JP3272804B2 - Manufacturing method of high carbon cold rolled steel sheet with small anisotropy - Google Patents

Manufacturing method of high carbon cold rolled steel sheet with small anisotropy

Info

Publication number
JP3272804B2
JP3272804B2 JP06075793A JP6075793A JP3272804B2 JP 3272804 B2 JP3272804 B2 JP 3272804B2 JP 06075793 A JP06075793 A JP 06075793A JP 6075793 A JP6075793 A JP 6075793A JP 3272804 B2 JP3272804 B2 JP 3272804B2
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
temperature
quenching
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06075793A
Other languages
Japanese (ja)
Other versions
JPH06271935A (en
Inventor
志郎 佐柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06075793A priority Critical patent/JP3272804B2/en
Publication of JPH06271935A publication Critical patent/JPH06271935A/en
Application granted granted Critical
Publication of JP3272804B2 publication Critical patent/JP3272804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は焼入れ、焼戻し等の熱
処理時に寸法変化の小さい高炭素冷延鋼板の製造法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high carbon cold rolled steel sheet having a small dimensional change during heat treatment such as quenching and tempering.

【0002】[0002]

【従来の技術】高炭素冷延鋼板は、チェーン部品、ギヤ
ー部品、クラッチ部品等に用いられる。そしてこれら
は、各目的製品形状に成形加工後に、焼入れ焼戻し等の
熱処理により硬化させて、製造される。そこで、前記の
各製品の素材鋼板には、成形加工前は軟質で加工し易い
ことが、要求される。また、加工及び熱処理後の製品に
は、耐摩耗性、耐疲労性、耐衝撃性等の、高強度の機械
的性質とともに、焼入れ焼戻し後の寸法精度(寸法変化
ができるだけ小さいか、寸法が変化しても異方性が小さ
いこと)が要求される。
[0002] High carbon cold rolled steel sheets are used for chain parts, gear parts, clutch parts and the like. These are manufactured by forming them into respective target product shapes and then hardening them by heat treatment such as quenching and tempering. Therefore, the material steel plate of each of the above products is required to be soft and easy to process before forming. In addition, the processed and heat-treated products have high-strength mechanical properties such as wear resistance, fatigue resistance and impact resistance, as well as dimensional accuracy after quenching and tempering. The anisotropy is small).

【0003】高強度、高靭性の高炭素薄鋼板の製造法を
開示したものとして、特開平03−24233号があ
る。これは「C,Si,Mn,P,Cu,Al,Niを
特定した高炭素薄鋼板を、焼き入れ後比較的高温で焼き
戻すことにより熱処理後の耐衝撃性、耐摩耗性に優れ製
造性と加工性に優れた鋼板を製造可能とする。」もので
ある。これに対して、焼入れ焼戻し後の寸法精度を確保
する技術については、ほとんど検討されておらず、高精
度の寸法が要求されるものについては、熱処理後に機械
加工を行っていた。この場合、高炭素鋼板は熱処理後の
硬度が高いために加工時間がかかり、また加工工具の消
耗が激しく生産性及びコストの面で支障をきたしてい
た。
Japanese Patent Application Laid-Open No. 03-24233 discloses a method for producing a high-strength, high-toughness high carbon thin steel sheet. This is because the high carbon steel sheet specified for C, Si, Mn, P, Cu, Al and Ni is tempered at a relatively high temperature after quenching, so that it has excellent impact resistance and abrasion resistance after heat treatment and excellent manufacturability. And a steel sheet with excellent workability can be manufactured. " On the other hand, a technique for ensuring dimensional accuracy after quenching and tempering has been scarcely studied, and for those requiring high-precision dimensions, machining has been performed after heat treatment. In this case, the high carbon steel sheet has a high hardness after the heat treatment, so that it takes a long processing time, and the working tool is greatly consumed, which hinders productivity and cost.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記した従
来の問題点を解消するものであり、焼入れ焼戻し等の熱
処理時の変形の異方性が小さい高炭素冷延鋼板の製造法
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and provides a method for producing a high-carbon cold-rolled steel sheet having small anisotropy of deformation during heat treatment such as quenching and tempering. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成すべく
本発明は、重量%でC:0.35〜1.4%、Si:
0.10〜0.80%、Mn:0.20〜1.5%、あ
るいは更に必要に応じCr:1.5%以下、Mo:0.
50%以下、Ni:1.20%以下、B:0.0030
%以下、Al:0.0030%以下の1種以上を含有
し、残部が実質的に鉄からなる組成の鋼を熱間圧延する
に際し、Ar3 点温度以上で熱延を終了し、巻取温度ま
で30℃/秒以上で冷却し、550〜700℃の温度域
で巻き取り、引き続いて脱スケール後に600〜680
℃間の温度で焼鈍し、40%以上の冷延率で冷間圧延、
焼鈍、調圧することを特徴とする異方性の小さい高炭素
冷延鋼板の製造法である。
In order to achieve the above-mentioned object, the present invention provides a method of the present invention wherein C: 0.35 to 1.4% by weight, Si:
0.10 to 0.80%, Mn: 0.20 to 1.5%, or, if necessary, Cr: 1.5% or less, Mo: 0.
50% or less, Ni: 1.20% or less, B: 0.0030
% Or less, Al: at least one kind of 0.0030% or less, and when the steel having a composition substantially consisting of iron is hot-rolled, hot rolling is terminated at an Ar temperature of 3 points or more, and winding is performed. It is cooled to a temperature of 30 ° C./sec or more, wound up in a temperature range of 550 to 700 ° C., and subsequently 600 to 680 after descaling.
Annealing at a temperature between ℃ and cold rolling at a cold rolling rate of 40% or more,
This is a method for producing a high-carbon cold-rolled steel sheet having small anisotropy, characterized by annealing and pressure control.

【0006】以下本発明の構成要件について詳述する。
最初に熱延後の焼鈍条件と冷間圧延条件の組み合わせに
より焼入れ焼戻し後の変形異方性が小さくなることを知
見した実験事実について述べる。本発明の高炭素冷延鋼
板は、鋼塊を熱間圧延後球状化焼鈍を施し、その後、1
回または中間焼鈍を挟んだ2回以上の冷間圧延を行い、
必要に応じて、調質圧延を施す。具体的にはC:0.5
0%、Si:0.18%、Mn:0.80%、Al:
0.035%の4.0mm厚みの熱延鋼板を脱スケール
し、後の冷延圧下率に合わせて研削した。この鋼板を5
50〜730℃×5時間の焼鈍を行い、冷延率:0〜8
0%の冷間圧延を行い0.80mm厚に調整後、670℃
×3時間の焼鈍を行った。2%の調質圧延後に100mm
φに打ち抜き、850℃×50分保定、40℃の油中に
焼入れ、400℃×50分の焼戻し処理後に円周方向の
寸法変化を測定した。円周方向での最大変化量と最小変
化量の差をΔDで表示した。熱処理による寸法変化があ
っても面内に異方性がなければ、あらかじめ熱処理前の
寸法を調整しておけばよいとの考えによる。図1にΔD
におよぼす熱延板焼鈍条件、冷延圧下率の関係を示し
た。図から明らかのように焼入れ、焼戻し後の寸法変化
の異方性は焼鈍温度、冷延圧下率に影響されること、焼
鈍温度には最適温度域があり、それは600〜680℃
の温度で冷延圧下率は40%以上に高くした方が異方性
が小さくなることがわかる。従って焼入れ、焼戻し後の
寸法変化が小さい条件として焼鈍温度:600〜680
℃と冷延圧下率40%以上の組み合わせを特定した。好
ましい範囲は熱延板の焼鈍温度630〜670℃で、冷
延圧下率は50%以上である。
Hereinafter, the constituent elements of the present invention will be described in detail.
First, the experimental fact that the deformation anisotropy after quenching and tempering is reduced by the combination of the annealing condition after hot rolling and the cold rolling condition is described. The high-carbon cold-rolled steel sheet of the present invention is subjected to spheroidizing annealing after hot rolling of an ingot,
Cold rolling two or more times with intermediate or intermediate annealing,
Temper rolling is performed as necessary. Specifically, C: 0.5
0%, Si: 0.18%, Mn: 0.80%, Al:
A 0.035% hot-rolled steel sheet having a thickness of 4.0 mm was descaled and ground in accordance with the subsequent cold rolling reduction. This steel plate
Anneal at 50 to 730 ° C. × 5 hours, cold rolling reduction: 0 to 8
0% cold rolling and adjusting to 0.80mm thickness, then 670 ℃
The annealing was performed for 3 hours. 100mm after temper rolling of 2%
It was punched into φ, kept at 850 ° C. × 50 minutes, quenched in oil at 40 ° C., and measured for dimensional change in the circumferential direction after tempering at 400 ° C. × 50 minutes. The difference between the maximum change amount and the minimum change amount in the circumferential direction is indicated by ΔD. It is thought that if there is no anisotropy in the plane even if there is a dimensional change due to the heat treatment, the dimensions before the heat treatment may be adjusted in advance. FIG. 1 shows ΔD
The relationship between the hot-rolled sheet annealing conditions and the cold-rolling reduction rate was shown. As is clear from the figure, the anisotropy of the dimensional change after quenching and tempering is affected by the annealing temperature and the rolling reduction, and there is an optimum temperature range for the annealing temperature, which is 600 to 680 ° C.
It can be seen that the anisotropy decreases as the cold rolling reduction at 40% or more is increased to 40% or more. Therefore, as a condition in which the dimensional change after quenching and tempering is small, annealing temperature: 600 to 680
A combination of at least 40 ° C. and a cold rolling reduction of 40% was specified. A preferable range is an annealing temperature of 630 to 670 ° C. of the hot rolled sheet, and a cold rolling reduction is 50% or more.

【0007】このように熱延板焼鈍と冷延条件の組み合
わせにより、焼入れ、焼戻しによる寸法変化の面内異方
性が小さくなる。一方、調質圧延直前の再結晶焼鈍温度
は焼入れ異方性にあまり影響せず、通常行われている範
囲でよい。
As described above, the in-plane anisotropy of the dimensional change due to quenching and tempering is reduced by the combination of the hot rolled sheet annealing and the cold rolling conditions. On the other hand, the recrystallization annealing temperature immediately before the temper rolling does not significantly affect the quenching anisotropy, and may be in a normal range.

【0008】次に本発明を構成する鋼組成について説明
する。Cは最終製品として使用する場合の焼入れ硬度を
支配する重要な元素である。このため最低でも0.35
%必要である。一方、C量が多くなりすぎると焼入れ時
に割れが発生するので1.4%を上限とした。Si含有
量が0.80%を超えると、フェライトが固溶強化され
鋼板が脆化する傾向をみせることから上限を0.80%
に特定した。下限は特定する必要がない。Mnは焼入れ
性を高める元素であるが、Mnが高すぎると焼入れ、焼
戻し後の衝撃特性、水素脆性を劣化させるPの偏析を助
長する元素のため、Mn量1.5%を上限に特定した。
下限は焼入れ性を確保するため0.2%は必要である。
Next, the steel composition constituting the present invention will be described. C is an important element that controls quenching hardness when used as a final product. Therefore, at least 0.35
%is necessary. On the other hand, if the C content is too large, cracks occur during quenching, so the upper limit was set to 1.4%. If the Si content exceeds 0.80%, ferrite is solid-solution strengthened and the steel sheet tends to become brittle, so the upper limit is 0.80%.
Specified. The lower limit need not be specified. Mn is an element that enhances the hardenability, but if Mn is too high, it is an element that promotes segregation of P that deteriorates the impact characteristics after quenching and tempering, and deteriorates hydrogen embrittlement. .
The lower limit is 0.2% in order to secure hardenability.

【0009】その他Cr,Mo,Ni,B,Alの1種
または2種以上を必要に応じて添加する。Crは従来か
ら焼入れ性を高めると同時に炭化物析出による耐摩耗性
を向上させる元素であることが知られている。1.5%
を超えるとこの効果が飽和するので添加する場合は1.
5%まで添加する。Moは焼入れ時のオーステナイトの
粗大化温度を高めると同時に焼入れ、焼戻しによる軟化
抵抗を高めることが知られている。しかし、0.50%
以上の添加はその効果が飽和する。本発明では必要に応
じ0.50%以下の範囲で添加する。Niは固溶体で強
化に有効な元素であると同時に靭性を高める元素である
ことが知られている。本発明の方法でも靭性を特に必要
とする場合は1.5%以下の範囲で添加する。Bは従来
から焼入れ性を高める元素として知られている。本発明
でも焼入れ性を高めるため、必要に応じて0.0030
%以下の範囲で添加される。Alは脱酸材として添加さ
れることが知られている。本発明の方法でも0.080
%以下の範囲で必要に応じ添加される。
In addition, one or more of Cr, Mo, Ni, B and Al are added as required. It has been known that Cr is an element that enhances hardenability and at the same time improves wear resistance due to carbide precipitation. 1.5%
If the amount exceeds 1, the effect is saturated.
Add up to 5%. Mo is known to increase the austenite coarsening temperature during quenching, and at the same time, increase the softening resistance due to quenching and tempering. However, 0.50%
The above addition saturates the effect. In the present invention, it is added as required in a range of 0.50% or less. It is known that Ni is a solid solution, an element effective for strengthening, and an element that enhances toughness. Also in the method of the present invention, when toughness is particularly required, it is added in a range of 1.5% or less. B has been conventionally known as an element for improving hardenability. In the present invention, if necessary, 0.0030 to improve hardenability.
% Or less. It is known that Al is added as a deoxidizer. In the method of the present invention, 0.080
% If necessary.

【0010】このような組成の鋼は転炉、あるいは電気
炉等の通常の溶解炉で溶製され、連続鋳造機、または鋼
塊−分塊圧延によりスラブが造られる。スラブは必要に
応じ、表面手入れを行う。次に熱間圧延され、熱延鋼帯
が製造される。熱延条件のうち、仕上げ温度、圧延後の
冷却条件は焼入れ歪の面内異方性に大きく影響する。仕
上げ温度がAr3点温度以下になると焼入れ・焼戻しに
よる歪の面内異方性が大きくなる。また熱延鋼板の板形
状劣化、冷却の不均一による材質バラツキも大きくなる
ので仕上げ温度はAr3 点温度以上にする必要がある。
熱間圧延後の冷却条件も重要である。仕上げ温度から巻
取温度までの冷却速度が遅くなると焼入れ・焼戻しによ
る寸法変化の面内異方性が大きくなるので熱延仕上げ温
度から巻き取りまでの平均冷却速度を30℃/秒以上に
する必要がある。好ましい範囲は35℃/秒以上であ
る。
[0010] The steel having such a composition is smelted in a conventional melting furnace such as a converter or an electric furnace, and a slab is produced by a continuous casting machine or a steel ingot-bulk rolling. The slab is surface-cleaned as needed. Next, it is hot-rolled to produce a hot-rolled steel strip. Of the hot rolling conditions, the finishing temperature and the cooling conditions after rolling greatly affect the in-plane anisotropy of quenching strain. When the finishing temperature is lower than the Ar 3 point temperature, the in-plane anisotropy of strain due to quenching and tempering increases. In addition, the finish temperature needs to be equal to or higher than the three- point Ar temperature since the material variation due to deterioration in the shape of the hot-rolled steel sheet and uneven cooling is increased.
The cooling conditions after hot rolling are also important. If the cooling rate from the finishing temperature to the winding temperature is slow, the in-plane anisotropy of the dimensional change due to quenching and tempering increases, so the average cooling rate from the hot rolling finishing temperature to the winding needs to be 30 ° C / sec or more. There is. A preferred range is at least 35 ° C./sec.

【0011】熱延板は酸洗等で脱スケール後に炭化物の
球状化処理焼鈍を行う。この炭化物球状化焼鈍温度は6
00〜680℃で行う必要がある。好ましい範囲は63
0〜670℃である。球状化焼鈍された鋼板は冷間圧延
される。冷間圧延率も先述したように焼入れ・焼戻しに
よる形状変化の面内異方性に大きく影響し、40%以上
の圧下率が必要である。好ましい範囲は同様の理由から
50%以上である。このように高炭素冷延鋼板におい
て、熱延条件、焼鈍条件、及び冷延圧下率の組み合わせ
により、異方性が小さくなる理由は定かではないが、こ
れらにより、好ましい、集合組織が形成されるためと推
定される。
The hot rolled sheet is subjected to spheroidizing annealing of carbide after descaling by pickling or the like. The carbide spheroidizing annealing temperature is 6
It needs to be performed at 00 to 680 ° C. The preferred range is 63
0-670 ° C. The spheroidized annealed steel sheet is cold-rolled. As described above, the cold rolling reduction greatly affects the in-plane anisotropy of the shape change due to quenching and tempering, and a rolling reduction of 40% or more is required. The preferred range is 50% or more for the same reason. Thus, in the high-carbon cold-rolled steel sheet, it is not clear why the anisotropy is reduced by the combination of the hot-rolling condition, the annealing condition, and the cold-rolling reduction ratio, but by these, a preferable texture is formed. It is estimated to be.

【0012】焼鈍温度は、次工程が冷間圧延か、調質圧
延かによって異なる。次に冷間圧延される場合は球状化
焼鈍と同様に600〜680℃間で行う必要があるが、
調質圧延に供される場合は再結晶すれば何度で焼鈍して
も本発明の特徴を損なわない。この調質圧延率も通常行
われている程度でよい。調質圧延された鋼板は必要に応
じ、スリットして需要家に供給され、打ち抜き等の加工
の後、焼入れ・焼戻しされ所望の特性に調整されるが、
本発明の方法で製造された鋼板は焼入れ・焼戻しによる
形状変化の面内異方性が小さく、熱処理後の寸法修正を
必要としないか、修正しても少しでよく、生産性を高め
る効果が大きい。
The annealing temperature differs depending on whether the next step is cold rolling or temper rolling. Next, when cold rolling is performed, it is necessary to perform at 600 to 680 ° C. as in the case of spheroidizing annealing.
When subjected to temper rolling, the characteristics of the present invention are not impaired no matter how many times annealing is performed if recrystallization is performed. This temper reduction rate may be a level which is usually performed. The tempered rolled steel sheet is supplied to the customer by slitting as necessary, and after processing such as punching, it is quenched and tempered and adjusted to the desired properties.
The steel sheet manufactured by the method of the present invention has a small in-plane anisotropy of shape change due to quenching / tempering, and does not require or require only a small amount of dimensional correction after heat treatment, and has the effect of increasing productivity. large.

【0013】[0013]

【実施例】表1に示す組成の鋼を同表に示す製造条件で
製造した鋼板を150mmφの円盤を打ち抜き、直径変化
を測定した後、850℃×50分の加熱後に400℃×
55分の焼戻し処理を行い、円盤の直径を測定し、最長
径と最短径の差をもって焼入れ・焼戻し処理歪とし評価
した。本発明範囲内実施例のA〜I−1,2は鋼種が変
わってもいずれも円周方向の寸法差が小さい。一方、小
番号が−3は熱延までは本発明範囲実施例と同一である
が、球状化焼鈍温度、冷延圧下率の一方または両方が本
発明範囲外の実施例であるが、どの鋼種も焼入れ・焼戻
しによる円周方向での寸法変化の異方性が大きくなって
いる。C−4は熱延条件のみが本発明範囲外の実施例で
あるが、これも寸法変化の面内異方性が大きいことがわ
かる。
EXAMPLES A steel plate having the composition shown in Table 1 was manufactured under the manufacturing conditions shown in the table, a 150 mmφ disk was punched out, the diameter change was measured, and after heating at 850 ° C. for 50 minutes, 400 ° C. ×
Tempering treatment was performed for 55 minutes, the diameter of the disk was measured, and the difference between the longest diameter and the shortest diameter was evaluated as the quenching / tempering distortion. In Examples A to I-2 and Examples I to I-2 within the scope of the present invention, the dimensional difference in the circumferential direction is small even when the steel type is changed. On the other hand, a small number of -3 is the same as the example of the present invention up to hot rolling, but one or both of the spheroidizing annealing temperature and the cold rolling reduction are examples outside the range of the present invention. Also, the anisotropy of the dimensional change in the circumferential direction due to quenching / tempering is large. C-4 is an example in which only the hot rolling conditions are out of the range of the present invention. It can be seen that the in-plane anisotropy of the dimensional change is also large.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】以上実施例で述べたように熱延条件、球
状化焼鈍温度、冷間圧延率を特定することにより、焼入
れ・焼戻しによる寸法変化の面内異方性を小さくするこ
とが可能で、熱延条件、球状化焼鈍条件、冷延圧下率の
いずれか一つでも本発明範囲外になると寸法変化の異方
性が大きくなる。これは熱処理前の硬度が低い状態で成
形するのみで焼入れ後の寸法手入れを必要としなくな
り、工業的に大変有用な技術である。
As described in the above embodiments, by specifying the hot rolling conditions, the spheroidizing annealing temperature, and the cold rolling reduction, it is possible to reduce the in-plane anisotropy of the dimensional change due to quenching and tempering. If any one of the hot rolling conditions, the spheroidizing annealing conditions, and the cold rolling reduction is out of the range of the present invention, the anisotropy of the dimensional change becomes large. This is an industrially very useful technique because it only requires molding before heat treatment with low hardness and does not require dimensional maintenance after quenching.

【図面の簡単な説明】[Brief description of the drawings]

【図1】球状化焼鈍温度と冷間圧延率の焼入れ・焼戻し
後の寸法変化の面内異方性への影響を説明する図面であ
る。
FIG. 1 is a drawing for explaining the effect of dimensional change after quenching / tempering on in-plane anisotropy of spheroidizing annealing temperature and cold rolling reduction.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−50427(JP,A) 特開 昭62−109929(JP,A) 特開 昭62−284019(JP,A) 特開 平3−47922(JP,A) 特開 平5−171288(JP,A) 特公 昭57−53418(JP,B2) 特公 平2−19173(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 C21D 8/00 - 8/02 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-55-50427 (JP, A) JP-A-62-109929 (JP, A) JP-A-62-284019 (JP, A) JP-A-3-3 47922 (JP, A) JP-A-5-171288 (JP, A) JP-B-57-53418 (JP, B2) JP-B-2-19173 (JP, B2) (58) Fields investigated (Int. 7 , DB name) C21D 9/46 C21D 8/00-8/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%でC:0.35〜1.4%、S
i:0.10〜0.80%、Mn:0.20〜1.5
%、必要に応じてCr:1.5%以下、Mo:0.50
%以下、Ni:1.20%、B:0.0030%以下、
Al:0.080%以下の1種または2種以上を含有す
る鋼を熱間圧延、脱スケール、焼鈍、冷間圧延、及び調
質圧延を行う高炭素冷延鋼板の製造方法において、熱間
圧延仕上げ温度をAr3 点温度以上とし、熱間圧延終了
から巻き取りまでを30℃/秒以上で冷却し、550〜
700℃の温度域で巻き取るとともに、冷間圧延前の焼
鈍温度を600〜680℃とし、更に冷間圧延の圧下率
を40%以上とすることを特徴とする異方性の小さい高
炭素冷延鋼板の製造法。
1. C: 0.35 to 1.4% by weight, S
i: 0.10 to 0.80%, Mn: 0.20 to 1.5
%, If necessary, Cr: 1.5% or less, Mo: 0.50
%, Ni: 1.20%, B: 0.0030% or less,
Al: A method for producing a high-carbon cold-rolled steel sheet in which a steel containing one or more of 0.080% or less is subjected to hot rolling, descaling, annealing, cold rolling, and temper rolling. The rolling finishing temperature is set to be equal to or higher than the Ar 3 point temperature, and the temperature from the end of hot rolling to winding is cooled at 30 ° C./sec or more.
A high anisotropy high carbon cold roll characterized by winding at a temperature range of 700 ° C., an annealing temperature before cold rolling of 600 to 680 ° C., and a rolling reduction of cold rolling of 40% or more. Manufacturing method of rolled steel sheet.
JP06075793A 1993-03-19 1993-03-19 Manufacturing method of high carbon cold rolled steel sheet with small anisotropy Expired - Lifetime JP3272804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06075793A JP3272804B2 (en) 1993-03-19 1993-03-19 Manufacturing method of high carbon cold rolled steel sheet with small anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06075793A JP3272804B2 (en) 1993-03-19 1993-03-19 Manufacturing method of high carbon cold rolled steel sheet with small anisotropy

Publications (2)

Publication Number Publication Date
JPH06271935A JPH06271935A (en) 1994-09-27
JP3272804B2 true JP3272804B2 (en) 2002-04-08

Family

ID=13151473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06075793A Expired - Lifetime JP3272804B2 (en) 1993-03-19 1993-03-19 Manufacturing method of high carbon cold rolled steel sheet with small anisotropy

Country Status (1)

Country Link
JP (1) JP3272804B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1157491C (en) 2000-01-27 2004-07-14 杰富意钢铁株式会社 High carbon steel sheet and method for production thereof
JP5087865B2 (en) * 2005-06-29 2012-12-05 Jfeスチール株式会社 High carbon cold-rolled steel sheet and method for producing the same
EP1905851B1 (en) 2005-06-29 2015-11-04 JFE Steel Corporation High-carbon hot-rolled steel sheet and process for producing the same
WO2007000954A1 (en) * 2005-06-29 2007-01-04 Jfe Steel Corporation Process for manufacture of cold-rolled high-carbon steel plate
CN115044833B (en) * 2022-06-13 2023-09-15 首钢集团有限公司 High-surface-quality 65Mn cold-rolled sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH06271935A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
EP1846584B1 (en) Austenitic steel having high strength and formability method of producing said steel and use thereof
EP1143022B1 (en) Method for producing a thin steel plate having high strength
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
CN112430771A (en) Cold-rolled steel plate for precision stamping high-speed cutting chain saw blade and manufacturing method thereof
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JP3272804B2 (en) Manufacturing method of high carbon cold rolled steel sheet with small anisotropy
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3713804B2 (en) Thin hot-rolled steel sheet with excellent formability
JP3644216B2 (en) Manufacturing method of high carbon hot rolled steel sheet
JP4300672B2 (en) Stainless steel plate for motorcycle disc brakes requiring no quenching and manufacturing method thereof
CN111742076B (en) High carbon cold rolled steel sheet and method for manufacturing same
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
CN116748300A (en) Continuous casting and rolling production method of Cr-free 1.5mm45 steel
JPH07310122A (en) Production of ferritic stainless steel strip having excellent bulging formability
JP3371952B2 (en) Manufacturing method of soft high carbon steel sheet for processing that can omit pickling process
JP3026540B2 (en) Manufacturing method of stainless steel sheet
JP3128487B2 (en) Method for producing ferritic stainless steel sheet with good ridging characteristics
JPH1088237A (en) Production of cold rolled high carbon steel strip
JP4151443B2 (en) Thin steel plate with excellent flatness after punching and method for producing the same
JP3913088B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent deep drawability
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JP2566068B2 (en) Method for manufacturing steel bar with excellent cold workability
JPH03150316A (en) Production of cold rolled steel sheet for deep drawing
JP2000282147A (en) Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip
JP3613015B2 (en) Method for producing high carbon steel sheet having high ductility and hardenability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 12