JP3287104B2 - Pyroelectric material, method of manufacturing pyroelectric light-receiving element using the same, and infrared sensor using the same - Google Patents

Pyroelectric material, method of manufacturing pyroelectric light-receiving element using the same, and infrared sensor using the same

Info

Publication number
JP3287104B2
JP3287104B2 JP05553394A JP5553394A JP3287104B2 JP 3287104 B2 JP3287104 B2 JP 3287104B2 JP 05553394 A JP05553394 A JP 05553394A JP 5553394 A JP5553394 A JP 5553394A JP 3287104 B2 JP3287104 B2 JP 3287104B2
Authority
JP
Japan
Prior art keywords
pyroelectric
receiving element
light
thin plate
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05553394A
Other languages
Japanese (ja)
Other versions
JPH07260578A (en
Inventor
弘治 西村
智広 鶴田
裕美 徳永
浩一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP05553394A priority Critical patent/JP3287104B2/en
Publication of JPH07260578A publication Critical patent/JPH07260578A/en
Application granted granted Critical
Publication of JP3287104B2 publication Critical patent/JP3287104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は焦電体材料及びそれを用
いた焦電用受光素子の製造方法、及びそれを用いた赤外
線センサーに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyroelectric material, a method for producing a pyroelectric light-receiving element using the same, and an infrared sensor using the same.

【0002】[0002]

【従来の技術】近年、自動ドア,トイレの自動水洗装
置,照明機器,空調機器,セキュリティー機器等の人間
検知センサーとして焦電型赤外線センサーが使用されて
いるが、これらセンサーに使用される焦電用受光素子に
は焦電特性を有する焦電体材料が使用されている。焦電
用受光素子の性能は焦電体材料の持つ焦電係数,熱容
量,tanδなどの固有の特性に加え、大きな感度を得
るためには可能な限り素子の厚みを薄くする必要があ
る。この焦電用受光素子の薄板化加工時に割れや欠けを
生じず、薄板状態で安定した機械的強度を有する焦電体
材料が求められている。更には量産性の面から分極電圧
が低く、焼結温度が低い焦電体材料が求められている。
2. Description of the Related Art In recent years, pyroelectric infrared sensors have been used as human detection sensors for automatic doors, automatic flushing equipment for toilets, lighting equipment, air conditioning equipment, security equipment, and the like. A pyroelectric material having pyroelectric properties is used for the light receiving element for use. The performance of the photodetector for pyroelectricity is required to be as thin as possible in order to obtain high sensitivity, in addition to the inherent characteristics of the pyroelectric material, such as the pyroelectric coefficient, heat capacity, and tan δ. There is a need for a pyroelectric material that does not crack or chip during the thinning of the pyroelectric light-receiving element and has stable mechanical strength in a thin plate state. Furthermore, from the viewpoint of mass productivity, a pyroelectric material having a low polarization voltage and a low sintering temperature is required.

【0003】これらの要求特性を充たすものとしてPb
TiO3 系の焦電体材料が開発されている。しかしなが
らこの焦電体材料は、焼結性が悪く、大型の焼結体を得
ることが困難で、また分極に高温,高電圧を必要とし、
更に製品得率が低いという問題点を有していた。そこ
で、これらの問題点を解決するものとして、PbTiO
3 の焼結性と、分極条件の緩和を図った焦電体材料とし
て、PbTiO3 −Pb(Co1/21/2 )O3 系が特
公昭58−41790号公報に開示されている。
As a material satisfying these required characteristics, Pb
TiOThree Pyroelectric materials have been developed. However
This pyroelectric material has poor sinterability, and a large sintered body is obtained.
And it requires high temperature and high voltage for polarization,
Furthermore, there was a problem that the product yield was low. There
In order to solve these problems, PbTiO
Three Pyroelectric material with sintering properties and relaxation of polarization conditions
And PbTiOThree -Pb (Co1/2 W1/2 ) OThree Special
It is disclosed in Japanese Patent Publication No. 58-41790.

【0004】また、焦電用受光素子用の薄板の製法は、
焦電体材料を1200℃〜1250℃で6時間焼成を行
い、厚さ10mm、縦横50mmのブロック体を得る。
このブロック体とした焦電体材料を、500μmの厚さ
に切断し、両面にAgペーストを塗布後700℃で焼き
付け、シリコンオイル中で、4KV/mmの条件下にお
いて10分間分極処理を行った後、所定の焦電子寸法に
切断する。その後この素子を平面研磨機で両面研磨して
60μmの焦電用受光素子用薄板とする。次いで、焦電
用受光素子用薄板の両面に受光電極を形成し焦電用受光
素子としている。
Further, a method of manufacturing a thin plate for a pyroelectric light receiving element is as follows.
The pyroelectric material is fired at 1200 ° C. to 1250 ° C. for 6 hours to obtain a block having a thickness of 10 mm and a length and width of 50 mm.
The pyroelectric material in the form of a block was cut into a thickness of 500 μm, coated with an Ag paste on both sides, baked at 700 ° C., and subjected to a polarization treatment in silicon oil at 4 KV / mm for 10 minutes. Thereafter, it is cut into a predetermined pyroelectric size. Thereafter, this element is polished on both sides with a plane polisher to obtain a thin plate for a pyroelectric light-receiving element of 60 μm. Next, light-receiving electrodes are formed on both surfaces of the thin plate for the pyroelectric light-receiving element to form a pyroelectric light-receiving element.

【0005】また、最近の赤外線センサーは、これらの
焦電体材料を用い、又は前記焦電用受光素子の製造方法
により得られた焦電用受光素子を用いて作製されてい
る。
Further, recent infrared sensors are manufactured using these pyroelectric materials or using a pyroelectric light-receiving element obtained by the above-described method for manufacturing a pyroelectric light-receiving element.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、焦電体材料は焼結が容易で、分極も容易で
あるが、一方薄板加工時に割れや欠けを生じ易く、更に
薄板状態で安定した機械的強度が実現できないという問
題点を有していることがわかった。そのため、焦電用受
光素子の薄肉化が極めて困難で多大の作業工数を要し、
生産性に欠けるとともに作業性が悪く、製品得率も低い
という問題点を有していた。また、薄肉化ができないた
め高感度の焦電用受光素子を得難いという問題点を有し
ていた。
However, in the above-mentioned conventional structure, the pyroelectric material is easy to sinter and easily polarized, but on the other hand, it is liable to be cracked or chipped at the time of processing a thin plate, and is stable in a thin plate state. It has been found that there is a problem that the obtained mechanical strength cannot be realized. For this reason, it is extremely difficult to reduce the thickness of the pyroelectric light-receiving element, requiring a large number of work steps,
There was a problem that the productivity was low, the workability was poor, and the product yield was low. In addition, there is a problem that it is difficult to obtain a high-sensitivity pyroelectric light-receiving element because the thickness cannot be reduced.

【0007】焦電用受光素子の製造方法は、多くの作業
工程を必要とし、更に研磨作業に多大な時間を要し、作
業性、生産性に欠けるという問題点を有し、また研磨加
工精度も±10%と悪いため、赤外線センサーとしての
電気的特性や感度が不安定で高品質のものが得られ難い
という問題点を有していた。薄板加工時の割れや欠け、
さらに素子表面へのマイクロクラックの発生により焦電
用受光素子の信頼性が低下するとともに製品歩留りが悪
いという問題点を有していた。
[0007] The method of manufacturing the photodetector for pyroelectricity requires many working steps, requires much time for polishing work, and lacks workability and productivity. However, since the electrical characteristics and sensitivity of the infrared sensor are unstable, it is difficult to obtain a high-quality infrared sensor. Cracking and chipping during thin plate processing,
In addition, there is a problem that the reliability of the pyroelectric light receiving element is reduced due to the occurrence of microcracks on the element surface and the product yield is poor.

【0008】また、焦電材料ブロック体として焼成する
ため、主原料であるPb成分のブロック体内での蒸発拡
散が異なるので、安定した緻密質な焼成ブロック体が得
られないという問題点があった。
Further, since the pyroelectric material block is fired, the evaporation and diffusion of the Pb component, which is the main raw material, in the block are different, so that a stable and dense fired block cannot be obtained. .

【0009】更に、赤外線センサーは上記した焦電体材
料を用いた、又は上記した製造方法により得られた焦電
用受光素子を用いているので、感度が低く、信頼性が低
く耐久性にも欠けるという問題点を有していた。
Further, since the infrared sensor uses the above-described pyroelectric material or uses the pyroelectric light-receiving element obtained by the above-described manufacturing method, the sensitivity is low, the reliability is low, and the durability is low. There was a problem of lacking.

【0010】本発明は上記従来の問題点を解決するもの
で、容易な分極条件を維持しながら薄板加工時の割れや
欠けの生じ難い高品質の焦電用受光素子を高得率で与え
ることのできる焦電体材料を提供すること、焦電体材料
を薄板状に加工する際の割れや欠け、焦電用受光素子表
面のマイクロクラックによる前記素子の信頼性の低下を
防止した高品質で高感度の焦電用受光素子を高い生産性
でかつ高歩留りで製造できる焦電用受光素子の製造方法
を提供すること、及び電気的特性の安定性に優れるとと
もに耐久性や信頼性に優れ、高感度で生産性にも優れた
赤外線センサーを提供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a high-quality pyroelectric light-receiving element which is less likely to be cracked or chipped at the time of processing a thin plate while maintaining easy polarization conditions. It is possible to provide a pyroelectric material capable of cracking or chipping when processing the pyroelectric material into a thin plate, and to prevent deterioration in the reliability of the element due to microcracks on the surface of the light-receiving element for pyroelectricity with high quality. To provide a method for manufacturing a pyroelectric light-receiving element capable of manufacturing a high-sensitivity pyroelectric light-receiving element with high productivity and a high yield, and have excellent electrical characteristics stability and excellent durability and reliability. An object of the present invention is to provide an infrared sensor having high sensitivity and excellent productivity.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に本発明は次の構成からなる。
To achieve this object, the present invention comprises the following arrangement.

【0012】請求項1に記載の焦電体材料は、一般式が
Pbx[Tiy(Coz1-z1-y1-xn(但し、nは
任意の数)で表され、x,y,zが0.502≦x≦
0.510,0.80≦y≦0.97,0.46≦z≦
0.49の条件を充たし、かつ、Pb原子の一部がCa
原子で20〜30mol%置換したものを主成分とし、更
に、副成分として、MnO2を3重量%以下添加含有
し、平均粒径が5μm以下である構成を有している。
[0012] pyroelectric material according to claim 1, in the general formula Pb x [Ti y (Co z W 1-z) 1-y] 1-x O n ( where, n is an arbitrary number) Where x, y, and z are 0.502 ≦ x ≦
0.510, 0.80 ≦ y ≦ 0.97, 0.46 ≦ z ≦
0.49, and a part of Pb atoms is Ca
The main component is 20 to 30 mol% substituted by atoms, and MnO 2 is added as an auxiliary component in an amount of 3% by weight or less.
And has an average particle size of 5 μm or less .

【0013】[0013]

【0014】請求項に記載の焦電用受光素子の製造方
法は、請求項1に記載の焦電体材料をスリップキャステ
ィング法又は押出成形法により厚さが5μm〜100μ
mの薄板に形成する薄板化加工工程と、前記工程で得ら
れた前記薄板を1050℃〜1200℃の焼成温度で、
10〜120分間焼成する焼成工程と、を有する構成を
備えている。
According to a second aspect of the present invention, there is provided a method for manufacturing a pyroelectric light-receiving element, wherein the pyroelectric material according to the first aspect has a thickness of 5 μm to 100 μm by a slip casting method or an extrusion molding method.
m at a firing temperature of 1050 ° C. to 1200 ° C.
And a firing step of firing for 10 to 120 minutes.

【0015】請求項に記載の焦電用受光素子の製造方
法は、請求項において、前記薄板の前記焼成工程が白
金板又は表面に白金層が積層されたセラミック板上で行
なう構成を有している。
According to a third aspect of the present invention, there is provided a method for manufacturing a pyroelectric light-receiving element according to the second aspect , wherein the firing step of the thin plate is performed on a platinum plate or a ceramic plate having a platinum layer laminated on the surface. are doing.

【0016】請求項に記載の焦電用受光素子の製造方
法は、請求項又はの内いずれか1において、前記焼
成工程で焼成された前記薄板の両面に受光電極を形成
し、前記電極を介して分極を行う分極工程を有する構成
を備えている。
According to a fourth aspect of the present invention, in the method for manufacturing a pyroelectric light-receiving element according to any one of the second to third aspects, light-receiving electrodes are formed on both surfaces of the thin plate fired in the firing step. A configuration having a polarization step of performing polarization via an electrode is provided.

【0017】請求項5,6に記載の赤外線センサーは、
請求項1に記載された焦電体材料を薄板に加工すると共
に、前記薄板を加工焼成して作製された焦電用受光素
子、又は、前記請求項2乃至4の内いずれか1に記載さ
れた焦電用受光素子の製造方法で製造された焦電用受光
素子を備えた構成を有している。
[0017] The infrared sensor according to claim 5 or 6 ,
When the pyroelectric material according to claim 1 is processed into a thin plate,
A pyroelectric light-receiving element manufactured by processing and firing the thin plate , or a pyroelectric light-emitting element manufactured by the method for manufacturing a pyroelectric light-receiving element according to any one of claims 2 to 4. It has a configuration provided with a light receiving element.

【0018】ここで、x<0.501,y<0.79,
z>0.50の組成では焼結性が悪くなり、機械的特性
が劣り薄板化加工が困難になり、そのため赤外線センサ
ーとして大きな感度も得ることができないので好ましく
ない。z<0.45,y>0.98の組成では薄板化の
加工は可能であるが、焦電特性が欠けるため赤外線セン
サーとしての高感度が得られないので好ましくない。x
>0.511の組成では結晶の粒成長を促進するので焼
結性が悪くなり高い焼結温度を必要とするので好ましく
ない。Ca原子の置換量は20〜30mol %の範囲で分
極電圧及びキューリー温度の最適値を与えることがで
き、またMnO2 は3重量%以下添加することで感度を
向上させることができる。
Here, x <0.501, y <0.79,
When the composition is z> 0.50, the sinterability is deteriorated, the mechanical properties are inferior, and the thinning process is difficult. Therefore, high sensitivity cannot be obtained as an infrared sensor, which is not preferable. With a composition of z <0.45, y> 0.98, thinning processing is possible, but it is not preferable because high sensitivity as an infrared sensor cannot be obtained due to lack of pyroelectric characteristics. x
A composition of> 0.511 is not preferable because it promotes crystal grain growth and deteriorates sinterability and requires a high sintering temperature. The optimum value of the polarization voltage and the Curie temperature can be given within the range of 20 to 30 mol% for the substitution amount of Ca atoms, and the sensitivity can be improved by adding MnO 2 at 3 wt% or less.

【0019】Ca原子の置換量は、20mol %未満では
結晶の粒成長の抑制が困難となる傾向が有り、また、3
0mol %を越えるにつれ結晶の粒成長が促進され、焼結
性が悪くなる傾向が有るのでいずれも好ましくない。M
nO2 は、3重量%を超える添加量では、結晶の粒成長
が促進され、焼結性が悪くなる傾向が認められるので好
ましくない。
If the substitution amount of Ca atoms is less than 20 mol%, it tends to be difficult to suppress the crystal grain growth.
As the content exceeds 0 mol%, crystal grain growth is promoted, and sinterability tends to deteriorate. M
If nO 2 is added in an amount exceeding 3% by weight, crystal grain growth is promoted and sinterability tends to deteriorate, which is not preferable.

【0020】焦電体材料は一般的には粉末冶金的方法に
よって容易に製造することができる。例えば、原料酸化
物としてPbTiO3 ,PbO,TiO2 ,CoO,W
3,CaCO3 ,CaO,MnO2 等を所定の割合に
正確に秤取し、これらをボールミルなどによってよく粉
砕混合する。5μmを越えると焼結性が低下する傾向が
認められ、焼成密度が低下するので好ましくない。尚、
この際、用いる原料は加熱によって酸化物に転ずる化合
物例えば水酸化物,炭酸塩,シュウ酸塩などであっても
よい。
Pyroelectric materials can generally be easily manufactured by powder metallurgical methods. For example, PbTiO 3 , PbO, TiO 2 , CoO, W
O 3 , CaCO 3 , CaO, MnO 2, etc. are accurately weighed at a predetermined ratio, and these are well pulverized and mixed by a ball mill or the like. If it exceeds 5 μm, the sinterability tends to decrease, and the firing density decreases, which is not preferable. still,
At this time, the raw material used may be a compound that is converted into an oxide by heating, such as a hydroxide, a carbonate, or an oxalate.

【0021】次いで、前記混合物を例えば600〜90
0℃程度の温度で仮焼成し、更にボールミルなどによっ
て粉砕して調製粉末とすることにより得られる。この焼
成において一つの組成物たるPbOの一部が蒸発揮散す
る恐れもあるので焼成は閉炉内で行うのが好ましい。ま
た最高温度1050〜1200℃での保持は10〜12
0分程度で充分である。また、焦電体材料の調整粉体の
平均粒径は5μm以下に粉砕するのが好ましい。
Next, the mixture is mixed with, for example, 600 to 90
It is obtained by calcining at a temperature of about 0 ° C. and further pulverizing by a ball mill or the like to obtain a prepared powder. In this firing, since there is a possibility that a part of PbO as one composition may evaporate and evaporate, the firing is preferably performed in a closed furnace. Further, the holding at the maximum temperature of 1050 to 1200 ° C is 10 to 12
About 0 minutes is enough. Further, it is preferable that the average particle diameter of the prepared powder of the pyroelectric material is pulverized to 5 μm or less.

【0022】焦電用受光素子の製造は、上記焦電体材料
を既知のスリップキャスティング法や押出成形法によ
り、厚みが5μm〜100μmの薄板に形成し、この薄
板を白金、又は白金層にて表面が形成されたセラミック
板上で、1050℃〜1200℃にて10分〜120分
焼成する。次いで、得られた薄板の両面にスパッタリン
グ法等の既知の方法により受光電極を形成し、この電極
を分極して焦電用受光素子を得る。焦電体材料の薄板の
厚みは、5μm〜100μmが望ましい。厚みが5μm
未満では、焦電用受光素子の機械的強度が低くなる傾向
が現われだし、いずれも好ましくない。また、厚さが1
00μmを超えると赤外線センサーとして焦電用受光素
子としての感度が悪くなる傾向があるのでいずれも好ま
しくない。
The pyroelectric light-receiving element is manufactured by forming the above-mentioned pyroelectric material into a thin plate having a thickness of 5 μm to 100 μm by a known slip casting method or extrusion molding method, and forming the thin plate with platinum or a platinum layer. On the ceramic plate on which the surface is formed, baking is performed at 1050 ° C. to 1200 ° C. for 10 minutes to 120 minutes. Next, a light-receiving electrode is formed on both surfaces of the obtained thin plate by a known method such as a sputtering method, and this electrode is polarized to obtain a pyroelectric light-receiving element. The thickness of the thin plate of the pyroelectric material is desirably 5 μm to 100 μm. 5 μm thick
If it is less than 3, the mechanical strength of the pyroelectric light-receiving element tends to be low, which is not preferable. Also, if the thickness is 1
If it exceeds 00 μm, the sensitivity as a pyroelectric light-receiving element as an infrared sensor tends to be deteriorated, which is not preferable.

【0023】焦電体材料の薄板は、白金板、又は白金に
て表面層が形成されたセラミック板上での1050℃〜
1200℃にて10分〜120分の焼成が望ましい。他
の金属板では、1000℃以上の高温では、金属板が溶
融し易く表面層の劣化を生じ、又、セラミック板の単体
では、Pbがセラミック層と反応する傾向があるので好
ましくない。焼成温度は、1050℃〜1200℃が望
ましい。1050℃未満での温度では、焼結せず、12
00℃を超えると結晶の粒成長が促進され焼結性が悪く
なる傾向が認められるのでいずれも好ましくない。白金
層の積層されたセラミック板の白金層の厚みが5μm未
満ではセラミック板の表面粗度の影響を受け易く、80
μmを超えると平滑でうねりの少ない表面層の形成が困
難となり易いので、いずれも好ましくない。
The thin plate of the pyroelectric material is formed at a temperature of 1050 ° C. on a platinum plate or a ceramic plate having a surface layer formed of platinum.
Firing at 1200 ° C. for 10 minutes to 120 minutes is desirable. In the case of other metal plates, at a high temperature of 1000 ° C. or more, the metal plate is easily melted and the surface layer is degraded, and Pb tends to react with the ceramic layer in a single ceramic plate, which is not preferable. The firing temperature is desirably 1050 ° C to 1200 ° C. At temperatures below 1050 ° C., no sintering occurs and 12
When the temperature exceeds 00 ° C., the crystal grain growth is promoted and the sinterability tends to be deteriorated. When the thickness of the platinum layer of the ceramic plate on which the platinum layer is laminated is less than 5 μm, it is easily affected by the surface roughness of the ceramic plate.
When the thickness exceeds μm, it is difficult to form a smooth and less undulating surface layer, and any of them is not preferable.

【0024】[0024]

【作用】この構成によって、0.502≦x≦0.51
0,0.80≦y≦0.97,0.46≦z≦0.49
の条件を充たすPbx [Tiy (Coz1-z1-y
1-xn (但し、nは任意の数)を焦電体材料とするこ
とにより、高い焦電特性を得ることができる。また、P
b原子の一部をCa原子と20〜30mol %置換したの
で、好適なキューリー温度を得ることができるとともに
分極電圧を著しく低くすることができる。また、MnO
2 を系内に加えたので、焼結性が改善され感度を向上さ
せることができるとともに、機械的特性を向上させ厚さ
5〜100μmの薄板化加工を容易に行うことができ
る。安定した薄肉化が可能となったので、3000V/
W以上の高感度の焦電用受光素子を得ることができる。
With this configuration, 0.502 ≦ x ≦ 0.51
0, 0.80 ≦ y ≦ 0.97, 0.46 ≦ z ≦ 0.49
Pb that satisfies the conditionx [Tiy (Coz W1-z )1-y ]
1-x On (Where n is an arbitrary number) is the pyroelectric material.
Thus, high pyroelectric characteristics can be obtained. Also, P
20 to 30 mol% of b atoms were partially replaced by Ca atoms
So that a suitable Curie temperature can be obtained.
The polarization voltage can be significantly reduced. Also, MnO
Two Was added to the system, improving sinterability and improving sensitivity.
Thickness and improve mechanical properties
Easy thinning of 5-100 μm
You. 3000V /
It is possible to obtain a pyroelectric light-receiving element having a high sensitivity of W or more.

【0025】焦電体材料の薄板化加工ではスリップキャ
スティング法や押出成形法を用いるので、少ない作業工
数で、厚み精度に優れた薄板化を行うことができる。薄
板の肉厚が薄いので、焼成温度を下げ、焼成時間を短く
することができ、生産性をあげるとともに省エネルギー
化を図ることができる。赤外線センサーは、極めて薄
く、かつ高感度の焦電用受光素子を用いているので高感
度で信頼性を向上させることができる。
In the thinning of the pyroelectric material, a slip casting method or an extrusion molding method is used, so that the thinning with excellent thickness accuracy can be performed with a small number of work steps. Since the thickness of the thin plate is thin, the firing temperature can be lowered and the firing time can be shortened, so that productivity can be increased and energy saving can be achieved. The infrared sensor uses an extremely thin and high-sensitivity pyroelectric light-receiving element, so that the reliability can be improved with high sensitivity.

【0026】焦電体材料は、平均粒径が5μm以下の調
整粉体を使用することで、焼結反応が進行し、焼成温度
を下げ焼成時間を短くすることができるとともに、機械
的強度の大きい薄板の作製が可能となる。
By using an adjustment powder having an average particle diameter of 5 μm or less, the sintering reaction proceeds, the firing temperature can be reduced, the firing time can be shortened, and the mechanical strength of the pyroelectric material can be reduced. Large thin plates can be manufactured.

【0027】焦電体の薄板は、白金板又は、白金にて表
面層が形成されたセラミック板上で焼成するので、薄板
との反応融着が起こらず、フラットな状態で焼成でき、
製品得率が高くなる。
Since the pyroelectric thin plate is fired on a platinum plate or a ceramic plate having a surface layer formed of platinum, it does not react and fuse with the thin plate and can be fired in a flat state.
Product yield is higher.

【0028】薄板の両面に受光電極を形成し、この電極
を介して分極することで、低電圧での分極処理が可能と
なり、又、作業工程数が低減できる。
By forming light receiving electrodes on both surfaces of the thin plate and performing polarization through these electrodes, it is possible to perform polarization processing at a low voltage and reduce the number of working steps.

【0029】[0029]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0030】(実施例1)原料として、化学的に高純度
なPbTiO3 ,TiO2 ,CoO,WO3 ,CaCO
3 ,MnO2 を準備し、一般式Pbx [Tiy (COz
1-z1-y1- xn において、x,y,zがx=
0.505,y=0.80,z=0.46,Ca原子の
Pb原子との置換量が24mol %,Mno2 の添加量を
1重量%になるように各原料を調合し、これをボールミ
ルを用い、湿式混合処理を行い混合物を得た。
(Example 1) As raw materials, chemically pure PbTiO 3 , TiO 2 , CoO, WO 3 , CaCO 3
3 , MnO 2 is prepared and the general formula Pb x [Ti y (CO z
W 1-z) in 1-y] 1- x O n , x, y, z are x =
Each material was prepared such that 0.505, y = 0.80, z = 0.46, the substitution amount of Ca atoms for Pb atoms was 24 mol%, and the addition amount of Mno 2 was 1 wt%. Using a ball mill, wet mixing was performed to obtain a mixture.

【0031】この混合物を乾燥し、800℃で2時間仮
焼成を行った。次に、この仮焼成物に種々のバインダー
や過疎剤、溶剤を添加、混練して粘度10ps〜30p
sのスラリーを作製した。このスラリーの原料粉末の平
均粒径は3.5μmであった。次いで、スラリーを常法
のスリップキャスティング法により、厚み50μm±1
μmのグリーンシートとした。このグリーンシートを所
定の寸法に切断し、450℃で120分間脱バインター
後、1100℃の焼成温度で、60分間白金板上で焼成
して、厚み40μm±1μmの焦電素子を作製した。
The mixture was dried and calcined at 800 ° C. for 2 hours. Next, various binders, desensitizing agents, and solvents are added to the calcined product and kneaded to obtain a viscosity of 10 ps to 30 p.
s slurry was prepared. The average particle size of the raw material powder of this slurry was 3.5 μm. Next, the slurry was subjected to a conventional slip casting method to a thickness of 50 μm ± 1.
A green sheet of μm was obtained. The green sheet was cut into a predetermined size, deinterposed at 450 ° C. for 120 minutes, and then fired on a platinum plate at a firing temperature of 1100 ° C. for 60 minutes to produce a pyroelectric element having a thickness of 40 μm ± 1 μm.

【0032】さらにこの焦電素子の両面にスパッタ装置
を用いて、ニクロム電極を0.2μmの厚さでφ2mm
に成膜して電極を形成した。次いで、この電極を介し
て、シリコンオイル中で、4KV/mmの条件下で10
分間分極処理を行い焦電用受光素子を作製した。
Further, a nichrome electrode having a thickness of 0.2 μm and a diameter of 2 mm was formed on both surfaces of the pyroelectric element by using a sputtering device.
To form an electrode. Then, through this electrode, in silicon oil under the conditions of 4 KV / mm, 10
A polarization treatment was performed for a minute to produce a pyroelectric light-receiving element.

【0033】次に得られた焦電用受光素子を用い、図
1,図2に示すような赤外線センサーを作製した。
Next, an infrared sensor as shown in FIGS. 1 and 2 was manufactured using the obtained pyroelectric light-receiving element.

【0034】図1は本発明の第1の実施例における赤外
線センサーの回路図であり、図2は本発明の第1の実施
例における赤外線センサーの要部断面図である。図中、
1は焦電用受光素子、2は抵抗、3は電界効果型トラン
ジスタ(FET)、4はプリント基板、5はハーメチッ
クシール、6は金属製キャップ7に設けられた窓に装着
されたシリコン板、8は赤外線センサーである。
FIG. 1 is a circuit diagram of an infrared sensor according to a first embodiment of the present invention, and FIG. 2 is a sectional view of a main part of the infrared sensor according to the first embodiment of the present invention. In the figure,
1 is a pyroelectric light receiving element, 2 is a resistor, 3 is a field effect transistor (FET), 4 is a printed circuit board, 5 is a hermetic seal, 6 is a silicon plate mounted on a window provided in a metal cap 7, 8 is an infrared sensor.

【0035】赤外線センサー8の製造は、焦電用受光素
子1,抵抗2,FET3の組み合わせからなる回路をプ
リント基板4に形成し、焦電用受光素子1を導電ペース
トにて電気的、機械的にプリント基板4の端子と接続す
る。次いで、これをハーメチックシール5のピンに半田
付けし、窓にシリコン板6を装着した金属製のキャップ
7をハーメチックシール5に溶接し赤外線センサー8を
作製した。
The infrared sensor 8 is manufactured by forming a circuit composed of a combination of a pyroelectric light receiving element 1, a resistor 2, and an FET 3 on a printed circuit board 4, and electrically and mechanically forming the pyroelectric light receiving element 1 with a conductive paste. To the terminals of the printed circuit board 4. Next, this was soldered to a pin of the hermetic seal 5, and a metal cap 7 having a silicon plate 6 attached to the window was welded to the hermetic seal 5 to produce an infrared sensor 8.

【0036】次いで、割れや欠けが発生しない平面研削
による限界最小厚さ及び得られた受光素子により構成さ
れた赤外線センサーの測定周波数1Hz、熱源温度50
0Kにおける感度を測定した。その結果を(表1)に示
した。
Next, the minimum thickness due to surface grinding which does not cause cracking or chipping, the measurement frequency of the infrared sensor constituted by the obtained light receiving element is 1 Hz, and the heat source temperature is 50
The sensitivity at 0K was measured. The results are shown in (Table 1).

【0037】[0037]

【表1】 [Table 1]

【0038】この(表1)から明らかなように、平均厚
みが40μmで、均一な厚みを有する焦電用受光素子が
得られ、これを使用した赤外線センサーは4500V/
W以上の大きな感度を有していることがわかった。
As is clear from Table 1, a pyroelectric light-receiving element having an average thickness of 40 μm and a uniform thickness was obtained, and an infrared sensor using this was 4500 V /
It was found to have a sensitivity greater than W.

【0039】(実施例2)原料として、化学的に高純度
なPbTiO3 ,TiO2 ,CoO,WO3 ,CaCO
3 ,MnO2 を使用する。
Example 2 As raw materials, chemically high-purity PbTiO 3 , TiO 2 , CoO, WO 3 , CaCO 3
3 , MnO 2 is used.

【0040】Ca原子の置換量やx,y,zを変えると
ともにMnO2 の添加量を変えて実験した。その結果、
Ca原子が20mol %未満の組成ではキューリー温度が
高すぎるため分極が困難になる傾向が認められ、30mo
l %より大きい組成ではキューリー温度が低すぎ実用性
に欠けるということがわかった。また、x<0.50
1,y<0.79,z>0.50の組成では30μm以
下の加工が不可能であり、そのためセンサーとして大き
な感度も得られない。z<0.45,y>0.98の組
成では薄板の加工は可能であるが、高感度が得られな
い。またx>0.511の組成では焼結性が悪くなるこ
とがわかった。
The experiment was conducted by changing the substitution amount of Ca atoms, x, y, and z and changing the addition amount of MnO 2 . as a result,
When the composition contains less than 20 mol% of Ca atoms, the Curie temperature is too high, and polarization tends to be difficult.
It has been found that the Curie temperature is too low for a composition larger than 1%, and lacks practicality. Also, x <0.50
With a composition of 1, y <0.79, z> 0.50, processing of 30 μm or less is impossible, so that high sensitivity cannot be obtained as a sensor. With a composition of z <0.45, y> 0.98, processing of a thin plate is possible, but high sensitivity cannot be obtained. In addition, it was found that the sinterability deteriorated when the composition was x> 0.511.

【0041】更に、MnO2 の量を5重量%添加したも
のは結晶の粒成長が促進され、焼結性が悪くなることが
わかった。
Further, it was found that when 5% by weight of MnO 2 was added, crystal grain growth was promoted and sinterability deteriorated.

【0042】次に、焦電体材料の平均粒径について確認
した。平均粒径が5μmを越えると、焼成密度が低いこ
とがわかった。更に焼成条件について確認した。その結
果、焦電体材料の薄板は、白金、又は白金にて表面層が
形成されたセラミック板上での1050℃〜1200℃
にて10分〜120分の焼成が好適であることがわかっ
た。他金属板では、1000℃以上の高温では金属板が
溶融し易く表面層の劣化を生じ、又、セラミック板で
は、Pbがセラミック層と反応するのが確認された。焼
成温度は、1050℃以下での温度では、焼結せず、1
200℃以上では、焼結性が悪いことがわかった。これ
は結晶の粒成長が促進されたためと思われる。
Next, the average particle size of the pyroelectric material was confirmed. When the average particle size exceeded 5 μm, it was found that the firing density was low. Further, firing conditions were confirmed. As a result, the thin plate of the pyroelectric material is made of platinum or a ceramic plate having a surface layer formed of platinum at 1050 ° C. to 1200 ° C.
It was found that firing for 10 minutes to 120 minutes was suitable. In the case of other metal plates, at a high temperature of 1000 ° C. or higher, it was confirmed that the metal plate was easily melted and the surface layer was deteriorated, and that in the case of the ceramic plate, Pb reacted with the ceramic layer. If the firing temperature is 1050 ° C. or less,
At 200 ° C. or higher, it was found that the sinterability was poor. This is presumably because the crystal grain growth was promoted.

【0043】次に焦電体材料の薄板の厚みの最適条件に
ついて確認した。その結果、5μm以下では、焦電用受
光素子の耐衝撃性が低く機械的強度に劣り、100μm
以上では、焦電用受光素子の感度が悪いことがわかっ
た。
Next, the optimum conditions for the thickness of the thin plate of the pyroelectric material were confirmed. As a result, when the thickness is 5 μm or less, the impact resistance of the pyroelectric light-receiving element is low, and the mechanical strength is poor.
From the above, it was found that the sensitivity of the pyroelectric light receiving element was poor.

【0044】[0044]

【発明の効果】以上のように本発明は、一般式Pbx
[Tiy (Coz1-z1-y1-x n で表され(n
は任意の数)0.502≦x≦0.510の範囲にある
xに対して0.80≦y≦0.97,0.46≦z≦
0.49の範囲にある、即ち複合ペロブスカイト構造の
AサイトイオンとBサイトイオンの比を1:1から微妙
にずらすとともにPb原子の一部をCa原子で20〜3
0mol %置換するとともに、副原料としてMnO2 を3
重量%以下添加したので容易な分極条件を維持しながら
薄板加工時の割れや欠けの生じ難い高感度で高品質の焦
電体磁器を高収率で与えることのできる焦電体材料を実
現できるものである。焦電体材料の平均粒径は、5μm
以下の調整粉体を使用することで、焼結反応が進行し、
焼成温度を下げ、焼成時間を短くすることができ、機械
的強度の大きい薄板の作製できる、高品質の焦電体材料
を実現できるものである。
As described above, the present invention provides a compound of the general formula Pbx 
[Tiy (Coz W1-z )1-y ]1-x O n (N
Is an arbitrary number) 0.502 ≦ x ≦ 0.510
0.80 ≦ y ≦ 0.97, 0.46 ≦ z ≦
0.49, that is, of the composite perovskite structure
The ratio of A site ion to B site ion is subtle from 1: 1
And some of the Pb atoms are replaced with Ca atoms by 20 to 3
0 mol%, and MnOTwo 3
Weight% or less, maintaining easy polarization conditions
High-sensitivity, high-quality focus that is unlikely to crack or chip during thin plate processing
A pyroelectric material that can provide dielectric ceramics with high yield has been developed.
It can be manifested. The average particle size of the pyroelectric material is 5 μm
By using the following adjustment powder, the sintering reaction proceeds,
The firing temperature can be lowered and the firing time can be shortened.
Quality pyroelectric material that can produce thin plates with high mechanical strength
Can be realized.

【0045】焦電用受光素子の製法は、焦電体材料を既
存のスリップキャスティング法、押出成形法により厚み
5μm〜100μmの薄板を形成し、この薄板を白金、
又は白金にて表面層が形成されたセラミック板上で、1
050℃〜1200℃にて10分〜120分焼成する。
さらに薄板両面にスパッタリング法により受光電極を形
成し、この電極を介して分極する工程からなるので、焦
電体材料を薄板状に加工する際の割れや欠けの極めて少
ない、かつ焦電用受光素子の表面にマイクロクラック等
の発生を著しく低減化させた高信頼性で高品質で高感度
の焦電用受光素子を高い生産性で且つ高歩留りで生産す
ることのできる焦電用受光素子の製造方法を実現できる
ものである。焦電体の薄板は、白金板又は、白金にて表
面層が形成された、セラミック板上で焼成するので、薄
板との反応、融着が起こらず、フラットな状態で焼成で
き、高い生産性で、かつ、高歩留りで生産することので
きる焦電用受光素子の製造方法を実現できるものであ
る。これら優れた焦電体材料、又はこれから得られる受
光素子材料を用いたので生産性に優れ高感度で製品得率
の高い赤外線センサーを実現できるものである。
The method of manufacturing the photodetector for pyroelectricity is as follows. A pyroelectric material is formed into a thin plate having a thickness of 5 μm to 100 μm by an existing slip casting method and extrusion molding method.
Alternatively, on a ceramic plate having a surface layer formed of platinum,
Bake at 050 ° C to 1200 ° C for 10 minutes to 120 minutes.
Furthermore, since a light-receiving electrode is formed on both surfaces of the thin plate by a sputtering method and polarization is performed through this electrode, cracks and chipping when processing the pyroelectric material into a thin plate are extremely small, and the light-receiving element for pyroelectricity is used. Of pyroelectric light-receiving elements that can produce high-reliability, high-quality, high-sensitivity pyroelectric light-receiving elements with high productivity and high yield, with significantly reduced occurrence of microcracks and the like on the surface of the surface The method can be realized. Since the pyroelectric thin plate is fired on a platinum plate or a ceramic plate with a surface layer formed of platinum, it can be fired in a flat state without reaction and fusion with the thin plate, and high productivity. And a method for manufacturing a pyroelectric light-receiving element that can be produced at a high yield. Since these excellent pyroelectric materials or light receiving element materials obtained therefrom are used, an infrared sensor with excellent productivity, high sensitivity and high product yield can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における赤外線センサー
の回路図
FIG. 1 is a circuit diagram of an infrared sensor according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における赤外線センサー
の要部断面図
FIG. 2 is a sectional view of a main part of the infrared sensor according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 焦電用受光素子 2 抵抗 3 電界効果型トランジスタ(FET) 4 プリント基板 5 ハーメチックシール 6 シリコン板 7 金属製キャップ 8 赤外線センサー DESCRIPTION OF SYMBOLS 1 Pyroelectric light receiving element 2 Resistance 3 Field effect transistor (FET) 4 Printed circuit board 5 Hermetic seal 6 Silicon plate 7 Metal cap 8 Infrared sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 37/02 C04B 35/00 J (72)発明者 渡辺 浩一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平6−267330(JP,A) 特許3196461(JP,B2) 米国特許4983839(US,A) 米国特許4764492(US,A) (58)調査した分野(Int.Cl.7,DB名) G01J 1/00 - 1/60 G01J 5/00 - 5/62 C04B 35/00 - 35/22 C04B 35/42 - 35/51 H01L 37/02 ──────────────────────────────────────────────────続 き Continuing on the front page (51) Int.Cl. 7 Identification code FI H01L 37/02 C04B 35/00 J (72) Inventor Koichi Watanabe 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 56) references Patent flat 6-267330 (JP, a) patent 3196461 (JP, B2) US Patent 4983839 (US, a) United States Patent 4764492 (US, a) (58 ) investigated the field (Int.Cl. 7 G01J 1/00-1/60 G01J 5/00-5/62 C04B 35/00-35/22 C04B 35/42-35/51 H01L 37/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式がPbx[Tiy(Co
z1-z1-y1-xn(但し、nは任意の数)で表さ
れ、x,y,zが0.502≦x≦0.510,0.8
0≦y≦0.97,0.46≦z≦0.49の条件を充
たし、かつ、Pb原子の一部がCa原子で20〜30mo
l%置換したものを主成分とし、更に、副成分として、
MnO2を3重量%以下添加含有し、平均粒径が5μm
以下であることを特徴とする焦電体材料。
(1) The general formula is Pb x [Ti y (Co
z W 1-z) 1- y] 1-x O n ( where, n is represented by an arbitrary number), x, y, z is 0.502 ≦ x ≦ 0.510,0.8
The condition of 0 ≦ y ≦ 0.97, 0.46 ≦ z ≦ 0.49 is satisfied, and a part of Pb atoms is 20-30 mol of Ca atoms.
The main component is l% -substituted one, and
3% by weight or less of MnO 2 is contained and the average particle size is 5 μm
A pyroelectric material characterized by the following .
【請求項2】請求項1に記載の焦電体材料をスリップキ
ャスティング法又は押出成形法により厚さが5μm〜1
00μmの薄板に形成する薄板化加工工程と、前記工程
で得られた前記薄板を1050℃〜1200℃の焼成温
度で、10〜120分間焼成する焼成工程と、を有して
いることを特徴とする焦電用受光素子の製造方法。
2. The pyroelectric material according to claim 1, having a thickness of 5 μm to 1 μm by a slip casting method or an extrusion molding method.
A thinning process for forming a thin plate having a thickness of 00 μm, and a firing process for firing the thin plate obtained in the above process at a firing temperature of 1050 ° C. to 1200 ° C. for 10 to 120 minutes. Of manufacturing a pyroelectric light receiving element.
【請求項3】前記薄板の前記焼成工程が白金板又は表面
に白金層が積層されたセラミック板上で行われることを
特徴とする請求項に記載の焦電用受光素子の製造方
法。
3. The method for producing a pyroelectric light receiving element according to claim 2, wherein the firing step of the thin plate characterized in that the platinum layer to platinum plate or surface is performed on the ceramic plates are stacked.
【請求項4】前記焼成工程で焼成された前記薄板の両面
に受光電極を形成し、前記電極を介して分極を行う分極
工程を有していることを特徴とする請求項又はの内
いずれか1に記載された焦電用受光素子の製造方法。
4. A receiving electrode on both sides of the sheet that has been fired at the firing step, of claim 2 or 3, characterized in that it has a polarization step of performing polarization through the electrode A method for manufacturing the pyroelectric light-receiving element according to any one of the above.
【請求項5】請求項1に記載された焦電体材料を薄板に
加工すると共に、前記薄板を加工焼成して作製された
電用受光素子を備えたことを特徴とする赤外線センサ
ー。
5. A thin plate comprising the pyroelectric material according to claim 1.
An infrared sensor , comprising: a pyroelectric light-receiving element formed by processing and firing the thin plate .
【請求項6】請求項乃至の内いずれか1に記載され
た焦電用受光素子の製造方法で製造された焦電用受光素
子を備えたことを特徴とする赤外線センサー。
6. An infrared sensor comprising a pyroelectric light-receiving element manufactured by the method for manufacturing a pyroelectric light-receiving element according to any one of claims 2 to 4 .
JP05553394A 1994-03-25 1994-03-25 Pyroelectric material, method of manufacturing pyroelectric light-receiving element using the same, and infrared sensor using the same Expired - Fee Related JP3287104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05553394A JP3287104B2 (en) 1994-03-25 1994-03-25 Pyroelectric material, method of manufacturing pyroelectric light-receiving element using the same, and infrared sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05553394A JP3287104B2 (en) 1994-03-25 1994-03-25 Pyroelectric material, method of manufacturing pyroelectric light-receiving element using the same, and infrared sensor using the same

Publications (2)

Publication Number Publication Date
JPH07260578A JPH07260578A (en) 1995-10-13
JP3287104B2 true JP3287104B2 (en) 2002-05-27

Family

ID=13001373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05553394A Expired - Fee Related JP3287104B2 (en) 1994-03-25 1994-03-25 Pyroelectric material, method of manufacturing pyroelectric light-receiving element using the same, and infrared sensor using the same

Country Status (1)

Country Link
JP (1) JP3287104B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004027512A1 (en) 2004-06-04 2005-12-22 Robert Bosch Gmbh Spectroscopic gas sensor, in particular for detecting at least one gas component in the circulating air, and method for producing such a spectroscopic gas sensor

Also Published As

Publication number Publication date
JPH07260578A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
KR100496115B1 (en) Sputtering target of dielectrics with high strength and a method for manufacturing the same
JP3406611B2 (en) Low loss PZT ceramic compositions that can be fired with silver at low sintering temperatures and methods for making the same
KR100414331B1 (en) Nonreducing dielectric ceramic and monolithic ceramic capacitor using the same
US5433917A (en) PZT ceramic compositions having reduced sintering temperatures and process for producing same
US4735666A (en) Method of producing ceramics
JP3287104B2 (en) Pyroelectric material, method of manufacturing pyroelectric light-receiving element using the same, and infrared sensor using the same
WO2001021548A1 (en) Piezoelectric ceramic compositions and methods for production thereof
KR100492813B1 (en) Method of manufacturing monolithic piezoelectric ceramic device
JP2005526687A (en) Dielectric composition based on barium titanate
JP2003238248A (en) Piezoelectric porcelain composition and piezoelectric device
JP3196461B2 (en) Pyroelectric porcelain composition and infrared sensor using the same
JP2682022B2 (en) Ferroelectric porcelain composition and piezoelectric element using the same
JPH09241070A (en) Dielectric porcelain composition
JPH0945581A (en) Laminated capacitor
JPH1074666A (en) Laminated capacitor
JP2001278662A (en) Method for manufacturing dielectric ceramic
JP3467874B2 (en) Dielectric porcelain composition
JP2004207629A (en) Laminated electronic component
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JP2865925B2 (en) Method for producing dielectric porcelain composition
JPH0855519A (en) Dielectric ceramic composition
JP2004077304A (en) Piezo-electric element and knocking sensor using the same
JPH0971462A (en) Dielectric porcelain composition
JP3071627B2 (en) Semiconductor device
JP2513527B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees