JP3251888B2 - Method and apparatus for producing high molecular weight polylactic acid - Google Patents

Method and apparatus for producing high molecular weight polylactic acid

Info

Publication number
JP3251888B2
JP3251888B2 JP27611397A JP27611397A JP3251888B2 JP 3251888 B2 JP3251888 B2 JP 3251888B2 JP 27611397 A JP27611397 A JP 27611397A JP 27611397 A JP27611397 A JP 27611397A JP 3251888 B2 JP3251888 B2 JP 3251888B2
Authority
JP
Japan
Prior art keywords
polylactic acid
reaction
polymerization
lactic acid
lactide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27611397A
Other languages
Japanese (ja)
Other versions
JPH11106499A (en
Inventor
幸弘 炭広
邦彦 小柳
武 福島
憲明 橋本
Original Assignee
食品産業環境保全技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 食品産業環境保全技術研究組合 filed Critical 食品産業環境保全技術研究組合
Priority to JP27611397A priority Critical patent/JP3251888B2/en
Publication of JPH11106499A publication Critical patent/JPH11106499A/en
Application granted granted Critical
Publication of JP3251888B2 publication Critical patent/JP3251888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生分解性プラスチ
ックとして有用なポリ乳酸の製造方法及び製造装置に関
する。
TECHNICAL FIELD The present invention relates to a method and an apparatus for producing polylactic acid, which is useful as a biodegradable plastic.

【0002】[0002]

【従来の技術】乳酸を原料とするポリ乳酸は、容易に加
水分解や熱分解により乳酸の環状二重体たるラクチドに
なるため、ケミカルリサイクルができ、更に地中や海水
中あるいはコンポスト中で炭酸ガスと水に分解されるこ
とや、透明性や剛性に優れること及び他の生分解性の物
質と共重合させて種々のグレードのポリマーの設計が可
能であることから、医療用材料のみならず、フィルム、
ブロー、繊維や一般の成形品の材料としても注目を集め
つつある。
2. Description of the Related Art Polylactic acid made from lactic acid is easily hydrolyzed or thermally decomposed into lactide, which is a cyclic duplex of lactic acid, so that it can be chemically recycled. It is decomposed into water and water, and it has excellent transparency and rigidity, and it is possible to design polymers of various grades by copolymerizing with other biodegradable substances. the film,
It is also attracting attention as a material for blow, fiber and general molded products.

【0003】従来、ポリ乳酸は、環状二重体であるラク
チドを開環重合させることによって製造されていた。し
かし、この方法はラクチド製造工程や精製工程でのコス
トが多大であることから実用化への大きな障害となって
いる。
Hitherto, polylactic acid has been produced by ring-opening polymerization of lactide, which is a cyclic dimer. However, this method is a major obstacle to practical use because of the large cost in the lactide production step and the purification step.

【0004】そのため、コスト低減をねらって、乳酸モ
ノマーを直接重縮合させて、ポリ乳酸を製造する方法が
提案されている。この方法においては、乳酸のモノマ
ー、ラクチド(プレポリマー)及びポリマー並びに水と
の間で平衡関係があり、乳酸の重縮合を進めるために
は、まず副生する水を系外に除去することと、生成した
ポリマーの解重合を防止するためラクチドの濃度を一定
以上に維持することが必要である。
For this reason, there has been proposed a method for producing polylactic acid by directly polycondensing a lactic acid monomer in order to reduce costs. In this method, there is an equilibrium between the monomer, lactide (prepolymer) and polymer of lactic acid and water. In order to proceed with the polycondensation of lactic acid, it is necessary to first remove by-product water out of the system. In order to prevent depolymerization of the produced polymer, it is necessary to maintain the concentration of lactide at a certain level or more.

【0005】しかしながら、従来の方法(特開平6−2
98913や特開平6−298914号公報)は重縮合
反応で副生する水や低沸点成分を系外に効率よく除去す
るために多量の溶媒を反応系に加え、副生水と共に系外
に真空ポンプで吸引し水や低沸点成分を分離した後、溶
媒を精製して反応系に循環させるものであるため、多量
の溶媒を必要とする。その結果、精製、循環コストが大
きいこと並びに重合終了後に多量の溶媒が製品ポリマー
に残留し、その分離精製にコストが多大にかかること等
の問題があった。また、反応系を真空引きするため、反
応機、周辺機器及び配管の機密を保つ必要から装置、配
管のコストが大きくなる等の問題もあった。更に、反応
の中間及び最終段階において従来の真空系では、真空ポ
ンプの排気中にラクチドや溶媒の蒸気がその操作温度
(反応温度)の蒸気圧分だけ存在し系外へ排出されるた
め、反応槽中のラクチドの濃度が下がり、高分子量化の
速度が小さいという問題があった。
However, the conventional method (Japanese Patent Laid-Open No. 6-2)
98913 and JP-A-6-298914) add a large amount of a solvent to the reaction system in order to efficiently remove water and low-boiling components by-produced in the polycondensation reaction outside the system. After suctioning with a pump to separate water and low-boiling components, the solvent is purified and circulated through the reaction system, so that a large amount of solvent is required. As a result, there are problems that purification and circulation costs are large, and that a large amount of solvent remains in the product polymer after completion of the polymerization, and that separation and purification are costly. In addition, since the reaction system is evacuated, the reactor, peripheral devices and piping must be kept confidential. Furthermore, in the conventional vacuum system in the middle and final stages of the reaction, the vapor of lactide or solvent exists in the evacuation of the vacuum pump by the vapor pressure of the operating temperature (reaction temperature) and is discharged out of the system. There was a problem that the concentration of lactide in the tank was reduced and the rate of increasing the molecular weight was low.

【0006】そこで、かかる問題を解決する方法として
本出願人は、反応系を高真空に保つ際、反応系外に排出
される水、ラクチド、溶媒及び乳酸低分子化合物のう
ち、水以外のものを還流装置で冷却液化して、還流させ
る方法を開発し、既に特許出願(特開平8−14364
9号公報)した。加えて、この還流方法を更に効率よく
するための特許出願(特願平8−258404号公報)
も行った。
Therefore, as a method for solving such a problem, the applicant of the present invention has proposed a method of maintaining water in a reaction system at a high vacuum, in which water, lactide, solvent and low-molecular-weight lactic acid compound other than water are discharged out of the reaction system. Has been developed by cooling and liquefying it with a reflux device and refluxing it, and a patent application (JP-A-8-14364) has already been filed.
No. 9). In addition, a patent application for making this reflux method more efficient (Japanese Patent Application No. 8-258404).
I also went.

【0007】しかしながら、これら方法でも、ラクチド
の還流は満足できるものではなかった。すなわち、ラク
チドは約95℃の融点であるため、還流装置内で強冷す
ると結晶化してしまう。従って、マイルドな冷却としな
ければならないが、これでは、水と共にラクチドの系外
の流出が避けられない。この結果高分子量のポリ乳酸が
得られ難くなる。
However, even with these methods, the reflux of lactide was not satisfactory. That is, since lactide has a melting point of about 95 ° C., it is crystallized when it is strongly cooled in a reflux device. Therefore, mild cooling must be performed, but this inevitably causes lactide to flow out of the system together with water. As a result, it becomes difficult to obtain high molecular weight polylactic acid.

【0008】これに対し、強冷却することにより、還流
装置でラクチドの結晶を生じせしめ、結晶のまま反応液
内に還流することも考えられるが、ラクチドの昇華によ
る蒸気圧があり、ラクチドの系外への流出は避けられな
いこと、及び結晶の掻き取り工程に問題があり、還流効
率の低下は避けられない。
[0008] On the other hand, it is conceivable that lactic acid crystals are generated in a refluxing device by vigorously cooling and the lactide is refluxed in the reaction solution as it is. However, there is a vapor pressure due to sublimation of lactide, and lactide system It is inevitable to flow out, and there is a problem in the step of scraping the crystals, and a decrease in reflux efficiency is inevitable.

【0009】更に、反応が進みポリマーが高分子量にな
るにつれて、均一な攪拌ができなくなること、還流方式
では、ラクチド、低沸点物及び溶媒の系外への留出を抑
えるために高真空にできず、反応後期において微量の水
分の除去ができずポリマーの到達分子量が頭打ちになる
こと、及び高温で長時間反応を行うと解重合を生じる場
合があること等の問題があった。
Further, as the reaction proceeds and the polymer becomes higher in molecular weight, uniform stirring cannot be achieved. In the reflux method, a high vacuum can be applied to suppress the distillation of lactide, low-boiling substances and solvent out of the system. However, there were problems that a small amount of water could not be removed in the latter stage of the reaction and the reached molecular weight of the polymer reached a plateau, and that depolymerization might occur if the reaction was performed at a high temperature for a long time.

【0010】[0010]

【発明が解決しようとする課題】従って、本発明の目的
は、上記の如き問題点がなく、高分子量のポリ乳酸を工
業的に有利に製造し得る方法及び装置を提供することに
ある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method and an apparatus capable of industrially and advantageously producing high molecular weight polylactic acid without the above-mentioned problems.

【0011】[0011]

【課題を解決するための手段】斯かる実状に鑑み本発明
者は鋭意研究を行った結果、最初は乳酸の直接重縮合反
応を還流装置を用いて比較的高温で溶融重合を行い、次
いで、温度を下げて固体状のポリ乳酸を生成させて固相
重合を行えば、ラクチドの発生が抑制され、高真空化で
き、微量の副生水を効率よく除去できるため、高分子量
のポリ乳酸が工業的に有利に得られることを見出し本発
明を完成した。
Means for Solving the Problems In view of such a situation, the present inventors have conducted intensive studies. As a result, at first, the direct polymerization of lactic acid is carried out at a relatively high temperature using a reflux apparatus to carry out melt polymerization, and then, If solid-state polymerization is carried out by lowering the temperature to produce solid polylactic acid, the generation of lactide is suppressed, a high vacuum can be achieved, and trace amounts of by-product water can be efficiently removed. The present invention was found to be industrially advantageous, and the present invention was completed.

【0012】すなわち本発明は、直接重縮合法により乳
酸モノマーからポリ乳酸を製造する方法において、ま
ず、多管式熱交換凝縮器を用い、反応槽から発生する
水、ラクチド、乳酸の低分子化合物及び場合により溶媒
を還流し、水を反応系外に除去しつつ150〜200
℃、10〜30torrの条件で溶融重合を行い、次いで得
られたポリ乳酸を、120〜170℃、0.1〜2torr
の条件で固相重合することを特徴とするポリ乳酸の製造
方法を提供するものである。
That is, the present invention relates to a method for producing polylactic acid from a lactic acid monomer by a direct polycondensation method. First, a low molecular weight compound of water, lactide and lactic acid generated from a reaction vessel using a multitubular heat exchange condenser. And optionally refluxing the solvent to remove water from the reaction system,
C. and melt polymerization under the conditions of 10 to 30 torr.
The present invention provides a method for producing polylactic acid, characterized in that solid-state polymerization is carried out under the following conditions.

【0013】また本発明は、反応槽と、この上部に接続
する還流装置と、この還流装置に接続する真空ポンプ
と、別途、反応槽に接続する真空ポンプを有するポリ乳
酸の製造装置を提供するものである。
The present invention also provides an apparatus for producing polylactic acid having a reaction vessel, a reflux device connected to the upper portion thereof, a vacuum pump connected to the reflux device, and a vacuum pump separately connected to the reaction vessel. Things.

【0014】[0014]

【発明の実施の形態】本発明に用いる乳酸は、D−体、
L−体などの光学活性体又は光学活性を持たないD,L
−体及びこれらの混合物のいずれでもよく、好ましくは
純度が85%以上のものを用いる。これらは、まず従来
法により重合反応を行う。具体的には、例えば図1に示
す如く装置を用い、原料である乳酸を回分式の重合槽に
仕込み槽内を窒素ガスやアルゴンガス等の不活性ガスで
置換した後、加熱、減圧下で重合反応を行う。
BEST MODE FOR CARRYING OUT THE INVENTION The lactic acid used in the present invention is a D-form,
Optically active substance such as L-form or D, L having no optical activity
And any of these compounds and mixtures thereof, preferably those having a purity of 85% or more. These are firstly subjected to a polymerization reaction by a conventional method. Specifically, for example, using an apparatus as shown in FIG. 1, lactic acid as a raw material is charged into a batch-type polymerization tank, and the inside of the tank is replaced with an inert gas such as nitrogen gas or argon gas. Perform the polymerization reaction.

【0015】最初の溶融重合を行う際の反応温度は、1
50〜200℃が好ましく、特に150〜175℃が好
ましい。反応温度が低すぎると反応が十分に進行せず、
高すぎると解重合反応が起こりラクチドの生成が著しく
なるので好ましくない。
The reaction temperature for the first melt polymerization is 1
The temperature is preferably from 50 to 200C, particularly preferably from 150 to 175C. If the reaction temperature is too low, the reaction does not proceed sufficiently,
If the temperature is too high, a depolymerization reaction occurs and the production of lactide becomes significant, which is not preferable.

【0016】また、溶融重合時の圧力は、10〜30to
rrの範囲が好ましく、特に15〜20torrとすることが
好ましい。圧力を低くしすぎると、水とともに乳酸モノ
マーも留去されてしまうことがあり、圧力を高くしすぎ
ると、副生水が留去され難くなり好ましくない。
The pressure during the melt polymerization is 10 to 30 to
The range of rr is preferable, and particularly preferably 15 to 20 torr. If the pressure is too low, the lactic acid monomer may be distilled off together with the water, and if the pressure is too high, the by-product water is difficult to be distilled off, which is not preferable.

【0017】乳酸の脱水重縮合において、その反応速度
を高めるためには副生水を迅速に系外へ留去させること
が重要である。このため、還流管3、4と冷却トラップ
5を介し真空ポンプ6で重合槽の気相から真空引きを行
う。これにより重合槽内の乳酸中の水分が除去され、そ
れに伴って乳酸が重縮合し徐々に高分子化していく。こ
こで用いる還流装置は、管内に逆ネジ方向のらせん型も
しくはスクリュ型の抵抗体を設けた従来の還流管を用い
てもよいが、多管式熱交換凝縮器を用いることが好まし
い。
In the dehydration polycondensation of lactic acid, it is important to quickly remove by-product water from the system in order to increase the reaction rate. For this reason, a vacuum is drawn from the gas phase of the polymerization tank by the vacuum pump 6 through the reflux pipes 3 and 4 and the cooling trap 5. As a result, water in the lactic acid in the polymerization tank is removed, and accordingly, the lactic acid is polycondensed and gradually polymerized. The reflux device used here may be a conventional reflux tube provided with a spiral or screw type resistor in the reverse screw direction in the tube, but it is preferable to use a multi-tube heat exchange condenser.

【0018】本発明に用いられる多管式熱交換凝縮器
は、筒状本体の管板に緻密に垂直配置された多数の凝縮
伝熱管を有し、反応槽から流入する伝熱管内の混合蒸気
を軸直角方向断面での温度分布を最小に抑え、蒸気の均
一冷却が可能な構造となっており、斯かる多管式熱交換
凝縮器としては例えばデフレグメーターが好ましいもの
として挙げられる。尚、本発明に於て当該多管式熱交換
凝縮器は、1台のみを設置しても良いが、冷却温度に差
をつけるため2台異常を直列状に多段設置併用すること
もできる。
The multi-tube heat exchange condenser used in the present invention has a large number of condensation heat transfer tubes densely arranged vertically on a tube plate of a cylindrical main body, and mixed steam in the heat transfer tubes flowing from a reaction tank. Has a structure capable of minimizing the temperature distribution in a cross section perpendicular to the axis and enabling uniform cooling of the steam. As such a multi-tube heat exchange condenser, for example, a dephlegmator is preferable. In the present invention, only one multi-tube heat exchange condenser may be installed, but two abnormalities may be used in series in a multi-stage manner in order to make a difference in cooling temperature.

【0019】因に、かかる多管式熱交換凝縮器は、伝導
管の長さを十分長くすることにより、ラクチドの凝固点
付近の高い冷却温度でもラクチド、乳酸低分子化合物あ
るいは更に溶媒を完全に還流させ、反応系外への飛散を
防止することができると共に、例えば冷却温度を50〜
90℃と少し低くしても、ラクチドの結晶は生成するも
のの、従来のスクリュタイプや邪魔板タイプと異なっ
て、当該結晶は垂直に配置された伝熱管の内壁に形成さ
れるので、溶媒(液体)や乳酸(液体)更には低分子化
合物の流下に伴って洗い流され、伝導管内が閉塞される
ことはない。
In this multi-tube heat exchange condenser, by sufficiently increasing the length of the conduction tube, the lactide, lactic acid low molecular weight compound or the solvent is completely refluxed even at a high cooling temperature near the freezing point of lactide. To prevent scattering outside the reaction system and, for example, to reduce the cooling temperature to 50 to
Even if the temperature is slightly lowered to 90 ° C., lactide crystals are formed, but unlike the conventional screw type or baffle plate type, the crystals are formed on the inner wall of the vertically arranged heat transfer tube, so that the solvent (liquid ), Lactic acid (liquid), and low-molecular-weight compounds are washed away, and the inside of the conductive tube is not blocked.

【0020】ラクチドの還流にあたっては、還流管によ
っては、還流管内がラクチドの融点以下となると即結晶
化を起こして管内を閉塞してしまうため、これを防ぐ目
的で溶媒を用いてもよい。溶媒としては、ジブチルフタ
レート、ジエチルヘキシルフタレート、ジエチルフタレ
ート、ジメチルフタレートなど、フタル酸エステル系の
ものが最適である。
In the reflux of lactide, depending on the reflux tube, if the inside of the reflux tube becomes lower than the melting point of lactide, crystallization occurs immediately and the inside of the tube is clogged. Therefore, a solvent may be used to prevent this. As the solvent, phthalate-based solvents such as dibutyl phthalate, diethylhexyl phthalate, diethyl phthalate and dimethyl phthalate are most suitable.

【0021】溶媒の添加量は、反応で生じる乳酸オリゴ
マー100重量部に対し好ましくは5〜25重量部、更
に好ましくは7〜20重量部の範囲である。添加量が5
重量部未満の場合は、溶媒がラクチドの還流やポリマー
の溶融粘度低下に十分作用せず、逆に25重量部を超え
ると、ポリマー中に可塑材として残存させた場合、成形
加工時における分子量低下や成形品の保管中における品
質低下の原因となることがある。
The amount of the solvent to be added is preferably 5 to 25 parts by weight, more preferably 7 to 20 parts by weight, based on 100 parts by weight of the lactic acid oligomer produced by the reaction. 5 added
When the amount is less than 25 parts by weight, the solvent does not sufficiently act on the reflux of lactide and the decrease in the melt viscosity of the polymer. And quality deterioration during storage of molded articles.

【0022】上記方法により反応を進めて行き、ポリ乳
酸の分子量Mwが3〜6万位になると、重縮合が進んで
も発生する水の量が極端に減少してくる。この段階にな
ると本来除去したい水分が、還流により完全に反応系に
返したいラクチドや溶媒中に溶解平衡濃度あるいは共沸
組成濃度で留まり、系外に留去することが非常に困難と
なり、分子量の増大速度が著しく低下する。このため数
平均分子量が10万程度で頭打ちとなり、これ以上の高
分子量のポリ乳酸を得ることは困難となる。
When the reaction proceeds according to the above method and the molecular weight Mw of the polylactic acid reaches about 30,000 to 60,000, the amount of generated water is extremely reduced even if the polycondensation proceeds. At this stage, the water to be originally removed remains in the lactide or solvent which is desired to be completely returned to the reaction system by reflux at a dissolution equilibrium concentration or an azeotropic composition concentration, and it becomes very difficult to evaporate out of the system. The rate of increase is significantly reduced. For this reason, the number average molecular weight reaches a peak at about 100,000, and it becomes difficult to obtain polylactic acid having a higher molecular weight.

【0023】そこで、溶融重合を終了し、反応槽の温度
を下げ、得られたポリ乳酸の融点以下、好ましくは、こ
の融点より10〜20℃低い温度に設定する。特に溶融
重合終了後、徐々に冷却してポリ乳酸を結晶化させ2個
体状とし、再びこの融点より10〜20℃低い温度に加
熱し、後の固相重合を行うことが好ましい。
Therefore, the melt polymerization is terminated, the temperature of the reaction vessel is lowered, and the temperature is set to a temperature lower than the melting point of the obtained polylactic acid, preferably 10 to 20 ° C. lower than this melting point. In particular, it is preferred that after the completion of the melt polymerization, the polylactic acid is gradually cooled to crystallize the polylactic acid into two solids, heated again to a temperature lower by 10 to 20 ° C. than this melting point, and then subjected to solid phase polymerization.

【0024】固相重合への操作を図1の装置で説明する
と、溶融重合終了後、温度を上述の如く下げ、バルブ2
を閉め、バルブ8を開く、バルブ8の下流には、冷却ト
ラップ9と真空ポンプ10が設置され、これにより水を
除去する。
The operation for solid-phase polymerization will be described with reference to the apparatus shown in FIG. 1. After the completion of the melt polymerization, the temperature is lowered as described above,
Is closed, and the valve 8 is opened. A cooling trap 9 and a vacuum pump 10 are provided downstream of the valve 8 to remove water.

【0025】固相重合は、ポリ乳酸の融点以下の温度で
行うが、好ましくは、融点の10〜20℃低い温度、す
なわち120〜170℃の範囲で行うことが好ましい。
また圧力は、固相で重合を行うためラクチド等の副生成
物が少なく、溶融重合より低い圧力下で行うことがで
き、水の除去効果が高まり、平衡がポリ乳酸側になり、
高分子量のポリ乳酸を生産するのに適している。具体的
には、0.1〜2torr程度で重合を行うことが好まし
い。
The solid phase polymerization is carried out at a temperature lower than the melting point of the polylactic acid, but is preferably carried out at a temperature lower by 10 to 20 ° C. than the melting point, that is, in a range of 120 to 170 ° C.
In addition, the pressure is low in by-products such as lactide because the polymerization is carried out in the solid phase, it can be carried out under a lower pressure than the melt polymerization, the effect of removing water increases, and the equilibrium is on the polylactic acid side
Suitable for producing high molecular weight polylactic acid. Specifically, it is preferable to carry out the polymerization at about 0.1 to 2 torr.

【0026】固相重合終了後は、再び反応槽を加熱し、
ギヤーポンプ等で、ポリ乳酸を反応槽から取り出すこと
ができる。
After completion of the solid-phase polymerization, the reaction vessel is heated again,
The polylactic acid can be taken out of the reaction tank with a gear pump or the like.

【0027】なお、溶融重合と固相重合は、例えば図3
に示す如く、別々の反応槽で行ってもよい。
It should be noted that the melt polymerization and the solid state polymerization are performed, for example, as shown in FIG.
As shown in the above, the reaction may be performed in separate reaction tanks.

【0028】本発明の重合反応においては、触媒を用い
ることができる。この触媒としては、塩化第一スズ、オ
クチル酸スズ、酸化アンチモン等の金属系酸触媒を挙げ
ることができる。これらの触媒は、テトラヒドロフラ
ン、乳酸ブチル、クロロホルム、アセトン、キシレン、
エタノール、ベンゼン等の溶媒に完全溶解させた後、反
応液に添加することが望ましい。この触媒添加操作は、
反応液の温度が高い段階で行うと、反応液である乳酸オ
リゴマーの解重合触媒として作用し、ラクチドの生成を
促す原因となるため注意しなければならない。また、前
記触媒群の毒性が高いことを考慮すれば、酢酸マンガ
ン、酢酸亜鉛、酢酸アルミニウム、ジエチル亜鉛等の非
金属酸触媒を用いることもできる。触媒の使用量は、金
属系触媒の場合、反応液である乳酸オリゴマー100重
量部に対して0.001〜0.5重量部、更に好ましく
は0.05〜0.1重量部の範囲である。また、非金属
系触媒の場合は、金属系触媒に比べて触媒活性が低いた
め、乳酸オリゴマーに対して0.05〜1重量部、更に
は0.1〜0.5重量部の範囲で使用するのが好まし
い。
In the polymerization reaction of the present invention, a catalyst can be used. Examples of the catalyst include metal-based acid catalysts such as stannous chloride, tin octylate, and antimony oxide. These catalysts include tetrahydrofuran, butyl lactate, chloroform, acetone, xylene,
It is desirable to completely dissolve it in a solvent such as ethanol or benzene and then add it to the reaction solution. This catalyst addition operation,
Care must be taken when the reaction is performed at a high temperature, because it acts as a catalyst for depolymerizing the lactic acid oligomer, which is the reaction liquid, and promotes the production of lactide. In consideration of the high toxicity of the catalyst group, a nonmetallic acid catalyst such as manganese acetate, zinc acetate, aluminum acetate, and diethyl zinc can be used. The amount of the catalyst to be used is in the range of 0.001 to 0.5 part by weight, more preferably 0.05 to 0.1 part by weight, based on 100 parts by weight of the lactic acid oligomer as the reaction solution in the case of a metal catalyst. . In the case of a non-metallic catalyst, the catalytic activity is lower than that of a metal-based catalyst. Is preferred.

【0029】[0029]

【実施例】以下に、実施例により本発明を更に詳しく説
明するが、本発明はこれらの実施例により限定されるも
のではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0030】実施例1 図1は本発明装置の第一の実施例を示すもので、反応液
29を攪拌する攪拌翼7を備えた反応槽1の上部に、多
管式熱交換凝縮器3,4が取付け設置されているもので
ある。また、この多管式熱交換凝縮器3,4の下流には
冷却トラップ5、真空ポンプ6が設置してある。この装
置にて、初期の溶融重合を行い、溶融重合終了後、重合
温度を下げ、バルブ2を閉め、バルブ8を開く、バルブ
8の下流には、冷却トラップ9と真空ポンプ10が設置
され、この装置で減圧して固相重合を行う。その後、再
び融点以上に加熱を行い、ギヤーポンプ11、ダイス1
2、輸送コンベアー13、ストランドカッター14を経
由して高分子量のポリ乳酸を連続的に製造する。
Embodiment 1 FIG. 1 shows a first embodiment of the apparatus of the present invention, in which a multi-tube heat exchange condenser 3 is provided above a reaction tank 1 provided with a stirring blade 7 for stirring a reaction solution 29. , 4 are mounted. Further, a cooling trap 5 and a vacuum pump 6 are provided downstream of the multi-tube heat exchange condensers 3 and 4. In this apparatus, initial melt polymerization is performed, and after completion of the melt polymerization, the polymerization temperature is lowered, the valve 2 is closed, the valve 8 is opened, and a cooling trap 9 and a vacuum pump 10 are provided downstream of the valve 8, The solid-state polymerization is performed by reducing the pressure in this apparatus. After that, heating is performed again to the melting point or higher, and the gear pump 11 and the die 1
2. Continuous production of high molecular weight polylactic acid via transport conveyor 13 and strand cutter 14.

【0031】実施例2 図2は本発明装置の第二の実施例を示すもので、反応液
29を攪拌する攪拌翼7を備えた反応槽1の上部に、多
管式熱交換凝縮器3,4が取付け設置されているもので
ある。また、この多管式熱交換凝縮器3,4の下流には
冷却トラップ5、真空ポンプ6が設置してある。これら
の装置にて、初期の溶融重合を行い、溶融重合終了後、
重合温度を下げ、バルブ2を閉め、バルブ8を開く。バ
ルブ8の下流には、冷却トラップ9と真空ポンプ10が
設置され、この装置を使用して固相重合を行う。その
後、再び融点以上に加熱を行い、ギヤーポンプ11を通
して二軸反応押出機16に供給し、ホットカット装置2
1、冷却コンベアー22を経て連続的にペレットを製造
する。二軸反応押出機16には、脱気孔17、18が設
けられ、その下流には冷却トラップ19、真空ポンプ2
0を設置し、溶媒や残留モノマー、揮発分の脱気が可能
な装置も取付けている。
Embodiment 2 FIG. 2 shows a second embodiment of the apparatus of the present invention, in which a multi-tube heat exchange condenser 3 is provided above a reaction tank 1 provided with a stirring blade 7 for stirring a reaction solution 29. , 4 are mounted. Further, a cooling trap 5 and a vacuum pump 6 are provided downstream of the multi-tube heat exchange condensers 3 and 4. In these devices, the initial melt polymerization is performed, and after the completion of the melt polymerization,
The polymerization temperature is lowered, valve 2 is closed and valve 8 is opened. Downstream of the valve 8, a cooling trap 9 and a vacuum pump 10 are provided, and solid-state polymerization is performed using this device. Thereafter, the mixture is again heated to a temperature equal to or higher than the melting point, and supplied to the twin-screw reaction extruder 16 through the gear pump 11, and the hot cut device 2
1. Pellet is continuously produced through the cooling conveyor 22. The twin-screw reaction extruder 16 is provided with deaeration holes 17 and 18, and a cooling trap 19 and a vacuum pump 2 are provided downstream thereof.
0 is installed, and a device capable of degassing the solvent, residual monomer, and volatile components is also installed.

【0032】実施例3 図3は本発明装置の第三の実施例を示すもので、反応液
29を攪拌する攪拌翼7を備えた反応槽1の上部に、多
管式熱交換凝縮器3,4が取付け設置されているもので
ある。また、この多管式熱交換凝縮器3,4の下流には
冷却トラップ5、真空ポンプ6が設置してある。これら
の装置にて、初期の溶融重合を行い、溶融重合終了後、
ギヤーポンプ11を通して二軸反応押出機16に供給
し、ホットカット装置21でペレットを製造し、反応槽
24に供給する。二軸反応押出機16には、脱気孔1
7,18が設けられ、その下流には冷却トラップ19、
真空ポンプ20を設置し、溶媒や残留モノマー、揮発分
の脱気が可能な装置も取付けている。その後、反応槽2
4で固相重合を行う。反応槽には、冷却トラップ26と
真空ポンプ27が取付けられている。
Embodiment 3 FIG. 3 shows a third embodiment of the apparatus of the present invention, in which a multi-tube heat exchange condenser 3 is provided above a reaction vessel 1 provided with a stirring blade 7 for stirring a reaction solution 29. , 4 are mounted. Further, a cooling trap 5 and a vacuum pump 6 are provided downstream of the multi-tube heat exchange condensers 3 and 4. In these devices, the initial melt polymerization is performed, and after the completion of the melt polymerization,
The pellets are supplied to the twin-screw reaction extruder 16 through the gear pump 11, the pellets are produced by the hot cut device 21, and supplied to the reaction tank 24. The twin-screw reaction extruder 16 has a degassing hole 1
7, 18 are provided, and a cooling trap 19,
A vacuum pump 20 is installed, and a device capable of degassing the solvent, residual monomer, and volatile components is also installed. Then, the reaction tank 2
In step 4, solid-state polymerization is performed. A cooling trap 26 and a vacuum pump 27 are attached to the reaction tank.

【0033】実施例4 図1に示すポリ乳酸製造装置を使用し、まず、L−乳酸
モノマー7500gを100℃にて4〜5時間脱水処理
を行い、その後、160℃にて触媒(塩化第一スズ)を
0.5%投入して10〜15時間攪拌しながら溶融重合
を行った(その時の真空度は10〜30torr)。その
後、温度を130℃に冷却して10〜12時間、真空度
0.1〜2torrで固相重合を行った。得られたポリ乳酸
は、重量平均分子量で11万の値であった。
Example 4 First, 7500 g of L-lactic acid monomer was subjected to a dehydration treatment at 100 ° C. for 4 to 5 hours using the polylactic acid producing apparatus shown in FIG. 0.5% of tin) was added thereto, and melt polymerization was carried out with stirring for 10 to 15 hours (the degree of vacuum at that time was 10 to 30 torr). Thereafter, the temperature was cooled to 130 ° C., and solid phase polymerization was carried out at a degree of vacuum of 0.1 to 2 torr for 10 to 12 hours. The obtained polylactic acid had a weight average molecular weight of 110,000.

【0034】実施例5 図1に示すポリ乳酸製造装置を使用し、まず、L−乳酸
モノマー7500gを100℃にて4〜5時間脱水処理
を行い、その後、160℃にて触媒(塩化第一スズ)を
0.5%、溶媒(ジフェニルエーテル)50%投入して
15〜20時間攪拌しながら溶融重合を行った(その時
の真空度は10〜30torr)その後、温度を130℃に
冷却して10〜12時間、真空度0.1〜2torrで固相
重合を行った。得られたポリ乳酸は、重量平均分子量で
11万の値であった。
Example 5 First, 7500 g of L-lactic acid monomer was subjected to a dehydration treatment at 100 ° C. for 4 to 5 hours using the polylactic acid production apparatus shown in FIG. Then, 0.5% of tin) and 50% of a solvent (diphenyl ether) were charged, and melt polymerization was carried out with stirring for 15 to 20 hours (the degree of vacuum at that time was 10 to 30 torr). Solid-state polymerization was performed at a vacuum of 0.1 to 2 torr for up to 12 hours. The obtained polylactic acid had a weight average molecular weight of 110,000.

【0035】実施例6 図1に示すポリ乳酸製造装置を使用し、まず、L−乳酸
モノマー7500gを100℃にて4〜5時間脱水処理
を行い、その後、160℃にて触媒(塩化第一スズ)を
0.5%、溶媒(ジフェニルエーテル)50%投入して
15〜20時間攪拌しながら溶融重合を行った(その時
の真空度は10〜30torr)。その後、真空度0.1〜
2torrで18〜20時間、固相重合を行った。得られた
ポリ乳酸は、重量平均分子量で15万の値であった。
Example 6 First, 7500 g of L-lactic acid monomer was dehydrated at 100 ° C. for 4 to 5 hours using the polylactic acid producing apparatus shown in FIG. Then, 0.5% of tin) and 50% of a solvent (diphenyl ether) were charged and melt polymerization was carried out with stirring for 15 to 20 hours (the degree of vacuum at that time was 10 to 30 torr). After that, the vacuum degree is 0.1 ~
Solid-state polymerization was performed at 2 torr for 18 to 20 hours. The obtained polylactic acid had a weight average molecular weight of 150,000.

【0036】実施例7 図1に示すポリ乳酸製造装置を使用し、まず、L−乳酸
モノマー7500gを100℃にて4〜5時間脱水処理
を行い、その後、160℃にて触媒(オクチル酸スズ)
を0.5%、溶媒(ジフェニルエーテル)50%投入し
て15〜20時間攪拌しながら溶融重合を行った(その
時の真空度は10〜30torr)。その後、真空度0.1
〜2torrで18〜20時間、固相重合を行った。得られ
たポリ乳酸は、重量平均分子量で13万の値であった。
Example 7 First, 7500 g of L-lactic acid monomer was subjected to a dehydration treatment at 100 ° C. for 4 to 5 hours using the polylactic acid production apparatus shown in FIG. 1, and then a catalyst (tin octylate) was applied at 160 ° C. )
And 0.5% of a solvent (diphenyl ether) was added thereto, and melt polymerization was carried out while stirring for 15 to 20 hours (the degree of vacuum at that time was 10 to 30 torr). Thereafter, the degree of vacuum is 0.1
Solid phase polymerization was performed at ~ 2 torr for 18-20 hours. The obtained polylactic acid had a weight average molecular weight of 130,000.

【0037】実施例8 図1に示すポリ乳酸製造装置を使用し、まず、L−乳酸
モノマー7500gを100℃にて4〜5時間脱水処理
を行い、その後、160℃にて触媒(塩化第一スズ)を
0.5%、溶媒(ジフェニルエーテル)50%投入して
15〜20時間攪拌しながら溶融重合を行った(その時
の真空度は10〜30torr)。その後、温度を徐々に真
空化で130℃に冷却する。そして、再び温度を160
℃に加熱して、真空度0.1〜2torrの条件で、18〜
20時間、固相重合を行った。得られたポリ乳酸は、重
量平均分子量で14.5万の値であった。
Example 8 Using a polylactic acid producing apparatus shown in FIG. 1, 7500 g of L-lactic acid monomer was first dehydrated at 100 ° C. for 4 to 5 hours. Then, 0.5% of tin) and 50% of a solvent (diphenyl ether) were charged and melt polymerization was carried out with stirring for 15 to 20 hours (the degree of vacuum at that time was 10 to 30 torr). Thereafter, the temperature is gradually reduced to 130 ° C. by evacuation. Then again raise the temperature to 160
° C and a vacuum of 0.1 to 2 torr.
Solid phase polymerization was performed for 20 hours. The obtained polylactic acid had a weight average molecular weight of 145,000.

【0038】[0038]

【発明の効果】本発明によれば、高分子量のポリ乳酸を
工業的に有利に製造することができる。
According to the present invention, high molecular weight polylactic acid can be industrially advantageously produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のポリ乳酸の製造装置(実施例1)の概
略を示す図である。
FIG. 1 is a view schematically showing an apparatus for producing polylactic acid (Example 1) of the present invention.

【図2】本発明のポリ乳酸の製造装置(実施例2)の概
略を示す図である。
FIG. 2 is a view schematically showing an apparatus for producing polylactic acid of the present invention (Example 2).

【図3】本発明のポリ乳酸の製造装置(実施例3)の概
略を示す図である。
FIG. 3 is a view schematically showing an apparatus for producing polylactic acid of the present invention (Example 3).

【符号の説明】[Explanation of symbols]

1:回分式重合槽 2:切替えバルブ 3:還流管 4:還流管 5:冷却トラップ 6:真空ポンプ 7:攪拌翼 8:切替えバルブ 9:冷却トラップ 10:真空ポンプ 11:ギヤーポンプ 12:ダイス 13:輸送コンベアー 14:ストランドカッター 15:モータ 16:二軸反応用押出機 17:脱気孔 18:脱気孔 19:冷却トラップ 20:真空ポンプ 21:ホットカット装置 22:冷却コンベアー 23:ストップバルブ 24:回分式重合槽(固相重合) 25:攪拌モータ 26:冷却トラップ 27:真空ポンプ 28:材料排出バルブ 29:反応液 1: batch polymerization tank 2: switching valve 3: reflux pipe 4: reflux pipe 5: cooling trap 6: vacuum pump 7: stirring blade 8: switching valve 9: cooling trap 10: vacuum pump 11: gear pump 12: die 13: Transport conveyor 14: Strand cutter 15: Motor 16: Extruder for twin screw reaction 17: Degassing hole 18: Degassing hole 19: Cooling trap 20: Vacuum pump 21: Hot cutting device 22: Cooling conveyor 23: Stop valve 24: Batch type Polymerization tank (solid phase polymerization) 25: Stirring motor 26: Cooling trap 27: Vacuum pump 28: Material discharge valve 29: Reaction liquid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 憲明 広島県広島市安芸区船越南一丁目6番1 号 (56)参考文献 特開 平8−143649(JP,A) 特開 平7−247345(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08G 63/00 - 63/91 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Noriaki Hashimoto 1-6-1, Funakoshiminami, Aki-ku, Hiroshima-shi, Hiroshima (56) References JP-A-8-143649 (JP, A) JP-A-7-247345 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C08G 63/00-63/91

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直接重縮合法により乳酸モノマーからポ
リ乳酸を製造する方法において、まず、多管式熱交換凝
縮器を用い、反応槽から発生する水、ラクチド、乳酸の
低分子化合物及び場合により溶媒を還流し、水を反応系
外に除去しつつ150〜200℃、10〜30torrの条
件で溶融重合を行い、次いで得られたポリ乳酸を、12
0〜170℃、0.1〜2torrの条件で固相重合するこ
とを特徴とするポリ乳酸の製造方法。
In a method for producing polylactic acid from a lactic acid monomer by a direct polycondensation method, first, using a multitubular heat exchange condenser, water, lactide, low-molecular-weight compounds of lactic acid generated from a reaction vessel and, in some cases, The solvent was refluxed, melt polymerization was carried out at 150 to 200 ° C. and 10 to 30 torr while removing water from the reaction system.
A method for producing polylactic acid, wherein solid-state polymerization is carried out at 0 to 170 ° C and 0.1 to 2 torr.
【請求項2】 溶融重合終了後、徐々に冷却して、ポリ
乳酸を結晶化させ、再び融点より10〜20℃低い温度
まで加熱して固相重合を行うものである請求項1記載の
ポリ乳酸の製造方法。
2. The method according to claim 1, wherein after the completion of the melt polymerization, the polylactic acid is gradually cooled to crystallize the polylactic acid, and then heated again to a temperature lower by 10 to 20 ° C. than the melting point to carry out the solid phase polymerization. A method for producing lactic acid.
【請求項3】 反応槽と、この上部に接続する還流装置
と、この還流装置に接続する真空ポンプと、別途、反応
槽に接続する真空ポンプを有するポリ乳酸の製造装置。
3. An apparatus for producing polylactic acid, comprising: a reaction tank, a reflux device connected to an upper portion thereof, a vacuum pump connected to the reflux device, and a vacuum pump separately connected to the reaction tank.
【請求項4】 還流装置が多管式熱交換凝縮器である請
求項3記載の製造装置。
4. The production apparatus according to claim 3, wherein the reflux device is a multi-tube heat exchange condenser.
JP27611397A 1997-10-08 1997-10-08 Method and apparatus for producing high molecular weight polylactic acid Expired - Fee Related JP3251888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27611397A JP3251888B2 (en) 1997-10-08 1997-10-08 Method and apparatus for producing high molecular weight polylactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27611397A JP3251888B2 (en) 1997-10-08 1997-10-08 Method and apparatus for producing high molecular weight polylactic acid

Publications (2)

Publication Number Publication Date
JPH11106499A JPH11106499A (en) 1999-04-20
JP3251888B2 true JP3251888B2 (en) 2002-01-28

Family

ID=17564984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27611397A Expired - Fee Related JP3251888B2 (en) 1997-10-08 1997-10-08 Method and apparatus for producing high molecular weight polylactic acid

Country Status (1)

Country Link
JP (1) JP3251888B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842751B (en) * 2007-10-30 2014-10-22 纽约大学 Tracking and characterizing particles with holographic video microscopy

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140458A (en) * 1998-04-28 2000-10-31 Mitsui Chemicals, Inc. Preparation process of polyester
JP5276240B2 (en) * 1999-10-27 2013-08-28 三井化学株式会社 Solid phase polymerization method of aliphatic polyester
JP4663096B2 (en) * 1999-10-27 2011-03-30 三井化学株式会社 Polyester manufacturing method
JP2003192773A (en) * 2001-12-26 2003-07-09 Mitsui Chemicals Inc Bioabsorptive polyhydroxy carboxylic acid and its production method
CN100396711C (en) * 2006-06-28 2008-06-25 常熟市长江化纤有限公司 Polymerization plant for manufacturing polylactic acid
JP5732710B2 (en) * 2007-07-09 2015-06-10 東レ株式会社 Method for producing polylactic acid resin
JP5109757B2 (en) * 2008-03-28 2012-12-26 東レ株式会社 Process for producing polylactic acid block copolymer
WO2012042993A1 (en) 2010-09-28 2012-04-05 東レ株式会社 Process for production of poly(lactic acid)-type resin, and poly(lactic acid)-type prepolymer
WO2013015164A1 (en) 2011-07-28 2013-01-31 東レ株式会社 Polylactic acid resin and method for producing same
IT201900002891A1 (en) * 2019-02-28 2020-08-28 Bio Valore World S P A Soc Benefit METHOD FOR THE PREPARATION OF LACTIC ACID BRANCHED POLYMERS WITH LOW MELT VISCOSITY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842751B (en) * 2007-10-30 2014-10-22 纽约大学 Tracking and characterizing particles with holographic video microscopy

Also Published As

Publication number Publication date
JPH11106499A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP3756520B2 (en) Method for producing polyester articles with low acetaldehyde content
JP3251888B2 (en) Method and apparatus for producing high molecular weight polylactic acid
US5574129A (en) Process for producing lactic acid polymers and a process for the direct production of shaped articles from lactic acid polymers
EP1259558B2 (en) Continuous process for producing poly(trimethylene terephthalate)
WO1998050448A1 (en) Process for continuously producing polyesters
WO1997005187A1 (en) Process for producing polyester articles having low acetaldehyde content
WO2001083582A1 (en) Process for continuously producing polyester
EP0644219B1 (en) Purification process of aliphatic polyester
US4499261A (en) Process for the continuous production of polybutylene terephthalate of high molecular weight
US8153754B2 (en) Equipment and method for producing polyhydroxycarboxylic acid
JP3436894B2 (en) Method for producing polylactic acid
JP6648114B2 (en) Continuous process for producing polyesters from cyclic ester monomers
JP2004204138A (en) Polyethylene terephthalate resin, its manufacturing method, and bottle using the same
JP3270826B2 (en) Method and apparatus for producing polylactic acid
JP2002293903A (en) Method for producing cyclic polyester oligomer and method for producing polyester
JP3270827B2 (en) Method for producing polylactic acid
CN107075092A (en) Continuous processing for producing poly- (terephthalic acid (TPA) propylene diester) comprising low-level accessory substance
JP2847617B2 (en) Method for producing high molecular weight polylactic acid and molded article thereof
JP2864217B2 (en) Method for producing polylactic acid
JP3024907B2 (en) Method for producing polylactic acid
JP2864218B2 (en) Method for producing polylactic acid copolymer
KR19980024491A (en) Process for producing polyethylene terephthalate
JP5152866B2 (en) Continuous production of poly (trimethylene terephthalate)
JP3319884B2 (en) Purification method of aliphatic polyester
JPH107773A (en) Method for recovering residual monomer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees