JPH05100615A - Method and device for hologram reproduction - Google Patents

Method and device for hologram reproduction

Info

Publication number
JPH05100615A
JPH05100615A JP26070491A JP26070491A JPH05100615A JP H05100615 A JPH05100615 A JP H05100615A JP 26070491 A JP26070491 A JP 26070491A JP 26070491 A JP26070491 A JP 26070491A JP H05100615 A JPH05100615 A JP H05100615A
Authority
JP
Japan
Prior art keywords
hologram
conjugate
diffraction grating
wavefront
reproducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26070491A
Other languages
Japanese (ja)
Inventor
Kanmei Rai
関明 来
Gun Chin
軍 陳
Kazuo Ishizuka
石塚和夫
Akira Tonomura
彰 外村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP26070491A priority Critical patent/JPH05100615A/en
Publication of JPH05100615A publication Critical patent/JPH05100615A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reproduce a hologram consisting of modulated equal-interval linear interference fringes with high precision by using two plane waves. CONSTITUTION:The plane wave for reproduction and the conjugate plane wave which is conjugate to it are made incident on the hologram H consisting of the equal-interval linear interference fringes which are modulated with a recording wave front and the diffracted reproduction wave front and conjugate wave front are made to interfere with each other, thereby optically reproducing the hologram H. In this case, the plane wave for reproduction and the conjugate plane wave are generated with symmetrical diffracted light beams of (+ or -1)th order generated by a linear diffraction grating 1. Light of unnecessary diffraction order from the diffraction grating 1 is removed by a spatial filter 7 and light other than the reproduction wave front and conjugate wave front from the hologram H is removed by a spatial filter 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ホログラム再生法及び
再生装置に関し、特に、等間隔直線干渉縞を変調して波
面が記録された電子線ホログラム等のホログラムの高精
度な再生に適したホログラム再生法及び再生装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hologram reproducing method and a reproducing apparatus, and more particularly to a hologram suitable for highly accurate reproduction of a hologram such as an electron beam hologram in which wavefronts are recorded by modulating linearly spaced interference fringes. The present invention relates to a reproduction method and a reproduction device.

【0002】[0002]

【従来の技術】電子線ホログラムは、図5に模式的に示
すように、光軸の片側に試料を配置して平面電子波を光
軸に沿って入射させ、対物電子レンズにより電子波を一
旦集光させてから結像させ、この集光点と結像面の間に
電子バイプリズムを配置し、光軸の片側の試料を通過し
た波を物体波、光軸の反対側を通過した波を参照波とし
て、イメージホログラムとして干渉させて作成される。
実際には、光によりホログラムを再生するために、この
干渉縞を電子レンズにより拡大して記録したものを電子
線ホログラムとしている。このような電子線ホログラム
は、等間隔直線干渉縞を物体情報によって変調した形を
している。
2. Description of the Related Art In an electron beam hologram, as shown schematically in FIG. 5, a sample is arranged on one side of the optical axis, a plane electron wave is made incident along the optical axis, and the electron wave is once made by an objective electron lens. After focusing, the image is formed, and the electron biprism is placed between this focusing point and the image plane, and the wave passing through the sample on one side of the optical axis is the object wave and the wave passing the opposite side of the optical axis. Is used as a reference wave and is made to interfere as an image hologram.
Actually, in order to reproduce the hologram by light, an electron beam hologram is obtained by enlarging and recording this interference fringe with an electronic lens. Such an electron beam hologram has a form in which straight-interval linear interference fringes are modulated by object information.

【0003】この電子線ホログラムのように、等間隔直
線干渉縞を物体情報によって変調した形のホログラムか
ら記録されている波面を再生するには、図3に原理を示
すように、再生用平面波とそれに共役な共役平面波とを
光軸を挟んで相互に角度2θをなして入射させ、再生用
平面波により光軸に沿って再生波面を、また、共役平面
波により光軸に沿って共役波面を再生し、他の0次光等
を取り除き、光軸に沿って進む再生波面と共役波面を干
渉させて、位相を2倍に拡大した干渉縞として記録波面
を再生している。
To reproduce a wavefront recorded from a hologram in which linearly spaced interference fringes with equal intervals are modulated by object information like this electron hologram, the plane wave for reproduction is used as shown in FIG. Then, a conjugate plane wave that is conjugate with each other is made incident at an angle 2θ with respect to the optical axis, and a reproduction plane wave reproduces a reproduction wavefront along the optical axis and a conjugate plane wave reproduces a conjugate wavefront along the optical axis. , The other 0th-order light is removed, and the reproduction wavefront traveling along the optical axis and the conjugate wavefront are interfered with each other to reproduce the recording wavefront as interference fringes whose phase is doubled.

【0004】ところで、図3に示すような位相を増幅し
て記録波面を再生するには、従来図4に示すような配置
がとられている(Applied Optics Vol.26,No.2(1987)p
p.377-382)。すなわち、反射鏡A、Bとビームスプリ
ッターからなるトワイマン・グリーン型干渉計を用い、
反射鏡A、Bの双方又は片方を微小角傾けて、入射した
レーザ光を、図3の再生用平面波と共役平面波がなす角
度2θに等しい角度をなす2つの光に分割してホログラ
ムに入射させ、図3の原理により光軸に沿って進む再生
波面とその共役波面を得る。このとき、これ以外の0次
光、回折光を取り除くために、ホログラムの後にレンズ
L1を配置し、その後側焦点面に空間フィルターを配置
して、光軸に沿って進む再生波面とその共役波面のみを
通過させるようにし、空間フィルターを通過した両波面
をレンズL2により再びコリメートし、ホログラムと共
役な位置にTVカメラを配置して両波面を干渉させ、そ
の干渉縞情報を画像メモリに記憶し、コンピュータによ
り画像処理して、記録波面の形を求めている。この際、
記録された波面の位相分布を正確に求めるために位相変
調干渉法を利用しており(例えば、谷田貝豊彦著「応用
光学 光計測入門」第131〜135頁(丸善(株)発
行)参照)、そのために、再生用平面波又は共役平面波
の一方の位相を0から2πの間で位相変調するように、
一方の反射鏡Aの裏面にPZT(圧電素子)を取り付
け、PZTドライバの信号によりその反射鏡Aを前後に
微小距離移動させている。
By the way, in order to reproduce the recording wavefront by amplifying the phase as shown in FIG. 3, the arrangement as shown in FIG. 4 has conventionally been adopted (Applied Optics Vol. 26, No. 2 (1987)). p
p.377-382). That is, using a Twyman-Green type interferometer consisting of reflecting mirrors A and B and a beam splitter,
Both or one of the reflecting mirrors A and B is tilted by a slight angle, and the incident laser light is divided into two lights forming an angle equal to the angle 2θ formed by the reproducing plane wave and the conjugate plane wave in FIG. According to the principle of FIG. 3, a reproduction wavefront that advances along the optical axis and its conjugate wavefront are obtained. At this time, in order to remove other 0th-order light and diffracted light, a lens L1 is placed after the hologram, and a spatial filter is placed on the focal plane on the rear side of the hologram to reproduce a reproduction wavefront and its conjugate wavefront. Only the light is allowed to pass, and both wavefronts that have passed through the spatial filter are collimated again by the lens L2, a TV camera is arranged at a position conjugate with the hologram to cause interference between both wavefronts, and the interference fringe information is stored in the image memory. , The image is processed by the computer to obtain the shape of the recorded wavefront. On this occasion,
Phase modulation interferometry is used to accurately obtain the recorded wavefront phase distribution (see, for example, "Introduction to Applied Optical Optical Measurement" by Toyohiko Yatagai, pages 131 to 135 (published by Maruzen Co., Ltd.), Therefore, one of the plane waves for reproduction or the conjugate plane wave is phase-modulated between 0 and 2π,
A PZT (piezoelectric element) is attached to the back surface of one of the reflecting mirrors A, and the reflecting mirror A is moved back and forth by a minute distance according to a signal from the PZT driver.

【0005】[0005]

【発明が解決しようとする課題】このように、反射鏡
(ビームスプリッターも反射鏡に含まれる。)を用いて
2つの角度をなす平面波を生成し、それを用いて等間隔
直線干渉縞からなるホログラムを再生する場合、いくつ
かの問題があり、高精度で記録波面を再生することは容
易ではない。まず、反射鏡には少なくともλ/30程度
の凹凸が存在し、質のよい平面波が得難い。さらに、反
射鏡を用いる場合は、分割された光路が空間的に別々の
経路をたどるため、空気のゆらぎの影響が大きい。さら
に、通常複数の反射鏡を分離して配置するので、振動に
弱い。また、光源系、中間の光学系の収差の影響が大き
い。また、反射鏡を前後に移動させて位相変調するた
め、変調精度を高くしなければならない。
As described above, a plane mirror forming two angles is generated by using a reflecting mirror (a beam splitter is also included in the reflecting mirror), and it is composed of linearly spaced interference fringes. When reproducing a hologram, there are some problems, and it is not easy to reproduce the recorded wavefront with high accuracy. First, the reflecting mirror has unevenness of at least about λ / 30, and it is difficult to obtain a good plane wave. Furthermore, when a reflecting mirror is used, the divided optical paths spatially follow different paths, so that the fluctuation of air has a great influence. Furthermore, since a plurality of reflecting mirrors are usually arranged separately, they are weak against vibration. Further, the influence of the aberration of the light source system and the intermediate optical system is large. Further, since the reflecting mirror is moved back and forth to perform phase modulation, it is necessary to increase the modulation accuracy.

【0006】本発明はこのような状況に鑑みてなされた
ものであり、その目的は、電子線ホログラムのように変
調された等間隔直線干渉縞からなるホログラムを2つの
平面波を用いて高精度に再生する方法とそのための装置
を提供することである。
The present invention has been made in view of such a situation, and an object thereof is to make a hologram composed of modulated linearly spaced interference fringes such as an electron beam hologram highly precise by using two plane waves. It is to provide a reproducing method and an apparatus therefor.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明のホログラム再生法は、記録波面により変調を受けた
等間隔直線干渉縞からなるホログラムに再生用平面波と
それに共役な共役平面波を入射させて、回折された再生
波面と共役波面を干渉させることによりホログラムを光
学的に再生する方法において、前記再生用平面波とそれ
に共役な共役平面波を直線回折格子の対称な所定の回折
次数の光により生成することを特徴とする方法である。
According to the hologram reproducing method of the present invention which achieves the above-mentioned object, a reproducing plane wave and a conjugate plane wave conjugate therewith are made incident on a hologram composed of linearly spaced interference fringes modulated by a recording wavefront. In the method of optically reproducing a hologram by causing the diffracted reproduction wavefront and the conjugate wavefront to interfere with each other, the reproduction plane wave and the conjugate plane wave conjugated to the reproduction plane wave are generated by light of a predetermined diffraction order symmetrical to the linear diffraction grating. The method is characterized by

【0008】また、本発明のホログラム再生装置は、記
録波面により変調を受けた等間隔直線干渉縞からなるホ
ログラムに再生用平面波とそれに共役な共役平面波を入
射させて、回折された再生波面と共役波面を干渉させる
ことによりホログラムを光学的に再生する装置におい
て、直線回折格子と該回折格子に平行光を入射させる光
源装置を備え、前記回折格子により回折された回折光の
中、所定の対称次数の2つの光を選択してホログラム上
で所定の角度で交差するように射出する光学系を備えた
ことを特徴とするものである。
In the hologram reproducing apparatus of the present invention, a reproducing plane wave and a conjugate plane wave conjugate therewith are made incident on a hologram composed of linearly spaced interference fringes which are modulated by a recording wavefront, and conjugate with the diffracted reproducing wavefront. A device for optically reproducing a hologram by interfering wavefronts, which comprises a linear diffraction grating and a light source device for making parallel light incident on the diffraction grating, and a predetermined symmetric order among diffracted light diffracted by the diffraction grating. It is characterized by including an optical system for selecting the two light beams and emitting them so as to intersect with each other at a predetermined angle on the hologram.

【0009】この場合、前記回折格子をその平面に沿い
格子に交差する方向に移動させる手段を設けることによ
り、位相変調干渉法により記録波面を高精度で測定する
ことができるようになる。なお、この装置は、直線回折
格子の検査に用いることができる。
In this case, by providing a means for moving the diffraction grating along the plane in a direction intersecting with the grating, the recording wavefront can be measured with high accuracy by the phase modulation interferometry. This device can be used for inspection of a linear diffraction grating.

【0010】本発明のもう1つのホログラム再生装置
は、記録波面により変調を受けた等間隔直線干渉縞から
なるホログラムに再生用平面波とそれに共役な共役平面
波を入射させて、回折された再生波面と共役波面を干渉
させることによりホログラムを光学的に再生する装置に
おいて、所定の対称回折次数の2つの光のみを射出する
直線回折格子と該回折格子に平行光を入射させる光源装
置を備え、前記回折格子の射出面に近接ないし密着して
ホログラムを保持する手段を備えたことを特徴とするも
のでる。
According to another hologram reproducing apparatus of the present invention, a reproducing plane wave and a conjugate plane wave conjugated to the reproducing plane wave are made incident on a hologram composed of linearly spaced interference fringes which are modulated by a recording wavefront to obtain a diffracted reproducing wavefront. An apparatus for optically reproducing a hologram by causing a conjugate wavefront to interfere with each other is provided with a linear diffraction grating that emits only two lights of a predetermined symmetrical diffraction order and a light source device that makes parallel light incident on the diffraction grating. It is characterized in that it is provided with means for holding the hologram close to or in close contact with the exit surface of the grating.

【0011】[0011]

【作用】本発明のホログラム再生法及び再生装置におい
ては、反射鏡を用いずに回折格子を用いて再生用の2つ
の平面波を生成しているので、回折格子の不完全さによ
る平面波への影響は反射鏡の場合に比べて相当程度小さ
くなり、より高精度の波面の再生ができる。また、2つ
の平面波はほぼ同じ光路をたどるので、空気のゆらぎの
影響がほとんどなく、さらに、光路分割に1個の回折格
子しか用いていないので、外部振動に強いものである。
また、再生光学系の収差の影響が取り除かれる。さら
に、位相変調についても、変調の分割精度が従来の場合
に比較して相当に向上する。
In the hologram reproducing method and reproducing apparatus of the present invention, since two plane waves for reproduction are generated by using the diffraction grating without using the reflecting mirror, the influence on the plane wave by the incompleteness of the diffraction grating is affected. Is considerably smaller than that of a reflecting mirror, and more accurate wavefront reproduction is possible. Further, since the two plane waves follow almost the same optical path, there is almost no influence of air fluctuation, and since only one diffraction grating is used for dividing the optical path, it is resistant to external vibration.
Further, the influence of the aberration of the reproduction optical system is removed. Further, also in the phase modulation, the division accuracy of the modulation is considerably improved as compared with the conventional case.

【0012】[0012]

【実施例】以下、図面を参照にして本発明のホログラム
再生法とそのための装置の実施例について説明する。図
1は本発明の1実施例のホログラム再生装置の光路図で
あり、この装置の最も重要な点は、直線回折格子1を用
いてその2つの対称な回折光を発生させ、この2つの光
をホログラムHの再生のための平面波と共役平面波(図
3)として用いる点にある。図1において、安定化レー
ザ2からの光は、NDフィルター3で強度が調節され、
ミラー4を経てコリメータ5によりビーム径が拡大され
た平面波になり、回折格子1に入射する。回折格子1に
より、入射光は0次以外に±1次、±2次等に回折され
るが、所定の対称な次数、通常は±1次を選択するため
に、レンズ6により一旦集光され、その集光面(後側焦
点面)にその±1次の光のみを通過する空間フィルター
7が配置されている。空間フィルター7を通過した2つ
の光はレンズ8によりその後側焦点面で所定の角度2θ
(図3)で光軸を挟んで交差する2つの平面波に変換さ
れる。この位置には変調された等間隔直線干渉縞からな
るホログラムHが配置されており、ホログラムHに入射
した平面波と共役平面波により再生された再生波面とそ
の共役波面は光軸に沿って進む。この際生じる0次光、
高次回折光は光軸に対して角度をなしているため、ホロ
グラムHの後の焦点距離の位置に配置されたレンズ9に
よりその後側焦点面に回折光を一旦集光し、その位置に
光軸に沿って進む光以外をカットするスペシャル(空
間)フィルター10を配置して、再生波面とその共役平
面波のみを通過させ、スペシャルフィルター10を通過
した両波面をレンズ11により再びコリメートし、ホロ
グラムHと共役な位置に二次元ディテクター12を配置
して両波面を干渉させ、その干渉縞情報を画像メモリ1
3に記憶し、コンピュータ14により画像処理して、記
録波面の形を求める。この際、記録された波面の位相分
布を正確に求めるため、前記した位相変調干渉法を利用
する。そのために、回折格子1を回折格子移動機構及び
制御部15によりその面で格子に交差する方向に移動さ
せて両波面に反対方向の位相変調を加え、異なる位相状
態の干渉パターンを得、これらの異なる干渉パターンか
ら正確な波面の位相分布を求めることができる(前記文
献参照)。回折格子1の移動による位相変調は、回折格
子1を例えば半ピッチ分移動すると、+1次の波はπだ
け位相が進み、−1次の波はπだけ位相が遅れるので、
両方の波を干渉させた場合、一方の波を2π進めたと同
じ効果になることより理解される。なお、上記配置にお
いて、回折格子1、ホログラムH、二次元ディテクター
12は相互に共役な位置に配置されている。
Embodiments of the hologram reproducing method of the present invention and an apparatus therefor will be described below with reference to the drawings. FIG. 1 is an optical path diagram of a hologram reproducing apparatus according to an embodiment of the present invention. The most important point of this apparatus is that a linear diffraction grating 1 is used to generate two symmetrical diffracted light beams. Is used as a plane wave and a conjugate plane wave (FIG. 3) for reproducing the hologram H. In FIG. 1, the intensity of the light from the stabilized laser 2 is adjusted by the ND filter 3,
After passing through the mirror 4, a collimator 5 forms a plane wave having an expanded beam diameter, which is incident on the diffraction grating 1. The incident light is diffracted by the diffraction grating 1 into ± 1st order, ± 2nd order, etc. in addition to the 0th order, but is once condensed by the lens 6 in order to select a predetermined symmetrical order, usually ± 1st order. A spatial filter 7 that passes only the ± first-order light is arranged on the light collecting surface (rear focal surface). The two lights that have passed through the spatial filter 7 are reflected by the lens 8 at the rear focal plane at a predetermined angle 2θ.
(FIG. 3) is converted into two plane waves intersecting with each other with the optical axis sandwiched therebetween. A hologram H composed of modulated linear interference fringes at equal intervals is arranged at this position, and the reproduced wavefront reproduced by the plane wave incident on the hologram H and the conjugate plane wave and the conjugate wavefront thereof travel along the optical axis. Zero-order light generated at this time,
Since the high-order diffracted light forms an angle with the optical axis, the diffracted light is once condensed on the rear focal plane by the lens 9 arranged at the position of the focal length after the hologram H, and the optical axis is at that position. A special (spatial) filter 10 that cuts light other than light traveling along is arranged to pass only the reproduced wavefront and its conjugate plane wave, and both wavefronts passing through the special filter 10 are collimated again by the lens 11 to form the hologram H. The two-dimensional detector 12 is arranged at a conjugate position to cause both wavefronts to interfere with each other, and the interference fringe information is stored in the image memory 1.
3 and the image is processed by the computer 14 to obtain the shape of the recorded wavefront. At this time, in order to accurately obtain the phase distribution of the recorded wavefront, the above-mentioned phase modulation interferometry is used. To this end, the diffraction grating 1 is moved by the diffraction grating moving mechanism and the control unit 15 in the direction intersecting the grating on the surface, phase modulation in the opposite direction is applied to both wavefronts, and interference patterns having different phase states are obtained. An accurate wavefront phase distribution can be obtained from different interference patterns (see the above reference). The phase modulation by the movement of the diffraction grating 1 is such that when the diffraction grating 1 is moved by a half pitch, the phase of the + 1st order wave advances by π and the phase of the −1st order wave delays by π.
It is understood that when both waves are made to interfere, the same effect as advancing one wave by 2π is obtained. In the above arrangement, the diffraction grating 1, the hologram H, and the two-dimensional detector 12 are arranged in mutually conjugate positions.

【0013】このような配置により、物体により変調さ
れた等間隔直線干渉縞からなるホログラムHを再生する
場合、図4の従来例に比較して、反射鏡を用いずに回折
格子を用いて再生用の2つの平面波を生成しているの
で、回折格子の不完全さによる影響のみであり、反射鏡
の凹凸による影響を受けない。回折格子の不完全さによ
る平面波への影響は、反射鏡に比べて3分の1程度であ
る。しかも、回折格子1の不完全さは、空間フィルター
7による空間フィルタリングにより取り除くことができ
る。さらに、反射鏡を用いる場合は、分割された光路が
空間的に別々の経路をたどり、空気のゆらぎの影響が大
きいが、図1の場合は、ほぼ同じ光路をたどるので、空
気のゆらぎの影響はほとんどない。また、光路分割に1
個の回折格子しか用いていないので、外部振動に強い。
さらに、図1の場合は、ホログラムHに入射する2つの
平面波は、分割位置と同じ位置で交差するので、回折格
子1の照明系2〜5に収差があっても、再生波面とその
共役波面に同じ方向に収差の影響が加わることになり、
干渉すると収差の影響は取り除かれる。また、回折格子
1とホログラムHの間の光学系6、8に軸対称な収差が
あっても、ホログラムHに入射する2つの平面波には同
じように影響するので、同様に収差の影響は現れない。
さらに、位相変調についても、回折格子1のピッチは波
長の50〜500倍程度であるので、変調の分割精度が
従来の場合に比較して相当程度高くなる。
With such an arrangement, when reproducing the hologram H composed of linearly spaced interference fringes modulated by an object, compared with the conventional example shown in FIG. 4, the hologram is reproduced without using a reflecting mirror. Since two plane waves are generated, the influence is only due to the imperfections of the diffraction grating and is not affected by the unevenness of the reflecting mirror. The effect of the imperfections of the diffraction grating on the plane wave is about one-third that of the reflecting mirror. Moreover, the imperfections of the diffraction grating 1 can be removed by spatial filtering by the spatial filter 7. Further, when a reflecting mirror is used, the divided optical paths follow spatially different paths, and the influence of air fluctuations is large. However, in the case of FIG. 1, almost the same optical paths are traced, so the influence of air fluctuations is large. Almost never. Also, 1 for the optical path division
Since it uses only one diffraction grating, it is strong against external vibration.
Further, in the case of FIG. 1, since the two plane waves incident on the hologram H intersect at the same position as the division position, even if the illumination systems 2 to 5 of the diffraction grating 1 have aberrations, the reproduction wavefront and its conjugate wavefront are generated. Will be affected by the aberration in the same direction,
The interference removes the effects of aberrations. Further, even if there are axially symmetric aberrations in the optical systems 6 and 8 between the diffraction grating 1 and the hologram H, the two plane waves incident on the hologram H are affected in the same manner, and thus the influence of the aberrations is also manifested. Absent.
Further, also in the phase modulation, since the pitch of the diffraction grating 1 is about 50 to 500 times the wavelength, the division accuracy of the modulation becomes considerably higher than that of the conventional case.

【0014】ところで、図1の場合、レンズ6としてズ
ームレンズ(可変倍率レンズ)を用いると、再生するホ
ログラムHの干渉縞ピッチが異なる場合についても、回
折格子1を変更しなくてもよくなる。すなわち、このよ
うにすると、レンズ6の倍率を変更して、ホログラムH
に入射する2つの波面がなす角度をホログラムH特有の
角度に一致させることができるからである。なお、これ
は、回折格子1のホログラムH上にできる像の格子ピッ
チを、レンズ6の焦点距離に対応した倍率を変えること
により、ホログラムHの干渉縞のピッチに合わせること
と技術的意味が同じである。実際には、回折格子1の像
の格子ピッチとホログラムHの干渉縞のピッチは、正確
に一致させる必要は必ずしもなく、多少のズレが存在し
ていても測定上は問題ない。干渉パターンにそのズレに
相当する空間周波数の干渉縞がバックグラウンドとして
のるだけあるので、画像処理してこの干渉縞を取り除く
ようにすればよい。
In the case of FIG. 1, if a zoom lens (variable magnification lens) is used as the lens 6, the diffraction grating 1 does not have to be changed even when the hologram H to be reproduced has a different interference fringe pitch. That is, in this way, the magnification of the lens 6 is changed and the hologram H
This is because it is possible to match the angle formed by the two wavefronts incident on the angle with the angle peculiar to the hologram H. Note that this has the same technical meaning as adjusting the grating pitch of an image formed on the hologram H of the diffraction grating 1 to the pitch of the interference fringes of the hologram H by changing the magnification corresponding to the focal length of the lens 6. Is. Actually, the grating pitch of the image of the diffraction grating 1 and the pitch of the interference fringes of the hologram H do not necessarily have to match exactly, and even if there is some deviation, there is no problem in measurement. Since the interference pattern has interference fringes of a spatial frequency corresponding to the deviation as a background, it is sufficient to remove the interference fringes by image processing.

【0015】以上の説明において、図1の装置は、例え
ば電子線ホログラムに記録されている位相情報を再生す
るのに用いることを前提としていたが、その他に、回折
格子の検査に用いることができる。この場合は、ホログ
ラムHとして被検査回折格子が配置される。
In the above description, the apparatus of FIG. 1 is premised on being used to reproduce the phase information recorded in, for example, an electron beam hologram, but it can also be used to inspect a diffraction grating. .. In this case, the inspected diffraction grating is arranged as the hologram H.

【0016】なお、図1の場合は、図3に原理に基づい
てホログラムHに再生用平面波と共役平面波を光軸を挟
んで両側から入射させて位相を増幅して干渉させていた
が、再生用平面波と光軸に沿って進む平面波をホログラ
ムHに入射させ、再生波面とホログラムHを光軸に沿っ
て透過した平面波とを干渉させて波面の位相を検出する
ようにしてもよい。この場合は、回折格子1を透過した
0次光と例えば+1次光を空間フィルター7で選択して
用いることになる。なお、この場合、位相の増幅なしに
干渉させて記録波面を求めることになる。
In the case of FIG. 1, the reproducing plane wave and the conjugate plane wave are made to enter the hologram H from both sides with the optical axis interposed therebetween to amplify and phase the interference, based on the principle shown in FIG. The plane wave for use and the plane wave traveling along the optical axis may be incident on the hologram H, and the phase of the wavefront may be detected by causing the reproduced wavefront and the plane wave transmitted through the hologram H along the optical axis to interfere with each other. In this case, the 0th-order light and the + 1st-order light transmitted through the diffraction grating 1 are selected by the spatial filter 7 and used. In this case, the recording wavefront is obtained by causing interference without phase amplification.

【0017】ところで、図1において、回折格子1とホ
ログラムHの間に光学系6〜8を配置するのは、回折格
子1から所定の2つの次数の回折光を取り出すためであ
るが、回折格子1として例えば±1次の光しか回折しな
いものを用いる場合、光学系6〜8を省くことができ
る。その場合の光路図は図2のようになる。この場合
は、回折格子1にホログラムHを密着させ、それをレン
ズ9の前側焦点面に配置するようにすればよい。
In FIG. 1, the optical systems 6 to 8 are arranged between the diffraction grating 1 and the hologram H in order to extract diffracted light of two predetermined orders from the diffraction grating 1. When using, for example, one that diffracts only the ± 1st order light as 1, the optical systems 6 to 8 can be omitted. The optical path diagram in that case is as shown in FIG. In this case, the hologram H may be brought into close contact with the diffraction grating 1 and arranged on the front focal plane of the lens 9.

【0018】なお、図1、図2の場合、ホログラムHか
ら光軸方向に回折された2つの波面を取り出すのに、レ
ンズ9、11、スペシャルフィルター10からなる空間
フィルタリング光学系を用いていたが、この代わりに、
比較的遠方にレンズを配置し、その開口に光軸に沿って
進む2つの波面のみを通し、このレンズによりホログラ
ム面を二次元ディテクター12検出面上に結像するよう
にしてもよい。
1 and 2, the spatial filtering optical system including the lenses 9 and 11 and the special filter 10 is used to extract the two wavefronts diffracted from the hologram H in the optical axis direction. , Instead of this,
It is also possible to dispose a lens at a relatively distant position, pass only two wavefronts traveling along the optical axis through the aperture, and form a hologram surface on the detection surface of the two-dimensional detector 12 by this lens.

【0019】以上、本発明のホログラム再生法及び再生
装置をいくつかの実施例に基づいて説明してきたが、本
発明はその他種々の変形が可能である。また、再生する
ホログラムとしては電子線ホログラムに限らずX線ホロ
グラム又は通常の光学ホログラムであってもよい。
Although the hologram reproducing method and reproducing apparatus of the present invention have been described above based on some embodiments, the present invention can be modified in various ways. Further, the hologram to be reproduced is not limited to the electron beam hologram, but may be an X-ray hologram or a normal optical hologram.

【0020】[0020]

【発明の効果】以上説明したように、本発明のホログラ
ム再生法及び再生装置によると、反射鏡を用いずに回折
格子を用いて再生用の2つの平面波を生成しているの
で、回折格子の不完全さによる平面波への影響は反射鏡
の場合に比べて3分の1程度となり、より高精度の波面
の再生ができる。また、2つの平面波はほぼ同じ光路を
たどるので、空気のゆらぎの影響がほとんどなく、さら
に、光路分割に1個の回折格子しか用いていないので、
外部振動に強いものである。また、再生光学系の収差の
影響が取り除かれる。さらに、位相変調についても、変
調の分割精度が従来の場合に比較して相当に向上する。
As described above, according to the hologram reproducing method and reproducing apparatus of the present invention, since two plane waves for reproduction are generated by using the diffraction grating without using the reflecting mirror, the diffraction grating The effect of the imperfections on the plane wave is about one-third as compared with the case of the reflecting mirror, and the wavefront can be reproduced with higher accuracy. In addition, since the two plane waves follow almost the same optical path, there is almost no effect of air fluctuations, and since only one diffraction grating is used for dividing the optical path,
It is strong against external vibration. Further, the influence of the aberration of the reproduction optical system is removed. Further, also in the phase modulation, the division accuracy of the modulation is considerably improved as compared with the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例のホログラム再生装置の光路
図である。
FIG. 1 is an optical path diagram of a hologram reproducing device according to an embodiment of the present invention.

【図2】他の実施例のホログラム再生装置の光路図であ
る。
FIG. 2 is an optical path diagram of a hologram reproducing device according to another embodiment.

【図3】本発明の基礎となる再生法の原理を説明するた
めの図である。
FIG. 3 is a diagram for explaining the principle of the reproducing method which is the basis of the present invention.

【図4】従来のホログラム再生装置の光路図である。FIG. 4 is an optical path diagram of a conventional hologram reproducing device.

【図5】電子線ホログラム撮影装置の概略の構成を示す
模式図である。
FIG. 5 is a schematic diagram showing a schematic configuration of an electron beam hologram imaging apparatus.

【符号の説明】[Explanation of symbols]

H…ホログラム 1…直線回折格子 2…安定化レーザ 3…NDフィルター 4…ミラー 5…コリメータ 6…レンズ 7…空間フィルター 8…レンズ 9…レンズ 10…スペシャル(空間)フィルター 11…レンズ 12…二次元ディテクター 13…画像メモリ 14…コンピュータ 15…回折格子移動機構及び制御部 H ... Hologram 1 ... Linear diffraction grating 2 ... Stabilized laser 3 ... ND filter 4 ... Mirror 5 ... Collimator 6 ... Lens 7 ... Spatial filter 8 ... Lens 9 ... Lens 10 ... Special (spatial) filter 11 ... Lens 12 ... Two-dimensional Detector 13 ... Image memory 14 ... Computer 15 ... Diffraction grating moving mechanism and control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石塚和夫 埼玉県東松山市松風台14−48 (72)発明者 外村 彰 埼玉県比企郡鳩山町楓ケ丘2−19−5 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Ishizuka 14-48 Matsufudai, Higashimatsuyama City, Saitama Prefecture (72) Inventor Akira Tonomura 2-19-5 Kaedeoka, Hatoyama Town, Hiki-gun, Saitama Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 記録波面により変調を受けた等間隔直線
干渉縞からなるホログラムに再生用平面波とそれに共役
な共役平面波を入射させて、回折された再生波面と共役
波面を干渉させることによりホログラムを光学的に再生
する方法において、前記再生用平面波とそれに共役な共
役平面波を直線回折格子の対称な所定の回折次数の光に
より生成することを特徴とするホログラム再生法。
1. A hologram is formed by injecting a reproducing plane wave and a conjugate plane wave conjugate with the hologram into a hologram composed of linearly spaced interference fringes modulated by a recording wavefront, and causing the diffracted reproduction wavefront and the conjugate wavefront to interfere with each other. In the method for optically reproducing, a hologram reproducing method characterized in that the reproducing plane wave and a conjugate plane wave conjugate therewith are generated by light of a predetermined diffraction order symmetrical with respect to a linear diffraction grating.
【請求項2】 記録波面により変調を受けた等間隔直線
干渉縞からなるホログラムに再生用平面波とそれに共役
な共役平面波を入射させて、回折された再生波面と共役
波面を干渉させることによりホログラムを光学的に再生
する装置において、直線回折格子と該回折格子に平行光
を入射させる光源装置を備え、前記回折格子により回折
された回折光の中、所定の対称次数の2つの光を選択し
てホログラム上で所定の角度で交差するように射出する
光学系を備えたことを特徴とするホログラム再生装置。
2. A hologram is formed by injecting a reproducing plane wave and a conjugate plane wave conjugate with the hologram into a hologram composed of equal-interval linear interference fringes modulated by a recording wavefront, and causing the diffracted reproduction wavefront and the conjugate wavefront to interfere with each other. A device for optically reproducing includes a linear diffraction grating and a light source device for making parallel light incident on the diffraction grating, and selects two lights of a predetermined symmetry order from diffracted lights diffracted by the diffraction grating. A hologram reproducing apparatus comprising an optical system that emits light so as to intersect a hologram at a predetermined angle.
【請求項3】 前記回折格子をその平面に沿い格子に交
差する方向に移動させる手段を有することを特徴とする
請求項2記載のホログラム再生装置。
3. The hologram reproducing apparatus according to claim 2, further comprising means for moving the diffraction grating along a plane thereof in a direction intersecting with the grating.
【請求項4】 直線回折格子の検査に用いることを特徴
とする請求項2又は3記載のホログラム再生装置。
4. The hologram reproducing apparatus according to claim 2, which is used for inspecting a linear diffraction grating.
【請求項5】 記録波面により変調を受けた等間隔直線
干渉縞からなるホログラムに再生用平面波とそれに共役
な共役平面波を入射させて、回折された再生波面と共役
波面を干渉させることによりホログラムを光学的に再生
する装置において、所定の対称回折次数の2つの光のみ
を射出する直線回折格子と該回折格子に平行光を入射さ
せる光源装置を備え、前記回折格子の射出面に近接ない
し密着してホログラムを保持する手段を備えたことを特
徴とするホログラム再生装置。
5. A hologram is formed by injecting a reproducing plane wave and a conjugate plane wave which is conjugate to the hologram into a hologram composed of linearly spaced interference fringes modulated by a recording wavefront, and causing the diffracted reproduction wavefront and the conjugate wavefront to interfere with each other. An apparatus for optically reproducing includes a linear diffraction grating that emits only two lights of a predetermined symmetric diffraction order and a light source device that makes parallel light incident on the diffraction grating, and is close to or in close contact with the exit surface of the diffraction grating. And a hologram holding device for holding a hologram.
JP26070491A 1991-10-08 1991-10-08 Method and device for hologram reproduction Pending JPH05100615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26070491A JPH05100615A (en) 1991-10-08 1991-10-08 Method and device for hologram reproduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26070491A JPH05100615A (en) 1991-10-08 1991-10-08 Method and device for hologram reproduction

Publications (1)

Publication Number Publication Date
JPH05100615A true JPH05100615A (en) 1993-04-23

Family

ID=17351615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26070491A Pending JPH05100615A (en) 1991-10-08 1991-10-08 Method and device for hologram reproduction

Country Status (1)

Country Link
JP (1) JPH05100615A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541159A (en) * 2005-05-13 2008-11-20 シーリアル、テクノロジーズ、ゲーエムベーハー Projector and method for holographic reconstruction of a scene
US7738152B2 (en) 2003-06-07 2010-06-15 Stx Aprilis, Inc. High areal density holographic data storage system
KR20140076881A (en) * 2012-12-13 2014-06-23 엘지디스플레이 주식회사 Hologram image display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7738152B2 (en) 2003-06-07 2010-06-15 Stx Aprilis, Inc. High areal density holographic data storage system
JP2008541159A (en) * 2005-05-13 2008-11-20 シーリアル、テクノロジーズ、ゲーエムベーハー Projector and method for holographic reconstruction of a scene
KR20140076881A (en) * 2012-12-13 2014-06-23 엘지디스플레이 주식회사 Hologram image display device

Similar Documents

Publication Publication Date Title
EP1471507A2 (en) A method for recording and reproducing holographic data and an apparatus therefor
US4810047A (en) In-line holographic lens arrangement
US4275454A (en) Optical system phase error compensator
KR960035481A (en) Super Resolution Optical Head Unit
KR20010041778A (en) Three-dimensional imaging system
JP2004184309A (en) Interferometer
US20080309998A1 (en) Hologram element deflecting optical beam, hologram element fabricating apparatus, hologram element fabricating method, deflection optical unit, and information recording apparatus and information reconstructing apparatus using deflection optical unit
US7471430B1 (en) Holographic image corrector
JP2006209081A (en) Hologram recording/reproducing device and optical unit
JPH05100615A (en) Method and device for hologram reproduction
JP6076618B2 (en) Optical resolution improvement device
JP2761180B2 (en) Micro displacement measuring device and optical pickup device
JP6239166B2 (en) Optical resolution improvement device
JP3303250B2 (en) Displacement measuring device and optical pickup
JP4167778B2 (en) Method for evaluating aberration of optical element
JP3300536B2 (en) Displacement measuring device and optical pickup
JP4127422B2 (en) Optical characteristic detection method and optical characteristic detection apparatus for optical system including lens and other optical elements
JPH07105059B2 (en) Optical pickup device
JPH01220134A (en) Optical head device
JPH10141912A (en) Interferometer
JP3410800B2 (en) Vibration resistant interferometer
JPS63298107A (en) Slant incident interferometer device
SU1352196A1 (en) Shift interferometer
JP2001176112A (en) Optical information reproducing device
JPH03120435A (en) Interference device for wave front aberration measurement