JP3270827B2 - Method for producing polylactic acid - Google Patents

Method for producing polylactic acid

Info

Publication number
JP3270827B2
JP3270827B2 JP08357898A JP8357898A JP3270827B2 JP 3270827 B2 JP3270827 B2 JP 3270827B2 JP 08357898 A JP08357898 A JP 08357898A JP 8357898 A JP8357898 A JP 8357898A JP 3270827 B2 JP3270827 B2 JP 3270827B2
Authority
JP
Japan
Prior art keywords
polymerization
reaction
screw
twin
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08357898A
Other languages
Japanese (ja)
Other versions
JPH11279267A (en
Inventor
幸弘 炭廣
武 福島
邦彦 小柳
憲明 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP08357898A priority Critical patent/JP3270827B2/en
Publication of JPH11279267A publication Critical patent/JPH11279267A/en
Application granted granted Critical
Publication of JP3270827B2 publication Critical patent/JP3270827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、乳酸モノマーを重
縮合反応させてポリ乳酸を製造する直接重縮合法におい
て、溶融重合工程及び冷却段階で固相重合を効率的に行
うことが可能なポリ乳酸の製造方法及び装置に関する。
TECHNICAL FIELD The present invention relates to a polycondensation method for producing polylactic acid by subjecting a lactic acid monomer to a polycondensation reaction, which is capable of efficiently performing solid phase polymerization in a melt polymerization step and a cooling step. The present invention relates to a method and an apparatus for producing lactic acid.

【0002】[0002]

【従来の技術】乳酸を原料とするポリ乳酸は、容易に加
水分解や熱分解により乳酸の環状二重体たるラクチドに
なるため、ケミカルリサイクルができ、更に地中や海水
中あるいはコンポスト中で炭酸ガスと水に分解されるこ
とや、透明性や剛性に優れること及び他の生分解性の物
質と共重合させて種々のグレードのポリマーの設計が可
能であることから、医療用材料のみならず、フィルム、
ブロー、繊維や一般の成形品の材料としても注目を集め
つつある。
2. Description of the Related Art Polylactic acid made from lactic acid is easily hydrolyzed or thermally decomposed into lactide, which is a cyclic duplex of lactic acid, so that it can be chemically recycled. It is decomposed into water and water, and it has excellent transparency and rigidity, and it is possible to design polymers of various grades by copolymerizing with other biodegradable substances. the film,
It is also attracting attention as a material for blow, fiber and general molded products.

【0003】従来、ポリ乳酸は、環状二重体であるラク
チドを開環重合させることによって製造されていた。し
かし、この方法はラクチド製造工程や精製工程でのコス
トが多大であることから実用化への大きな障害となって
いる。
Hitherto, polylactic acid has been produced by ring-opening polymerization of lactide, which is a cyclic dimer. However, this method is a major obstacle to practical use because of the large cost in the lactide production step and the purification step.

【0004】そのため、コスト低減をねらって、乳酸モ
ノマーを直接重縮合させて、ポリ乳酸を製造する方法が
提案されている。この方法においては、乳酸のモノマ
ー、ラクチド(プレポリマー)及びポリマー並びに水と
の間で平衡関係があり、乳酸の重縮合を進めるために
は、まず副生する水を系外に除去することと、生成した
ポリマーの解重合を防止するためラクチドの濃度を一定
以上に維持することが必要である。
For this reason, there has been proposed a method for producing polylactic acid by directly polycondensing a lactic acid monomer in order to reduce costs. In this method, there is an equilibrium between the monomer, lactide (prepolymer) and polymer of lactic acid and water. In order to proceed with the polycondensation of lactic acid, it is necessary to first remove by-product water out of the system. In order to prevent depolymerization of the produced polymer, it is necessary to maintain the concentration of lactide at a certain level or more.

【0005】しかしながら、従来の方法(特開平6−2
98913号公報や特開平6−298914号公報)は
重縮合反応で副生する水や低沸点成分を系外に効率よく
除去するために多量の溶媒を反応系に加え、副生水と共
に系外に真空ポンプで吸引し水や低沸点成分を分離した
後、溶媒を精製して反応系に循環させるものであるた
め、多量の溶媒を必要とする。その結果、精製、循環コ
ストが大きいこと並びに重合終了後に多量の溶媒が製品
ポリマーに残留し、その分離精製にコストが多大にかか
ること等の問題があった。また、反応系を真空引きする
ため、反応機、周辺機器及び配管の機密を保つ必要から
装置、配管のコストが大きくなる等の問題もあった。更
に、反応の中間及び最終段階において従来の真空系で
は、真空ポンプの排気中にラクチドや溶媒の蒸気がその
操作温度(反応温度)の蒸気圧分だけ存在し系外へ排出
されるため、反応槽中のラクチドの濃度が下がり、高分
子量化の速度が小さいという問題があった。
However, the conventional method (Japanese Patent Laid-Open No. 6-2)
JP-A-98913 and JP-A-6-298914) add a large amount of a solvent to the reaction system in order to efficiently remove water and low-boiling components by-product in the polycondensation reaction outside the system. After separating water and low-boiling components by suction with a vacuum pump, the solvent is purified and circulated to the reaction system, so that a large amount of solvent is required. As a result, there are problems that purification and circulation costs are large, and that a large amount of solvent remains in the product polymer after completion of the polymerization, and that separation and purification are costly. In addition, since the reaction system is evacuated, the reactor, peripheral devices and piping must be kept confidential. Furthermore, in the conventional vacuum system in the middle and final stages of the reaction, the vapor of lactide or solvent exists in the evacuation of the vacuum pump by the vapor pressure of the operating temperature (reaction temperature) and is discharged out of the system. There was a problem that the concentration of lactide in the tank was reduced and the rate of increasing the molecular weight was low.

【0006】そこで、かかる問題を解決する方法として
本出願人は、反応系を高真空に保つ際、反応系外に排出
される水、ラクチド、溶媒及び乳酸低分子化合物のう
ち、水以外のものを還流装置で冷却液化して、還流させ
る方法を開発し、既に特許出願(特開平8−14364
9号公報)した。
Therefore, as a method for solving such a problem, the applicant of the present invention has proposed a method of maintaining water in a reaction system at a high vacuum, in which water, lactide, solvent and low-molecular-weight lactic acid compound other than water are discharged out of the reaction system. Has been developed by cooling and liquefying it with a reflux device and refluxing it, and a patent application (JP-A-8-14364) has already been filed.
No. 9).

【0007】しかしながら、これら方法でも、ラクチド
の還流は満足できるものではなかった。すなわち、ラク
チドは約95℃の融点であるため、還流装置内で強冷す
ると結晶化してしまう。従って、マイルドな冷却としな
ければならないが、これでは、水と共にラクチドの系外
の流出が避けられない。この結果高分子量のポリ乳酸が
得られ難くなる。
However, even with these methods, the reflux of lactide was not satisfactory. That is, since lactide has a melting point of about 95 ° C., it is crystallized when it is strongly cooled in a reflux device. Therefore, mild cooling must be performed, but this inevitably causes lactide to flow out of the system together with water. As a result, it becomes difficult to obtain high molecular weight polylactic acid.

【0008】これに対し、強冷却することにより、還流
装置でラクチドの結晶を生じせしめ、結晶のまま反応液
内に還流することも考えられるが、ラクチドの昇華によ
る蒸気圧があり、ラクチドの系外への流出は避けられな
いこと、及び結晶の掻き取り工程に問題があり、還流効
率の低下は避けられない。
[0008] On the other hand, it is conceivable that lactic acid crystals are generated in a refluxing device by vigorously cooling and the lactide is refluxed in the reaction solution as it is. However, there is a vapor pressure due to sublimation of lactide, and lactide system It is inevitable to flow out, and there is a problem in the step of scraping the crystals, and a decrease in reflux efficiency is inevitable.

【0009】更に、還流方式では、ラクチド、低沸点物
及び溶媒の系外への留出を抑えるために高真空にでき
ず、反応後期において微量の水分の除去ができずポリマ
ーの到達分子量が頭打ちになること、及び高温で長時間
反応を行うと解重合を生じる場合があること等の問題が
あった。
Furthermore, in the reflux method, a high vacuum cannot be applied in order to suppress the lactide, low-boiling substances and solvent from distilling out of the system, and a small amount of water cannot be removed in the latter stage of the reaction, and the reached molecular weight of the polymer reaches a peak. And that a long-time reaction at a high temperature may cause depolymerization.

【0010】この問題に対しては、まず乳酸の直接重縮
合反応を還流装置を用いて比較的高温で溶融重合を行
い、次いで、温度を下げて固体状のポリ乳酸を生成させ
て固相重合を行えば、ラクチドの発生が抑制され、高真
空化でき、微量の副生水を効率よく除去できるため、高
分子量のポリ乳酸が工業的に有利に得られることが見出
され、解決を見た。すなわち二段階重合方法である。
[0010] In order to solve this problem, first, a direct polycondensation reaction of lactic acid is carried out by melt polymerization at a relatively high temperature using a reflux apparatus, and then the temperature is lowered to produce solid polylactic acid and solid phase polymerization. It has been found that lactide generation is suppressed, high vacuum can be achieved, and trace amounts of by-product water can be removed efficiently, so that high molecular weight polylactic acid can be obtained industrially advantageously. Was. That is, it is a two-stage polymerization method.

【0011】この二段階重合方法において、反応槽中の
攪拌装置としては、通常アンカー型やヘリカルリボン翼
の1軸の攪拌翼が使用されている。これらの攪拌翼は、
限られた粘度領域例えばアンカー型(約1,000ポイ
ズ)、ヘリカルリボン翼(20,000ポイズ)が限界
でそれ以上の粘度は攪拌できない状態になる。また、高
粘度になるにつれポリマーが攪拌翼に付着し共まわりを
起こす。このような状態になると重縮合反応が進行せ
ず、逆に熱による分解反応が生じ分子量の低下を起こす
原因となる。
In this two-stage polymerization method, a single-axis stirring blade such as an anchor type or a helical ribbon blade is usually used as a stirring device in a reaction tank. These stirring blades
In a limited viscosity region, for example, an anchor type (about 1,000 poise) or a helical ribbon blade (20,000 poise) is limited, and further viscosity cannot be stirred. Further, as the viscosity increases, the polymer adheres to the stirring blade and causes co-rotation. In such a state, the polycondensation reaction does not proceed, and on the contrary, a decomposition reaction due to heat occurs, which causes a decrease in molecular weight.

【0012】また、二段階重合方法としては、回分式
重合槽で溶融プレポリマーを製造し、次に、押出機でペ
レット化する。その後、固相用回分式重合槽にて固相重
合を行う方法、溶融重合終了後(攪拌停止後)回分式
重合槽を結晶化するために冷却して融点以下で固相重合
を行う(この時ポリマーは、ブロック状である)。その
後、回分式重合槽を融点以上に溶融させそのままダイス
を通してペレットを製造する方法若しくは、押出機を用
いてペレットを製造する方法とがある。しかし、これら
の方法は、に関しては、プレポリマーの分子量が低い
ため固相重合にかなり時間がかかる。に関しては、ブ
ロック状のため固相重合に時間がかかる問題や、固相重
合終了時に再度溶融させるため加熱が必要となるため解
重合を生じる場合があること等の問題があった。
As a two-stage polymerization method, a molten prepolymer is produced in a batch polymerization tank and then pelletized by an extruder. After that, solid-phase polymerization is performed in a batch polymerization tank for solid phase, and after completion of melt polymerization (after stirring is stopped), the batch polymerization tank is cooled to crystallize and solid-phase polymerization is performed at a temperature equal to or lower than the melting point. Sometimes the polymer is blocky). Thereafter, there is a method in which the batch polymerization tank is melted to a temperature equal to or higher than the melting point and pellets are produced through a die as is, or a method in which pellets are produced using an extruder. However, in these methods, solid-state polymerization takes considerably longer due to the low molecular weight of the prepolymer. However, there are problems such as that the solid state polymerization takes a long time due to the block shape, and that depolymerization may occur due to the necessity of heating for melting again at the end of the solid state polymerization.

【0013】[0013]

【発明が解決しようとする課題】従って本発明の目的
は、攪拌粘度限界、攪拌翼のポリマー付着、固相重合に
時間がかかる及び固相重合後の再加熱の分子量の低下の
問題を解決し、高分子量のポリ乳酸を工業的に有利に製
造し得る方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the problems of the limit of stirring viscosity, the adhesion of polymer to stirring blades, the time required for solid-state polymerization and the decrease in molecular weight of reheating after solid-state polymerization. Another object of the present invention is to provide a method for industrially and advantageously producing high molecular weight polylactic acid.

【0014】[0014]

【課題を解決するための手段】斯かる実状に鑑み本発明
者は上記問題を解決すべく鋭意研究を行った結果、二段
階重合方法に用いる反応槽中の攪拌装置を二軸スクリュ
式攪拌装置とすれば、高粘度のポリマーも攪拌でき、溶
融重合時のモノマー又は/及びポリマーの表面更新性が
よく、溶融重合の時間短縮が図られ、更に固相重合にお
いては、ポリ乳酸の融点以下の温度でも粉砕が良好でこ
の表面積が大きくでき高真空下で脱水が進み固相重合時
間の短縮も可能となることを見出し本発明を完成した。
Means for Solving the Problems In view of such a situation, the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, a stirrer in a reaction tank used in a two-stage polymerization method is a twin-screw stirrer. In this case, a high-viscosity polymer can be stirred, the surface renewability of the monomer or / and the polymer during the melt polymerization is good, the time of the melt polymerization can be shortened, and in the solid-phase polymerization, the melting point of the polylactic acid is lower than the melting point. It has been found that the pulverization is good even at a temperature, the surface area can be increased, the dehydration proceeds under a high vacuum, and the solid-state polymerization time can be shortened.

【0015】すなわち本発明は、乳酸モノマーを反応槽
に仕込み、該反応槽から発生する水、ラクチド、乳酸の
低分子化合物及び場合により溶媒を還流し、水を反応系
外に除去しつつ溶融重合を行い、次いで得られた分子量
3〜6万のポリ乳酸をその融点以下の温度で固相重合す
るポリ乳酸の製造方法において、該反応槽内の攪拌を二
軸スクリュ式攪拌装置を用いて行うことを特徴とする平
均分子量10万以上のポリ乳酸の製造方法を提供するも
のである。
That is, according to the present invention, a lactic acid monomer is charged into a reaction vessel, and water, lactide, low molecular weight compounds of lactic acid and optionally a solvent generated from the reaction vessel are refluxed, and melt polymerization is carried out while removing water out of the reaction system. And then subjecting the resulting polylactic acid having a molecular weight of 30,000 to 60,000 to solid-state polymerization at a temperature equal to or lower than its melting point, in a method for producing polylactic acid, wherein stirring in the reaction vessel is performed using a twin-screw agitator. It is intended to provide a method for producing polylactic acid having an average molecular weight of 100,000 or more.

【0016】また本発明は、二軸スクリュ式攪拌装置を
内部に有する反応槽と、この上部に接続する還流装置
と、この還流装置に接続する真空ポンプと、別途、反応
槽に接続する真空ポンプを有するポリ乳酸の製造装置を
提供するものである。
The present invention also provides a reaction tank having a twin-screw agitator therein, a reflux device connected to the upper part thereof, a vacuum pump connected to the reflux device, and a vacuum pump separately connected to the reaction tank. It is intended to provide an apparatus for producing polylactic acid having the following.

【0017】[0017]

【発明の実施の形態】本発明に用いる乳酸モノマーは、
D−体、L−体などの光学活性体又は光学活性を持たな
いD,L−体及びこれらの混合物のいずれでもよく、好
ましくは純度が85%以上のものを用いる。これらは、
まず従来法により重合反応を行う。具体的には、例えば
図1に示す如く装置を用い、原料である乳酸を回分式の
重合槽に仕込み槽内を窒素ガスやアルゴンガス等の不活
性ガスで置換した後、加熱、減圧下で重合反応を行う。
なお、重合槽は縦型でも横型でもよいが、材料の排出を
考慮すると縦型が好ましい。
DETAILED DESCRIPTION OF THE INVENTION The lactic acid monomer used in the present invention is:
Any of an optically active substance such as a D-form or an L-form, or a D or L-form having no optical activity, and a mixture thereof may be used. Preferably, a substance having a purity of 85% or more is used. They are,
First, a polymerization reaction is performed by a conventional method. Specifically, for example, using an apparatus as shown in FIG. 1, lactic acid as a raw material is charged into a batch-type polymerization tank, and the inside of the tank is replaced with an inert gas such as nitrogen gas or argon gas. Perform the polymerization reaction.
The polymerization tank may be a vertical type or a horizontal type, but a vertical type is preferable in consideration of discharge of materials.

【0018】本発明に用いる反応槽内の二軸スクリュ式
攪拌装置は、2本のスクリュが互いに噛み合う状態で配
設されたものであっても噛み合わない状態で配設された
ものでもよいが、噛み合う状態で配設されたものが好ま
しい。また2本のスクリュはそれぞれ独立して回転で
き、正回転、逆回転、同方向回転、異方向回転が可能な
ものが好ましい。スクリュのタイプは、フルフライトス
クリュやニーディングデスク等が好ましいものとして例
示される。スクリュのタイプはこの他特殊なものであっ
てもよく、また数種のタイプの組み合わせでもよい。ま
た、スクリュは組み替えが可能なセグメントタイプのも
のが好ましい。スクリュのタイプを図2及び図3に例示
する。
The twin-screw agitator in the reaction tank used in the present invention may be one in which two screws are engaged with each other or one in which they are not engaged. It is preferable that they are arranged in a meshing state. Further, it is preferable that the two screws can rotate independently of each other and can rotate forward, backward, in the same direction, and in the opposite direction. The screw type is preferably exemplified by a full flight screw or a kneading desk. The screw type may be other special types, or a combination of several types. Further, the screw is preferably of a segment type that can be recombined. FIGS. 2 and 3 show examples of screw types.

【0019】このような重合槽を用いて、最初の溶融重
合を行う際の反応温度は、150〜200℃が好まし
く、特に150〜175℃が好ましい。反応温度が低す
ぎると反応が十分に進行せず、高すぎると解重合反応が
起こりラクチドの生成が著しくなるので好ましくない。
The reaction temperature when the first melt polymerization is carried out using such a polymerization tank is preferably from 150 to 200 ° C, particularly preferably from 150 to 175 ° C. If the reaction temperature is too low, the reaction does not proceed sufficiently. If the reaction temperature is too high, a depolymerization reaction occurs and the production of lactide becomes remarkable, which is not preferable.

【0020】また、溶融重合時の圧力は、10〜30to
rrの範囲が好ましく、特に15〜20torrとすることが
好ましい。圧力を低くしすぎると、水とともに乳酸モノ
マーも留去されてしまうことがあり、圧力を高くしすぎ
ると、副生水が留去され難くなり好ましくない。このと
き、従来は重合が進むにつれて高粘度になるため、攪拌
の限界が生じていたが、本装置は、攪拌限界が今までの
数十倍の能力があり、また、攪拌翼にポリマーが付着し
てもスクリーニング性に優れているためポリマーを掻き
取りながら攪拌できる。
The pressure during melt polymerization is 10 to 30 to
The range of rr is preferable, and particularly preferably 15 to 20 torr. If the pressure is too low, the lactic acid monomer may be distilled off together with the water, and if the pressure is too high, the by-product water is difficult to be distilled off, which is not preferable. At this time, in the past, the viscosity increased as the polymerization progressed, so that the limit of stirring occurred.However, this device has the stirring limit of several tens times the capacity of the past, and the polymer adheres to the stirring blade. However, since it has excellent screening properties, it can be stirred while scraping the polymer.

【0021】乳酸の脱水重縮合において、その反応速度
を高めるためには副生水を迅速に系外へ留去させること
が重要である。このため、還流管3、4と冷却トラップ
5を介し真空ポンプ6で重合槽の気相から真空引きを行
う。これにより重合槽内の乳酸中の水分が除去され、そ
れに伴って乳酸が重縮合し徐々に高分子化していく。こ
こで用いる還流装置は、管内に逆ネジ方向のらせん型も
しくはスクリュ型の抵抗体を設けた従来の還流管を用い
てもよいが、多管式熱交換凝縮器を用いることが好まし
い。
In the dehydration polycondensation of lactic acid, it is important to quickly remove by-product water from the system in order to increase the reaction rate. For this reason, a vacuum is drawn from the gas phase of the polymerization tank by the vacuum pump 6 through the reflux pipes 3 and 4 and the cooling trap 5. As a result, water in the lactic acid in the polymerization tank is removed, and accordingly, the lactic acid is polycondensed and gradually polymerized. The reflux device used here may be a conventional reflux tube provided with a spiral or screw type resistor in the reverse screw direction in the tube, but it is preferable to use a multi-tube heat exchange condenser.

【0022】本発明に用いられる多管式熱交換凝縮器
は、筒状本体の管板に緻密に垂直配置された多数の凝縮
伝熱管を有し、反応槽から流入する伝熱管内の混合蒸気
を軸直角方向断面での温度分布を最小に抑え、蒸気の均
一冷却が可能な構造となっており、斯かる多管式熱交換
凝縮器としては例えばデフレグメーターが好ましいもの
として挙げられる。尚、本発明に於て当該多管式熱交換
凝縮器は、1台のみを設置しても良いが、冷却温度に差
をつけるため2台異常を直列状に多段設置併用すること
もできる。
The multi-tube heat exchange condenser used in the present invention has a large number of condensation heat transfer tubes densely arranged vertically on a tube plate of a cylindrical main body, and mixed steam in the heat transfer tubes flowing from the reaction tank. Has a structure capable of minimizing the temperature distribution in a cross section perpendicular to the axis and enabling uniform cooling of the steam. As such a multi-tube heat exchange condenser, for example, a dephlegmator is preferable. In the present invention, only one multi-tube heat exchange condenser may be installed, but two abnormalities may be used in series in a multi-stage manner in order to make a difference in cooling temperature.

【0023】因に、かかる多管式熱交換凝縮器は、伝導
管の長さを十分長くすることにより、ラクチドの凝固点
付近の高い冷却温度でもラクチド、乳酸低分子化合物あ
るいは更に溶媒を完全に還流させ、反応系外への飛散を
防止することができると共に、例えば冷却温度を50〜
90℃と少し低くしても、ラクチドの結晶は生成するも
のの、従来のスクリュタイプや邪魔板タイプと異なっ
て、当該結晶は垂直に配置された伝熱管の内壁に形成さ
れるので、溶媒(液体)や乳酸(液体)更には低分子化
合物の流下に伴って洗い流され、伝導管内が閉塞される
ことはない。
In this multi-tube heat exchange condenser, by sufficiently increasing the length of the conduction tube, the lactide, lactic acid low-molecular compound or the solvent is completely refluxed even at a high cooling temperature near the freezing point of lactide. To prevent scattering outside the reaction system and, for example, to reduce the cooling temperature to 50 to
Even if the temperature is slightly lowered to 90 ° C., lactide crystals are formed, but unlike the conventional screw type or baffle plate type, the crystals are formed on the inner wall of the vertically arranged heat transfer tube, so that the solvent (liquid ), Lactic acid (liquid), and low-molecular-weight compounds are washed away, and the inside of the conductive tube is not blocked.

【0024】ラクチドの還流にあたっては、還流管によ
っては、還流管内がラクチドの融点以下となると即結晶
化を起こして管内を閉塞してしまうため、これを防ぐ目
的で溶媒を用いてもよい。溶媒としては、ジブチルフタ
レート、ジエチルヘキシルフタレート、ジエチルフタレ
ート、ジメチルフタレートなど、フタル酸エステル系の
ものが最適である。
In the reflux of lactide, depending on the reflux tube, if the inside of the reflux tube becomes lower than the melting point of lactide, crystallization occurs immediately and the inside of the tube is closed, so that a solvent may be used for the purpose of preventing this. As the solvent, phthalate-based solvents such as dibutyl phthalate, diethylhexyl phthalate, diethyl phthalate and dimethyl phthalate are most suitable.

【0025】溶媒の添加量は、反応で生じる乳酸オリゴ
マー100重量部に対し好ましくは5〜25重量部、更
に好ましくは7〜20重量部の範囲である。添加量が5
重量部未満の場合は、溶媒がラクチドの還流やポリマー
の溶融粘度低下に十分作用せず、逆に25重量部を超え
ると、ポリマー中に可塑材として残存させた場合、成形
加工時における分子量低下や成形品の保管中における品
質低下の原因となることがある。
The amount of the solvent to be added is preferably 5 to 25 parts by weight, more preferably 7 to 20 parts by weight, based on 100 parts by weight of the lactic acid oligomer produced by the reaction. 5 added
When the amount is less than 25 parts by weight, the solvent does not sufficiently act on the reflux of lactide and the decrease in the melt viscosity of the polymer. And quality deterioration during storage of molded articles.

【0026】上記方法により反応を進めて行き、ポリ乳
酸の分子量Mwが3〜6万位になると、重縮合が進んで
も発生する水の量が極端に減少してくる。この段階にな
ると本来除去したい水分が、還流により完全に反応系に
返したいラクチドや溶媒中に溶解平衡濃度あるいは共沸
組成濃度で留まり、系外に留去することが非常に困難と
なり、分子量の増大速度が著しく低下する。このため数
平均分子量が10万程度で頭打ちとなり、これ以上の高
分子量のポリ乳酸を得ることは困難となる。
When the reaction proceeds by the above method and the molecular weight Mw of the polylactic acid reaches about 30,000 to 60,000, the amount of water generated is extremely reduced even if the polycondensation proceeds. At this stage, the water to be originally removed remains in the lactide or solvent which is desired to be completely returned to the reaction system by reflux at a dissolution equilibrium concentration or an azeotropic composition concentration, and it becomes very difficult to evaporate out of the system. The rate of increase is significantly reduced. For this reason, the number average molecular weight reaches a peak at about 100,000, and it becomes difficult to obtain polylactic acid having a higher molecular weight.

【0027】そこで、溶融重合を終了し、反応槽の温度
を下げ、得られたポリ乳酸の融点以下、好ましくは、こ
の融点より10〜20℃低い温度に設定する。特に溶融
重合終了後、徐々に冷却してポリ乳酸を結晶化させ2個
体状とし、再びこの融点より10〜20℃低い温度に加
熱し、後の固相重合を行うことが好ましい。
Therefore, the melt polymerization is terminated, the temperature of the reaction vessel is lowered, and the temperature is set to a temperature lower than the melting point of the obtained polylactic acid, preferably 10 to 20 ° C. lower than this melting point. In particular, it is preferred that after the completion of the melt polymerization, the polylactic acid is gradually cooled to crystallize the polylactic acid into two solids, heated again to a temperature lower by 10 to 20 ° C. than this melting point, and then subjected to solid phase polymerization.

【0028】固相重合への操作を図1の装置で説明する
と、溶融重合終了後、温度を上述の如く下げ、バルブ2
aを閉め、バルブ2bを開く、バルブ2bの下流には、
冷却トラップ9と真空ポンプ10が設置され、これによ
り水を除去する。
The operation for solid-phase polymerization will be described with reference to the apparatus shown in FIG. 1. After the completion of the melt polymerization, the temperature is lowered as described above,
a is closed and the valve 2b is opened. Downstream of the valve 2b,
A cooling trap 9 and a vacuum pump 10 are provided to remove water.

【0029】固相重合は、ポリ乳酸の融点以下の温度で
行うが、好ましくは、融点の10〜20℃低い温度、す
なわち120〜170℃の範囲で行うことが好ましい。
また圧力は、固相で重合を行うためラクチド等の副生成
物が少なく、溶融重合より低い圧力下で行うことがで
き、水の除去効果が高まり、平衡がポリ乳酸側になり、
高分子量のポリ乳酸を生産するのに適している。具体的
には、0.1〜2torr程度で重合を行うことが好まし
い。更に、二軸スクリュにより、ポリ乳酸の表面積が増
加し、水の除去効果がいっそう高まる。
The solid phase polymerization is carried out at a temperature lower than the melting point of the polylactic acid, but is preferably carried out at a temperature lower by 10 to 20 ° C. than the melting point, that is, in a range of 120 to 170 ° C.
In addition, the pressure is low in by-products such as lactide because the polymerization is carried out in the solid phase, it can be carried out under a lower pressure than the melt polymerization, the effect of removing water increases, and the equilibrium is on the polylactic acid side
Suitable for producing high molecular weight polylactic acid. Specifically, it is preferable to carry out the polymerization at about 0.1 to 2 torr. Furthermore, the twin screw increases the surface area of the polylactic acid, further enhancing the water removal effect.

【0030】固相重合終了後は、再び反応槽を加熱する
ことなく、スクリュで、ポリ乳酸を反応槽から取り出す
ことができる。
After the completion of the solid-phase polymerization, the polylactic acid can be taken out of the reaction tank with a screw without heating the reaction tank again.

【0031】なお、溶融重合と固相重合は、別々の反応
槽で行ってもよい。その際、二軸スクリュ攪拌装置は、
それぞれの反応槽中に配設することが好ましい。
The melt polymerization and the solid phase polymerization may be performed in separate reaction tanks. At that time, the twin screw stirring device
It is preferable to dispose in each reaction tank.

【0032】本発明の重合反応においては、触媒を用い
ることができる。この触媒としては、塩化第一スズ、オ
クチル酸スズ、酸化アンチモン等の金属系酸触媒を挙げ
ることができる。これらの触媒は、テトラヒドロフラ
ン、乳酸ブチル、クロロホルム、アセトン、キシレン、
エタノール、ベンゼン等の溶媒に完全溶解させた後、反
応液に添加することが望ましい。この触媒添加操作は、
反応液の温度が高い段階で行うと、反応液である乳酸オ
リゴマーの解重合触媒として作用し、ラクチドの生成を
促す原因となるため注意しなければならない。また、前
記触媒群の毒性が高いことを考慮すれば、酢酸マンガ
ン、酢酸亜鉛、酢酸アルミニウム、ジエチル亜鉛等の非
金属酸触媒を用いることもできる。触媒の使用量は、金
属系触媒の場合、反応液である乳酸オリゴマー100重
量部に対して0.001〜0.5重量部、更に好ましく
は0.05〜0.1重量部の範囲である。また、非金属
系触媒の場合は、金属系触媒に比べて触媒活性が低いた
め、乳酸オリゴマーに対して0.05〜1重量部、更に
は0.1〜0.5重量部の範囲で使用するのが好まし
い。
In the polymerization reaction of the present invention, a catalyst can be used. Examples of the catalyst include metal-based acid catalysts such as stannous chloride, tin octylate, and antimony oxide. These catalysts include tetrahydrofuran, butyl lactate, chloroform, acetone, xylene,
It is desirable to completely dissolve it in a solvent such as ethanol or benzene and then add it to the reaction solution. This catalyst addition operation,
Care must be taken when the reaction is performed at a high temperature, because it acts as a catalyst for depolymerizing the lactic acid oligomer, which is the reaction liquid, and promotes the production of lactide. In consideration of the high toxicity of the catalyst group, a nonmetallic acid catalyst such as manganese acetate, zinc acetate, aluminum acetate, and diethyl zinc can be used. The amount of the catalyst to be used is in the range of 0.001 to 0.5 part by weight, more preferably 0.05 to 0.1 part by weight, based on 100 parts by weight of the lactic acid oligomer as the reaction solution in the case of a metal catalyst. . In the case of a non-metallic catalyst, the catalytic activity is lower than that of a metal-based catalyst. Is preferred.

【0033】[0033]

【実施例】以下に、実施例により本発明を更に詳しく説
明するが、本発明はこれらの実施例により限定されるも
のではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0034】実施例1 図1は本発明装置の第一の実施例を示すもので、縦型回
分式重合槽1の中央部内にフライト7a,8a(図2)
が互いに噛み合う状態で配設された2本のスクリュ7,
8と2本のスクリュ7,8を同方向又は異方向へ切替で
きるギヤボックス24を備え、また、正転、逆転可能な
回転駆動手段であるモータ25を備え、各スクリュ7,
8とギヤボックス24との連結部23には、ウイルソン
シール、ラビリンスシール、メカニカルシール等を配設
する軸シール部により、減圧状態において気密性が保た
れるように構成されている。また回分式重合槽1の上部
には、多管式熱鋼管凝縮器3,4が取り付け設置されて
いるものである。また、この多管式熱交換凝縮器3,4
の下流には冷却トラップ5、真空ポンプ6が設置してあ
る。これらの装置にて、初期の溶融重合を行う。溶融重
合終了後、重合温度を下げバルブ2aを閉め、バルブ2
bを開く。バルブ2bの下流には、冷却トラップ9と真
空ポンプ10が設置され、固相重合を行う。固相重合終
了後、バルブ2bを閉め、バルブ29を開けて、窒素ボ
ンベ27より縦型回分式重合槽1に窒素を封入する。次
に、材料排出孔バルブ11を開けて、定量フィーダー2
6のホッパ12に粉砕ポリマー13を移す。この時、縦
型回分式重合槽1のモータ25は正転、逆転を繰り返し
ながら縦型回分式重合槽1のポリマー22が残らないよ
うに操作する。その後、定量フィーダー26により一軸
あるいは、二軸押出機28にポリマー13を供給し、ホ
ットカット装置20、冷却コンベアー21を経て連続的
にペレットを製造する。二軸押出機28には、脱気孔1
6,17が設けられ、その下流には冷却トラップ18、
真空ポンプ19を設置し、溶媒や残留モノマー、揮発分
の脱気が可能な装置も取付けられている。
Embodiment 1 FIG. 1 shows a first embodiment of the apparatus of the present invention, and flights 7a and 8a (FIG. 2) are provided in the center of a vertical batch polymerization tank 1.
Are arranged in such a manner that they mesh with each other.
8 and the two screws 7 and 8 are provided with a gear box 24 that can be switched in the same direction or in different directions, and a motor 25 is provided as a rotation driving means that can rotate forward and reverse.
The connecting portion 23 between the gear 8 and the gear box 24 is configured to maintain airtightness under reduced pressure by a shaft seal portion provided with a Wilson seal, a labyrinth seal, a mechanical seal, and the like. On the top of the batch polymerization tank 1, multi-tube type hot steel tube condensers 3 and 4 are attached and installed. The multi-tube heat exchange condensers 3, 4
A cooling trap 5 and a vacuum pump 6 are installed downstream of the apparatus. Initial melt polymerization is performed in these devices. After the completion of the melt polymerization, the polymerization temperature is lowered, the valve 2a is closed, and the valve 2
Open b. Downstream of the valve 2b, a cooling trap 9 and a vacuum pump 10 are installed to perform solid-state polymerization. After the solid phase polymerization is completed, the valve 2b is closed, the valve 29 is opened, and nitrogen is sealed in the vertical batch polymerization tank 1 from the nitrogen cylinder 27. Next, the material discharge hole valve 11 is opened, and the fixed amount feeder 2 is opened.
The ground polymer 13 is transferred to the hopper 12 of No. 6. At this time, the motor 25 of the vertical batch polymerization tank 1 is operated so that the polymer 22 of the vertical batch polymerization tank 1 does not remain while repeating normal rotation and reverse rotation. Thereafter, the polymer 13 is supplied to a single-screw or twin-screw extruder 28 by a fixed-quantity feeder 26, and is continuously produced through a hot-cut device 20 and a cooling conveyor 21. The twin-screw extruder 28 has a degassing hole 1
6, 17 are provided, and a cooling trap 18,
A vacuum pump 19 is installed, and a device capable of degassing the solvent, residual monomer, and volatile components is also installed.

【0035】実施例2 図1に示す製造装置を用い、縦型回分式重合槽内の二軸
スクリュ式攪拌装置のパターンは図2に示す1−3を組
み合わせて重合を行った。まず、L−乳酸モノマー75
00gを100℃にて4〜5時間脱水処理を行い、その
後、160℃にて触媒(塩化第一スズ)を0.5%投入
して10〜15時間攪拌しながら溶融重合を行った(そ
の時の真空度10〜30Torr)。次に、結晶化させるた
めに重合槽温度を130℃に冷却した(この時ポリマー
は二軸スクリュ攪拌装置により粉砕されていた)。その
後、10〜12時間、真空度0.1〜2Torrで固相重合
を行い、押出機でペレット化した。得られたポリ乳酸
は、重量平均分子量で11万の値であった。
Example 2 Using the production apparatus shown in FIG. 1, polymerization was carried out by combining the patterns of a twin-screw agitator in a vertical batch polymerization tank with a combination of 1-3 shown in FIG. First, L-lactic acid monomer 75
00 g was subjected to a dehydration treatment at 100 ° C. for 4 to 5 hours, and then 0.5% of a catalyst (stannous chloride) was added at 160 ° C., and melt polymerization was carried out while stirring for 10 to 15 hours. Vacuum of 10 to 30 Torr). Next, the temperature of the polymerization tank was cooled to 130 ° C. for crystallization (at this time, the polymer was pulverized by a twin-screw agitator). Thereafter, solid phase polymerization was performed at a degree of vacuum of 0.1 to 2 Torr for 10 to 12 hours, and pelletized by an extruder. The obtained polylactic acid had a weight average molecular weight of 110,000.

【0036】実施例3 図1に示す製造装置を用い、縦型回分式重合槽内の二軸
スクリュ式攪拌装置のパターンは図2に示す1−3を組
み合わせて重合を行った。まず、L−乳酸モノマー75
00gを100℃にて4〜5時間脱水処理を行い、その
後、160℃にて触媒(塩化第一スズ)を0.5%、溶
媒(ジフェニルエーテル)50%投入して15〜20時
間攪拌しながら溶融重合を行った(その時の真空度は1
0〜30Torr)。次に、結晶化させるために重合槽温度
を130℃に冷却した(この時ポリマーは二軸スクリュ
攪拌装置により粉砕されていた)。その後、10〜12
時間、真空度0.1〜2Torrで固相重合を行い、押出機
でペレット化した。得られたポリ乳酸は、重量平均分子
量で11万の値であった。
Example 3 Using the manufacturing apparatus shown in FIG. 1, polymerization was carried out by combining the patterns of a twin-screw agitator in a vertical batch polymerization tank with combinations shown in FIGS. First, L-lactic acid monomer 75
00g was subjected to a dehydration treatment at 100 ° C. for 4 to 5 hours, and then, at 160 ° C., 0.5% of a catalyst (stannous chloride) and 50% of a solvent (diphenyl ether) were charged and stirred for 15 to 20 hours. Melt polymerization was carried out (at that time, the degree of vacuum was 1
0-30 Torr). Next, the temperature of the polymerization tank was cooled to 130 ° C. for crystallization (at this time, the polymer was pulverized by a twin-screw agitator). Then 10-12
Solid phase polymerization was carried out at a degree of vacuum of 0.1 to 2 Torr for a time and pelletized by an extruder. The obtained polylactic acid had a weight average molecular weight of 110,000.

【0037】実施例4 図1に示す製造装置を用い、縦型回分式重合槽内の二軸
スクリュ式攪拌装置のパターンは図2に示す1−3を組
み合わせて重合を行った。まず、L−乳酸モノマー75
00gを100℃にて4〜5時間脱水処理を行い、その
後、160℃にて触媒(塩化第一スズ)を0.5%、溶
媒(ジフェニルエーテル)50%投入して15〜20時
間攪拌しながら溶融重合を行った(その時の真空度は1
0〜30Torr)。次に、結晶化させるために重合槽温度
を130℃に冷却した(この時ポリマーは二軸スクリュ
攪拌装置により粉砕されていた)。その後、18〜20
時間、真空度0.1〜2Torr固相重合を行い、押出機で
ペレット化した。得られたポリ乳酸は、重量平均分子量
で15万の値であった。
Example 4 Using the production apparatus shown in FIG. 1, polymerization was carried out by combining the patterns of a twin-screw agitator in a vertical batch polymerization tank with combinations shown in 1-3 of FIG. First, L-lactic acid monomer 75
00g was subjected to a dehydration treatment at 100 ° C. for 4 to 5 hours, and then, at 160 ° C., 0.5% of a catalyst (stannous chloride) and 50% of a solvent (diphenyl ether) were charged and stirred for 15 to 20 hours. Melt polymerization was carried out (at that time, the degree of vacuum was 1
0-30 Torr). Next, the temperature of the polymerization tank was cooled to 130 ° C. for crystallization (at this time, the polymer was pulverized by a twin-screw agitator). Then 18-20
Solid phase polymerization was carried out for 0.1 to 2 Torr in vacuum for a time, and pelletized by an extruder. The obtained polylactic acid had a weight average molecular weight of 150,000.

【0038】実施例5 図1に示す製造装置を用い、縦型回分式重合槽内の二軸
スクリュ式攪拌装置のパターンは図2に示す1−3を組
み合わせて重合を行った。まず、L−乳酸モノマー75
00gを100℃にて4〜5時間脱水処理を行い、その
後、160℃にて触媒(オクチル酸スズ)を0.5%、
溶媒(ジフェニルエーテル)50%投入して15〜20
時間攪拌しながら溶融重合を行った(その時の真空度は
10〜30Torr)。次に、結晶化させるために重合槽温
度を130℃に冷却した(この時ポリマーは二軸スクリ
ュ攪拌装置により粉砕されていた)その後、18〜20
時間、真空度0.1〜2Torrで固相重合を行い、押出機
でペレット化した。得られたポリ乳酸は、重量平均分子
量で13万の値であった。
Example 5 Using the production apparatus shown in FIG. 1, polymerization was carried out by combining the patterns of a twin-screw agitator in a vertical batch polymerization tank with combinations shown in 1-3 shown in FIG. First, L-lactic acid monomer 75
00g was subjected to a dehydration treatment at 100 ° C. for 4 to 5 hours, and then, at 160 ° C., 0.5% of a catalyst (tin octylate) was added.
15-20 by adding 50% of solvent (diphenyl ether)
The melt polymerization was carried out with stirring for a period of time (the degree of vacuum at that time was 10 to 30 Torr). Next, in order to crystallize, the temperature of the polymerization tank was cooled to 130 ° C. (at this time, the polymer was pulverized by a twin-screw agitator).
Solid phase polymerization was carried out at a degree of vacuum of 0.1 to 2 Torr for a time and pelletized by an extruder. The obtained polylactic acid had a weight average molecular weight of 130,000.

【0039】実施例6 図1に示す製造装置を用い、縦型回分式重合槽内に二軸
スクリュ式攪拌装置のパターンは図2に示す1−3を組
み合わせて重合を行った。まず、L−乳酸モノマー75
00gを100℃にて4〜5時間脱水処理を行い、その
後、160℃にて触媒(塩化第一スズ)を0.5%、溶
媒(ジフェニルエーテル)50%投入して15〜20時
間攪拌しながら溶融重合を行った(その時の真空度は1
0〜30Torr)。次に、結晶化させるために重合槽温度
を130℃に冷却した(この時ポリマーは二軸スクリュ
攪拌装置により粉砕されていた)。その後、再び温度を
160℃に加熱して、18〜20時間、真空度0.1〜
2Torrの条件で、固相重合を行い、押出機でペレット化
した。得られたポリ乳酸は、重量平均分子量で14.5
万の値であった。
Example 6 Using the manufacturing apparatus shown in FIG. 1, polymerization was carried out in a vertical batch type polymerization tank by combining a twin screw type stirring apparatus with a pattern 1-3 shown in FIG. First, L-lactic acid monomer 75
00g was subjected to a dehydration treatment at 100 ° C. for 4 to 5 hours, and then, at 160 ° C., 0.5% of a catalyst (stannous chloride) and 50% of a solvent (diphenyl ether) were charged and stirred for 15 to 20 hours. Melt polymerization was carried out (at that time, the degree of vacuum was 1
0-30 Torr). Next, the temperature of the polymerization tank was cooled to 130 ° C. for crystallization (at this time, the polymer was pulverized by a twin-screw agitator). Thereafter, the temperature is again raised to 160 ° C., and the vacuum degree is 0.1 to 20 hours for 18 to 20 hours.
Solid phase polymerization was performed under the conditions of 2 Torr, and pelletized by an extruder. The resulting polylactic acid had a weight average molecular weight of 14.5.
10,000 values.

【0040】実施例7 図1に示す製造装置を用い、縦型回分式重合槽内の二軸
スクリュ式攪拌装置のパターンは図2に示す1−3を組
み合わせて重合を行った。まず、L−乳酸モノマー75
00gを100℃にて4〜5時間脱水処理を行い、その
後、160℃にて触媒(塩化第一スズ)を0.5%、溶
媒(ジフェニルエーテル)50%投入して15〜20時
間攪拌しながら溶融重合を行った(その時の真空度は1
0〜30Torr)。次に、結晶化を促進するために結晶核
剤を加え、重合槽温度を140℃に冷却した(この時の
ポリマーは二軸スクリュ攪拌装置により粉砕されてい
た)。その後、再び温度を160℃に加熱して、15〜
20時間、真空度0.1〜2Torrの条件で、固相重合を
行い、押出機でペレット化した。得られたポリ乳酸は、
重量平均分子量で15万の値であった。
Example 7 Using the production apparatus shown in FIG. 1, polymerization was carried out by combining the patterns of a twin-screw agitator in a vertical batch polymerization tank with combinations shown in 1-3 shown in FIG. First, L-lactic acid monomer 75
00g was subjected to a dehydration treatment at 100 ° C. for 4 to 5 hours, and then, at 160 ° C., 0.5% of a catalyst (stannous chloride) and 50% of a solvent (diphenyl ether) were charged and stirred for 15 to 20 hours. Melt polymerization was carried out (at that time, the degree of vacuum was 1
0-30 Torr). Next, a nucleating agent was added to promote crystallization, and the temperature of the polymerization tank was cooled to 140 ° C. (the polymer at this time was ground by a twin-screw agitator). Then, the temperature is again raised to 160 ° C.
Solid-state polymerization was performed for 20 hours under the conditions of a vacuum degree of 0.1 to 2 Torr, and pelletized by an extruder. The resulting polylactic acid is
The weight average molecular weight was 150,000.

【0041】[0041]

【発明の効果】本発明の方法及び装置によれば、溶融重
合段階の攪拌力の増大、表面更新の向上等による重合時
間の短縮化が図れる。そして、固相重合では、結晶化を
行う際の冷却段階で同時に粉砕できるためポリマーの表
面積が大きくなり、固相重合時間が短縮でき、また、今
まで固相重合終了後は次工程の押出機に供給するため再
び溶融させていたが、本発明は、固相重合終了時にその
まま押出機に供給できるため解重合を防止できることに
より、高分子量のポリ乳酸を工業的に有利に製造するこ
とができる。
According to the method and the apparatus of the present invention, the polymerization time can be shortened by increasing the stirring power in the melt polymerization stage and improving the surface renewal. In solid-state polymerization, the surface area of the polymer can be increased because the pulverization can be performed simultaneously in the cooling stage during crystallization, and the solid-phase polymerization time can be shortened. However, the present invention can industrially produce high-molecular-weight polylactic acid by preventing depolymerization because it can be supplied to an extruder as it is at the end of solid-phase polymerization. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のポリ乳酸の製造装置(実施例1)の概
略を示す図である。
FIG. 1 is a view schematically showing an apparatus for producing polylactic acid (Example 1) of the present invention.

【図2】本発明の各種二軸スクリュ攪拌装置の概略を示
す図である。
FIG. 2 is a diagram schematically showing various twin-screw stirring devices of the present invention.

【図3】本発明の各種二軸スクリュ攪拌装置の概略を示
す図である。
FIG. 3 is a view schematically showing various twin-screw stirring devices of the present invention.

【符号の説明】[Explanation of symbols]

1.回分式重合槽 2a.切替えバルブ1 2b.切替えバルブ2 3.還流管1 4.還流管2 5.冷却トラップ1 6.真空ポンプ1 7.スクリュ攪拌翼 8.スクリュ攪拌翼 9.冷却トラップ2 10.真空ポンプ2 11.材料排出孔バルブ 12.定量フェーダ用ホッパ 13.粉粉材料 14. シュート 15.モータ 16.脱気孔1 17.脱気孔2 18.冷却トラップ3 19.真空ポンプ3 20.ホットカット装置 21.冷却コンベアー 22.反応液 23.軸シール部 24.ギヤボックス 25.モータ 26.二軸フィーダー 27.窒素ボンベ 28.二軸反応用押出機 29.バルブ3 7a.フルフライトスクリュフライト部 7c.順ニーディングデスク 8.逆フルフライトスクリュ 8a.逆フルフライトスクリュフライト 8c.ニーディングデスク 30.スクリュ軸 31.同方向回転 32.異方向回転 33.スクリュキャップ 1−1噛み合い型同方向回転用二軸スクリュ式攪拌装置
(スクリュパターン:7−7−8−8) 1−2噛み合い型同方向回転用二軸スクリュ式攪拌装置
(スクリュパターン:8−8−8−8) 1−3噛み合い型同方向回転用二軸スクリュ式攪拌装置
(スクリュパターン:7−7b−8a−8) 1−4噛み合い型同方向回転用二軸スクリュ式攪拌装置
(スクリュパターン:7b−7b−8b−8b) 1−5噛み合い型同方向回転用二軸スクリュ式攪拌装置
(スクリュパターン:7b−7b−7b−8b) 1−6噛み合い型同方向回転用二軸スクリュ式攪拌装置
(スクリュパターン:7b−8b−8b−8b) 2−1非噛み合い型異方向回転用二軸スクリュ式攪拌装
置(スクリュパターン:右=8−7b−7b−8 左=7−8b−8b−7) 2−2非噛み合い型異方向回転用二軸スクリュ式攪拌装
置(スクリュパターン:右=8b−8b−8b−8b 左=7b−7b−7b−7b) 3−1フルフライトセグメントスクリュ 3−2逆フルフライトセグメントスクリュ 3−3順ニーディングデスク 3−4逆ニーディングデスク
1. Batch polymerization tank 2a. Switching valve 1 2b. Switching valve 2 3. Reflux tube 1 4. Reflux tube 2 5. Cooling trap 1 6. Vacuum pump 1 7. Screw stirring blade 8. Screw stirring blade 9. Cooling trap 2 10. Vacuum pump 2 11. Material outlet valve 12. Hopper for quantitative fader 13. Powder material 14. chute 15. Motor 16. Deaeration hole 1 17. Deaeration hole 2 18. Cooling trap 3 19. Vacuum pump 3 20. Hot cut device 21. Cooling conveyor 22. Reaction liquid 23. Shaft seal 24. Gear box 25. Motor 26. Biaxial feeder 27. Nitrogen cylinder 28. Extruder for twin screw reaction 29. Valve 37a. Full flight screw flight section 7c. 7. Order kneading desk Reverse full flight screw 8a. Reverse full flight screw flight 8c. Kneading desk 30. Screw shaft 31. Co-rotation 32. Different direction rotation 33. Screw cap 1-1 Meshing type twin-screw stirrer for co-rotating (screw pattern: 7-7-8-8) 1-2 Meshing type twin-screw stirrer for co-rotating (screw pattern: 8-) 8-8-8) 1-3 Meshing type twin-screw agitator for co-rotating (screw pattern: 7-7b-8a-8) 1-4 Meshing type twin-screw stirrer for co-rotating (screw Pattern: 7b-7b-8b-8b) 1-5 mesh type co-rotating twin-screw agitator (screw pattern: 7b-7b-7b-8b) 1-6 mesh type co-rotating twin-screw type Stirrer (screw pattern: 7b-8b-8b-8b) 2-1 Non-meshing type biaxial screw stirrer for different direction rotation (screw pattern: right = 8-7b-7b-8 left = 7) 2-2 Full-flight Segment screw 3-2 Reverse full flight segment screw 3-3 Forward kneading desk 3-4 Reverse kneading desk

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 憲明 広島県広島市安芸区船越南一丁目6番1 号 株式会社日本製鋼所内 (56)参考文献 特開 平8−143649(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 63/00 - 63/91 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Noriaki Hashimoto 1-6-1, Funakoshi Minami, Aki-ku, Hiroshima-shi, Hiroshima Japan Steel Works Co., Ltd. (56) References JP-A-8-143649 (JP, A) ( 58) Field surveyed (Int. Cl. 7 , DB name) C08G 63/00-63/91

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 乳酸モノマーを反応槽に仕込み、該反応
槽から発生する水、ラクチド、乳酸の低分子化合物及び
場合により溶媒を還流し、水を反応系外に除去しつつ溶
融重合を行い、次いで得られた分子量3〜6万のポリ乳
酸をその融点以下の温度で固相重合するポリ乳酸の製造
方法において、該反応槽内の攪拌を二軸スクリュ式攪拌
装置を用いて行うことを特徴とする平均分子量10万以
上のポリ乳酸の製造方法。
1. A lactic acid monomer is charged into a reaction vessel, and water, lactide, a low molecular weight compound of lactic acid and optionally a solvent generated from the reaction vessel are refluxed, and melt polymerization is carried out while removing water out of the reaction system. Next, in the method for producing polylactic acid, wherein the obtained polylactic acid having a molecular weight of 30,000 to 60,000 is solid-phase polymerized at a temperature not higher than its melting point, the stirring in the reaction tank is performed using a twin-screw agitator. A method for producing polylactic acid having an average molecular weight of 100,000 or more.
【請求項2】 二軸スクリュ式攪拌装置の2本のスクリ
ュが互いに噛み合う状態で配設されたものである請求項
1記載の製造方法。
2. The method according to claim 1, wherein the two screws of the twin-screw agitator are arranged in a state of meshing with each other.
【請求項3】 二軸スクリュ式攪拌装置の2本のスクリ
ュがそれぞれ独立して回転するものである請求項1記載
の製造方法。
3. The method according to claim 1, wherein the two screws of the twin-screw agitator rotate independently of each other.
【請求項4】 二軸スクリュ式攪拌装置を内部に有する
反応槽と、この上部に接続する還流装置と、この還流装
置に接続する真空ポンプと、別途、反応槽に接続する真
空ポンプを有するポリ乳酸の製造装置。
4. A reactor having a twin-screw agitator therein, a reflux device connected to the upper portion thereof, a vacuum pump connected to the reflux device, and a poly-pump having a vacuum pump separately connected to the reaction bath. Lactic acid production equipment.
JP08357898A 1998-03-30 1998-03-30 Method for producing polylactic acid Expired - Fee Related JP3270827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08357898A JP3270827B2 (en) 1998-03-30 1998-03-30 Method for producing polylactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08357898A JP3270827B2 (en) 1998-03-30 1998-03-30 Method for producing polylactic acid

Publications (2)

Publication Number Publication Date
JPH11279267A JPH11279267A (en) 1999-10-12
JP3270827B2 true JP3270827B2 (en) 2002-04-02

Family

ID=13806390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08357898A Expired - Fee Related JP3270827B2 (en) 1998-03-30 1998-03-30 Method for producing polylactic acid

Country Status (1)

Country Link
JP (1) JP3270827B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086563A1 (en) 2006-01-30 2007-08-02 Kureha Corporation Process for producing aliphatic polyester

Also Published As

Publication number Publication date
JPH11279267A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US5574129A (en) Process for producing lactic acid polymers and a process for the direct production of shaped articles from lactic acid polymers
US5597891A (en) Process for producing polyester articles having low acetaldehyde content
EP2607399A1 (en) Process for producing polylactic acid and reactors for use in said process
JP4944800B2 (en) Polylactic acid production apparatus and polylactic acid production method
JP2009132857A (en) Method and device for producing polymer
JP3251888B2 (en) Method and apparatus for producing high molecular weight polylactic acid
JP7238416B2 (en) Lactide recovery method
JP3436894B2 (en) Method for producing polylactic acid
JP2821986B2 (en) Method for recovering lactide from polylactic acid products
EP2172506A2 (en) Equipment and method for producing polyhydroxycarboxylic acid
JP3270827B2 (en) Method for producing polylactic acid
JP4994314B2 (en) Method and apparatus for synthesizing lactide and polylactic acid
JPH08301993A (en) Preparation of lactic acid polyester having low lactide content
JP2002293903A (en) Method for producing cyclic polyester oligomer and method for producing polyester
JP2847617B2 (en) Method for producing high molecular weight polylactic acid and molded article thereof
JP2917862B2 (en) Method for producing ester cyclic dimer
EP1473315B1 (en) Process for continuously producing polyester polymer
JP2864217B2 (en) Method for producing polylactic acid
JP2002308969A (en) Process for producing polyester with high degree of polymerization
JP3458911B2 (en) Continuous production method of lactide copolymer
JP3024907B2 (en) Method for producing polylactic acid
JP2864218B2 (en) Method for producing polylactic acid copolymer
JP3270826B2 (en) Method and apparatus for producing polylactic acid
JP2008239650A (en) Carbonic diester composition, method for purifying carbonic diester, and method for producing polycarbonate resin
JPS62129311A (en) Production of oxymethylene copolymer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees