JP3285157B2 - Phase information observation method and phase information observation interferometer - Google Patents

Phase information observation method and phase information observation interferometer

Info

Publication number
JP3285157B2
JP3285157B2 JP21394392A JP21394392A JP3285157B2 JP 3285157 B2 JP3285157 B2 JP 3285157B2 JP 21394392 A JP21394392 A JP 21394392A JP 21394392 A JP21394392 A JP 21394392A JP 3285157 B2 JP3285157 B2 JP 3285157B2
Authority
JP
Japan
Prior art keywords
sample
scattering
phase information
film
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21394392A
Other languages
Japanese (ja)
Other versions
JPH0728000A (en
Inventor
慶新 茹
遠藤潤二
彰 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP21394392A priority Critical patent/JP3285157B2/en
Priority to US08/103,682 priority patent/US5446589A/en
Priority to EP93306341A priority patent/EP0583162B1/en
Priority to DE69310630T priority patent/DE69310630T2/en
Publication of JPH0728000A publication Critical patent/JPH0728000A/en
Application granted granted Critical
Publication of JP3285157B2 publication Critical patent/JP3285157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H1/0404In-line recording arrangement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H5/00Holographic processes or apparatus using particles or using waves other than those covered by groups G03H1/00 or G03H3/00 for obtaining holograms; Processes or apparatus for obtaining an optical image from them

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、位相情報観測方法及び
装置に関し、特に、電子線等の振幅分割が困難な波動を
用いる位相情報観測方法及び位相情報観測用干渉装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for observing phase information, and more particularly, to a method and an apparatus for observing phase information using a wave, such as an electron beam, whose amplitude is difficult to divide.

【0002】[0002]

【従来の技術】従来、極微小位相物体の像を観察するの
に電子線ホログラフィーが知られている。その原理を簡
単に説明すると、図3において、光軸の片側に試料2を
配置して、干渉性の高い平面電子波1を光軸に沿って入
射させる。この電子波1は、試料2を透過し、試料2で
変調された物体波と試料2を透過しない参照波とに波面
分割され、電子対物レンズ3により一旦集光され、中間
像面5に結像するが、対物レンズ3と結像面5の間に電
子バイプリズム4を配置し、その中央のフィラメントの
片側を通る物体波と、他方を通る参照波とを光軸に交差
するように曲げて、結像面5で重ね合わせ、干渉縞を形
成させる。この干渉縞を電子レンズ6で拡大して写真フ
ィルム7に記録して、ホログラム7を作成する。このよ
うに作成したホログラム7には、電子レンズによって空
間的に拡大された物体波の位相が干渉縞の位置ズレとし
て記録されている。この記録された物体波の位相は、ホ
ログラム7を光学的に再生し、再生された波面と例えば
平面波とを干渉させて測定することもでき、また、電子
線ホログラムをデジタル化して読み込み、読み込まれた
データを計算により変換して測定することもできる。
2. Description of the Related Art Conventionally, electron beam holography is known for observing an image of a very fine phase object. The principle will be briefly described. In FIG. 3, a sample 2 is arranged on one side of the optical axis, and a highly coherent plane electron wave 1 is incident along the optical axis. The electron wave 1 transmits through the sample 2, is wavefront divided into an object wave modulated by the sample 2 and a reference wave that does not pass through the sample 2, is once collected by the electronic objective lens 3, and is formed on the intermediate image plane 5. An image is formed, and an electronic biprism 4 is arranged between the objective lens 3 and the image plane 5, and an object wave passing through one side of the central filament and a reference wave passing through the other side are bent so as to intersect the optical axis. Then, they are superposed on the image plane 5 to form interference fringes. The interference fringes are magnified by an electronic lens 6 and recorded on a photographic film 7 to form a hologram 7. In the hologram 7 created in this manner, the phase of the object wave spatially enlarged by the electron lens is recorded as a positional shift of the interference fringe. The phase of the recorded object wave can be measured by optically reconstructing the hologram 7 and causing the reconstructed wavefront to interfere with, for example, a plane wave. The measured data can be converted and calculated by calculation.

【0003】また、図4に示すように、3つの結晶1
1、12、13を用い、入射電子ビーム1を結晶11に
より回折させ、+1次回折波と−1次回折波に振幅分割
し、その+1次回折波と−1次回折波を、結晶12によ
り、それぞれ−1次と+1次に回折させ、その回折波の
一方が試料2を、もう一方が真空を通って結晶13に入
射するようにし、それぞれがまた−1次と+1次に回折
され、電子レンズ14を経て観測面15で重なり合って
干渉してホログラムを形成するようにして、電子線ホロ
グラムを形成することも提案されている。
[0003] Further, as shown in FIG.
Using 1, 12, and 13, the incident electron beam 1 is diffracted by the crystal 11 and is amplitude-divided into a + 1st-order diffraction wave and a -1st-order diffraction wave. Respectively, so that one of the diffracted waves impinges on the sample 2 and the other impinges on the crystal 13 through the vacuum, and is diffracted again into the -1 and +1 orders, respectively. It has also been proposed to form an electron beam hologram by forming a hologram by overlapping and interfering with an observation surface 15 via an electron lens 14.

【0004】[0004]

【発明が解決しようとする課題】上記の図3の波面分割
法による電子線ホログラフィーは広く実用されている
が、いくつかの問題点を抱えている。すなわち、干渉縞
パターンそのものは試料の等位相分布を直接表していな
いため、光学的あるいは計算により干渉縞パターンから
試料の位相分布を再生する必要がある。また、波面分割
をするために、高い干渉性の電子線源が必要となる。さ
らに、観測しようとする試料領域のすぐ隣に参照波を通
すための真空領域が必要であるが、実際の試料でこのよ
うに輪郭がハッキリしたものは少なく、理想的な測定が
行なえる試料は少ない。
Although electron beam holography by the wavefront division method shown in FIG. 3 is widely used, it has some problems. That is, since the interference fringe pattern itself does not directly represent the isophase distribution of the sample, it is necessary to reproduce the phase distribution of the sample from the interference fringe pattern optically or by calculation. In addition, a high coherence electron beam source is required for splitting the wavefront. In addition, a vacuum area for passing the reference wave is required immediately next to the sample area to be observed.However, there are few actual samples whose contours are clear like this, and there are only samples that can perform ideal measurement. Few.

【0005】また、図4の振幅分割法は、図示のように
理論通り作用する純結晶が得られ難く、また、その方位
合わせが大変難しいため、ほとんど実用化されていない
のが現状である。
[0005] The amplitude division method shown in FIG. 4 is hardly practically used because it is difficult to obtain a pure crystal that works as theoretically as shown in the figure, and it is very difficult to align its orientation.

【0006】本発明はこのような状況に鑑みてなされて
ものであり、その目的は、ハーフミラー等によって振幅
分割が困難な電子線等を用いる位相情報観測方法及び位
相情報観測用干渉装置を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object to provide a phase information observing method and an interferometer for observing phase information using an electron beam or the like whose amplitude is difficult to be divided by a half mirror or the like. It is to be.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明の位相情報観測方法は、入射波をランダムに散乱させ
る2枚の散乱膜を共役に配置し、この2枚の散乱膜の間
に試料を配置し、両散乱膜を通過した波による第1の干
渉パターンを検出し、試料を取り外した同様の検出状態
で第2の干渉パターンを検出し、検出された両干渉パタ
ーンの差、和あるいは積をとることにより、試料の位相
情報を干渉縞として観測することを特徴とする方法であ
る。この場合、試料配置位置が入射側散乱膜を直進する
成分が絞られる位置であり、両干渉パターン検出位置が
試料配置位置と共役な位置であることが望ましい。ま
た、本発明の位相情報観測用干渉装置は、試料の位相情
報を干渉縞として観測可能にする干渉装置において、入
射波をランダムに散乱させる2枚の散乱膜と、この2枚
の散乱膜の間に置かれ、一方の散乱膜の像を他方の散乱
膜上に結像するレンズ系と、一方の散乱膜を直進する成
分が前記レンズ系又はその部分系により絞られる位置に
配置された試料の像を観測面に結像する第2のレンズ系
と、観測面に形成された干渉パターンを記録する装置と
を備えたことを特徴とするものである。入射波が電子線
の場合、散乱膜としてアモルファス膜を用いるのが望ま
しい。
According to the phase information observation method of the present invention which achieves the above object, two scattering films for randomly scattering incident waves are arranged in a conjugate manner, and between the two scattering films. A sample is arranged, a first interference pattern due to waves passing through both scattering films is detected, a second interference pattern is detected in the same detection state where the sample is removed, and the difference between the detected two interference patterns is calculated. Alternatively, the method is characterized in that phase information of the sample is observed as interference fringes by taking a product. In this case, it is desirable that the sample arrangement position is a position where the component going straight on the incident side scattering film is narrowed down, and that both interference pattern detection positions are conjugate to the sample arrangement position. Further, the interferometer for observing phase information of the present invention is an interferometer capable of observing the phase information of a sample as interference fringes. A lens system that is placed in between and forms an image of one scattering film on the other scattering film, and a sample that is disposed at a position where a component that goes straight through one scattering film is narrowed down by the lens system or a sub-system thereof. And a device for recording an interference pattern formed on the observation surface. When the incident wave is an electron beam, it is desirable to use an amorphous film as the scattering film.

【0008】[0008]

【作用】本発明においては、入射波をランダムに散乱さ
せる2枚の散乱膜を共役に配置し、この2枚の散乱膜の
間に試料を配置し、両散乱膜を通過した波による第1の
干渉パターンを検出し、試料を取り外した同様の検出状
態で第2の干渉パターンを検出し、検出された両干渉パ
ターンの差、和あるいは積をとることにより、試料の等
位相縞が直接観察できる。
According to the present invention, two scattering films for randomly scattering incident waves are arranged conjugately, a sample is arranged between the two scattering films, and the first wave caused by the wave passing through both scattering films is arranged. The same interference pattern is detected, the second interference pattern is detected in the same detection state with the sample removed, and the difference, the sum or the product of the two detected interference patterns is taken, so that the equiphase fringe of the sample is directly observed. it can.

【0009】[0009]

【作用】本発明においては、2枚の散乱膜を用い、その
1枚により入射波を物体波と参照波とに分け、もう1枚
はこの2つの波(物体波と参照波)を再び重ね合わせ干
渉させて、ランダムな位相分布で変調された形のランダ
ム干渉パターンが観測面に現れ、記録されるので、試料
を挿入した状態で記録したランダム干渉パターンと、試
料を取り外した状態で記録したランダム干渉パターンと
を検出し、両ランダム干渉パターンの差、和あるいは積
をとることにより、試料の等位相縞が直接観察できる。
In the present invention, two scattering films are used, one of which divides an incident wave into an object wave and a reference wave, and the other overlaps the two waves (the object wave and the reference wave) again. A random interference pattern modulated with a random phase distribution appears on the observation surface and is recorded, and the random interference pattern recorded with the sample inserted and the random interference pattern recorded with the sample removed are recorded. By detecting the random interference pattern and calculating the difference, sum or product of the two random interference patterns, the equiphase fringes of the sample can be directly observed.

【0010】[0010]

【実施例】以下、図面を参照にして本発明の位相情報観
測方法及び位相情報観測用干渉装置について説明する。
現在においても、電子線干渉縞を作るのに、電子バイプ
リズムはなくてはならないものである。しかし、本発明
においては、電子バイプリズムを用いずに、2枚のアモ
ルファス膜を使って干渉縞を作ることを考える。その1
枚により電子ビームを物体波と参照波とに分け、もう1
枚はこの2つの波(物体波と参照波)を再び重ね合わせ
干渉させる。つまり、物体波は、第1のアモルファス膜
によって散乱されてから第2のアモルファス膜を素通り
する成分で、参照波は、入射ビームが第1のアモルファ
ス膜を素通ってから第2のアモルファス膜によって散乱
される成分である。第1のアモルファス膜と第2のアモ
ルファス膜との間の適当な位置にレンズと試料を挟むこ
とにより、試料の等位相縞が直接観察できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A phase information observing method and a phase information observing interferometer according to the present invention will be described below with reference to the drawings.
Even now, an electronic biprism is indispensable for producing an electron beam interference fringe. However, in the present invention, it is considered that interference fringes are formed using two amorphous films without using the electronic biprism. Part 1
The electron beam is divided into an object wave and a reference wave by one sheet.
The sheet superimposes the two waves (the object wave and the reference wave) again and causes interference. That is, the object wave is a component that is scattered by the first amorphous film and then passes through the second amorphous film, and the reference wave is a component that the incident beam passes through the first amorphous film and then passes through the second amorphous film. This is the component that is scattered. By holding the lens and the sample at an appropriate position between the first amorphous film and the second amorphous film, the equiphase fringes of the sample can be directly observed.

【0011】以下、図面を参照にして本発明の原理を説
明する。図1において、散乱膜としてアモルファス膜A
1、A2を用い、これらと3枚の焦点距離fの電子レン
ズB1、B2、B3を用いて、図示のように、アモルフ
ァス膜A1の後方距離fの位置に電子レンズB1を配置
し、その後側焦点面に試料2を配置し、試料の後方距離
fの位置に電子レンズB2を配置し、その後側焦点面に
アモルファス膜A2を配置する。そして、アモルファス
膜A2の後方距離fの位置に電子レンズB3を配置し、
電子レンズB3の後側焦点面を観測面Cとする。したが
って、アモルファス膜A1とA2は相互に共役であり、
観測面Cは試料2の結像面である。
The principle of the present invention will be described below with reference to the drawings. In FIG. 1, an amorphous film A is used as a scattering film.
1, an electron lens B1 is arranged at a position behind a distance f of the amorphous film A1 by using these and three electron lenses B1, B2, and B3 having a focal length f, as shown in FIG. The sample 2 is placed on the focal plane, the electron lens B2 is placed at a position behind the sample at a distance f, and the amorphous film A2 is placed on the rear focal plane. Then, an electron lens B3 is arranged at a position behind the amorphous film A2 at a distance f,
The rear focal plane of the electron lens B3 is defined as an observation plane C. Therefore, the amorphous films A1 and A2 are conjugate with each other,
The observation plane C is an imaging plane of the sample 2.

【0012】このような配置において、入射電子ビーム
1がアモルファス膜A1に入射し、その膜A1で散乱を
受けずに直進する成分は、電子レンズB1により試料面
の1点(参照点)に収束され、この点の位相を持って再
び発散し、電子レンズB2により平面波に変換され、ア
モルファス膜A1の像面にあるアモルファス膜A2に到
達し、そこで全方向に散乱されて、電子レンズB3によ
り試料2の像面である観測面Cに集められる。この成分
は参照波となる。また、アモルファス膜A1に入射し、
その膜A1で全方向に散乱された成分は、電子レンズB
1により試料面に集められ、試料2の位相分布情報を持
って電子レンズB2に到達し、そこでアモルファス膜A
2に収束し、この膜A2を素通って電子レンズB3によ
り試料2の像面である観測面Cに集められる。この成分
は物体波となる。また、両方のアモルファス膜A1、A
2を直進する成分もあり、図に実線で示すように、観測
面Cの1点に収束する。さらに、両方のアモルファス膜
A1、A2それぞれで散乱される成分もあるが、強度が
弱いので無視できる。
In such an arrangement, a component in which the incident electron beam 1 enters the amorphous film A1 and travels straight without being scattered by the film A1 converges to one point (reference point) on the sample surface by the electron lens B1. Then, it diverges again with the phase of this point, is converted into a plane wave by the electron lens B2, reaches the amorphous film A2 on the image plane of the amorphous film A1, is scattered in all directions there, and is sampled by the electron lens B3. The image is collected on an observation plane C, which is an image plane of No. 2. This component becomes a reference wave. Also, the light enters the amorphous film A1,
The component scattered in all directions by the film A1 is an electron lens B
1 collects on the sample surface and reaches the electron lens B2 with the phase distribution information of the sample 2, where the amorphous film A
Then, the light converges on the observation surface C, which is the image plane of the sample 2, through the film A2 and the electron lens B3. This component becomes an object wave. In addition, both amorphous films A1, A
There is also a component that goes straight through 2, and converges to one point on the observation plane C as shown by the solid line in the figure. Further, some components are scattered by both of the amorphous films A1 and A2, but the intensity is weak and can be ignored.

【0013】上記の参照波と物体波は観測面Cで干渉
し、参照点の位相に対する試料各点の位相差が、アモル
ファス膜A1とA2により生じるランダムな位相分布で
変調された形のランダム干渉パターンが観測面Cに現
れ、記録される。
The above-mentioned reference wave and object wave interfere with each other on the observation plane C, and the phase difference of each sample point with respect to the phase of the reference point is modulated by a random phase distribution generated by the amorphous films A1 and A2. The pattern appears on observation plane C and is recorded.

【0014】次に、試料2を照射ビーム中から外して
(試料2の動的変化の観測の場合は、その変化後に)、
上記と同様な条件で試料2の位相情報を持たない干渉パ
ターン、すなわち、アモルファス膜A1とA2により生
じるランダムな位相分布のみのランダム干渉パターンを
記録し、試料2が照射ビーム中にある場合のランダム干
渉パターンとの差、和あるいは積を計算すると、その結
果が試料2の等位相分布を表す干渉パターンとなる。
Next, the sample 2 is removed from the irradiation beam (after the dynamic change of the sample 2 is observed),
An interference pattern having no phase information of the sample 2, that is, a random interference pattern of only a random phase distribution generated by the amorphous films A1 and A2 is recorded under the same conditions as above, and a random interference pattern when the sample 2 is in the irradiation beam is recorded. When a difference, a sum, or a product from the interference pattern is calculated, the result is an interference pattern representing an equal phase distribution of the sample 2.

【0015】この点を数式を用いて簡単に説明すると、
アモルファス膜A1による波面の変化を、 exp(iφ1 )≒1+iφ1 (薄い場合、すなわち、
φ1 ≪1) アモルファス膜A2による波面の変化を、 exp(iφ2 )≒1+iφ2 (薄い場合、すなわち、
φ2 ≪1) 試料2による波面の変化を、 exp(iφ0 ) とする。ここで、φ0 、φ1 、φ2 は光軸に垂直な座標
(x,y)の関数である。また、フーリエ変換をFで表
し、 F〔φ1 〕=a1 exp(iα1 ) F〔φ2 〕=a2 exp(iα2 ) F〔exp(iφ0 )〕=Φ とする。
[0015] This point will be briefly described using mathematical expressions.
The change in the wavefront due to the amorphous film A1 is expressed as exp (iφ 1 ) ≒ 1 + iφ 1
φ 1 ≪1) The change in the wavefront due to the amorphous film A2 is expressed as exp (iφ 2 ) ≒ 1 + iφ 2 (when thin, ie,
φ 2 ≪1) The change in wavefront due to sample 2 is expressed as exp (iφ 0 ). Here, φ 0 , φ 1 , and φ 2 are functions of coordinates (x, y) perpendicular to the optical axis. Further, the Fourier transform is represented by F, and F [φ 1 ] = a 1 exp (iα 1 ) F [φ 2 ] = a 2 exp (iα 2 ) F [exp (iφ 0 )] = φ

【0016】入射電子ビーム1を1とすると、アモルフ
ァス膜A1の面直後では、 1+iφ1 試料2面直前では、 δ+ia1 exp(iα1 ) 試料2面直後では、 δexp(iφ0 (0,0))+ia1 exp(i
α1 )・exp(iφ0 ) アモルファス膜A2の面直前では、 exp(iφ0 (0,0))+iφ1 *Φ アモルファス膜A2の面直後では、 {exp(iφ0 (0,0))+iφ1 *Φ}・(1+
iφ2 ) 観測面C上では(波動関数)、 {δexp(iφ0 (0,0))+ia1 exp(iα
1 )・exp(iφ0 )} *{δ+ia2 exp(iα2 )} =δexp(iφ0 (0,0))+ia1 exp(i
(α1 +φ0 ))+ia2 exp(i(α2 +φ
0 (0,0)))−{a1 exp(i(α1
φ0 ))}*{a2 exp(iα2 )} となる。ここで、δexp(iφ0 (0,0))は中心
スポットで無視できる。また、{a1 exp(i(α1
+φ0 ))}*{a2 exp(iα2 )}は、両方のア
モルファス膜A1、A2で散乱された成分で、小さいの
で無視できる。
Assuming that the incident electron beam 1 is 1, immediately after the surface of the amorphous film A1, 1 + iφ 1 immediately before the second surface of the sample, δ + ia 1 exp (iα 1 ) immediately after the second surface of the sample, δexp (iφ 0 (0, 0)) ) + Ia 1 exp (i
α 1 ) · exp (iφ 0 ) exp (iφ 0 (0,0)) + iφ 1 * φ immediately before the surface of the amorphous film A2 {exp (iφ 0 (0,0)) immediately after the surface of the amorphous film A2 + Iφ 1 * φ} ・ (1+
2 ) On the observation plane C (wave function), {δexp (iφ 0 (0,0)) + ia 1 exp (iα
1 ) · exp (iφ 0 )} * {δ + ia 2 exp (iα 2 )} = δexp (iφ 0 (0,0)) + ia 1 exp (i
1 + φ 0 )) + ia 2 exp (i (α 2 + φ
0 (0,0))) − {a 1 exp (i (α 1 +
φ 0 )) {* {a 2 exp (iα 2 )}. Here, δexp (iφ 0 (0,0)) can be ignored at the center spot. Also, {a 1 exp (i (α 1
+ Φ 0 )) {* {a 2 exp (iα 2 )} is a component scattered by both the amorphous films A1 and A2, and is negligible because it is small.

【0017】すなわち、試料2が照射ビーム中にあると
き、観測面C上での波は、 ia1 exp(i(α1 +φ0 ))+ia2 exp(i
(α2 +φ0 (0,0))) となり、これを二乗して強度にすると、 a1 2 +a2 2 +2a1 2 cos〔α1 −α2 +φ0 −φ0 (0,0)〕 (1) となる。ここで、(α1 −α2 )はアモルファス膜A
1、A2の位相に基づくランダム成分で、空間的にラン
ダムに分布するものであるから、この強度は空間的にラ
ンダムなものである。
That is, when the sample 2 is in the irradiation beam, the wave on the observation surface C is ia 1 exp (i (α 1 + φ 0 )) + ia 2 exp (i
(Α 2 + φ 0 (0,0 ))) , and the when the intensity squared this, a 1 2 + a 2 2 + 2a 1 a 2 cos [α 1 -α 2 + φ 0 -φ 0 (0,0) ] (1) Here, (α 1 −α 2 ) is the amorphous film A
The intensity is spatially random because it is a random component based on the phase of 1, A2 and is randomly distributed spatially.

【0018】次に、試料2を照射ビーム中からから外し
た観測面C上での強度は、同様に、 a1 2 +a2 2 +2a1 2 cos(α1 −α2 ) (2) となる。
Next, intensity on the observation surface C which removed the sample 2 from the in illumination beam, similarly, a 1 2 + a 2 2 + 2a 1 a 2 cos (α 1 -α 2) and (2) Become.

【0019】したがって、試料2ありの場合の強度
(1)と試料2なしの場合の強度(2)との差をとる
と、 2a1 2 {cos〔α1 −α2 +φ0 −φ0 (0,
0)〕−cos(α1 −α2 )}=−4a1 2 sin
{α1 −α2 +〔φ0 −φ0 (0,0)〕/2}×si
n{〔φ0 −φ0 (0,0)〕/2} となる。a1 、a2 ほぼ均一であり、α1 、α2 はラン
ダムであるので、これは、試料2の位相分布sin
{〔φ0 −φ0 (0,0)〕/2}がランダム変調si
n{α1 −α2 +〔φ0 −φ0 (0,0)〕/2}を受
けたものとなり、試料2の位相分布を等高線(干渉縞)
で直接表したものとなる。
Therefore, taking the difference between the intensity (1) with the sample 2 and the intensity (2) without the sample 2, 2a 1 a 2 {cos [α 1 −α 2 + φ 0 −φ 0 (0,
0)]-cos (α 1 −α 2 )} = − 4a 1 a 2 sin
1 −α 2 + [φ 0 −φ 0 (0,0)] / 2} × si
n {[φ 0 −φ 0 (0,0)] / 2}. Since a 1 and a 2 are almost uniform and α 1 and α 2 are random, this is because the phase distribution sin of the sample 2 is
{[Φ 0 −φ 0 (0,0)] / 2} is a random modulation si
n {α 1 −α 2 + [φ 0 −φ 0 (0,0)] / 2}, and the phase distribution of the sample 2 is changed to a contour line (interference fringe).
Directly expressed as

【0020】なお、試料2ありの場合の強度(1)と試
料2なしの場合の強度(2)との和をとると、 2(a1 2 +a2 2 )+4a1 2 cos{α1 −α2
+〔φ0 −φ0 (0,0)〕/2}×cos{〔φ0
φ0 (0,0)〕/2} となる。試料2の位相分布はcos{〔φ0 −φ
0 (0,0)〕/2}と表され、感度は小さいが、この
ような加算によっても試料2の位相分布を等高線で直接
表したものが得られる。
[0020] When the sum of the intensities of the case with sample 2 (1) and the strength in the case of the sample 2 without (2), 2 (a 1 2 + a 2 2) + 4a 1 a 2 cos {α 1 −α 2
+ [Φ 0 −φ 0 (0,0)] / 2 {× cos} [φ 0
φ 0 (0,0)] / 2}. The phase distribution of sample 2 is cos {[φ 0 −φ
0 (0,0)] / 2}, and the sensitivity is small, but the phase distribution of the sample 2 can be directly expressed by contour lines by such addition.

【0021】さらには、試料2ありの場合の強度(1)
と試料2なしの場合の強度(2)との積をとると、 2a1 2 cos〔α1 −α2 +φ0 −φ0 (0,
0)〕×cos(α1 −α2 ) =2a1 2 2 2 {cos〔2α1 −2α2 +2φ0
2φ0 (0,0)〕+cos〔φ0 −φ0 (0,
0)〕} となる。この場合も、cos〔φ0 −φ0 (0,0)〕
が試料2の位相分布の等高線を表す。
Further, the strength with sample 2 (1)
And the intensity (2) without sample 2 yields 2a 1 a 2 cos [α 1 −α 2 + φ 0 −φ 0 (0,
0)] × cos (α 1 -α 2) = 2a 1 2 a 2 2 {cos [2α 1 -2α 2 + 2φ 0 -
0 (0,0)] + cos [φ 0 0 (0,
0)]}. Also in this case, cos [φ 0 −φ 0 (0, 0)]
Represents a contour line of the phase distribution of the sample 2.

【0022】なお、試料2がある場合及びない場合の観
測面での強度分布の測定は光電変換により行ってもよ
く、また、写真的に行ってもよい。また、その差、和な
いし積の演算も、電子的に行ってもよく、写真的に行っ
てもよい。この演算を写真的に行うには、差の演算は困
難であり、和の演算は、試料ありの時に一旦露光し、試
料を取り除いてからもう一度露光(二重露光)して現像
処理をすればよく、積の演算は、試料ありの時に露光、
現像し、試料なしの時に別のフィルムに同様に露光、現
像してから、両フィルムを重ね合わせて通過光の分布を
見ればよい。
The measurement of the intensity distribution on the observation surface with and without the sample 2 may be performed by photoelectric conversion or photographically. The calculation of the difference, the sum or the product may be performed electronically or photographically. In order to perform this operation photographically, it is difficult to calculate the difference. To calculate the sum, once the sample is exposed, the sample is removed, and then exposed again (double exposure) and developed. Often, the product is calculated by
After developing and exposing and developing another film in the same manner when there is no sample, both films may be superimposed and the distribution of transmitted light may be observed.

【0023】ところで、以上は、フラウンホーファ回折
が成り立つ場合について説明してきたが、フレネル回折
の場合も同様に成り立つ。したがって、図1の配置の代
わりに、図2のような配置により観測してもよい。すな
わち、この場合は、1枚の電子レンズB1を挟んでアモ
ルファス膜A1、A2を共役に配置し、電子レンズB1
の後側焦点面に試料2を配置し、アモルファス膜A2の
後方に配置した別の電子レンズB2の試料2と共役な位
置を観測面Cとして、図1と同様に観測して、演算すれ
ばよい。
The case where the Fraunhofer diffraction is established has been described above, but the case where the Fresnel diffraction is also established is similarly applied. Therefore, instead of the arrangement of FIG. 1, the observation may be performed by the arrangement as shown in FIG. That is, in this case, the amorphous films A1 and A2 are conjugated with one electron lens B1 interposed therebetween, and the electron lens B1
When the sample 2 is placed on the back focal plane of the sample and a position conjugate with the sample 2 of another electron lens B2 placed behind the amorphous film A2 is set as the observation plane C, observation is performed in the same manner as in FIG. Good.

【0024】なお、散乱膜A1、A2としては、ランダ
ムな分布を有するものであればよい。ここで、ランダム
の意味は、その分布をフーリエ変換したとき、振幅が一
定で、位相がランダムになることである。電子線の場
合、カーボン、ゲルマニウム等を中真空中で蒸着して作
製されたアモルファス膜が比較的この要件に合致し、適
している。
The scattering films A1 and A2 may be any as long as they have a random distribution. Here, the meaning of random means that when the distribution is Fourier-transformed, the amplitude is constant and the phase is random. In the case of an electron beam, an amorphous film formed by depositing carbon, germanium, or the like in a medium vacuum relatively meets this requirement and is suitable.

【0025】以上は、振幅分割が困難な電子線の場合に
ついて述べてきたが、他の波動、例えばX線、光、音波
等においても同様に適用できる。
Although the above description has been made on the case of an electron beam whose amplitude division is difficult, the present invention can be similarly applied to other waves such as X-rays, light, and sound waves.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、本発明
の位相情報観測方法及び位相情報観測用干渉装置による
と、入射波をランダムに散乱させる2枚の散乱膜を共役
に配置し、この2枚の散乱膜の間に試料を配置し、両散
乱膜を通過した波による第1の干渉パターンを検出し、
試料を取り外した同様の検出状態で第2の干渉パターン
を検出し、検出された両干渉パターンの差、和あるいは
積をとることにより、試料の等位相縞が直接観察でき
る。
As is apparent from the above description, according to the phase information observing method and the phase information observing interference device of the present invention, two scattering films that randomly scatter incident waves are arranged conjugately. A sample is placed between the two scattering films, and a first interference pattern due to the wave passing through both scattering films is detected,
By detecting the second interference pattern in the same detection state with the sample removed and calculating the difference, the sum or the product of the two detected interference patterns, the equiphase fringe of the sample can be directly observed.

【0027】本発明を電子線に適用した場合の従来法に
比べた利点としては、参照波のための真空領域を必要と
しないこと(連続的な分布を持つ磁場の測定に有利)、
直接及び実時間観察ができること(再生不要)、そし
て、干渉性の悪い電子線源でも干渉縞が得られることが
あげられる。
The advantages of applying the present invention to an electron beam as compared with the conventional method are that a vacuum region for a reference wave is not required (advantageous in measuring a magnetic field having a continuous distribution).
Direct and real-time observation can be performed (reproduction is unnecessary), and interference fringes can be obtained even with an electron beam source having poor coherence.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の位相情報観測の原理を説明するための
図である。
FIG. 1 is a diagram for explaining the principle of phase information observation according to the present invention.

【図2】変形例を説明するための図である。FIG. 2 is a diagram for explaining a modified example.

【図3】従来の電子バイプリズムを用いる電子線ホログ
ラフィーの原理を説明するための図である。
FIG. 3 is a diagram for explaining the principle of electron beam holography using a conventional electronic biprism.

【図4】従来の結晶を用いた振幅分割による電子線ホロ
グラフィーの原理を説明するための図である。
FIG. 4 is a diagram for explaining the principle of electron beam holography by amplitude division using a conventional crystal.

【符号の説明】 1…入射電子ビーム 2…試料 A1、A2…アモルファス膜 B1、B2、B3…電子レンズ C…観測面[Explanation of Signs] 1 ... Incident electron beam 2 ... Sample A1, A2 ... Amorphous film B1, B2, B3 ... Electronic lens C ... Observation surface

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01J 37/26 - 37/295 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) H01J 37/26-37/295

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 入射波をランダムに散乱させる2枚の散
乱膜を共役に配置し、この2枚の散乱膜の間に試料を配
置し、両散乱膜を通過した波による第1の干渉パターン
を検出し、試料を取り外した同様の検出状態で第2の干
渉パターンを検出し、検出された両干渉パターンの差、
和あるいは積をとることにより、試料の位相情報を干渉
縞として観測することを特徴とする位相情報観測方法。
1. A first interference pattern due to waves passing through both scattering films, wherein two scattering films for randomly scattering incident waves are arranged conjugately, a sample is arranged between the two scattering films. Is detected, the second interference pattern is detected in the same detection state where the sample is removed, and the difference between the two detected interference patterns,
A phase information observing method characterized in that phase information of a sample is observed as interference fringes by taking a sum or a product.
【請求項2】 試料配置位置が入射側散乱膜を直進する
成分が絞られる位置であり、両干渉パターン検出位置が
試料配置位置と共役な位置であることを特徴とする請求
項1記載の位相情報観測方法。
2. The phase according to claim 1, wherein the sample arrangement position is a position where a component which goes straight on the incident side scattering film is narrowed down, and both interference pattern detection positions are conjugate positions with the sample arrangement position. Information observation method.
【請求項3】 試料の位相情報を干渉縞として観測可能
にする干渉装置において、入射波をランダムに散乱させ
る2枚の散乱膜と、この2枚の散乱膜の間に置かれ、一
方の散乱膜の像を他方の散乱膜上に結像するレンズ系
と、一方の散乱膜を直進する成分が前記レンズ系又はそ
の部分系により絞られる位置に配置された試料の像を観
測面に結像する第2のレンズ系と、観測面に形成された
干渉パターンを記録する装置とを備えたことを特徴とす
る位相情報観測用干渉装置。
3. An interferometer capable of observing phase information of a sample as interference fringes, two scattering films for randomly scattering incident waves, and one interposed between the two scattering films. A lens system that forms an image of the film on the other scattering film, and an image of a sample in which a component that goes straight through one of the scattering films is disposed at a position narrowed by the lens system or a sub-system thereof, is formed on the observation surface. An interferometer for observing phase information, comprising: a second lens system for performing an operation and a device for recording an interference pattern formed on an observation surface.
【請求項4】 入射波が電子線であり、散乱膜がアモル
ファス膜からなることを特徴とする請求項3記載の位相
情報観測用干渉装置。
4. The interferometer for phase information observation according to claim 3, wherein the incident wave is an electron beam, and the scattering film is made of an amorphous film.
JP21394392A 1992-08-11 1992-08-11 Phase information observation method and phase information observation interferometer Expired - Fee Related JP3285157B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21394392A JP3285157B2 (en) 1992-08-11 1992-08-11 Phase information observation method and phase information observation interferometer
US08/103,682 US5446589A (en) 1992-08-11 1993-08-10 Interference device and method for observing phase informalities
EP93306341A EP0583162B1 (en) 1992-08-11 1993-08-11 Observation of phase information and interference device therefor
DE69310630T DE69310630T2 (en) 1992-08-11 1993-08-11 Observation of phase information and interference device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21394392A JP3285157B2 (en) 1992-08-11 1992-08-11 Phase information observation method and phase information observation interferometer

Publications (2)

Publication Number Publication Date
JPH0728000A JPH0728000A (en) 1995-01-31
JP3285157B2 true JP3285157B2 (en) 2002-05-27

Family

ID=16647620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21394392A Expired - Fee Related JP3285157B2 (en) 1992-08-11 1992-08-11 Phase information observation method and phase information observation interferometer

Country Status (4)

Country Link
US (1) US5446589A (en)
EP (1) EP0583162B1 (en)
JP (1) JP3285157B2 (en)
DE (1) DE69310630T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7571653B2 (en) 2006-03-31 2009-08-11 Fujitsu Limited Stress measuring method and system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378413B2 (en) * 1994-09-16 2003-02-17 株式会社東芝 Electron beam drawing apparatus and electron beam drawing method
JP4164261B2 (en) * 2000-03-30 2008-10-15 独立行政法人科学技術振興機構 Interference measurement device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038543A (en) * 1975-07-08 1977-07-26 Siemens Aktiengesellschaft Scanning transmission electron microscope including an improved image detector
JP2651154B2 (en) * 1987-09-04 1997-09-10 株式会社日立製作所 Electron holography equipment
JP3039563B2 (en) * 1990-11-29 2000-05-08 株式会社日立製作所 Scanning electron microscope and scanning electron microscope method
US5300776A (en) * 1992-09-16 1994-04-05 Gatan, Inc. Autoadjusting electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7571653B2 (en) 2006-03-31 2009-08-11 Fujitsu Limited Stress measuring method and system

Also Published As

Publication number Publication date
EP0583162A1 (en) 1994-02-16
JPH0728000A (en) 1995-01-31
DE69310630D1 (en) 1997-06-19
US5446589A (en) 1995-08-29
EP0583162B1 (en) 1997-05-14
DE69310630T2 (en) 1997-09-04

Similar Documents

Publication Publication Date Title
US11644791B2 (en) Holographic imaging device and data processing method therefor
JP5364203B2 (en) Observation device
WO2015064088A1 (en) Holographic microscope and data processing method for high-resolution hologram image
JPS59500488A (en) Optical processing method and device using holography
JP7231946B2 (en) SURFACE PROFILE MEASURING DEVICE AND SURFACE PROFILE MEASURING METHOD
US6535276B2 (en) Method for measuring the velocity of particles in a fluid medium in motion
US5504596A (en) Exposure method and apparatus using holographic techniques
JP3285157B2 (en) Phase information observation method and phase information observation interferometer
JP4025878B2 (en) Apparatus for obtaining reproduced image of object, phase shift digital holographic displacement distribution measuring apparatus, and parameter identifying method
TW202232475A (en) Optical measurement system and optical measurement method
US3633407A (en) Acoustic holography with a frequency-shifted reference beam
Rastogi Determination of surface strains by speckle shear photography
JP3067041B2 (en) Hologram interferometer
Boone Measurement of displacement, strain, and stress by holography
JP2553662B2 (en) Hologram range finder
JP2535732B2 (en) Optical instrument aberration measurement method using hologram element
JPH05100615A (en) Method and device for hologram reproduction
JPH04204032A (en) Lens optical performance measuring device
JP2001515227A (en) Systems and methods for three-dimensional imaging
JP2521325Y2 (en) Interferometer
CN117806143A (en) Off-axis digital holographic image reconstruction method based on MATLAB
JP2899688B2 (en) Hologram interferometer for cylindrical surface inspection
JP2621792B2 (en) Method and apparatus for measuring spatial coherence
US4293183A (en) Method of holographic recording and reconstruction of spatial waves
JPH08314364A (en) Method for reproducing holography

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees