain WC 3-7
With an average particle size of 30 to 40% and the remaining fine particles WC of 3 μm, there is an effect of suppressing crack propagation.

【0010】次に、硬質相中のWCの一部を、炭化タン
タル(TaC)0.20〜6.00%、炭化チタン(T
iC)0.10〜3.80%で置換する。TaC 0.
20〜6.00%及びTiC 0.10〜3.80%
で、かつその比率が(TaC/TiC)=0.1〜2.
5で耐熱性及び耐化学反応性を向上させ、TiC−Ti
N 0.50〜3.75%で組織の微細化を行こなわ
れ、ZrC 0.10〜1.35%で結合相中の分散強
化を行い耐熱塑性変形性を押さえられる。さらに、この
基体表面上に被覆すればさらに向上する。下記に数値限
定した理由を述べる。
Next, a part of the WC in the hard phase is made up of 0.20 to 6.00% of tantalum carbide (TaC) and titanium carbide (T
iC) Replace with 0.10-3.80%. TaC 0.
20-6.00% and TiC 0.10-3.80%
And the ratio is (TaC / TiC) = 0.1 to 2.
5 improves heat resistance and chemical reaction resistance, and improves TiC-Ti
Microstructure refinement is performed with N of 0.50 to 3.75%, and dispersion strengthening in the binder phase is performed with ZrC of 0.10 to 1.35%, thereby suppressing heat-resistant plastic deformation. Further, if the coating is applied on the surface of the substrate, the temperature is further improved. The reasons for limiting the numerical values are described below.

【0011】粗粒WC7μmを、10%未満であるとク
ラック伝播が大きいが、30%を越えると硬さ(HR
A)が不足する為10〜30%が最適である。中粒WC
3〜7μmが30%未満であるとクラック伝播が大き
く、40%越えるとHRAが不足する為30〜40%が
最適である。加えて分散強化の効果が認められる。残り
を細粒WC3μm以下とすることで硬質相内で分散強化
されクラック伝播及びHRAが向上する。
When the coarse WC 7 μm is less than 10%, crack propagation is large, but when it exceeds 30%, the hardness (HR)
Since A) is insufficient, 10 to 30% is optimal. Medium grain WC
If 3 to 7 μm is less than 30%, crack propagation is large, and if it exceeds 40%, HRA is insufficient, so 30 to 40% is optimal. In addition, the effect of dispersion strengthening is recognized. By setting the remainder to be not more than 3 μm, the dispersion is strengthened in the hard phase, and the crack propagation and HRA are improved.

【0012】TaC及びTiCの比が、2.5を越える
と抗折力が不足し、0.1未満ではクレータ摩耗が問題
である為0.1〜2.5の比が最適である。TiC−T
iN3.75%を越えると基体焼結性が悪化する。0.
50%未満であれば微細化の効果は認められない。
When the ratio of TaC and TiC exceeds 2.5, the transverse rupture strength is insufficient. When the ratio is less than 0.1, crater wear is a problem, so the ratio of 0.1 to 2.5 is optimal. TiC-T
When the iN exceeds 3.75%, the sinterability of the substrate deteriorates. 0.
If it is less than 50%, the effect of miniaturization is not recognized.

【0013】ZrC0.10〜1.35%であれば耐熱
塑性変形性が著しく向上する。1.35%を越えると抗
折力が低下してしまう。0.10%未満では、耐熱塑性
変形性向上の効果は低い。なお、切削工具として硬質相
は80〜95%が最適である。該WC基超硬合金基体表
面上に、被覆を1層以上行うことによりさらに向上す
る。
When ZrC is 0.10 to 1.35%, the heat-resistant plastic deformation property is remarkably improved. If it exceeds 1.35%, the transverse rupture strength decreases. If it is less than 0.10%, the effect of improving the heat plastic deformation is low. The optimum hard phase of the cutting tool is 80 to 95%. This is further improved by coating one or more layers on the surface of the WC-based cemented carbide substrate.

【0014】[0014]

【実施例】【Example】

実施例1 基体組成として92.0%WC−8.0%Co合金に
て、WCの粒度を変化させる為市販の粗粒WC及び中粒
WCの粉末を使用し、残り硬質相成分及び結合相構成粉
末とともに配合し湿式混合粉砕を行った。しかる後、S
EE42TN(JIS−B4120−1985)のチッ
プ形状に成形し1350〜1500°Cの温度で焼結
し、研削加工を行い作成した。表面をラップし鏡面に仕
上げ、ミクロ組織観察を行い平均粒度(長軸径+短軸
径)/2をもって分類し、おのおの画像処理装置にかけ
面積を求める。それに加えHRA測定及びクラック平均
長さ(ビッカーズ硬度計による圧痕の四角に生じるクラ
ック)を測定した。その結果を併記する。表1より粗粒
WCを分散させることにより、クラック長さを減ずるこ
とができた。
Example 1 A commercially available coarse WC and medium WC powder was used to change the WC particle size with a 92.0% WC-8.0% Co alloy as a base composition, and the remaining hard phase component and binder phase were used. It was blended with the constituent powder and wet mixed and pulverized. After a while, S
It was formed into a chip shape of EE42TN (JIS-B4120-1985), sintered at a temperature of 1350 to 1500 ° C., and ground to prepare. The surface is wrapped and mirror-finished, the microstructure is observed, classified according to the average particle size (major axis diameter + minor axis diameter) / 2, and the area is determined by each image processing device. In addition, the HRA measurement and the average crack length (a crack formed in a square of an indentation by a Vickers hardness tester) were measured. The results are also shown. From Table 1, it was possible to reduce the crack length by dispersing the coarse particles WC.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2 実施例1より得られた組成にTaC及びTiCを添加し
た。組成は84.0〜91.7%WC−0.3〜8.0
(Ta、Ti)C−8.0%Co。HRA測定しその結
果を表2に示す。表2より、HRAに悪影響はなく、問
題となるクラック長さも長じることはなかった。
Example 2 TaC and TiC were added to the composition obtained in Example 1. The composition is 84.0-91.7% WC-0.3-8.0.
(Ta, Ti) C-8.0% Co. HRA was measured and the results are shown in Table 2. From Table 2, it was found that there was no adverse effect on HRA, and the problematic crack length did not increase.

【0017】[0017]

【表2】 [Table 2]

【0018】実施例3 実施例2より得られた組成にTiC−TiNを添加し
た。組成は89.0〜91.5%(W、Ta、Ti)C
−0.5〜3.0%TiC−TiN−80%Co。実施
例2と同様に結果を表3に示す。表3よりHRAの上昇
が認められた、TiC−TiN添加による組織の微細化
が行なわれたものである。問題となるクラックも長じる
ことはなかった。
Example 3 TiC-TiN was added to the composition obtained in Example 2. The composition is 89.0 to 91.5% (W, Ta, Ti) C
-0.5-3.0% TiC-TiN-80% Co. Table 3 shows the results as in Example 2. Table 3 shows that the microstructure was refined by adding TiC-TiN in which an increase in HRA was observed. The problematic cracks did not last.

【0019】[0019]

【表3】 [Table 3]

【0020】実施例4 実施例3より得られた組成にZrCを添加した。組成は
88.0〜91.4%(W、Ta、Ti)C−0.5〜
3.0%TiC−TiN−0.1〜1.0%ZrC−
8.0%Co。実施例2と同様に結果を表4に示す。表
4より、HRAの上昇が認められた、ZrC添加による
結合相中に分散強化されたものである。問題となるクラ
ックも長じることはなかった。
Example 4 ZrC was added to the composition obtained in Example 3. The composition is 88.0-91.4% (W, Ta, Ti) C-0.5-
3.0% TiC-TiN-0.1 ~ 1.0% ZrC-
8.0% Co. Table 4 shows the results as in Example 2. Table 4 shows that the HRA was increased, and the dispersion was strengthened in the binder phase by the addition of ZrC. The problematic cracks did not last.

【0021】[0021]

【表4】 [Table 4]

【0022】実施例5 上記実施されたチップ表面に1層以上の被覆を行った
後、フライスカッターに取付け湿式切削を行う、フライ
スカッターは直径160mm、切削速度は200m/m
in、1刃あたりの送りを0.2mm、切り込みを2.
0mm、切削液をエマルジョン形水溶性切削油剤を使
用、被削材としてS50C(HB220ブリネル硬さ)
を用いた。
Example 5 After one or more layers are coated on the chip surface, the above-mentioned chip surface is attached to a milling cutter to perform wet cutting. The diameter of the milling cutter is 160 mm, and the cutting speed is 200 m / m.
in, feed per blade 0.2 mm, cut 2.
0mm, cutting fluid uses emulsion type water soluble cutting fluid, S50C (HB220 Brinell hardness) as work material
Was used.

【0023】切削から受ける影響によりヒートクラック
が発生し欠損まで切削し、その切削時間を評価した結果
を表5に示す。表5より切削の結果比較品より大幅な性
能向上が認められた。理由としてはクラックの進展が抑
制された効果が得られた。
Table 5 shows the results of the evaluation of the cutting time, in which a heat crack was generated due to the influence of the cutting and the chip was cut until the chip was broken. As shown in Table 5, the cutting performance showed a significant improvement in performance over the comparative product. The reason was that the effect of suppressing the progress of cracks was obtained.

【0024】被覆は、実施例ではCVD法で被覆された
物を使用したが、WC基超硬合金の強度が増した為PV
D法により被覆された物でも充分使用に耐える。被覆層
にAl23を加えることにより耐摩耗性を向上させられ
る。
The coating used in the examples was a coating coated by the CVD method. However, since the strength of the WC-based cemented carbide increased,
A material coated by the method D can sufficiently withstand use. Abrasion resistance can be improved by adding Al 2 O 3 to the coating layer.

【0025】[0025]

【発明の効果】本発明によれば、従来不十分であった湿
式切削において、ヒートクラックから欠損に至る過程が
減衰され、工具寿命の大幅な向上が達成できる。
According to the present invention, the process from heat cracking to chipping is attenuated in wet cutting, which has been insufficient conventionally, and the tool life can be greatly improved.

【表5】 [Table 5]

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基体表面上に耐摩耗性に優れる被覆を有
するWC:80〜95重量%の硬質相と、残り:Co及
びNi結合相と不可避不純物からなるWC基超硬合金に
おいて、前記硬質相のWC粒度を、研磨面上のミクロ組
織より面積にて、7μm以上の粗粒WC:10〜30
%、3〜7μmの中粒WC:30〜40%、残り:3μ
m以下の細粒WCとしたことを特徴とする被覆WC基超
硬合金。
1. A WC-based cemented carbide comprising 80 to 95% by weight of a WC having a coating excellent in abrasion resistance on the surface of a substrate and the remainder: Co and Ni binder phases and unavoidable impurities. The WC particle size of the phase is 7 % or more in terms of area % from the microstructure on the polished surface.
%, 3 to 7 μm medium grain WC: 30 to 40%, remaining: 3 μm
A coated WC-based cemented carbide characterized by having fine grains WC of m or less.
【請求項2】 請求項1記載の被覆WC基超硬合金にお
いて、該硬質相中のWCの一部を、TaC:0.20〜
6.00重量%、TiC:0.10〜3.80重量
で、かつ、その比が(TaC/TiC)=0.1〜2.
5の比率に置き換えたことを特徴とする被覆WC基超硬
合金。
2. The coated WC-based cemented carbide according to claim 1, wherein a part of WC in the hard phase is TaC: 0.20 to 0.20.
6.00% by weight , TiC: 0.10 to 3.80% by weight
And the ratio is (TaC / TiC) = 0.1-2.
A coated WC-based cemented carbide characterized by having been replaced by a ratio of 5.
【請求項3】 請求項2記載の被覆WC基超硬合金にお
いて、該硬質相のWC、TaC及びTiNの一部を、T
iCN叉はTiN:0.50〜3.75重量%で置き換
えたことを特徴とする被覆WC基超硬合金。
3. The coated WC-base cemented carbide according to claim 2, wherein WC, TaC and TiN of the hard phase are partially replaced by T.
A coated WC-based cemented carbide characterized by replacing with iCN or TiN: 0.50 to 3.75% by weight .
【請求項4】 請求項3記載の被覆WC基超硬合金にお
いて、該硬質相中のWC及びTaC、TiC、TiC−
TiN及びTiNの一部を、ZrC:0.10〜1.3
重量%で置き換えたことを特徴とする被覆WC基超硬
合金。
4. The coated WC-base cemented carbide according to claim 3, wherein WC and TaC, TiC, TiC-
TiN and a part of TiN are converted to ZrC: 0.10 to 1.3.
A coated WC-based cemented carbide characterized by being replaced by 5% by weight .
JP08631792A 1992-03-10 1992-03-10 Coated WC based cemented carbide Expired - Fee Related JP3289842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08631792A JP3289842B2 (en) 1992-03-10 1992-03-10 Coated WC based cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08631792A JP3289842B2 (en) 1992-03-10 1992-03-10 Coated WC based cemented carbide

Publications (2)

Publication Number Publication Date
JPH05255795A JPH05255795A (en) 1993-10-05
JP3289842B2 true JP3289842B2 (en) 2002-06-10

Family

ID=13883462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08631792A Expired - Fee Related JP3289842B2 (en) 1992-03-10 1992-03-10 Coated WC based cemented carbide

Country Status (1)

Country Link
JP (1) JP3289842B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624766A (en) * 1993-08-16 1997-04-29 Sumitomo Electric Industries, Ltd. Cemented carbide and coated cemented carbide for cutting tool
CN111378886B (en) * 2018-12-28 2021-12-07 自贡硬质合金有限责任公司 Ultra-fine grain hard alloy and preparation method thereof

Also Published As

Publication number Publication date
JPH05255795A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
EP1347076B1 (en) PVD-Coated cutting tool insert
US8043729B2 (en) Coated cutting tool insert
JP4739236B2 (en) Surface coated cutting tool
US20130273382A1 (en) Coated cutting tools having a platinum group metal concentration gradient and related processes
JP2001001203A (en) Cutting insert, and its manufacture
JP2008183708A (en) Coated insert for milling and its manufacturing method
JP2009050997A (en) Cutting tool
JP6774645B2 (en) Cemented carbide and cutting tools and milling inserts using it
JP4028368B2 (en) Surface coated cemented carbide cutting tool
Tsuda History of development of cemented carbides and cermet
JP2001205505A (en) Coated cutting insert for application to milling and lathing
JP2009012167A (en) Coated cutting tool insert
KR101529726B1 (en) Coated cutting insert for milling applications
US7150772B2 (en) CVD coated cutting tool insert
JP2009090461A (en) Coated cutting tool insert for milling
JPH0273946A (en) Sintered hard alloy and duplex coated sintered hard alloy composed by forming film on surface of same alloy
JP3289842B2 (en) Coated WC based cemented carbide
JP2918133B2 (en) Surface coated cutting tool
JPS5928628B2 (en) Surface coated cemented carbide tools
JP2001179507A (en) Cutting tool
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JPH03146677A (en) Coated sintered hard alloy for intermittent cutting
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
WO2021193159A1 (en) Cutting tool made of wc-based cemented carbide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees