JP2917862B2 - Method for producing ester cyclic dimer - Google Patents

Method for producing ester cyclic dimer

Info

Publication number
JP2917862B2
JP2917862B2 JP14282195A JP14282195A JP2917862B2 JP 2917862 B2 JP2917862 B2 JP 2917862B2 JP 14282195 A JP14282195 A JP 14282195A JP 14282195 A JP14282195 A JP 14282195A JP 2917862 B2 JP2917862 B2 JP 2917862B2
Authority
JP
Japan
Prior art keywords
reaction
reaction vessel
reactant
cyclic dimer
depolymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14282195A
Other languages
Japanese (ja)
Other versions
JPH08333359A (en
Inventor
雅男 松井
仁実 小原
久嗣 奥山
英一 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimazu Seisakusho KK
Original Assignee
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimazu Seisakusho KK filed Critical Shimazu Seisakusho KK
Priority to JP14282195A priority Critical patent/JP2917862B2/en
Publication of JPH08333359A publication Critical patent/JPH08333359A/en
Application granted granted Critical
Publication of JP2917862B2 publication Critical patent/JP2917862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ポリ乳酸およびポリグ
リコール酸その他のポリα−ヒドロキシカルボン酸の重
合原料である環状2量体の改良された製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for producing a cyclic dimer which is a raw material for the polymerization of polylactic acid, polyglycolic acid and other poly-α-hydroxycarboxylic acids.

【0002】[0002]

【従来の技術】生分解性または自然環境下で分解するポ
リマーが環境保護の見地から注目されている。特にポリ
乳酸やポリグリコール酸等は、分解性や物性の点で優れ
ており、その早期実用化が望まれている。実用化及び工
業化に必要な条件のひとつは、その原料が高能率かつ低
コストで供給されることである。乳酸やグリコール酸の
環状2量体であるラクチドとグリコリドからは、開環重
合によって高能率でポリ乳酸やボリグリコール酸を得る
ことが出来るので、それら環状(6員環)2量体の高能
率製造法が望まれている。
2. Description of the Related Art Biodegradable or degradable polymers in the natural environment have attracted attention from the viewpoint of environmental protection. In particular, polylactic acid, polyglycolic acid and the like are excellent in decomposability and physical properties, and their early practical use is desired. One of the conditions necessary for practical application and industrialization is that the raw material is supplied at high efficiency and at low cost. From lactide and glycolide, which are cyclic dimers of lactic acid and glycolic acid, polylactic acid and polyglycolic acid can be obtained with high efficiency by ring-opening polymerization. A manufacturing method is desired.

【0003】α−ヒドロキシカルボン酸たとえば乳酸お
よびグリコール酸の環状2量体は、それらの(粗製)ポ
リマーやオリゴマーを触媒の存在下に加熱し解重合して
製造される。すなわち乳酸やグリコール酸等を精製して
重合するよりも、低純度原料を一旦重合してオリゴマー
またはポリマーとし、それらを解重合して得た高純度2
量体を重合するほうが、高能率で高分子量のポリマーを
得ることができ、この方法が工業化の近道と考えられて
いる。
[0003] The cyclic dimers of α-hydroxycarboxylic acids such as lactic acid and glycolic acid are produced by heating and depolymerizing their (crude) polymers and oligomers in the presence of a catalyst. That is, rather than purifying and polymerizing lactic acid, glycolic acid, etc., a high-purity raw material obtained by polymerizing a low-purity raw material once to form an oligomer or a polymer and depolymerizing them is obtained.
By polymerizing the monomer, a polymer having a high molecular weight can be obtained with high efficiency, and this method is considered as a shortcut of industrialization.

【0004】ポリ乳酸やポリグリコール酸の解重合によ
るエステル環状2量体の製造法として、反応および生成
した2量体の分離を薄膜蒸留器を用いて行う方法が公表
特許公報、特表平7−500091号に開示されてい
る。該公報では、従来技術として、2軸混合押出機を用
いるヨーロッパ特許出願公開第264926号に示され
た方法が紹介され、薄膜蒸留器を応用すればそれよりも
更に短時間に高能率で環状2量体を製造できるとしてい
る。
As a method for producing an ester cyclic dimer by depolymerization of polylactic acid or polyglycolic acid, a method in which a reaction and a formed dimer are separated using a thin-film distillation apparatus is disclosed in Japanese Patent Application Laid-Open Publication No. HEI 7-1995. No. -5000091. In this publication, a method disclosed in European Patent Application Publication No. 264926 using a twin-screw extruder is introduced as a conventional technique. It is said that monomer can be produced.

【0005】しかし、該特表公報の技術を詳細に検討す
ると、その実施例にみるように、得られる粗ラクチドは
かなり光学純度が低く不満足なものである。すなわち実
施例のすべてにわたり、得られたラクチドのL体比率は
90.8〜92.5%(平均91.6%)、不純物であ
るメソ−ラクチド(L/D混合物)を平均7.6%,同
じくD−ラクチドを平均0.8%も含んでいる。すなわ
ち解重合工程でラセミ化が相当強く進行している。
However, when the technique disclosed in the above publication is examined in detail, the crude lactide obtained has a considerably low optical purity and is unsatisfactory as shown in the examples. That is, the L-form ratio of the obtained lactide was 90.8 to 92.5% (average 91.6%), and the impurity meso-lactide (L / D mixture) was 7.6% on average throughout the examples. , Also contains on average 0.8% of D-lactide. That is, racemization progresses considerably strongly in the depolymerization step.

【0006】[0006]

【発明が解決しようとする課題】言うまでもなく、ラク
チドなどの光学純度は高いものが望ましい。結晶性や耐
熱性に優れるホモポリマーを得るには、ラクチドなどの
光学純度は98%(重量比率99%)以上であることが
望ましい。共重合の場合でも、一定の品質のものを安定
して得るには、原料は高純度(例えば99重量%以上)
であることが望ましい。L体比率の低い粗ラクチドなど
は、精製工程での能率や歩留まりが低く、コスト的にも
不利という問題がある。本発明の目的は、光学純度の高
いエステル環状2量体を高能率で製造可能な、改良され
た新しい方法を提供することにある。
Needless to say, lactide and the like having high optical purity are desirable. In order to obtain a homopolymer having excellent crystallinity and heat resistance, the optical purity of lactide or the like is desirably 98% (99% by weight) or more. Even in the case of copolymerization, the raw material must have high purity (for example, 99% by weight or more) in order to stably obtain a product of a constant quality.
It is desirable that Crude lactide having a low L-form ratio has a problem in that the efficiency and yield in the purification step are low and the cost is disadvantageous. An object of the present invention is to provide an improved new method capable of producing an ester cyclic dimer having high optical purity with high efficiency.

【0007】[0007]

【課題を解決するための手段】上記本発明の目的は、α
−ヒドロキシカルボン酸(たとえば乳酸またはグリコー
ル酸)のポリマー又はオリゴマーを、解重合触媒の存在
下、溶融状態で解重合して環状2量体を生成せしめ、そ
れを反応系外に気相で取り出す方法において、解重合に
よる該2量体の生成を反応物質1リットルあたり400
cm2 以上の蒸発面積を有する面状攪拌装置を内蔵する
反応容器内で減圧下で行うことにより達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide α
A method of depolymerizing a polymer or oligomer of hydroxycarboxylic acid (for example, lactic acid or glycolic acid) in the molten state in the presence of a depolymerization catalyst to form a cyclic dimer, and removing the cyclic dimer out of the reaction system in a gas phase , The formation of the dimer by depolymerization is reduced to 400 per liter of the reactant.
This is achieved by performing the reaction under reduced pressure in a reaction vessel containing a planar stirring device having an evaporation area of not less than 2 cm 2 .

【0008】本発明において、原料のポリα−ヒドロキ
シカルボン酸の分子量は、とくに限定されない。従来の
方法では、溶融粘度の低いものを用いる必要があり、通
常分子量500〜3000程度のものが用いられる。前
記特表公報の実施例では、重合度10〜20(分子量約
740〜1300)のオリゴマーが用いられている。薄
膜蒸留法では高粘度のものは扱い難いからである。本発
明方法では、原料ポリマーは分子量500〜3000程
度のオリゴマーでもよく、もっと高分子量のもの、例え
ば分子量30000程度のもの又はそれ以上のものでも
利用可能であり、原料の適用範囲が広い。薄膜蒸留法で
は攪拌装置が無いが、本発明では攪拌装置を持つ反応容
器を用いるからである。
In the present invention, the molecular weight of the raw material poly-α-hydroxycarboxylic acid is not particularly limited. In the conventional method, it is necessary to use a material having a low melt viscosity, and usually a material having a molecular weight of about 500 to 3000 is used. In the examples of the above publication, oligomers having a degree of polymerization of 10 to 20 (molecular weight of about 740 to 1300) are used. This is because high viscosity materials are difficult to handle in the thin film distillation method. In the method of the present invention, the raw material polymer may be an oligomer having a molecular weight of about 500 to 3,000, and a polymer having a higher molecular weight, for example, a molecular weight of about 30,000 or more can be used. This is because the thin-film distillation method does not have a stirrer, but the present invention uses a reaction vessel having a stirrer.

【0009】本発明の特徴は、大きな蒸発面積を持つ面
状攪拌装置を内蔵した反応容器(反応装置)を用いるこ
とである。攪拌装置に大きな蒸発面を持たせるために
は、駆動軸の回転運動により、表面積の大きい面状攪拌
素子を反応物質の液体中と蒸発するための空間中の双方
を交互に通過させればよい。以下、図によって、本発明
に用いる装置を説明する。
A feature of the present invention is to use a reaction vessel (reactor) incorporating a planar stirring device having a large evaporation area. In order to provide the stirrer with a large evaporation surface, the rotary motion of the drive shaft may cause the planar stirring element having a large surface area to alternately pass through both the liquid of the reactant and the space for evaporation. . Hereinafter, an apparatus used in the present invention will be described with reference to the drawings.

【0010】図1〜2は、本発明に好ましい反応装置の
具体例を示す説明図である。図1は反応装置の横断面図
で、反応容器1の中に、2本の駆動軸2および3によっ
て回転する円板状の攪拌素子4および5が設けられてい
る。容器1の下半分には反応物質6があり、容器の上半
分は空間7となっている。8は不活性気体を供給した
り、排気(真空)系に接続する孔である。図では省略さ
れているが、容器1などは、適当な加熱手段、例えば電
熱、水蒸気、その他の気体又は液体の熱媒によって加熱
されている。駆動軸2および3の回転運動によって、円
板状の攪拌素子4及び5が回転し、それぞれ反応物質6
及び空間7の中を交互に通過する。攪拌素子4および5
は、(1)反応物質6の攪拌による反応の促進、(2)
加熱された反応容器1からの熱を攪拌により反応物質に
効果的に取り込む、さらに(3)反応物質をその表面に
膜状に付着した状態で上部空間7の中を移動し、反応物
質中の揮発成分(ラクチドなど)を蒸発させるという作
用を行う。反応物質6の中と上部空間7の中の移動の繰
り返しにより、反応物質6の中の揮発成分が蒸発し、外
部の真空系によって例えば精留装置やコンデンサーを有
する外部回収装置に導かれ、ラクチドやグリコリドなど
の環状2量体として回収される。回収装置が、高性能の
多段蒸留(精留)装置を有する場合は、かなり高純度の
製品が得られ、そうでない場合は粗ラクチドなどが得ら
れ、更に精製工程で再結晶法などで精製されて製品とな
る。
FIGS. 1 and 2 are explanatory diagrams showing specific examples of a reactor preferred for the present invention. FIG. 1 is a cross-sectional view of a reaction apparatus. In a reaction vessel 1, disk-shaped stirring elements 4 and 5 that are rotated by two drive shafts 2 and 3 are provided. The lower half of the container 1 has a reactant 6 and the upper half of the container is a space 7. Reference numeral 8 denotes a hole for supplying an inert gas or connecting to an exhaust (vacuum) system. Although not shown in the drawing, the container 1 and the like are heated by a suitable heating means, for example, electric heating, steam, or another gas or liquid heating medium. The rotational motion of the drive shafts 2 and 3 causes the disk-shaped stirring elements 4 and 5 to rotate, and the reactants 6 and 5 respectively.
And in the space 7 alternately. Stirring elements 4 and 5
(1) Accelerate the reaction by stirring the reactant 6; (2)
The heat from the heated reaction vessel 1 is effectively taken into the reactant by stirring, and (3) the reactant is moved in the upper space 7 in a state where the reactant is attached to the surface thereof in a film form. It acts to evaporate volatile components (such as lactide). By repeating the movement in the reactant 6 and the upper space 7, the volatile components in the reactant 6 evaporate and are led by an external vacuum system to, for example, an rectifier or an external recovery device having a condenser, and the lactide And a cyclic dimer such as glycolide. If the recovery unit has a high-performance multi-stage distillation (rectification) unit, a product with considerably high purity can be obtained. Otherwise, crude lactide and the like can be obtained. Product.

【0011】図2は、図1の装置の平面図である。容器
1に2つの駆動軸2及び3が取り付けられ、円板状の攪
拌素子4、5およびスクリュウ状の攪拌素子兼送液素子
9、10を回転させる。11は反応物質の入口であり、
12は出口である。スクリュウ9及び10は、反応物質
を攪拌するとともに入口から出口へ送る作用をする。こ
れらは省略することも出来るが、反応容器1の内部は減
圧されており、出口12から例えばポンプで反応物を取
り出すためには、そのポンプへ背圧を加える何等かの送
液機構または加圧機構が必要である。出口12を閉じた
閉鎖系では、そのような送液機構は不要である。すなわ
ち、出口を閉じておいても、反応で生じた環状2量体な
どは、真空装置で系外に取り出されるから、取り出し量
に見合う原料の量を入り口から供給すれば、反応系は定
常状態を保ち安定に反応が進行する。
FIG. 2 is a plan view of the apparatus of FIG. The two drive shafts 2 and 3 are attached to the container 1, and the disk-shaped stirring elements 4, 5 and the screw-shaped stirring / liquid sending elements 9, 10 are rotated. 11 is a reactant inlet,
12 is an exit. The screws 9 and 10 act to stir and feed the reactants from the inlet to the outlet. Although these can be omitted, the inside of the reaction vessel 1 is depressurized, and in order to take out a reactant from the outlet 12 by, for example, a pump, any liquid feeding mechanism that applies back pressure to the pump or pressurization A mechanism is needed. In a closed system in which the outlet 12 is closed, such a liquid feeding mechanism is unnecessary. That is, even if the outlet is closed, the cyclic dimer and the like generated by the reaction are taken out of the system by a vacuum device, so that if the amount of the raw material corresponding to the amount taken out is supplied from the inlet, the reaction system is in a steady state. And the reaction proceeds stably.

【0012】一方、反応物質の一部を適切な速度で取り
出し、再び反応装置の入り口へ供給すると、反応系は循
環システムとなり、反応がより均一に定常的に行われ、
より広範な応用が可能である。このような循環系では、
解重合触媒や添加剤などが繰り返し使われ、それらの消
費量が少なくて済むという利点もある。また、閉鎖系で
は、反応物質中の不純物などが反応容器に蓄積するの
で、長期の連続運転が出来ないが、反応容器の出口か
ら、反応残渣を連続的または間欠的に取り出せば、長期
連続運転が可能となる。また反応系に適当な溶剤または
希釈剤(例えばポリエチレングリコールなど)、安定剤
(酸化防止剤など)を加えて、流動性、反応性、安定性
などを改良することも出来るが、その場合循環系が有利
である。
On the other hand, when a part of the reactants is taken out at an appropriate speed and supplied again to the inlet of the reactor, the reaction system becomes a circulation system, and the reaction is performed more uniformly and steadily.
More extensive applications are possible. In such a circulatory system,
There is also an advantage that the depolymerization catalyst and additives are repeatedly used, so that their consumption can be reduced. In addition, in a closed system, long-term continuous operation cannot be performed because impurities in the reactants accumulate in the reaction vessel, but long-term continuous operation cannot be performed if reaction residues are continuously or intermittently taken out from the outlet of the reaction vessel. Becomes possible. Also, by adding a suitable solvent or diluent (eg, polyethylene glycol) and stabilizer (eg, antioxidant) to the reaction system, fluidity, reactivity, stability, etc. can be improved. Is advantageous.

【0013】攪拌装置は1軸でもよいが、図1及び2に
示したような、2つの駆動軸に複数の攪拌素子を互いに
重なり合う又は噛み合うように配置した2軸または多軸
攪拌装置は、容器の内面や攪拌装置の表面に付着した物
質が常にかき取られるセルフクリーニング作用をもち、
付着物による装置の汚れが少なく、長期間安定に運転で
きる特長があり、本発明の目的に特に好ましい。前記薄
膜蒸留装置では、このような機械的セルフクリーニング
作用はなく、長期連続運転に問題が生じる可能性があ
る。解重合工程では、生成した環状2量体が蒸発し系外
に取り出されるため、かなりの蒸発熱が必要である。こ
の熱の主な供給源は、容器1からの伝導や赤外線輻射に
よるものと、反応物質の攪拌による発熱である。従っ
て、攪拌や伝導の効率を良くするために攪拌素子に適宜
フィンや凹凸を設けることも好ましい。勿論、攪拌装置
の回転速度を大きくすれば、反応物質により多くの熱を
供給することができ、本発明の方法はより広範な応用範
囲を持っている。
The stirrer may be a single shaft. However, as shown in FIGS. 1 and 2, a two-shaft or multi-shaft stirrer in which a plurality of stirring elements are arranged so as to overlap or mesh with each other on two drive shafts is used as a container. Has a self-cleaning action that constantly removes substances adhering to the inner surface of the
It has the advantage that the device is less contaminated by deposits and can be operated stably for a long period of time, and is particularly preferable for the purpose of the present invention. The thin-film distillation apparatus does not have such a mechanical self-cleaning action, and may cause a problem in long-term continuous operation. In the depolymerization step, the generated cyclic dimer evaporates and is taken out of the system, so that considerable heat of evaporation is required. The main sources of this heat are conduction and infrared radiation from the container 1 and heat generated by stirring the reactants. Therefore, it is also preferable to appropriately provide fins and irregularities on the stirring element in order to improve the efficiency of stirring and conduction. Of course, increasing the rotational speed of the agitator can provide more heat to the reactants, and the method of the present invention has a wider range of applications.

【0014】図1および2に示した装置と筒型の2軸押
出機との相違点のひとつは、反応容器の容積を極めて大
きく出来ることである。従って反応物6は、相対的にゆ
っくりとマイルドな条件、すなわち低目の温度で反応さ
せることが出来、且つ工業生産に適する大容量の装置を
比較的低コストで得ることが出来る。第2の相違点は、
攪拌素子が面状であることである。そのため攪拌素子は
その重量に比べて表面積が大きく、反応装置は蒸発面積
が大きく高効率でしかも低コストとなる。
One of the differences between the apparatus shown in FIGS. 1 and 2 and the cylindrical twin-screw extruder is that the volume of the reaction vessel can be extremely increased. Therefore, the reactant 6 can be reacted relatively slowly under mild conditions, that is, at a lower temperature, and a large-capacity apparatus suitable for industrial production can be obtained at a relatively low cost. The second difference is
The stirring element is planar. Therefore, the agitating element has a large surface area in comparison with its weight, and the reaction device has a large evaporation area and is high in efficiency and low in cost.

【0015】本発明の目的のためには、反応(解重合)
を出来るだけ低い温度である程度の短時間内に行う必要
がある。ラセミ化は、高温ほど早く起こるからである。
勿論反応物質の変質(酸化、着色など)も、高温ほど起
こりやすい。たとえばポリ乳酸の解重合による合成にお
いて、ラセミ化は160゜C以上で起こり、220゜C
以上で顕著となる。従って反応温度は、220゜C以下
であることが好ましく、210゜C以下が特に好まし
く、200゜C以下が最も好ましい。薄膜蒸留方式で
は、反応時間が極めて短い(1分以内)ために反応温度
を220゜C以上の高温とせざるを得ず、そのためラセ
ミ化が進行し、製品の光学純度が劣化する。前記特表公
報の実施例では、薄膜蒸留器の温度が260゜Cと極め
て高く、その結果、製品のL体比率は平均約92重量%
と低い。
For the purposes of the present invention, a reaction (depolymerization)
Must be performed at a temperature as low as possible within a certain short time. Racemization occurs faster at higher temperatures.
Of course, the alteration (oxidation, coloring, etc.) of the reactants is more likely to occur at higher temperatures. For example, in the synthesis by depolymerization of polylactic acid, racemization occurs at 160 ° C. or higher and 220 ° C.
The above is remarkable. Therefore, the reaction temperature is preferably 220 ° C. or lower, particularly preferably 210 ° C. or lower, and most preferably 200 ° C. or lower. In the thin-film distillation method, the reaction time is extremely short (within 1 minute), so that the reaction temperature has to be set to a high temperature of 220 ° C. or more, so that the racemization proceeds and the optical purity of the product deteriorates. In the example of the above publication, the temperature of the thin film still is as high as 260 ° C. As a result, the L-form ratio of the product is about 92% by weight on average.
And low.

【0016】反応時間は、温度がある程度低ければ、そ
れ程短時間でなくてもよい。平均反応時間は、蒸発面積
にもよるが、例えば220゜Cでは30分以下、特に1
0分以下が好ましく、210゜Cでは2時間以下、特に
1時間以下が好ましく、200゜Cでは5時間以下、特
に3時間以下が好ましい。
The reaction time need not be so short as long as the temperature is somewhat low. The average reaction time depends on the evaporation area.
It is preferably 0 minutes or less, 2 hours or less, particularly 1 hour or less at 210 ° C, and 5 hours or less, particularly 3 hours or less at 200 ° C.

【0017】攪拌装置の表面積が大きいほど、蒸発能力
が大きく望ましい。蒸発面積は、反応容器の下半分に反
応物質を満たした場合、攪拌装置の表面積の1/2と反
応容器の中程の水平方向断面積の和で近似出来る。蒸発
面積と反応物質の体積(単位リットル)との比を、以下
有効蒸発面積と記す。高い効率で反応させるには、有効
蒸発面積は200cm2 /l以上が必要であり、400
cm2 /l以上が好ましく、600cm2 /l以上が最
も好ましい。面状攪拌装置すなわち平面状、曲面状およ
びそれらに適宜凹凸や変形を加えたものは、2軸押出機
に比べて、比較的簡単な構造でより大きい蒸発面積を得
ることが出来る。例えば、平面円板状攪拌素子を2cm
間隔で配置すれば、蒸発面積を500cm2 /l以上に
出来る。平面または曲面状の素子の表面に、例えば波
状、溝状、球面状、フィン状その他の凹凸をつければ、
さらに蒸発面積を平面の1.5倍以上に大きくすること
が出来る。
The larger the surface area of the stirrer, the greater the desirability of evaporation. When the lower half of the reaction vessel is filled with reactants, the evaporation area can be approximated by the sum of half the surface area of the stirring device and the horizontal cross-sectional area in the middle of the reaction vessel. The ratio between the evaporation area and the volume of the reactant (unit liter) is hereinafter referred to as the effective evaporation area. In order to carry out the reaction with high efficiency, the effective evaporation area is required to be 200 cm 2 / l or more,
cm 2 / l or more is preferable, and 600 cm 2 / l or more is most preferable. A planar stirring device, that is, a planar or curved surface, or those obtained by appropriately adding irregularities or deformation thereto, can obtain a larger evaporation area with a relatively simple structure as compared with a twin-screw extruder. For example, 2 cm
If they are arranged at intervals, the evaporation area can be increased to 500 cm 2 / l or more. If, for example, a corrugated, grooved, spherical, fin-shaped or other unevenness is formed on the surface of a flat or curved element,
Further, the evaporation area can be increased to 1.5 times or more of the plane.

【0018】攪拌装置又はその素子の形は任意である
が、例えば円板、花弁状、多葉形、スクリュウ形、それ
らに適宜孔、溝、フィンや凹凸を設けたものが好ましく
用いられる。スクリュウ形には、図2に示したようなス
クリュウコンベア型、船の推進機や扇風機の羽のような
もの等、色々な応用があるが、基本的には螺旋状の部分
を有し且つ送液機能を持つものである。図2には2つの
軸が同方向回転の例を示したが、逆回転の場合は互いに
逆方向のスクリュウを組み合わせれば良い。
The shape of the stirrer or its element is arbitrary, but for example, a disc, a petal, a multi-leaf, a screw, or the like provided with holes, grooves, fins, and irregularities as appropriate are preferably used. The screw type has various applications such as a screw conveyor type as shown in FIG. 2 and a blade such as a ship propulsion device or an electric fan, but basically has a helical portion and has a spiral shape. It has a liquid function. FIG. 2 shows an example in which the two shafts rotate in the same direction. However, in the case of reverse rotation, screws in opposite directions may be combined.

【0019】図3は本発明の実施例を示す系統図で、以
下乳酸を例として説明するが、乳酸以外のα−ヒドロキ
シカルボン酸でもほぼ同様である。原料の乳酸水溶液
は、タンク21からポンプ22によって濃縮装置23に
供給される。タンク24および26は添加剤(酸化防止
剤、触媒、溶剤など)用のもので、それらは必要に応じ
てポンプ25および27で供給される。濃縮装置23は
原料の水分を蒸発させ系外に出すもので、28は取り出
された水分である。この濃縮工程は、通常、100〜1
50゜C、常圧で行うが、減圧下で行うこともできる。
濃縮されほとんど水分ゼロになった乳酸は、溶融状態で
ポンプ29によりフィルター30を経て第1重合反応装
置31に供給される。反応装置31では、例えば300
〜100Torr程度のやや弱い減圧下、150〜16
0゜Cで乳酸を脱水縮合しオリゴマーとする。32は真
空(排気)装置でコンデンサーまたはトラップ及び真空
ポンプなどからなる。反応装置31で重合したものは、
ポンプ33で第2重合装置34に送られる。第2反応装
置34は第1反応装置とほぼ同じものであるが、真空度
は1〜100Torrとやや高い。35は真空装置であ
る。
FIG. 3 is a system diagram showing an embodiment of the present invention, which will be described below by taking lactic acid as an example. The same applies to α-hydroxycarboxylic acids other than lactic acid. The raw material lactic acid aqueous solution is supplied from a tank 21 to a concentrator 23 by a pump 22. Tanks 24 and 26 are for additives (antioxidants, catalysts, solvents, etc.), which are supplied by pumps 25 and 27 as needed. The concentrating device 23 is for evaporating the water content of the raw material and out of the system, and the reference numeral 28 is the taken water content. This concentration step is usually performed at 100 to 1
The reaction is performed at 50 ° C. and normal pressure, but can be performed under reduced pressure.
The lactic acid, which has been concentrated to almost zero moisture, is supplied to the first polymerization reactor 31 via a filter 30 by a pump 29 in a molten state. In the reaction device 31, for example, 300
150 to 16 under a slightly reduced pressure of about 100 Torr
At 0 ° C., lactic acid is dehydrated and condensed to form an oligomer. Reference numeral 32 denotes a vacuum (exhaust) device which includes a condenser or trap, a vacuum pump, and the like. Those polymerized in the reactor 31
It is sent to a second polymerization device 34 by a pump 33. The second reactor 34 is almost the same as the first reactor, but has a slightly higher degree of vacuum of 1 to 100 Torr. 35 is a vacuum device.

【0020】図3では、重合を直列に接続した2つの反
応装置で連続的に行う例を示したが、勿論3個以上の反
応容器を多段的に用いても良く、1個の反応装置をバッ
チ式に間欠運転してもよい。この重合工程では、ポリ乳
酸の分子量が500〜3000程度のオリゴマーを製造
する事が多い。分子量が大きいと溶融粘度が高く、低温
では取扱い難くなるためである。重合工程では、重合触
媒を使ってもよいが、触媒なしでもオリゴマーは得られ
る。触媒が存在するとラセミ化が進行する恐れがあるの
で、触媒は使わない方が好ましい。また、この重合工程
で分子量が過大になるのを防ぐため、重合抑制剤や停止
剤を使うこともある。すなわち、沸点が100゜C、特
に150゜C以上のモノカルボン酸、モノアルコール、
ジカルボン酸、ジオール、アルカリ金属の水酸化物や炭
酸塩などを、乳酸に対して例えば1〜10モル%加え
て、重合度を100〜10に抑制することが出来る。
FIG. 3 shows an example in which polymerization is continuously performed in two reactors connected in series. However, three or more reactors may be used in multiple stages, and one reactor may be used. The batch operation may be performed intermittently. In this polymerization step, an oligomer having a molecular weight of polylactic acid of about 500 to 3000 is often produced. If the molecular weight is large, the melt viscosity is high, and it is difficult to handle at a low temperature. In the polymerization step, a polymerization catalyst may be used, but an oligomer can be obtained without a catalyst. If a catalyst is present, racemization may proceed, so it is preferable not to use a catalyst. In order to prevent the molecular weight from becoming excessive in this polymerization step, a polymerization inhibitor or a terminator may be used. That is, a monocarboxylic acid or monoalcohol having a boiling point of 100 ° C., particularly 150 ° C. or higher,
The degree of polymerization can be suppressed to 100 to 10 by adding, for example, 1 to 10 mol% of dicarboxylic acid, diol, hydroxide or carbonate of an alkali metal to lactic acid.

【0021】反応装置34で得られたオリゴマーは、ポ
ンプ36で第1解重合装置37に送られる。解重合装置
37としては、例えば図1〜2に示した面状攪拌装置を
持つ反応容器が用いられ、タンク38の解重合触媒がポ
ンプ39によって供給される。解重合装置37では、乳
酸のオリコマーまたはポリマーは、触媒の存在下、温度
180〜220゜C、真空度10〜100Torrで反
応(解重合)して環状2量体となり、蒸発し反応系外に
設けられた精留塔40を経てコンデンサー41で凝縮
し、ラクチド43として回収される。42は真空(排
気)装置であり、44は高沸点成分で、廃棄されるか前
の重合工程などに戻される。解重合装置37の反応物質
はポンプ45で第2解重合装置46に送られる。第2解
重合装置46は、第1解重合装置37とほぼ同じで、真
空度が例えば1〜10Torrと高く設定されている。
47は精留塔、48はコンデンサー、49は真空装置、
50は回収されたラクチド、51は高沸点物である。
The oligomer obtained in the reactor 34 is sent to a first depolymerizer 37 by a pump 36. As the depolymerization device 37, for example, a reaction vessel having a planar stirring device shown in FIGS. 1 and 2 is used, and a depolymerization catalyst in a tank 38 is supplied by a pump 39. In the depolymerization device 37, the lactic acid oricomer or polymer reacts (depolymerizes) at a temperature of 180 to 220 ° C. and a degree of vacuum of 10 to 100 Torr in the presence of a catalyst to form a cyclic dimer, which evaporates and exits the reaction system. It is condensed by a condenser 41 via a provided rectification column 40 and is recovered as a lactide 43. Reference numeral 42 denotes a vacuum (exhaust) device, and reference numeral 44 denotes a high-boiling component, which is discarded or returned to the previous polymerization step or the like. The reactants of the depolymerizer 37 are sent to the second depolymerizer 46 by the pump 45. The second depolymerization device 46 is almost the same as the first depolymerization device 37, and the degree of vacuum is set high, for example, 1 to 10 Torr.
47 is a rectification column, 48 is a condenser, 49 is a vacuum device,
50 is the recovered lactide and 51 is a high boiling substance.

【0022】図3では、2つの解重合反応容器37及び
46が直列に接続された例を示したが、反応容器は1個
でもよく3個以上を直列に配置したものでもよい。反応
容器46の中の反応物質の一部は、ポンプ52により取
り出され、バルブ53を閉じバルブ55を開いた場合
は、前段の反応容器37に戻され循環系を形成する。ま
たバルブ55を閉じバルブ53を開けば、反応残渣54
が取り出される。ポンプ52を停止すれば反応容器46
は閉鎖系となる。
FIG. 3 shows an example in which two depolymerization reaction vessels 37 and 46 are connected in series. However, one or three or more reaction vessels may be arranged in series. A part of the reactants in the reaction vessel 46 is taken out by the pump 52, and when the valve 53 is closed and the valve 55 is opened, the reaction substance is returned to the reaction vessel 37 in the preceding stage to form a circulation system. If the valve 55 is closed and the valve 53 is opened, the reaction residue 54
Is taken out. When the pump 52 is stopped, the reaction vessel 46 is stopped.
Becomes a closed system.

【0023】各工程や反応装置を接続する送液ポンプ2
9、33、36、45、52は、連続運転でもよく間欠
運転でもよいが、定常性の点で連続運転が好ましい。ま
た各反応容器内の反応物質の量を一定に保つように、そ
れらのポンプなどの送液速度を調節、制御することも望
ましい。また、原料の濃縮、重合、解重合の各工程の間
に、必要に応じ貯留タンクを設けることも出来る。
Liquid sending pump 2 for connecting each process and the reaction apparatus
9, 33, 36, 45, and 52 may be continuous operation or intermittent operation, but continuous operation is preferable in terms of steadiness. It is also desirable to adjust and control the pumping speed of the pumps and the like so as to keep the amount of the reactants in each reaction vessel constant. In addition, a storage tank may be provided between each step of concentration, polymerization, and depolymerization of the raw materials, if necessary.

【0024】反応装置37および46の中の反応物質の
平均の滞留時間(反応時間)は、前述のように反応温度
が低い場合は、やや長くてもよいが、勿論短い方がラセ
ミ化防止の点でも、生産効率の点でも好ましい。解重合
速度を支配する要因は、触媒の種類と量、温度、反応物
質の攪拌速度、伝熱速度、真空度及び有効蒸発面積であ
る。本発明では、攪拌速度、伝熱速度及び有効蒸発面積
を十分大きくすることが出来、従って反応温度を比較的
低くしかも反応速度を比較的大きくすることが可能で、
高品質の製品を高能率で得ることが出来る。重合と解重
合とは平衡反応であり、同じ触媒が両方の反応に働くと
考えられる。触媒は特に限定されず、公知のものや有効
なものを用いればよいが、金属錫、酸化錫、塩化錫、有
機酸の錫塩、例えばオクチル酸錫などが好ましく用いら
れ、反応物質に対して例えば0.01〜3%程度、特に
0.1〜1%程度がよく用いられる。なお、図1〜2に
示した反応装置は、原料の濃縮及び重合工程にも好まし
く用いることが出来る。図3の装置において、一定期間
(例えば10日間)ごとに、ポンプ36を停止してオリ
ゴマーなどの供給を止めた状態で反応を継続し、反応容
器37および46の中のオリゴマーなどの殆どがラクチ
ドに転換し留出した後、バルブ55を閉じバルブ53を
開き、解重合反応の残渣を系外に取り出し、新しい触媒
や流動性改善剤(例えばポリエチレングリコール)を補
給する。
The average residence time (reaction time) of the reactants in the reactors 37 and 46 may be slightly longer when the reaction temperature is low, as described above. It is also preferable in terms of production efficiency. Factors governing the depolymerization rate are the type and amount of the catalyst, the temperature, the stirring speed of the reactants, the heat transfer speed, the degree of vacuum, and the effective evaporation area. In the present invention, the stirring speed, the heat transfer speed and the effective evaporation area can be made sufficiently large, so that the reaction temperature can be made relatively low and the reaction speed can be made relatively large.
High quality products can be obtained with high efficiency. Polymerization and depolymerization are equilibrium reactions, and it is believed that the same catalyst works in both reactions. The catalyst is not particularly limited, and any known or effective catalyst may be used.Metal tin, tin oxide, tin chloride, tin salts of organic acids, such as tin octylate, are preferably used, and For example, about 0.01 to 3%, particularly about 0.1 to 1% is often used. In addition, the reaction apparatus shown in FIGS. 1 and 2 can be preferably used also in the step of concentrating and polymerizing the raw materials. In the apparatus shown in FIG. 3, the reaction is continued in a state where the supply of the oligomer and the like is stopped by stopping the pump 36 at regular intervals (for example, every 10 days), and almost all of the oligomer and the like in the reaction vessels 37 and 46 are lactide. Then, the valve 55 is closed and the valve 53 is opened, the residue of the depolymerization reaction is taken out of the system, and a new catalyst and a fluidity improving agent (for example, polyethylene glycol) are supplied.

【0025】本発明の方法は、使用後のポリ乳酸やポリ
グリコール酸などの成型品や屑からの、環状2量体の回
収、再利用(リサイクル)に応用出来る。すなわち、回
収されたそれら成型品などのゴミを取り除いた後、破砕
して細片とし、例えばスクリュウ押出機で溶融して図3
の重合工程または解重合工程に供給すればよい。溶融前
のポリマー細片の水分率の調整により、溶融後のポリマ
ーの分子量を任意にコントロール可能で、それらの工程
での反応に適するものとすることが出来る。
The method of the present invention can be applied to the recovery and reuse (recycling) of cyclic dimers from molded products such as polylactic acid and polyglycolic acid and scraps after use. That is, after removing the collected refuse such as molded products, they are crushed into small pieces, and are melted by, for example, a screw extruder, and are melted as shown in FIG.
May be supplied to the polymerization step or the depolymerization step. By adjusting the water content of the polymer pieces before melting, the molecular weight of the polymer after melting can be arbitrarily controlled, making it suitable for the reaction in those steps.

【0026】[0026]

【実施例】以下の実施例において、%、部は特に断らな
い限り重量比率である。
EXAMPLES In the following examples,% and parts are by weight unless otherwise specified.

【0027】[実施例1]光学純度99.5%以上のL
−乳酸の90%水溶液約300lを、錨型攪拌機を持ち
容量800lのタンク型反応容器に供給し、大気圧下温
度135゜Cで3時間加熱濃縮し、貯留タンクに貯え
る。この二つのタンクが図3の濃縮装置23に相当す
る。濃縮した乳酸溶液は、図1〜2に示すような反応装
置を2個直列に配置した重合装置に供給した。反応装置
は、直径60cmの円板型攪拌素子を2cm間隔で片側
に35枚(合計70枚)、スクリュウ型素子(送り5c
m、2回転)を入り口側と出口側の2ケ所に配置したも
ので、図3の31および34に相当する。反応装置下半
分の有効容積は約190l、そこに反応物質を満たした
ときの有効蒸発面積は約600cm2 /lである。第1
の反応装置は温度150゜C、真空度100Torrと
し、第2の反応装置は温度155゜C、真空度20To
rr、攪拌機の回転速度は共に15rpmである。重合
後のオリゴマーの平均分子量は2200で、次の解重合
工程に連続的に供給された。
Example 1 L having an optical purity of 99.5% or more
-About 300 l of a 90% aqueous solution of lactic acid is supplied to a tank type reaction vessel having an anchor stirrer and having a capacity of 800 l, heated and concentrated at 135 ° C under atmospheric pressure for 3 hours, and stored in a storage tank. These two tanks correspond to the concentration device 23 in FIG. The concentrated lactic acid solution was supplied to a polymerization apparatus in which two reactors as shown in FIGS. The reaction apparatus was composed of 35 disc-type stirring elements having a diameter of 60 cm at intervals of 2 cm on one side (a total of 70 pieces), and a screw-type element (feed 5c).
m, 2 rotations) are arranged at two points on the entrance side and the exit side, and correspond to 31 and 34 in FIG. The effective volume of the lower half of the reactor is about 190 l, and the effective evaporation area when filled with the reactants is about 600 cm 2 / l. First
The first reactor was at a temperature of 150 ° C. and a degree of vacuum of 100 Torr, and the second reactor was at a temperature of 155 ° C. and a degree of vacuum of 20 To.
rr and the rotation speed of the stirrer are both 15 rpm. The average molecular weight of the oligomer after polymerization was 2,200, and was continuously supplied to the next depolymerization step.

【0028】解重合装置は、上記重合装置と同じ2軸の
面状攪拌装置を有するものを2個直列に接続したもの
で、図3の反応装置37および46に相当する。第1解
重合反応装置は温度200゜C、真空度20Torr、
第2解重合反応装置は温度200゜C、真空度10To
rr、攪拌機の回転速度は共に30rpmである。第2
反応装置の中の反応物質の一部は、図3と同じ様にポン
プ52で取り出され、10l/minの速度で第1反応
装置に戻される。2個の解重合反応装置の反応物質の液
面は、それぞれ攪拌軸の中心より3cm下になるよう
に、ポンプ36および45の速度が調節されている。触
媒はオクチル酸錫を反応物質に対して.0.5%となる
ように添加し、解重合装置へのオリゴマーの供給量は平
均3.32l/minで、反応容器内部の反応物質の平
均滞留時間は約2時間である。2個のコンデンサーから
得られたラクチドの、原料乳酸に対する転換率は理論値
の93.1%、L体比率は98.5(光学純度97.
0)%であった。これは、前記特表公報の実施例のラク
チドのL体比率約92%よりもはるかに優れている。な
お本発明者などの知見では、L体比率が97.5%以上
では、再結晶法による精製工程でL体比率99.5%以
上の高純度ラクチドが容易に得られる。しかし、L体比
率95%以下では、溶剤などによる再結晶法ではL体比
率を高めることは極めて困難である。
The depolymerization device is a device in which two devices having the same biaxial planar stirring device as the above polymerization device are connected in series, and corresponds to the reaction devices 37 and 46 in FIG. The first depolymerization reactor is at a temperature of 200 ° C., a degree of vacuum of 20 Torr,
The second depolymerization reactor has a temperature of 200 ° C and a degree of vacuum of 10To.
rr and the rotation speed of the stirrer are both 30 rpm. Second
Some of the reactants in the reactor are removed by pump 52, as in FIG. 3, and returned to the first reactor at a rate of 10 l / min. The speeds of the pumps 36 and 45 are adjusted so that the liquid levels of the reactants in the two depolymerization reactors are each 3 cm below the center of the stirring shaft. The catalyst used tin octylate for the reactants. The amount of the oligomer supplied to the depolymerizer is 3.32 l / min on average, and the average residence time of the reactants in the reaction vessel is about 2 hours. The conversion ratio of lactide obtained from the two condensers to the starting lactic acid was 93.1% of the theoretical value, and the L-form ratio was 98.5 (optical purity: 97.5%).
0)%. This is much better than the L-form ratio of lactide of about 92% in the examples of the above-mentioned Japanese Unexamined Patent Publication. According to the findings of the present inventors, when the L-form ratio is 97.5% or more, high-purity lactide having an L-form ratio of 99.5% or more can be easily obtained in a purification step by a recrystallization method. However, when the L-form ratio is 95% or less, it is extremely difficult to increase the L-form ratio by a recrystallization method using a solvent or the like.

【0029】[実施例2]実施例1とほぼ同じ実験を、
攪拌素子の表面積などが異なる解重合装置を用いて行っ
た。攪拌素子は円板状で、その表面に幅1.6mm、深
さ0.8mmの半円形断面の溝を同心円状に間隔2mm
で設け、表面積を平面円板の1.46倍とし、さらに円
板の先端部に幅6mm、長さ10mm、厚み3mmの平
面フィンを60゜間隔で放射状に溶接し、反応容器内面
のオリゴマーをかきとる(クリアランス5mm)ように
して、伝熱および攪拌効率を高めたもので、反応装置の
実効蒸発面積は約880cm2 /lで、回転速度は40
rpmである。反応容器の温度、圧力などは実施例1と
同一である。その結果、解重合装置へのオリゴマーの供
給速度は4.35l/minで、解重合の反応速度は実
施例1の約1.31倍であった。ラクチドへの転換率は
93.3%、L体比率は98.5%で、実施例1とほぼ
同じであった。なお重合工程から解重合工程へ供給する
オリゴマーの分子量は、1960で、供給量が増えたた
め少し低下したが特に問題はない。
Example 2 An experiment almost identical to that of Example 1 was performed.
This was performed using a depolymerization apparatus having a different surface area of the stirring element. The stirrer element is a disc-shaped, and has a concentric circular groove with a semicircular cross section of 1.6 mm in width and 0.8 mm in depth on the surface at a distance of 2 mm.
The surface area is 1.46 times that of a flat disk, and flat fins of 6 mm wide, 10 mm long and 3 mm thick are radially welded to the tip of the disk at 60 ° intervals to remove oligomers on the inner surface of the reaction vessel. The efficiency of heat transfer and stirring is increased by scraping (clearance 5 mm). The effective evaporation area of the reactor is about 880 cm 2 / l and the rotation speed is 40
rpm. The temperature and pressure of the reaction vessel are the same as in Example 1. As a result, the supply rate of the oligomer to the depolymerization apparatus was 4.35 l / min, and the reaction rate of the depolymerization was about 1.31 times that of Example 1. The conversion to lactide was 93.3%, and the L-form ratio was 98.5%, which was almost the same as in Example 1. The molecular weight of the oligomer to be supplied from the polymerization step to the depolymerization step was 1960, and was slightly reduced due to an increase in the supply amount, but there was no particular problem.

【0030】[0030]

【発明の効果】本発明によって、ポリα−ヒドロキシカ
ルボン酸のオリゴマー又はポリマーから光学純度の高い
環状2量体を高効率で容易に製造することができる。ま
た、本発明に用いる反応装置は、効率が高い、構造が比
較的簡単、大型化が容易、製造コストが安い、原料の適
用範囲が広い、安定に運転できるという大きな特長があ
る。このため、製造されるラクチドやグリコリドなどの
コストが更に低められ、生分解ポリマーの実用化の可能
性が一層高められた。
According to the present invention, a cyclic dimer having a high optical purity can be easily produced with high efficiency from an oligomer or polymer of poly-α-hydroxycarboxylic acid. Further, the reactor used in the present invention has the following major features: high efficiency, relatively simple structure, easy upsizing, low production cost, wide application range of raw materials, and stable operation. For this reason, the cost of lactide and glycolide to be produced was further reduced, and the possibility of practical use of the biodegradable polymer was further increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に好適な2軸攪拌装置を内蔵する反応装
置の横断面説明図である。
FIG. 1 is an explanatory cross-sectional view of a reactor incorporating a twin-screw agitator suitable for the present invention.

【図2】図1の装置の平面説明図である。FIG. 2 is an explanatory plan view of the apparatus of FIG. 1;

【図3】本発明の実施例を示すエステル環状2量体の連
続製造装置の系統図である。
FIG. 3 is a system diagram of an apparatus for continuously producing an ester cyclic dimer according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1反応容器 2駆動軸
3駆動軸 4攪拌素子 5攪拌素子
6反応物質 7空間 8給排気孔
9スクリュウ型素子 10スクリュウ型素子 11反応物質入口
12反応物質出口 21原料(乳酸等)タンク 22計量ポンプ
23濃縮装置 24添加剤タンク(1) 25計量ポンプ
26添加剤タンク(2) 27計量フイーダー 28水蒸気
29送液ポンプ 30フィルター 31重合反応装置(1)
32排気装置 33送液ポンプ 34重合反応装置(2)
35排気装置 36送液ポンプ 37解重合装置(1)
38触媒タンク 39計量ポンプ 40精留塔
41コンデンサー 42真空ポンプ 43製品(ラクチド等)
44高沸点物 45送液ポンプ 46解重合装置(2)
47精留塔 48コンデンサー 49真空ポンプ
50製品(ラクチド等) 51高沸点物 52送液ポンプ
53バルブ 54残渣 55バルブ
56フィルター
1 reaction vessel 2 drive shaft
3 drive shaft 4 stirring element 5 stirring element
6 reactant 7 space 8 supply and exhaust holes
9 screw-type element 10 screw-type element 11 reactant inlet
12 Reactant outlet 21 Raw material (lactic acid etc.) tank 22 Metering pump
23 Concentrator 24 Additive tank (1) 25 Metering pump
26 additive tank (2) 27 measuring feeder 28 steam
29 liquid feed pump 30 filter 31 polymerization reactor (1)
32 exhaust device 33 liquid feed pump 34 polymerization reactor (2)
35 exhaust device 36 liquid feed pump 37 depolymerization device (1)
38 catalyst tank 39 metering pump 40 rectification tower
41 condenser 42 vacuum pump 43 products (lactide etc.)
44 High boiling point material 45 Liquid feed pump 46 Depolymerization equipment (2)
47 rectification column 48 condenser 49 vacuum pump
50 products (lactide, etc.) 51 high-boiling substances 52 liquid pump
53 valve 54 residue 55 valve
56 filters

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小関 英一 京都市中京区西ノ京桑原町1番地 株式 会社 島津製作所 三条工場内 (56)参考文献 特開 昭63−123401(JP,A) 特開 平7−309863(JP,A) (58)調査した分野(Int.Cl.6,DB名) C07D 319/12 CA(STN) REGISTRY(STN)────────────────────────────────────────────────── ─── Continuation of the front page (72) Eiichi Koseki, Inventor Eiichi Koseki, 1 Kuwaharacho, Nishinokyo, Nakagyo-ku, Kyoto Shimazu Works Sanjo Factory (56) References JP-A-63-123401 (JP, A) JP-A-7 −309863 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C07D 319/12 CA (STN) REGISTRY (STN)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】α−ヒドロキシカルボン酸のポリマー又は
オリゴマーを、解重合触媒の存在下溶融状態で解重合し
環状2量体を生成せしめ、それを反応系外に気相で取り
出す方法において、解重合による該2量体の生成を反応
物質1リットル当たり400cm2 以上の蒸発面積を有
する面状攪拌装置を内蔵する反応容器内で行うことを特
徴とするエステル環状2量体の製造方法。
1. A method for depolymerizing a polymer or oligomer of α-hydroxycarboxylic acid in a molten state in the presence of a depolymerization catalyst to form a cyclic dimer, and removing the cyclic dimer out of the reaction system in a gas phase. A process for producing an ester cyclic dimer, wherein the dimer is produced by polymerization in a reaction vessel having a built-in planar agitator having an evaporation area of 400 cm 2 or more per liter of a reactant.
【請求項2】反応温度が220℃以下である請求項1記
載の方法。
2. The method according to claim 1, wherein the reaction temperature is 220 ° C. or lower.
【請求項3】反応容器の下方に反応物質を満たし上方を
空間とし、水平に設けられた駆動軸の回転により攪拌素
子を下方の反応物質中および上方の空間中を交互に通過
させる、請求項1〜2記載の方法。
3. The reaction vessel is filled with a reactant under the reaction vessel, and the space above is a space, and the stirring element is alternately passed through the lower reactant and the upper space by rotation of a horizontally provided drive shaft. 3. The method according to claim 1.
【請求項4】攪拌素子が、「円板、花弁形、多葉形、ス
クリュウ形、およびそれらに穴、溝、フィン及び/又は
各種凹凸を設けたもの」の群から選ばれた少なくとも1
種であり、且つその少なくとも1部が回転運動によって
反応物質を送る機能を有するものである、請求項1〜3
記載の方法。
4. The stirring element according to claim 1, wherein said stirring element is at least one selected from the group consisting of a disc, a petal, a multi-leaf, a screw, and those provided with holes, grooves, fins and / or various irregularities.
4. A seed, at least a part of which has the function of sending reactants by rotary movement.
The described method.
【請求項5】複数の攪拌素子が、2本の駆動軸上に互い
に重なり合い又は噛み合うように設けられ、互いに同方
向または逆方向に回転するものである、請求項1〜4記
載の方法。
5. The method according to claim 1, wherein a plurality of agitating elements are provided on the two drive shafts so as to overlap or mesh with each other, and rotate in the same or opposite directions to each other.
JP14282195A 1995-06-09 1995-06-09 Method for producing ester cyclic dimer Expired - Fee Related JP2917862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14282195A JP2917862B2 (en) 1995-06-09 1995-06-09 Method for producing ester cyclic dimer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14282195A JP2917862B2 (en) 1995-06-09 1995-06-09 Method for producing ester cyclic dimer

Publications (2)

Publication Number Publication Date
JPH08333359A JPH08333359A (en) 1996-12-17
JP2917862B2 true JP2917862B2 (en) 1999-07-12

Family

ID=15324416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14282195A Expired - Fee Related JP2917862B2 (en) 1995-06-09 1995-06-09 Method for producing ester cyclic dimer

Country Status (1)

Country Link
JP (1) JP2917862B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696824B2 (en) * 2005-10-07 2011-06-08 株式会社日立プラントテクノロジー Polyester production method and polyester production apparatus
JP5098233B2 (en) * 2006-06-30 2012-12-12 株式会社日立プラントテクノロジー Polyhydroxycarboxylic acid synthesis method and apparatus
JP4650427B2 (en) * 2007-01-04 2011-03-16 株式会社日立プラントテクノロジー Centrifugal thin film evaporator and operating method thereof
JP4427571B2 (en) * 2007-11-07 2010-03-10 株式会社日立プラントテクノロジー Apparatus and method for polymer synthesis
JP5051729B2 (en) * 2009-01-20 2012-10-17 公益財団法人北九州産業学術推進機構 Lactide recovery device and recovery method
JP5739165B2 (en) * 2011-01-06 2015-06-24 国立大学法人宇都宮大学 Method for producing lactide
CN107137951B (en) * 2017-05-22 2023-11-21 江苏江南药化装备有限公司 Continuous desublimation crystallizer

Also Published As

Publication number Publication date
JPH08333359A (en) 1996-12-17

Similar Documents

Publication Publication Date Title
US5770682A (en) Method for producing polylactic acid
JP4427571B2 (en) Apparatus and method for polymer synthesis
EP2607399A1 (en) Process for producing polylactic acid and reactors for use in said process
US5574129A (en) Process for producing lactic acid polymers and a process for the direct production of shaped articles from lactic acid polymers
JP3072334B2 (en) Control method of depolymerization of raw materials to produce low molecular weight products
JP2917862B2 (en) Method for producing ester cyclic dimer
JP4944800B2 (en) Polylactic acid production apparatus and polylactic acid production method
JP4696824B2 (en) Polyester production method and polyester production apparatus
JP5098233B2 (en) Polyhydroxycarboxylic acid synthesis method and apparatus
EP2172506B1 (en) Equipment and method for producing polyhydroxycarboxylic acid
JP4994314B2 (en) Method and apparatus for synthesizing lactide and polylactic acid
US6060622A (en) Methods of reproducing lactic acid components by using lactic acid based by-products
EP2450391A1 (en) System and method for producing polyhydroxycarboxylic acid
JPH06306149A (en) Production of polyhydrocarboxylic acid
JP3458911B2 (en) Continuous production method of lactide copolymer
TWI229099B (en) Method of continuous producing for epsilon-caprolactone polymer
JP3552367B2 (en) Apparatus and method for producing horizontal ester cyclic dimer
JP2864217B2 (en) Method for producing polylactic acid
JP3270827B2 (en) Method for producing polylactic acid
JP3552368B2 (en) Vertical ester cyclic dimer production apparatus and production method
TW202409057A (en) A plant and an efficient process for producing polylactic acid
JPH072983A (en) Production of poly(hydroxy carboxylic acid)
JPH06298914A (en) Production of polyhydroxycarboxylic acid
JP2010037453A (en) Method for producing polyester, and apparatus used therefor
JPH07228678A (en) Production of polyhydroxycarboxylic acid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees