JPH08333359A - Production of ester cyclic dimer - Google Patents

Production of ester cyclic dimer

Info

Publication number
JPH08333359A
JPH08333359A JP14282195A JP14282195A JPH08333359A JP H08333359 A JPH08333359 A JP H08333359A JP 14282195 A JP14282195 A JP 14282195A JP 14282195 A JP14282195 A JP 14282195A JP H08333359 A JPH08333359 A JP H08333359A
Authority
JP
Japan
Prior art keywords
reaction
depolymerization
reactor
cyclic dimer
oligomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14282195A
Other languages
Japanese (ja)
Other versions
JP2917862B2 (en
Inventor
Masao Matsui
雅男 松井
Hitomi Obara
仁実 小原
Hisatsugu Okuyama
久嗣 奥山
Hidekazu Koseki
英一 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP14282195A priority Critical patent/JP2917862B2/en
Publication of JPH08333359A publication Critical patent/JPH08333359A/en
Application granted granted Critical
Publication of JP2917862B2 publication Critical patent/JP2917862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)

Abstract

PURPOSE: To obtain the subject highly optically pure cyclic dimer in high efficiency by depolymerizing a polymer or an oligomer of an α-hydroxycarboxylic acid in the presence of a depolymerization catalyst in a molten state in a specific reactor, taking out the depolymerized substance in a vapor phase outside the reaction system. CONSTITUTION: (A) A polymer or an oligomer of an α-hydroxycarboxlic acid is depolymerized in the presence of (B) a depolymerization catalyst in a method state in a reactor having a built-in sheetlike stirrer having >=200cm<2> , preferably >=400cm<2> evaporation area based on 11 of a reaction substance to form a cyclic dimer. The dimer is taken out in a vapor phase from the reaction system. Preferably the lower part of the reactor is packed with the reaction substance, a space is made at the upper part and a stirring element is alternately passed through the reaction substance at the lower part and upper space by revolution of a horizontally set driving shaft. The stirring element is preferably obtained by equipping a disc or a petal like form element with a hole, a groove, etc., and has function of sending the reaction substance by rotation movement of at least part of the stirring element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリ乳酸およびポリグ
リコール酸その他のポリα−ヒドロキシカルボン酸の重
合原料である環状2量体の改良された製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved process for producing a cyclic dimer which is a raw material for polymerizing polylactic acid, polyglycolic acid and other poly .alpha.-hydroxycarboxylic acids.

【0002】[0002]

【従来の技術】生分解性または自然環境下で分解するポ
リマーが環境保護の見地から注目されている。特にポリ
乳酸やポリグリコール酸等は、分解性や物性の点で優れ
ており、その早期実用化が望まれている。実用化及び工
業化に必要な条件のひとつは、その原料が高能率かつ低
コストで供給されることである。乳酸やグリコール酸の
環状2量体であるラクチドとグリコリドからは、開環重
合によって高能率でポリ乳酸やボリグリコール酸を得る
ことが出来るので、それら環状(6員環)2量体の高能
率製造法が望まれている。
2. Description of the Related Art Polymers that are biodegradable or that decompose in a natural environment have attracted attention from the viewpoint of environmental protection. In particular, polylactic acid, polyglycolic acid and the like are excellent in degradability and physical properties, and their early commercialization is desired. One of the conditions necessary for practical application and industrialization is that the raw material is supplied with high efficiency and low cost. From lactide and glycolide, which are cyclic dimers of lactic acid and glycolic acid, polylactic acid and polyglycolic acid can be obtained with high efficiency by ring-opening polymerization. Therefore, high efficiency of these cyclic (6-membered ring) dimers can be obtained. A manufacturing method is desired.

【0003】α−ヒドロキシカルボン酸たとえば乳酸お
よびグリコール酸の環状2量体は、それらの(粗製)ポ
リマーやオリゴマーを触媒の存在下に加熱し解重合して
製造される。すなわち乳酸やグリコール酸等を精製して
重合するよりも、低純度原料を一旦重合してオリゴマー
またはポリマーとし、それらを解重合して得た高純度2
量体を重合するほうが、高能率で高分子量のポリマーを
得ることができ、この方法が工業化の近道と考えられて
いる。
Cyclic dimers of α-hydroxycarboxylic acids such as lactic acid and glycolic acid are produced by heating their (crude) polymers or oligomers in the presence of a catalyst to depolymerize them. That is, rather than purifying and polymerizing lactic acid or glycolic acid, a low-purity raw material is once polymerized into an oligomer or polymer, and then depolymerized to obtain a high-purity 2
Polymerization of the monomer gives higher efficiency and higher molecular weight polymer, and this method is considered as a shortcut to industrialization.

【0004】ポリ乳酸やポリグリコール酸の解重合によ
るエステル環状2量体の製造法として、反応および生成
した2量体の分離を薄膜蒸留器を用いて行う方法が公表
特許公報、特表平7−500091号に開示されてい
る。該公報では、従来技術として、2軸混合押出機を用
いるヨーロッパ特許出願公開第264926号に示され
た方法が紹介され、薄膜蒸留器を応用すればそれよりも
更に短時間に高能率で環状2量体を製造できるとしてい
る。
As a method for producing an ester cyclic dimer by depolymerization of polylactic acid or polyglycolic acid, a method in which a reaction and separation of the formed dimer are carried out by using a thin film distiller is disclosed in Japanese Patent Publication No. HEI-7 / 7. No. -500091. In this publication, as a conventional technique, the method shown in European Patent Application Publication No. 264926 using a twin-screw mixing extruder is introduced, and if a thin film distiller is applied, it is possible to produce a ring 2 with high efficiency in a shorter time than that. It is said that it can manufacture a quantity.

【0005】しかし、該特表公報の技術を詳細に検討す
ると、その実施例にみるように、得られる粗ラクチドは
かなり光学純度が低く不満足なものである。すなわち実
施例のすべてにわたり、得られたラクチドのL体比率は
90.8〜92.5%(平均91.6%)、不純物であ
るメソ−ラクチド(L/D混合物)を平均7.6%,同
じくD−ラクチドを平均0.8%も含んでいる。すなわ
ち解重合工程でラセミ化が相当強く進行している。
However, a detailed examination of the technique disclosed in the above-mentioned publication discloses that the crude lactide obtained has an unsatisfactory low optical purity as shown in the examples. That is, in all of the examples, the L-form ratio of the obtained lactide was 90.8-92.5% (average 91.6%), and the meso-lactide (L / D mixture) as an impurity was averaged 7.6%. Similarly, it also contains D-lactide on average 0.8%. That is, the racemization proceeds considerably strongly in the depolymerization process.

【0006】[0006]

【発明が解決しようとする課題】言うまでもなく、ラク
チドなどの光学純度は高いものが望ましい。結晶性や耐
熱性に優れるホモポリマーを得るには、ラクチドなどの
光学純度は98%(重量比率99%)以上であることが
望ましい。共重合の場合でも、一定の品質のものを安定
して得るには、原料は高純度(例えば99重量%以上)
であることが望ましい。L体比率の低い粗ラクチドなど
は、精製工程での能率や歩留まりが低く、コスト的にも
不利という問題がある。本発明の目的は、光学純度の高
いエステル環状2量体を高能率で製造可能な、改良され
た新しい方法を提供することにある。
Needless to say, lactide or the like having a high optical purity is desirable. In order to obtain a homopolymer having excellent crystallinity and heat resistance, the optical purity of lactide or the like is preferably 98% (99% by weight). Even in the case of copolymerization, in order to stably obtain a product of constant quality, the raw material should have a high purity (eg 99% by weight or more).
It is desirable that Crude lactide having a low L-form ratio has a problem in that the efficiency and yield in the refining process are low and the cost is disadvantageous. An object of the present invention is to provide an improved new method capable of producing an ester cyclic dimer having high optical purity with high efficiency.

【0007】[0007]

【課題を解決するための手段および作用】上記本発明の
目的は、α−ヒドロキシカルボン酸(たとえば乳酸また
はグリコール酸)のポリマー又はオリゴマーを、解重合
触媒の存在下、溶融状態で解重合して環状2量体を生成
せしめ、それを反応系外に気相で取り出す方法におい
て、解重合による該2量体の生成を反応物質1リットル
あたり200cm2 以上の蒸発面積を有する面状攪拌装
置を内蔵する反応容器内で減圧下で行うことにより達成
される。
The object of the present invention is to depolymerize an α-hydroxycarboxylic acid (eg lactic acid or glycolic acid) polymer or oligomer in the molten state in the presence of a depolymerization catalyst. In the method of producing a cyclic dimer and taking it out of the reaction system in a gas phase, the production of the dimer by depolymerization includes a planar stirrer having an evaporation area of 200 cm 2 or more per 1 liter of a reactant. It is achieved by performing the reaction under reduced pressure in a reaction container.

【0008】本発明において、原料のポリα−ヒドロキ
シカルボン酸の分子量は、とくに限定されない。従来の
方法では、溶融粘度の低いものを用いる必要があり、通
常分子量500〜3000程度のものが用いられる。前
記特表公報の実施例では、重合度10〜20(分子量約
740〜1300)のオリゴマーが用いられている。薄
膜蒸留法では高粘度のものは扱い難いからである。本発
明方法では、原料ポリマーは分子量500〜3000程
度のオリゴマーでもよく、もっと高分子量のもの、例え
ば分子量30000程度のもの又はそれ以上のものでも
利用可能であり、原料の適用範囲が広い。薄膜蒸留法で
は攪拌装置が無いが、本発明では攪拌装置を持つ反応容
器を用いるからである。
In the present invention, the molecular weight of the raw material poly α-hydroxycarboxylic acid is not particularly limited. In the conventional method, it is necessary to use one having a low melt viscosity, and usually one having a molecular weight of about 500 to 3000 is used. In the examples of the above-mentioned publication, an oligomer having a polymerization degree of 10 to 20 (molecular weight of about 740 to 1300) is used. This is because a thin film distillation method is difficult to handle if it has a high viscosity. In the method of the present invention, the raw material polymer may be an oligomer having a molecular weight of about 500 to 3,000, and a higher molecular weight one, for example, one having a molecular weight of about 30,000 or more can be used, and the applicable range of the raw material is wide. This is because the thin film distillation method does not have a stirrer, but the present invention uses a reaction vessel having a stirrer.

【0009】本発明の特徴は、大きな蒸発面積を持つ面
状攪拌装置を内蔵した反応容器(反応装置)を用いるこ
とである。攪拌装置に大きな蒸発面を持たせるために
は、駆動軸の回転運動により、表面積の大きい面状攪拌
素子を反応物質の液体中と蒸発するための空間中の双方
を交互に通過させればよい。以下、図によって、本発明
に用いる装置を説明する。
A feature of the present invention is to use a reaction vessel (reactor) having a large-area evaporating area and a built-in planar stirrer. In order to provide the stirring device with a large evaporation surface, the planar stirring element having a large surface area may alternately pass through both the liquid of the reactant and the space for evaporation by the rotational movement of the drive shaft. . The device used in the present invention will be described below with reference to the drawings.

【0010】図1〜2は、本発明に好ましい反応装置の
具体例を示すす説明図である。図1は反応装置の横断面
図で、反応容器1の中に、2本の駆動軸2および3によ
って回転する円板状の攪拌素子4および5が設けられて
いる。容器1の下半分には反応物質6があり、容器の上
半分は空間7となっている。8は不活性気体を供給した
り、排気(真空)系に接続する孔である。図では省略さ
れているが、容器1などは、適当な加熱手段、例えば電
熱、水蒸気、その他の気体又は液体の熱媒によって加熱
されている。駆動軸2および3の回転運動によって、円
板状の攪拌素子4及び5が回転し、それぞれ反応物質6
及び空間7の中を交互に通過する。攪拌素子4および5
は、(1)反応物質6の攪拌による反応の促進、(2)
加熱された反応容器1からの熱を攪拌により反応物質に
効果的に取り込む、さらに(3)反応物質をその表面に
膜状に付着した状態で上部空間7の中を移動し、反応物
質中の揮発成分(ラクチドなど)を蒸発させるという作
用を行う。反応物質6の中と上部空間7の中の移動の繰
り返しにより、反応物質6の中の揮発成分が蒸発し、外
部の真空系によって例えば精留装置やコンデンサーを有
する外部回収装置に導かれ、ラクチドやグリコリドなど
の環状2量体として回収される。回収装置が、高性能の
多段蒸留(精留)装置を有する場合は、かなり高純度の
製品が得られ、そうでない場合は粗ラクチドなどが得ら
れ、更に精製工程で再結晶法などで精製されて製品とな
る。
1 and 2 are explanatory views showing a concrete example of a reaction apparatus suitable for the present invention. FIG. 1 is a cross-sectional view of a reaction apparatus, in which a reaction vessel 1 is provided with disk-shaped stirring elements 4 and 5 which are rotated by two drive shafts 2 and 3. The lower half of the container 1 contains the reactant 6, and the upper half of the container is the space 7. Reference numeral 8 is a hole for supplying an inert gas or connecting to an exhaust (vacuum) system. Although not shown in the figure, the container 1 and the like are heated by a suitable heating means, for example, electric heat, steam, or other heat medium of gas or liquid. Due to the rotational movement of the drive shafts 2 and 3, the disk-shaped stirring elements 4 and 5 are rotated, and the reactant 6
And alternately pass through the space 7. Stirring elements 4 and 5
Is (1) acceleration of the reaction by stirring the reactant 6, (2)
The heat from the heated reaction vessel 1 is effectively taken into the reaction substance by stirring, and (3) the reaction substance is moved in the upper space 7 in a state of being attached in a film form on its surface to It acts to evaporate volatile components (such as lactide). By repeating the movement in the reaction substance 6 and in the upper space 7, the volatile components in the reaction substance 6 are evaporated and guided to an external recovery device having, for example, a rectification device or a condenser by an external vacuum system, and lactide. It is recovered as a cyclic dimer such as or glycolide. If the recovery device has a high-performance multi-stage distillation (rectification) device, a product of considerably high purity can be obtained, and if not, crude lactide or the like can be obtained, and further purified by a recrystallization method or the like in the purification step. Become a product.

【0011】図2は、図1の装置の平面図である。容器
1に2つの駆動軸2及び3が取り付けられ、円板状の攪
拌素子4、5およびスクリュウ状の攪拌素子兼送液素子
9、10を回転させる。11は反応物質の入口であり、
12は出口である。スクリュウ9及び10は、反応物質
を攪拌するとともに入口から出口へ送る作用をする。こ
れらは省略することも出来るが、反応容器1の内部は減
圧されており、出口12から例えばポンプで反応物を取
り出すためには、そのポンプへ背圧を加える何等かの送
液機構または加圧機構が必要である。出口12を閉じた
閉鎖系では、そのような送液機構は不要である。すなわ
ち、出口を閉じておいても、反応で生じた環状2量体な
どは、真空装置で系外に取り出されるから、取り出し量
に見合う原料の量を入り口から供給すれば、反応系は定
常状態を保ち安定に反応が進行する。
FIG. 2 is a plan view of the device of FIG. Two drive shafts 2 and 3 are attached to the container 1, and the disk-shaped stirring elements 4 and 5 and the screw-shaped stirring elements and liquid feeding elements 9 and 10 are rotated. 11 is the inlet of the reactant,
12 is an exit. The screws 9 and 10 serve to stir the reactants and to send them from the inlet to the outlet. These may be omitted, but the inside of the reaction vessel 1 is depressurized, and in order to take out the reaction product from the outlet 12 by, for example, a pump, some sort of liquid feeding mechanism or pressurization that applies back pressure to the pump. A mechanism is needed. In the closed system in which the outlet 12 is closed, such a liquid feeding mechanism is unnecessary. That is, even if the outlet is closed, the cyclic dimer and the like produced by the reaction are taken out of the system by the vacuum device. Therefore, if the amount of the raw material commensurate with the amount taken out is supplied from the inlet, the reaction system will be in a steady state. The reaction proceeds in a stable manner.

【0012】一方、反応物質の一部を適切な速度で取り
出し、再び反応装置の入り口へ供給すると、反応系は循
環システムとなり、反応がより均一に定常的に行われ、
より広範な応用が可能である。このような循環系では、
解重合触媒や添加剤などが繰り返し使われ、それらの消
費量が少なくて済むという利点もある。また、閉鎖系で
は、反応物質中の不純物などが反応容器に蓄積するの
で、長期の連続運転が出来ないが、反応容器の出口か
ら、反応残渣を連続的または間欠的に取り出せば、長期
連続運転が可能となる。また反応系に適当な溶剤または
希釈剤(例えばポリエチレングリコールなど)、安定剤
(酸化防止剤など)を加えて、流動性、反応性、安定性
などを改良することも出来るが、その場合循環系が有利
である。
On the other hand, when a part of the reaction material is taken out at an appropriate rate and supplied again to the inlet of the reaction apparatus, the reaction system becomes a circulation system, and the reaction is carried out more uniformly and steadily,
Wider range of applications is possible. In such a circulatory system,
There is also an advantage that depolymerization catalysts and additives are repeatedly used, and the consumption of them is small. In a closed system, impurities in the reactants accumulate in the reaction vessel, so long-term continuous operation cannot be performed.However, if the reaction residue is continuously or intermittently taken out from the outlet of the reaction vessel, long-term continuous operation is possible. Is possible. It is also possible to improve the fluidity, reactivity, stability, etc. by adding an appropriate solvent or diluent (eg polyethylene glycol), stabilizer (eg antioxidant) to the reaction system. Is advantageous.

【0013】攪拌装置は1軸でもよいが、図1及び2に
示したような、2つの駆動軸に複数の攪拌素子を互いに
重なり合う又は噛み合うように配置した2軸または多軸
攪拌装置は、容器の内面や攪拌装置の表面に付着した物
質が常にかき取られるセルフクリーニング作用をもち、
付着物による装置の汚れが少なく、長期間安定に運転で
きる特長があり、本発明の目的に特に好ましい。前記薄
膜蒸留装置では、このような機械的セルフクリーニング
作用はなく、長期連続運転に問題が生じる可能性があ
る。解重合工程では、生成した環状2量体が蒸発し系外
に取り出されるため、かなりの蒸発熱が必要である。こ
の熱の主な供給源は、容器1からの伝導や赤外線輻射に
よるものと、反応物質の攪拌による発熱である。従っ
て、攪拌や伝導の効率を良くするために攪拌素子に適宜
フィンや凹凸を設けることも好ましい。勿論、攪拌装置
の回転速度を大きくすれば、反応物質により多くの熱を
供給することができ、本発明の方法はより広範な応用範
囲を持っている。
The stirring device may be a single shaft, but as shown in FIGS. 1 and 2, a two-shaft or multi-shaft stirring device in which a plurality of stirring elements are arranged on two driving shafts so as to overlap or mesh with each other is a container. Has a self-cleaning function that constantly scrapes off the substances adhering to the inner surface of the
It is particularly preferable for the purpose of the present invention because it has a feature that the device is less contaminated by deposits and can be operated stably for a long period of time. The thin-film distillation apparatus does not have such a mechanical self-cleaning action and may cause a problem in long-term continuous operation. In the depolymerization step, a considerable amount of heat of evaporation is required because the produced cyclic dimer is evaporated and taken out of the system. The main sources of this heat are conduction and infrared radiation from the container 1 and heat generation by stirring the reactants. Therefore, in order to improve the efficiency of stirring and conduction, it is also preferable to appropriately provide fins and irregularities on the stirring element. Of course, by increasing the rotation speed of the stirrer, more heat can be supplied to the reactants, and the method of the present invention has a wider range of application.

【0014】図1および2に示した装置と筒型の2軸押
出機との相違点のひとつは、反応容器の容積を極めて大
きく出来ることである。従って反応物6は、相対的にゆ
っくりとマイルドな条件、すなわち低目の温度で反応さ
せることが出来、且つ工業生産に適する大容量の装置を
比較的低コストで得ることが出来る。第2の相違点は、
攪拌素子が面状であることである。そのため攪拌素子は
その重量に比べて表面積が大きく、反応装置は蒸発面積
が大きく高効率でしかも低コストとなる。
One of the differences between the apparatus shown in FIGS. 1 and 2 and the cylindrical twin-screw extruder is that the volume of the reaction vessel can be made extremely large. Therefore, the reaction product 6 can be reacted at a relatively slow and mild condition, that is, at a low temperature, and a large-capacity apparatus suitable for industrial production can be obtained at a relatively low cost. The second difference is that
That is, the stirring element is planar. Therefore, the stirring element has a large surface area as compared with its weight, and the reaction device has a large evaporation area and high efficiency and low cost.

【0015】本発明の目的のためには、反応(解重合)
を出来るだけ低い温度である程度の短時間内に行う必要
がある。ラセミ化は、高温ほど早く起こるからである。
勿論反応物質の変質(酸化、着色など)も、高温ほど起
こりやすい。たとえばポリ乳酸の解重合による合成にお
いて、ラセミ化は160゜C以上で起こり、220゜C
以上で顕著となる。従って反応温度は、220゜C以下
であることが好ましく、210゜C以下が特に好まし
く、200゜C以下が最も好ましい。薄膜蒸留方式で
は、反応時間が極めて短い(1分以内)ために反応温度
を220゜C以上の高温とせざるを得ず、そのためラセ
ミ化が進行し、製品の光学純度が劣化する。前記特表公
報の実施例では、薄膜蒸留器の温度が260゜Cと極め
て高く、その結果、製品のL体比率は平均約92重量%
と低い。
For the purposes of the present invention, the reaction (depolymerization)
Must be carried out at a temperature as low as possible within a certain short time. This is because racemization occurs earlier at higher temperatures.
Of course, the deterioration of the reaction material (oxidation, coloring, etc.) is more likely to occur at higher temperatures. For example, in the synthesis by depolymerization of polylactic acid, racemization occurs at 160 ° C or higher and 220 ° C.
The above becomes remarkable. Therefore, the reaction temperature is preferably 220 ° C or lower, particularly preferably 210 ° C or lower, and most preferably 200 ° C or lower. In the thin-film distillation method, the reaction time is extremely short (within 1 minute), so that the reaction temperature has to be set to a high temperature of 220 ° C. or higher, which leads to progress of racemization and deterioration of optical purity of the product. In the example of the above-mentioned publication, the temperature of the thin film distiller is as high as 260 ° C, and as a result, the L-body ratio of the product is about 92% by weight on average.
And low.

【0016】反応時間は、温度がある程度低ければ、そ
れ程短時間でなくてもよい。平均反応時間は、蒸発面積
にもよるが、例えば220゜Cでは30分以下、特に1
0分以下が好ましく、210゜Cでは2時間以下、特に
1時間以下が好ましく、200゜Cでは5時間以下、特
に3時間以下が好ましい。
The reaction time need not be so short as long as the temperature is low to some extent. The average reaction time depends on the evaporation area, but it is 30 minutes or less at 220 ° C, especially 1
It is preferably 0 minutes or less, 2 hours or less at 210 ° C, particularly 1 hour or less, and 5 hours or less, particularly 3 hours or less at 200 ° C.

【0017】攪拌装置の表面積が大きいほど、蒸発能力
が大きく望ましい。蒸発面積は、反応容器の下半分に反
応物質を満たした場合、攪拌装置の表面積の1/2と反
応容器の中程の水平方向断面積の和で近似出来る。蒸発
面積と反応物質の体積(単位リットル)との比を、以下
有効蒸発面積と記す。高い効率で反応させるには、有効
蒸発面積は200cm2 /l以上が必要であり、400
cm2 /l以上が好ましく、600cm2 /l以上が最
も好ましい。面状攪拌装置すなわち平面状、曲面状およ
びそれらに適宜凹凸や変形を加えたものは、2軸押出機
に比べて、比較的簡単な構造でより大きい蒸発面積を得
ることが出来る。例えば、平面円板状攪拌素子を2cm
間隔で配置すれば、蒸発面積を500cm2 /l以上に
出来る。平面または曲面状の素子の表面に、例えば波
状、溝状、球面状、フィン状その他の凹凸をつければ、
さらに蒸発面積を平面の1.5倍以上に大きくすること
が出来る。
The larger the surface area of the stirrer, the greater the evaporation capacity, which is desirable. The evaporation area can be approximated by the sum of 1/2 of the surface area of the stirrer and the horizontal cross-sectional area in the middle of the reaction container when the lower half of the reaction container is filled with the reactant. The ratio between the evaporation area and the volume of the reactant (unit: liter) is hereinafter referred to as the effective evaporation area. For highly efficient reaction, an effective evaporation area of 200 cm 2 / l or more is required.
cm 2 / l or more is preferable, and 600 cm 2 / l or more is most preferable. The planar stirrer, that is, the planar stirrer, the curved stirrer, and those with appropriate irregularities or deformations can obtain a larger evaporation area with a relatively simple structure as compared with the twin-screw extruder. For example, 2 cm for a flat disc-shaped stirrer
If they are arranged at intervals, the evaporation area can be 500 cm 2 / l or more. If, for example, corrugated, grooved, spherical, fin-shaped or other unevenness is provided on the surface of a flat or curved element,
Further, the evaporation area can be increased to 1.5 times or more of the flat surface.

【0018】攪拌装置又はその素子の形は任意である
が、例えば円板、花弁状、多葉形、スクリュウ形、それ
らに適宜孔、溝、フィンや凹凸を設けたものが好ましく
用いられる。スクリュウ形には、図2に示したようなス
クリュウコンベア型、船の推進機や扇風機の羽のような
もの等、色々な応用があるが、基本的には螺旋状の部分
を有し且つ送液機能を持つものである。図2には2つの
軸が同方向回転の例を示したが、逆回転の場合は互いに
逆方向のスクリュウを組み合わせれば良い。
The shape of the stirrer or the element thereof is arbitrary, but for example, a disc, a petal shape, a multilobe shape, a screw shape, or those provided with appropriate holes, grooves, fins or irregularities are preferably used. The screw type has various applications such as a screw conveyor type as shown in FIG. 2 and a propeller of a ship or a fan blade of a fan, etc. It has a liquid function. FIG. 2 shows an example in which the two shafts rotate in the same direction, but in the case of reverse rotation, screws in opposite directions may be combined.

【0019】図3は本発明の実施例を示す系統図で、以
下乳酸を例として説明するが、乳酸以外のα−ヒドロキ
シカルボン酸でもほぼ同様である。原料の乳酸水溶液
は、タンク21からポンプ22によって濃縮装置23に
供給される。タンク24および26は添加剤(酸化防止
剤、触媒、溶剤など)用のもので、それらは必要に応じ
てポンプ25および27で供給される。濃縮装置23は
原料の水分を蒸発させ系外に出すもので、28は取り出
された水分である。この濃縮工程は、通常、100〜1
50゜C、常圧で行うが、減圧下で行うこともできる。
濃縮されほとんど水分ゼロになった乳酸は、溶融状態で
ポンプ29によりフィルター30を経て第1重合反応装
置31に供給される。反応装置31では、例えば300
〜100Torr程度のやや弱い減圧下、150〜16
0゜Cで乳酸を脱水縮合しオリゴマーとする。32は真
空(排気)装置でコンデンサーまたはトラップ及び真空
ポンプなどからなる。反応装置31で重合したものは、
ポンプ33で第2重合装置34に送られる。第2反応装
置34は第1反応装置とほぼ同じものであるが、真空度
は1〜100Torrとやや高い。35は真空装置であ
る。
FIG. 3 is a system diagram showing an embodiment of the present invention. Although lactic acid will be described below as an example, the same applies to α-hydroxycarboxylic acids other than lactic acid. The lactic acid aqueous solution as a raw material is supplied from the tank 21 to the concentrating device 23 by the pump 22. Tanks 24 and 26 are for additives (antioxidants, catalysts, solvents, etc.), which are supplied by pumps 25 and 27 as needed. The concentrating device 23 evaporates the water content of the raw material and sends it out of the system, and 28 is the extracted water content. This concentration step is usually 100-1
It is carried out at 50 ° C. and normal pressure, but it may be carried out under reduced pressure.
Lactic acid that has been concentrated and has almost zero water content is supplied to the first polymerization reaction device 31 through a filter 30 by a pump 29 in a molten state. In the reactor 31, for example, 300
150 to 16 under slightly weak decompression of about 100 Torr
Lactic acid is dehydrated and condensed at 0 ° C to form an oligomer. A vacuum (exhaust) device 32 is composed of a condenser or a trap and a vacuum pump. What was polymerized in the reactor 31 is
It is sent to the second polymerization device 34 by the pump 33. The second reactor 34 is almost the same as the first reactor, but the degree of vacuum is slightly high at 1 to 100 Torr. Reference numeral 35 is a vacuum device.

【0020】図3では、重合を直列に接続した2つの反
応装置で連続的に行う例を示したが、勿論3個以上の反
応容器を多段的に用いても良く、1個の反応装置をバッ
チ式に間欠運転してもよい。この重合工程では、ポリ乳
酸の分子量が500〜3000程度のオリゴマーを製造
する事が多い。分子量が大きいと溶融粘度が高く、低温
では取扱い難くなるためである。重合工程では、重合触
媒を使ってもよいが、触媒なしでもオリゴマーは得られ
る。触媒が存在するとラセミ化が進行する恐れがあるの
で、触媒は使わない方が好ましい。また、この重合工程
で分子量が過大になるのを防ぐため、重合抑制剤や停止
剤を使うこともある。すなわち、沸点が100゜C、特
に150゜C以上のモノカルボン酸、モノアルコール、
ジカルボン酸、ジオール、アルカリ金属の水酸化物や炭
酸塩などを、乳酸に対して例えば1〜10モル%加え
て、重合度を100〜10に抑制することが出来る。
Although FIG. 3 shows an example in which the polymerization is continuously carried out by two reactors connected in series, it goes without saying that three or more reaction vessels may be used in multiple stages and one reactor may be used. The intermittent operation may be performed in a batch system. In this polymerization step, an oligomer having a molecular weight of polylactic acid of about 500 to 3000 is often produced. This is because when the molecular weight is large, the melt viscosity is high and it becomes difficult to handle at low temperatures. In the polymerization step, a polymerization catalyst may be used, but an oligomer can be obtained without a catalyst. The presence of a catalyst may promote racemization, so it is preferable not to use a catalyst. Further, in order to prevent the molecular weight from becoming excessive in this polymerization step, a polymerization inhibitor or a terminating agent may be used. That is, a monocarboxylic acid or monoalcohol having a boiling point of 100 ° C, particularly 150 ° C or higher,
The degree of polymerization can be suppressed to 100 to 10 by adding, for example, 1 to 10 mol% of dicarboxylic acid, diol, hydroxide or carbonate of an alkali metal to lactic acid.

【0021】反応装置34で得られたオリゴマーは、ポ
ンプ36で第1解重合装置37に送られる。解重合装置
37としては、例えば図1〜2に示した面状攪拌装置を
持つ反応容器が用いられ、タンク38の解重合触媒がポ
ンプ39によって供給される。解重合装置37では、乳
酸のオリコマーまたはポリマーは、触媒の存在下、温度
180〜220゜C、真空度10〜100Torrで反
応(解重合)して環状2量体となり、蒸発し反応系外に
設けられた精留塔40を経てコンデンサー41で凝縮
し、ラクチド43として回収される。42は真空(排
気)装置であり、44は高沸点成分で、廃棄されるか前
の重合工程などに戻される。解重合装置37の反応物質
はポンプ45で第2解重合装置46に送られる。第2解
重合装置46は、第1解重合装置37とほぼ同じで、真
空度が例えば1〜10Torrと高く設定されている。
47は精留塔、48はコンデンサー、49は真空装置、
50は回収されたラクチド、51は高沸点物である。
The oligomer obtained in the reaction device 34 is sent to the first depolymerization device 37 by the pump 36. As the depolymerization device 37, for example, a reaction container having a planar stirrer shown in FIGS. 1 and 2 is used, and a depolymerization catalyst in a tank 38 is supplied by a pump 39. In the depolymerization device 37, the orycomer or polymer of lactic acid reacts (depolymerizes) in the presence of a catalyst at a temperature of 180 to 220 ° C. and a vacuum degree of 10 to 100 Torr to form a cyclic dimer, which evaporates to the outside of the reaction system. After passing through the rectification tower 40 provided, it is condensed in a condenser 41 and recovered as a lactide 43. 42 is a vacuum (exhaust) device, and 44 is a high boiling point component, which is discarded or returned to a previous polymerization step or the like. The reaction material of the depolymerization device 37 is sent to the second depolymerization device 46 by the pump 45. The second depolymerization apparatus 46 is almost the same as the first depolymerization apparatus 37, and the degree of vacuum is set high, for example, 1 to 10 Torr.
47 is a rectification column, 48 is a condenser, 49 is a vacuum device,
50 is the recovered lactide and 51 is the high boiling point material.

【0022】図3では、2つの解重合反応容器37及び
46が直列に接続された例を示したが、反応容器は1個
でもよく3個以上を直列に配置したものでもよい。反応
容器46の中の反応物質の一部は、ポンプ52により取
り出され、バルブ53を閉じバルブ55を開いた場合
は、前段の反応容器37に戻され循環系を形成する。ま
たバルブ55を閉じバルブ53を開けば、反応残渣54
が取り出される。ポンプ52を停止すれば反応容器46
は閉鎖系となる。
Although FIG. 3 shows an example in which two depolymerization reaction vessels 37 and 46 are connected in series, the number of reaction vessels may be one, or three or more may be arranged in series. A part of the reaction substance in the reaction container 46 is taken out by the pump 52, and when the valve 53 is closed and the valve 55 is opened, it is returned to the reaction container 37 at the previous stage to form a circulation system. If the valve 55 is closed and the valve 53 is opened, the reaction residue 54
Is taken out. If the pump 52 is stopped, the reaction container 46
Is a closed system.

【0023】各工程や反応装置を接続する送液ポンプ2
9、33、36、45、52は、連続運転でもよく間欠
運転でもよいが、定常性の点で連続運転が好ましい。ま
た各反応容器内の反応物質の量を一定に保つように、そ
れらのポンプなどの送液速度を調節、制御することも望
ましい。また、原料の濃縮、重合、解重合の各工程の間
に、必要に応じ貯留タンクを設けることも出来る。
Liquid feed pump 2 for connecting each process and reaction device
Although 9, 33, 36, 45, and 52 may be continuous operation or intermittent operation, continuous operation is preferable in terms of steadiness. It is also desirable to adjust and control the liquid-sending rate of those pumps or the like so as to keep the amount of the reaction substance in each reaction container constant. In addition, a storage tank can be provided between the steps of concentrating the raw materials, polymerization, and depolymerization, if necessary.

【0024】反応装置37および46の中の反応物質の
平均の滞留時間(反応時間)は、前述のように反応温度
が低い場合は、やや長くてもよいが、勿論短い方がラセ
ミ化防止の点でも、生産効率の点でも好ましい。解重合
速度を支配する要因は、触媒の種類と量、温度、反応物
質の攪拌速度、伝熱速度、真空度及び有効蒸発面積であ
る。本発明では、攪拌速度、伝熱速度及び有効蒸発面積
を十分大きくすることが出来、従って反応温度を比較的
低くしかも反応速度を比較的大きくすることが可能で、
高品質の製品を高能率で得ることが出来る。重合と解重
合とは平衡反応であり、同じ触媒が両方の反応に働くと
考えられる。触媒は特に限定されず、公知のものや有効
なものを用いればよいが、金属錫、酸化錫、塩化錫、有
機酸の錫塩、例えばオクチル酸錫などが好ましく用いら
れ、反応物質に対して例えば0.01〜3%程度、特に
0.1〜1%程度がよく用いられる。なお、図1〜2に
示した反応装置は、原料の濃縮及び重合工程にも好まし
く用いることが出来る。図3の装置において、一定期間
(例えば10日間)ごとに、ポンプ36を停止してオリ
ゴマーなどの供給を止めた状態で反応を継続し、反応容
器37および46の中のオリゴマーなどの殆どがラクチ
ドに転換し留出した後、バルブ55を閉じバルブ53を
開き、解重合反応の残渣を系外に取り出し、新しい触媒
や流動性改善剤(例えばポリエチレングリコール)を補
給する。
The average residence time (reaction time) of the reactants in the reactors 37 and 46 may be a little longer when the reaction temperature is low as described above, but of course, a shorter residence time prevents racemization. It is also preferable in terms of production efficiency. Factors that govern the depolymerization rate are the type and amount of catalyst, temperature, stirring rate of reactants, heat transfer rate, vacuum degree and effective evaporation area. In the present invention, the stirring rate, the heat transfer rate and the effective evaporation area can be made sufficiently large, and therefore the reaction temperature can be made relatively low and the reaction rate can be made relatively large.
High quality products can be obtained with high efficiency. Polymerization and depolymerization are equilibrium reactions, and it is considered that the same catalyst works for both reactions. The catalyst is not particularly limited, and known ones or effective ones may be used, but metal tin, tin oxide, tin chloride, tin salts of organic acids such as tin octylate are preferably used, and the catalyst is For example, about 0.01 to 3%, especially about 0.1 to 1% is often used. The reactor shown in FIGS. 1 and 2 can also be preferably used for the concentration and polymerization of raw materials. In the apparatus of FIG. 3, the reaction is continued in a state where the pump 36 is stopped and the supply of the oligomer and the like is stopped at regular intervals (for example, 10 days), and most of the oligomer and the like in the reaction vessels 37 and 46 are lactide. After the conversion and distillation, the valve 55 is closed and the valve 53 is opened, the residue of the depolymerization reaction is taken out of the system, and a new catalyst or a fluidity improving agent (for example, polyethylene glycol) is replenished.

【0025】本発明の方法は、使用後のポリ乳酸やポリ
グリコール酸などの成型品や屑からの、環状2量体の回
収、再利用(リサイクル)に応用出来る。すなわち、回
収されたそれら成型品などのゴミを取り除いた後、破砕
して細片とし、例えばスクリュウ押出機で溶融して図3
の重合工程または解重合工程に供給すればよい。溶融前
のポリマー細片の水分率の調整により、溶融後のポリマ
ーの分子量を任意にコントロール可能で、それらの工程
での反応に適するものとすることが出来る。
The method of the present invention can be applied to the recovery and reuse (recycling) of a cyclic dimer from a molded product such as polylactic acid or polyglycolic acid or scraps after use. That is, after removing the collected dust such as molded articles, it is crushed into fine pieces and melted by, for example, a screw extruder,
It may be supplied to the polymerization step or the depolymerization step. By adjusting the water content of the polymer pieces before melting, the molecular weight of the polymer after melting can be arbitrarily controlled, and the polymer can be made suitable for the reaction in those steps.

【0026】[0026]

【実施例】以下の実施例において、%、部は特に断らな
い限り重量比率である。
EXAMPLES In the following examples,% and parts are weight ratios unless otherwise specified.

【0027】[実施例1]光学純度99.5%以上のL
−乳酸の90%水溶液約300lを、錨型攪拌機を持ち
容量800lのタンク型反応容器に供給し、大気圧下温
度135゜Cで3時間加熱濃縮し、貯留タンクに貯え
る。この二つのタンクが図3の濃縮装置23に相当す
る。濃縮した乳酸溶液は、図1〜2に示すような反応装
置を2個直列に配置した重合装置に供給した。反応装置
は、直径60cmの円板型攪拌素子を2cm間隔で片側
に35枚(合計70枚)、スクリュウ型素子(送り5c
m、2回転)を入り口側と出口側の2ケ所に配置したも
ので、図3の31および34に相当する。反応装置下半
分の有効容積は約190l、そこに反応物質を満たした
ときの有効蒸発面積は約600cm2 /lである。第1
の反応装置は温度150゜C、真空度100Torrと
し、第2の反応装置は温度155゜C、真空度20To
rr、攪拌機の回転速度は共に15rpmである。重合
後のオリゴマーの平均分子量は2200で、次の解重合
工程に連続的に供給された。
[Example 1] L having an optical purity of 99.5% or more
-About 300 liters of a 90% aqueous solution of lactic acid is supplied to a tank type reaction vessel having an anchor type stirrer and a capacity of 800 liters, heated and concentrated under atmospheric pressure at 135 ° C for 3 hours, and stored in a storage tank. These two tanks correspond to the concentrating device 23 in FIG. The concentrated lactic acid solution was supplied to a polymerization device in which two reaction devices as shown in FIGS. The reactor was equipped with 35 disc-type stirring elements with a diameter of 60 cm at 2 cm intervals on one side (70 sheets in total) and screw-type elements (feeding 5c).
m, 2 rotations) are arranged at two places on the inlet side and the outlet side, and correspond to 31 and 34 in FIG. The effective volume of the lower half of the reactor is about 190 l, and the effective evaporation area when the reactant is filled therein is about 600 cm 2 / l. First
The reactor has a temperature of 150 ° C and a vacuum degree of 100 Torr, and the second reactor has a temperature of 155 ° C and a vacuum degree of 20Tor.
The rotation speeds of rr and the stirrer are both 15 rpm. The average molecular weight of the oligomer after polymerization was 2200 and was continuously supplied to the next depolymerization step.

【0028】解重合装置は、上記重合装置と同じ2軸の
面状攪拌装置を有するものを2個直列に接続したもの
で、図3の反応装置37および46に相当する。第1解
重合反応装置は温度200゜C、真空度20Torr、
第2解重合反応装置は温度200゜C、真空度10To
rr、攪拌機の回転速度は共に30rpmである。第2
反応装置の中の反応物質の一部は、図3と同じ様にポン
プ52で取り出され、10l/minの速度で第1反応
装置に戻される。2個の解重合反応装置の反応物質の液
面は、それぞれ攪拌軸の中心より3cm下になるよう
に、ポンプ36および45の速度が調節されている。触
媒はオクチル酸錫を反応物質に対して.0.5%となる
ように添加し、解重合装置へのオリゴマーの供給量は平
均3.32l/minで、反応容器内部の反応物質の平
均滞留時間は約2時間である。2個のコンデンサーから
得られたラクチドの、原料乳酸に対する転換率は理論値
の93.1%、L体比率は98.5(光学純度97.
0)%であった。これは、前記特表公報の実施例のラク
チドのL体比率約92%よりもはるかに優れている。な
お本発明者などの知見では、L体比率が97.5%以上
では、再結晶法による精製工程でL体比率99.5%以
上の高純度ラクチドが容易に得られる。しかし、L体比
率95%以下では、溶剤などによる再結晶法ではL体比
率を高めることは極めて困難である。
The depolymerization device is a device in which two devices having the same biaxial planar stirring device as the above-mentioned polymerization device are connected in series and correspond to the reaction devices 37 and 46 in FIG. The first depolymerization reactor has a temperature of 200 ° C., a vacuum degree of 20 Torr,
The second depolymerization reactor has a temperature of 200 ° C and a vacuum degree of 10To.
The rotation speeds of rr and the stirrer are both 30 rpm. Second
A part of the reactant in the reactor is taken out by the pump 52 as in FIG. 3 and returned to the first reactor at a rate of 10 l / min. The speeds of the pumps 36 and 45 are adjusted so that the liquid levels of the reactants of the two depolymerization reaction devices are respectively 3 cm below the center of the stirring shaft. The catalyst used tin octylate as the reactant. The amount of the oligomer supplied to the depolymerization apparatus was 3.32 l / min on average, and the average residence time of the reaction substance inside the reaction vessel was about 2 hours. The conversion rate of lactide obtained from the two condensers to the raw material lactic acid was 93.1% of the theoretical value, and the L-form ratio was 98.5 (optical purity of 97.
It was 0)%. This is far superior to the L-form ratio of lactide of about 92% in the example of the above-mentioned publication. According to the knowledge of the present inventors, when the L-form ratio is 97.5% or more, a high-purity lactide having an L-form ratio of 99.5% or more can be easily obtained in the purification step by the recrystallization method. However, if the L-form ratio is 95% or less, it is extremely difficult to increase the L-form ratio by a recrystallization method using a solvent or the like.

【0029】[実施例2]実施例1とほぼ同じ実験を、
攪拌素子の表面積などが異なる解重合装置を用いて行っ
た。攪拌素子は円板状で、その表面に幅1.6mm、深
さ0.8mmの半円形断面の溝を同心円状に間隔2mm
で設け、表面積を平面円板の1.46倍とし、さらに円
板の先端部に幅6mm、長さ10mm、厚み3mmの平
面フィンを60゜間隔で放射状に溶接し、反応容器内面
のオリゴマーをかきとる(クリアランス5mm)ように
して、伝熱および攪拌効率を高めたもので、反応装置の
実効蒸発面積は約880cm2 /lで、回転速度は40
rpmである。反応容器の温度、圧力などは実施例1と
同一である。その結果、解重合装置へのオリゴマーの供
給速度は4.35l/minで、解重合の反応速度は実
施例1の約1.31倍であった。ラクチドへの転換率は
93.3%、L体比率は98.5%で、実施例1とほぼ
同じであった。なお重合工程から解重合工程へ供給する
オリゴマーの分子量は、1960で、供給量が増えたた
め少し低下したが特に問題はない。
[Embodiment 2] An experiment similar to that of Embodiment 1 is carried out.
The depolymerization apparatus having different surface areas of the stirring elements was used. The stirrer is disk-shaped and has grooves with a semi-circular cross section with a width of 1.6 mm and a depth of 0.8 mm on the surface of the stirrer with concentric intervals of 2 mm
, The surface area is 1.46 times that of a flat disc, and further flat fins with a width of 6 mm, a length of 10 mm and a thickness of 3 mm are radially welded to the tip of the disc at intervals of 60 ° to remove the oligomer on the inner surface of the reaction vessel. By scraping (clearance 5 mm), heat transfer and stirring efficiency were enhanced. The effective evaporation area of the reactor was about 880 cm 2 / l, and the rotation speed was 40.
rpm. The temperature and pressure of the reaction vessel are the same as in Example 1. As a result, the oligomer supply rate to the depolymerization apparatus was 4.35 l / min, and the depolymerization reaction rate was about 1.31 times that of Example 1. The conversion rate to lactide was 93.3% and the L-form ratio was 98.5%, which were almost the same as in Example 1. The molecular weight of the oligomer supplied from the polymerization step to the depolymerization step was 1960, which decreased slightly due to the increase in the supply amount, but there is no particular problem.

【0030】[0030]

【発明の効果】本発明によって、ポリα−ヒドロキシカ
ルボン酸のオリゴマー又はポリマーから光学純度の高い
環状2量体を高効率で容易に製造することができる。ま
た、本発明に用いる反応装置は、効率が高い、構造が比
較的簡単、大型化が容易、製造コストが安い、原料の適
用範囲が広い、安定に運転できるという大きな特長があ
る。このため、製造されるラクチドやグリコリドなどの
コストが更に低められ、生分解ポリマーの実用化の可能
性が一層高められた。
INDUSTRIAL APPLICABILITY According to the present invention, a cyclic dimer having a high optical purity can be easily produced with high efficiency from an oligomer or polymer of poly α-hydroxycarboxylic acid. Further, the reactor used in the present invention has the following major features: high efficiency, relatively simple structure, easy size increase, low manufacturing cost, wide range of application of raw materials, and stable operation. For this reason, the cost of the produced lactide, glycolide, etc. was further reduced, and the possibility of practical application of the biodegradable polymer was further enhanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に好適な2軸攪拌装置を内蔵する反応装
置の横断面説明図である。
FIG. 1 is a cross-sectional explanatory view of a reaction device incorporating a biaxial stirring device suitable for the present invention.

【図2】図1の装置の平面説明図である。FIG. 2 is a plan view of the apparatus shown in FIG.

【図3】本発明の実施例を示すエステル環状2量体の連
続製造装置の系統図である。
FIG. 3 is a system diagram of an apparatus for continuously producing an ester cyclic dimer showing an example of the present invention.

【符号の説明】[Explanation of symbols]

1反応容器 2駆動軸
3駆動軸 4攪拌素子 5攪拌素子
6反応物質 7空間 8給排気孔
9スクリュウ型素子 10スクリュウ型素子 11反応物質入口
12反応物質出口 21原料(乳酸等)タンク 22計量ポンプ
23濃縮装置 24添加剤タンク(1) 25計量ポンプ
26添加剤タンク(2) 27計量フイーダー 28水蒸気
29送液ポンプ 30フィルター 31重合反応装置(1)
32排気装置 33送液ポンプ 34重合反応装置(2)
35排気装置 36送液ポンプ 37解重合装置(1)
38触媒タンク 39計量ポンプ 40精留塔
41コンデンサー 42真空ポンプ 43製品(ラクチド等)
44高沸点物 45送液ポンプ 46解重合装置(2)
47精留塔 48コンデンサー 49真空ポンプ
50製品(ラクチド等) 51高沸点物 52送液ポンプ
53バルブ 54残渣 55バルブ
56フィルター
1 reaction vessel 2 drive shaft
3 Drive shaft 4 Stirring element 5 Stirring element
6 Reactant 7 Space 8 Air supply / exhaust hole
9 screw type element 10 screw type element 11 reactant inlet
12 Reactant outlet 21 Raw material (lactic acid etc.) tank 22 Metering pump
23 Concentrator 24 Additive Tank (1) 25 Metering Pump
26 additive tank (2) 27 weighing feeder 28 steam
29 Liquid Delivery Pump 30 Filter 31 Polymerization Reaction Device (1)
32 exhaust device 33 liquid feed pump 34 polymerization reaction device (2)
35 Exhaust Device 36 Liquid Delivery Pump 37 Depolymerization Device (1)
38 catalyst tank 39 metering pump 40 rectification tower
41 condenser 42 vacuum pump 43 products (lactide, etc.)
44 high boiling point substance 45 liquid feed pump 46 depolymerization device (2)
47 Fractionation tower 48 Condenser 49 Vacuum pump
50 products (lactide, etc.) 51 high boiling substances 52 liquid feed pump
53 valves 54 residues 55 valves
56 filters

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小関 英一 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所三条工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiichi Koseki 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto City Stock Company Shimadzu Sanjo Factory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】α−ヒドロキシカルボン酸のポリマー又は
オリゴマーを、解重合触媒の存在下溶融状態で解重合し
環状2量体を生成せしめ、それを反応系外に気相で取り
出す方法において、解重合による該2量体の生成を反応
物質1リットル当たり200cm2 以上の蒸発面積を有
する面状攪拌装置を内蔵する反応容器内で行うことを特
徴とするエステル環状2量体の製造方法。
1. A method of depolymerizing an α-hydroxycarboxylic acid polymer or oligomer in a molten state in the presence of a depolymerization catalyst to form a cyclic dimer, which is taken out of the reaction system in a gas phase. A method for producing an ester cyclic dimer, characterized in that the formation of the dimer by polymerization is carried out in a reaction vessel containing a planar stirrer having an evaporation area of 200 cm 2 or more per 1 liter of a reactant.
【請求項2】該蒸発面積が、400cm2 /リットル以
上であり、反応温度が220℃以下である請求項1記載
の方法。
2. The method according to claim 1, wherein the evaporation area is 400 cm 2 / liter or more and the reaction temperature is 220 ° C. or less.
【請求項3】反応容器の下方に反応物質を満たし上方を
空間とし、水平に設けられた駆動軸の回転により攪拌素
子を下方の反応物質中および上方の空間中を交互に通過
させる、請求項1〜2記載の方法。
3. The reaction container is filled below with a reaction substance to form a space above, and the stirring element is alternately passed through the reaction substance below and the space above by the rotation of a horizontally provided drive shaft. The method according to 1-2.
【請求項4】攪拌素子が、「円板、花弁形、多葉形、ス
クリュウ形、およびそれらに穴、溝、フィン及び/又は
各種凹凸を設けたもの」の群から選ばれた少なくとも1
種であり、且つその少なくとも1部が回転運動によって
反応物質を送る機能を有するものである、請求項1〜3
記載の方法。
4. The stirring element is at least one selected from the group of "disc, petal, leaflet, screw, and those provided with holes, grooves, fins and / or various irregularities".
A seed, and at least a part of which has a function of sending a reactant by rotational movement.
The described method.
【請求項5】複数の攪拌素子が、2本の駆動軸上に互い
に重なり合い又は噛み合うように設けられ、互いに同方
向または逆方向に回転するものである、請求項1〜4記
載の方法。
5. The method according to claim 1, wherein the plurality of stirring elements are provided on the two drive shafts so as to overlap with each other or mesh with each other, and rotate in the same direction or opposite directions to each other.
JP14282195A 1995-06-09 1995-06-09 Method for producing ester cyclic dimer Expired - Fee Related JP2917862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14282195A JP2917862B2 (en) 1995-06-09 1995-06-09 Method for producing ester cyclic dimer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14282195A JP2917862B2 (en) 1995-06-09 1995-06-09 Method for producing ester cyclic dimer

Publications (2)

Publication Number Publication Date
JPH08333359A true JPH08333359A (en) 1996-12-17
JP2917862B2 JP2917862B2 (en) 1999-07-12

Family

ID=15324416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14282195A Expired - Fee Related JP2917862B2 (en) 1995-06-09 1995-06-09 Method for producing ester cyclic dimer

Country Status (1)

Country Link
JP (1) JP2917862B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100011A (en) * 2005-10-07 2007-04-19 Hitachi Ltd Production method and production apparatus for polyester
EP1873185A1 (en) * 2006-06-30 2008-01-02 Hitachi Plant Technologies, Ltd. Method and apparatus for producing polyhydroxy carboxylic acid
JP2008161847A (en) * 2007-01-04 2008-07-17 Hitachi Plant Technologies Ltd Centrifugal thin-film evaporator and its operation method
WO2009060832A1 (en) * 2007-11-07 2009-05-14 Hitachi Plant Technologies, Ltd. Apparatus and method both relating to polymer synthesis
JP2010168415A (en) * 2009-01-20 2010-08-05 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Apparatus and method for recovering lactide
JP2012144443A (en) * 2011-01-06 2012-08-02 Utsunomiya Univ Method for producing lactide
CN107137951A (en) * 2017-05-22 2017-09-08 江苏江南药化装备有限公司 A kind of continuous crystallizer of sublimating
WO2023071865A1 (en) 2021-10-31 2023-05-04 中国石油化工股份有限公司 Method and system for continuously preparing lactide by step control

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100011A (en) * 2005-10-07 2007-04-19 Hitachi Ltd Production method and production apparatus for polyester
JP4696824B2 (en) * 2005-10-07 2011-06-08 株式会社日立プラントテクノロジー Polyester production method and polyester production apparatus
EP1873185A1 (en) * 2006-06-30 2008-01-02 Hitachi Plant Technologies, Ltd. Method and apparatus for producing polyhydroxy carboxylic acid
US7723540B2 (en) 2006-06-30 2010-05-25 Hitachi Plant Technologies, Ltd. Method and apparatus for producing polyhydroxy carboxylic acid
JP2008161847A (en) * 2007-01-04 2008-07-17 Hitachi Plant Technologies Ltd Centrifugal thin-film evaporator and its operation method
EP2218714A1 (en) * 2007-11-07 2010-08-18 Hitachi Plant Technologies, Ltd. Apparatus and method both relating to polymer synthesis
WO2009060832A1 (en) * 2007-11-07 2009-05-14 Hitachi Plant Technologies, Ltd. Apparatus and method both relating to polymer synthesis
EP2218714A4 (en) * 2007-11-07 2012-03-07 Hitachi Plant Technologies Ltd Apparatus and method both relating to polymer synthesis
JP2010168415A (en) * 2009-01-20 2010-08-05 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Apparatus and method for recovering lactide
JP2012144443A (en) * 2011-01-06 2012-08-02 Utsunomiya Univ Method for producing lactide
CN107137951A (en) * 2017-05-22 2017-09-08 江苏江南药化装备有限公司 A kind of continuous crystallizer of sublimating
CN107137951B (en) * 2017-05-22 2023-11-21 江苏江南药化装备有限公司 Continuous desublimation crystallizer
WO2023071865A1 (en) 2021-10-31 2023-05-04 中国石油化工股份有限公司 Method and system for continuously preparing lactide by step control

Also Published As

Publication number Publication date
JP2917862B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
JP4427571B2 (en) Apparatus and method for polymer synthesis
EP2607399A1 (en) Process for producing polylactic acid and reactors for use in said process
JP3072334B2 (en) Control method of depolymerization of raw materials to produce low molecular weight products
JP2009256210A (en) Method and device for producing purified cyclic dimer of lactic acid, and method and device for producing polylactic acid
JP2917862B2 (en) Method for producing ester cyclic dimer
JP4696824B2 (en) Polyester production method and polyester production apparatus
KR101486213B1 (en) Manufacturing method for lactide using a tube bundle falling film reactor and an agitated thin film reactor
US7723540B2 (en) Method and apparatus for producing polyhydroxy carboxylic acid
JP7238416B2 (en) Lactide recovery method
JP4994314B2 (en) Method and apparatus for synthesizing lactide and polylactic acid
JP4284709B2 (en) Recycling of lactic acid by-products
EP2450391A1 (en) System and method for producing polyhydroxycarboxylic acid
JP5075363B2 (en) Synthesis method and synthesis apparatus of polyhydroxycarboxylic acid
JP2004123917A (en) Method for manufacturing polyester resin
JP5229268B2 (en) Polylactic acid synthesis apparatus and method
TWI229099B (en) Method of continuous producing for epsilon-caprolactone polymer
JP2004051729A (en) Process for producing shaped product of glycolic acid copolymer
JPH06306149A (en) Production of polyhydrocarboxylic acid
JP3552367B2 (en) Apparatus and method for producing horizontal ester cyclic dimer
JP3552368B2 (en) Vertical ester cyclic dimer production apparatus and production method
JP2864217B2 (en) Method for producing polylactic acid
JP3270827B2 (en) Method for producing polylactic acid
TW202409057A (en) A plant and an efficient process for producing polylactic acid
JP2005220242A (en) Method for producing aliphatic or alicyclic polyester
JP2014214166A (en) Method and apparatus for producing polyester

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees