JP2821986B2 - Method for recovering lactide from polylactic acid products - Google Patents

Method for recovering lactide from polylactic acid products

Info

Publication number
JP2821986B2
JP2821986B2 JP10309194A JP10309194A JP2821986B2 JP 2821986 B2 JP2821986 B2 JP 2821986B2 JP 10309194 A JP10309194 A JP 10309194A JP 10309194 A JP10309194 A JP 10309194A JP 2821986 B2 JP2821986 B2 JP 2821986B2
Authority
JP
Japan
Prior art keywords
lactide
polylactic acid
extruder
screw
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10309194A
Other languages
Japanese (ja)
Other versions
JPH07309863A (en
Inventor
里佳 三好
忠基 酒井
憲明 橋本
幸弘 炭廣
佳代子 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP10309194A priority Critical patent/JP2821986B2/en
Publication of JPH07309863A publication Critical patent/JPH07309863A/en
Application granted granted Critical
Publication of JP2821986B2 publication Critical patent/JP2821986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0059Degradable
    • B29K2995/006Bio-degradable, e.g. bioabsorbable, bioresorbable or bioerodible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ポリ乳酸製品からラク
チドを回収する方法に関し、更に詳しくは、スクリュ式
押出機により、短時間でかつ高い回収率でポリ乳酸製品
からラクチドを回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering lactide from a polylactic acid product, and more particularly to a method for recovering lactide from a polylactic acid product in a short time and at a high recovery rate using a screw extruder. .

【0002】[0002]

【従来の技術】ポリ乳酸は生分解性プラスチックとして
知られており、廃棄した場合でも自然界の水や微生物の
存在下で乳酸にまで分解され、最終的には水及び二酸化
炭素となり生態系へ還元される。このため、それを原料
とする製品の回収、再利用の技術については、従来はま
ったく注目されていなかったのが現状である。しかし、
ポリ乳酸製品であってもその分子量が大きいものは生分
解されるまでに長期間を要し、その間美観を損ねること
はいうまでもなく、また資源の有効利用の観点からも、
再利用の技術の確立は重要である。
2. Description of the Related Art Polylactic acid is known as a biodegradable plastic. Even if it is disposed of, it is decomposed into lactic acid in the presence of water and microorganisms in the natural world, and eventually becomes water and carbon dioxide, which is reduced to ecosystems. Is done. For this reason, at present, attention has not been paid to the technology of recovering and reusing products made from the raw materials. But,
Even polylactic acid products with a large molecular weight require a long time to be biodegraded, not to mention detracting from aesthetics, and from the viewpoint of effective use of resources,
It is important to establish a technology for reuse.

【0003】ポリ乳酸製品からのラクチドの回収には、
ポリ乳酸をラクチドにまで分解させることが必要であ
る。しかし、ポリ乳酸は、熱と水の存在下で容易に分解
するものの、それは単にエステル結合が切断されて分子
量が低下するだけであり、ラクチド生成までの解重合反
応はあまり進行しない。このため、そのままではラクチ
ドの回収率が低く、そのことがラクチドの回収、再利用
技術の実用化を困難にしている。
[0003] To recover lactide from polylactic acid products,
It is necessary to break down polylactic acid to lactide. However, although polylactic acid is easily decomposed in the presence of heat and water, it merely cuts an ester bond to reduce the molecular weight, and the depolymerization reaction until lactide formation does not proceed very much. For this reason, the recovery rate of lactide is low as it is, which makes it difficult to commercialize the lactide recovery and reuse technology.

【0004】この回収、再利用技術としては、すでに確
立されている汎用プラスチックのリサイクルプロセスを
応用することも考えられるが、この処理技術はリアクタ
ーを用いた回分操作が主体であり、連続式のプロセスに
比べると多大な処理時間を要し、回収率が低いなど処理
能力の点からも不十分であり、そのままの応用は困難で
ある。
[0004] As this recovery and reuse technology, it is conceivable to apply a recycling process for general-purpose plastics which has already been established. However, this treatment technology is mainly performed in batch operation using a reactor, and is a continuous process. It takes a lot of processing time as compared with the method described above, and is inadequate in terms of processing capacity such as a low recovery rate, and is difficult to apply as it is.

【0005】[0005]

【発明が解決しようとする課題】上記のとおり、ポリ乳
酸製品からラクチドを回収する技術としては、未だ工業
的に満足できるものは実用化されていない。そこで本発
明は、短時間で、かつ高い回収率で乳酸製品からラクチ
ドを回収し、その再利用を可能とする、ポリ乳酸製品か
らラクチドを回収する方法を提供することを目的とす
る。
As described above, no industrially satisfactory technology for recovering lactide from polylactic acid products has yet been put to practical use. Therefore, an object of the present invention is to provide a method for recovering lactide from a polylactic acid product, which enables lactide to be recovered from the lactic acid product in a short time and at a high recovery rate, and the lactide can be reused.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために研究した結果、200℃以上の温度で
急速にポリ乳酸の解重合反応が進行すること、加水分解
反応との相乗効果により前記解重合反応がより促進され
ることを見出し、更にこのプロセスをスクリュ式押出機
で行うことにより、短時間でかつほぼ100%の高収率
でラクチドを回収できることを見出し、本発明を完成す
るに至った。
Means for Solving the Problems The present inventors have conducted research to achieve the above object, and found that the depolymerization reaction of polylactic acid proceeds rapidly at a temperature of 200 ° C. or more, The present inventors have found that the depolymerization reaction is further promoted by a synergistic effect, and that the lactide can be recovered in a short time and with a high yield of almost 100% by performing this process with a screw extruder. Was completed.

【0007】すなわち、本発明は、ポリ乳酸製品をスク
リュ式押出機内において水及び触媒の存在下で、200
〜400℃に加熱し、混合することを特徴とするポリ乳
酸製品からラクチドを回収する方法に係るものである。
That is, the present invention relates to a method for preparing a polylactic acid product in a screw-type extruder in the presence of water and a catalyst.
The present invention relates to a method for recovering lactide from a polylactic acid product, wherein the lactide is heated and mixed at up to 400 ° C.

【0008】また、本発明は、更に、回収したラクチド
をアルコール中に導くことにより精製する工程を有する
ことを特徴とするポリ乳酸製品からラクチドを回収する
方法に係るものである。
The present invention also relates to a method for recovering lactide from a polylactic acid product, further comprising a step of purifying the recovered lactide by introducing it into alcohol.

【0009】以下、本発明を詳細に説明するが、本発明
でいうポリ乳酸製品とは、乳酸又はラクチドなどの環状
二量体を原料とするフィルム、シート、中空容器等をい
う。
Hereinafter, the present invention will be described in detail. The term “polylactic acid product” as used in the present invention refers to a film, a sheet, a hollow container, and the like made from a cyclic dimer such as lactic acid or lactide.

【0010】本発明で用いるスクリュ式押出機として
は、通常プラスチックの成形に用いられる、スクリュ、
シリンダ、加熱ユニット、駆動装置、脱気のためのベン
ト口などを備えた単軸又は二軸スクリュ式押出機を用い
ることができる。また、この二軸スクリュ式押出機とし
ては、スクリュの回転方向が同方向又は異方向回転のも
の、スクリュのフライトが相互にかみ合っているもの又
はかみ合っていないもののいずれも用いることができ
る。本発明においては、箇別に温度制御可能なように分
割されてシリンダの周囲に設けられた複数箇の加熱ユニ
ットとそれらのユニット部分のシリンダ内部から脱気可
能なように設置された複数のベント口とを有し、スクリ
ュ長さ(L)とスクリュ径(D)の比(L/D比)が1
5〜70のかみ合い型の二軸スクリュ式押出機が好まし
い。更に、このようなかみ合い型の二軸スクリュ式押出
機のなかでも、異方向回転のものが、農業用フィルムや
容器等のかさばった製品を粉砕せずに供給できるため特
に好ましい。ポリ乳酸製品は、必要に応じて洗浄又は粉
砕され、スクリュ式押出機に供給される。
[0010] The screw type extruder used in the present invention is a screw extruder which is usually used for molding plastics.
A single-screw or twin-screw extruder equipped with a cylinder, a heating unit, a driving device, a vent for deaeration, and the like can be used. Further, as the twin-screw extruder, any of those in which the rotation direction of the screw is the same or different, and those in which the flights of the screw mesh with each other or not can be used. In the present invention, a plurality of heating units divided around the cylinder so as to be individually temperature-controllable, and a plurality of vent ports installed so as to be able to deaerate from the inside of the cylinder in those unit portions. And the ratio (L / D ratio) of the screw length (L) to the screw diameter (D) is 1
A 5-70 meshing twin screw extruder is preferred. Further, among such intermeshing type twin screw type extruders, those with different rotations are particularly preferable because bulky products such as agricultural films and containers can be supplied without grinding. The polylactic acid product is washed or pulverized as required, and supplied to a screw extruder.

【0011】本発明の加熱、混合による解重合反応は2
00〜400℃、好ましくは250〜350℃で行う。
この温度が200℃未満の場合は解重合反応が起こりに
くく、400℃を超える場合は既存の押出機では実施が
困難となるので好ましくない。
In the present invention, the depolymerization reaction by heating and mixing is 2
It is carried out at a temperature of from 00 to 400C, preferably from 250 to 350C.
When the temperature is lower than 200 ° C., the depolymerization reaction hardly occurs, and when the temperature is higher than 400 ° C., it is difficult to perform the reaction with an existing extruder, which is not preferable.

【0012】加水分解反応は、ポリ乳酸重量に対して、
好ましくは0.1〜5.0重量%、更に好ましくは0.
5〜2.0重量%の量の水を添加して行う。この水の添
加量が0.1重量%未満の場合は反応の進行が遅く、
5.0重量%を超える場合は解重合反応に熱効率低下等
の悪影響を及ぼすので好ましくない。水の添加はポリ乳
酸が溶融した状態で行うことが好ましいが、溶融状態前
に添加することもできる。また、押出機への供給前にポ
リ乳酸製品を洗浄し、その洗浄水が残存している場合に
は、不足分の水を添加するか又は添加せずに反応を行う
こともできる。
The hydrolysis reaction is based on the weight of polylactic acid.
Preferably it is 0.1 to 5.0% by weight, more preferably 0.1 to 5.0% by weight.
This is done by adding water in an amount of 5-2.0% by weight. When the amount of water added is less than 0.1% by weight, the progress of the reaction is slow,
If the content exceeds 5.0% by weight, the depolymerization reaction is adversely affected, such as a decrease in thermal efficiency, and is not preferred. The addition of water is preferably performed in a state where the polylactic acid is in a molten state, but may be added before the molten state. Further, the polylactic acid product is washed before being supplied to the extruder, and if the washing water remains, the reaction can be carried out with or without adding insufficient water.

【0013】この反応で用いる触媒としては、アルキル
アルミニウム、酸化亜鉛、オクチル酸スズ、酸化アンチ
モン、酢酸マンガン、テトラブチルチタネート、塩化第
一スズ、ジブチルスズジラウレート等を挙げることがで
きる。これらの中でも毒性が低いアルキルアルミニウ
ム、酸化亜鉛、酢酸マンガン等が好ましい。これらの触
媒の添加により、反応が促進されるとともに、乳酸エー
テルや乳酸無水物等のラクチドを溶解する副生物の生成
も抑制できる。これらの触媒の添加量は、原料に対して
0.1〜1.0重量%が好ましく、0.3〜0.7重量
%が更に好ましい。
Examples of the catalyst used in this reaction include alkyl aluminum, zinc oxide, tin octylate, antimony oxide, manganese acetate, tetrabutyl titanate, stannous chloride, dibutyltin dilaurate and the like. Of these, alkyl aluminum, zinc oxide, manganese acetate and the like, which have low toxicity, are preferred. By the addition of these catalysts, the reaction is promoted and the generation of by-products that dissolve lactide such as lactic acid ether and lactic acid anhydride can be suppressed. The addition amount of these catalysts is preferably from 0.1 to 1.0% by weight, more preferably from 0.3 to 0.7% by weight, based on the raw materials.

【0014】なお、本発明においては、その毒性を配慮
して非金属系の触媒を使用する場合には、スズ系の触媒
に比べると反応速度が劣るという点が指摘される。そこ
で、押出機内での反応時間(滞留時間)の延長を目的と
して、押出機の出口部分にストップバルブを装着し、こ
れを閉じたり開けたりすることにより、十分な反応時間
を確保して反応を完結させ、半連続的にラクチドを回収
することが可能となる。
In the present invention, it is pointed out that when a nonmetallic catalyst is used in consideration of its toxicity, the reaction rate is lower than that of a tin catalyst. Therefore, in order to extend the reaction time (residence time) in the extruder, a stop valve is installed at the outlet of the extruder, and by closing or opening it, a sufficient reaction time is secured and the reaction is performed. It is completed and lactide can be recovered semi-continuously.

【0015】また、本発明方法におけるスクリュ式押出
機のスクリュ回転数は、特に制限されないが200rpm
以上、特に250〜350rpm が好ましい。
The screw speed of the screw type extruder in the method of the present invention is not particularly limited, but is 200 rpm.
As described above, 250 to 350 rpm is particularly preferable.

【0016】このようにして加水分解反応と解重合反応
がなされることにより、ポリ乳酸は低分子量化し、最終
的にはラクチドにまで分解される。
The hydrolysis reaction and the depolymerization reaction are carried out in this manner, so that polylactic acid has a low molecular weight and is finally decomposed into lactide.

【0017】生成したラクチドの回収は、減圧下で気化
させて行うのが好ましい。より好ましくは、生成昇華し
たラクチドを、シリンダ内を減圧状態にすることによ
り、押出機のベント口から気体として吸引し、回収す
る。この場合の減圧レベルは、100mmHg以下が好まし
く、59mmHg以下が更に好ましい。また、ベント口は、
そこを通過する際にラクチドが冷却されて析出しないよ
うに加熱しておくことが好ましく、通常は約150℃に
加熱すれば十分である。このようにして回収されたラク
チドは適当な手段で冷却され、ポリマー製造用原料とし
て再利用される。
Preferably, the produced lactide is recovered by vaporizing it under reduced pressure. More preferably, the generated and sublimated lactide is sucked as a gas from the vent port of the extruder and recovered by reducing the pressure in the cylinder. In this case, the reduced pressure level is preferably 100 mmHg or less, more preferably 59 mmHg or less. In addition, the vent
It is preferable to heat the lactide so that it does not precipitate upon cooling when passing therethrough. Usually, heating to about 150 ° C. is sufficient. The lactide thus recovered is cooled by an appropriate means and reused as a raw material for producing a polymer.

【0018】上記の処理により回収されたラクチドに
は、添加した水や触媒、反応過程で生じた微量の乳酸エ
ーテル、無水乳酸等の低分子量副生物が含まれている。
その中でも水はラクチドを加水分解させ、前記低分子量
副生物はラクチドを溶解してしまう。つまり、これらの
不純物の存在は、ポリマー製造用原料としてのラクチド
の特性を損なわせることになる。このため、本発明にお
いては、ラクチドを回収した後に、更に不純物を除去す
る精製工程を設けることができる。この工程において
は、回収したラクチドを、ラクチドは難溶であるが水や
低分子量副生物等の不純物は可溶である溶剤、即ち、メ
タノール、エタノール等の低級アルコール中を通過させ
ることにより、不純物のみを溶解させ、ラクチドを析出
させる。このようにして析出したラクチドは、濾過さ
れ、必要に応じて乾燥されて、重合原料用モノマーとし
て再利用される。
The lactide recovered by the above treatment contains added water and a catalyst, and trace amounts of low-molecular-weight by-products such as lactic ether and lactic anhydride generated in the reaction process.
Among them, water hydrolyzes lactide, and the low molecular weight by-product dissolves lactide. That is, the presence of these impurities impairs the properties of lactide as a raw material for polymer production. For this reason, in the present invention, after recovering lactide, a purification step for further removing impurities can be provided. In this step, the collected lactide is passed through a solvent in which lactide is hardly soluble but impurities such as water and low molecular weight by-products are soluble, i.e., lower alcohols such as methanol and ethanol. Only to dissolve and precipitate lactide. The lactide thus precipitated is filtered, dried if necessary, and reused as a monomer for a polymerization raw material.

【0019】次に、明細書に添付した図1を参照しなが
ら、本発明の方法の具体例を説明する。まず、洗浄又は
粉砕処理した廃棄ポリ乳酸製品を、ホッパー12に投入
し、更にスクリュ式押出機10に送り込む。廃棄ポリ乳
酸製品は回転するスクリュ(図示せず)によりシリンダ
内部を進む過程で、複数の加熱ユニット14により加熱
される。この時、前後して水と触媒とが添加されて廃棄
ポリ乳酸製品と混合され、加水分解反応と解重合反応と
が同時に又は前後して進行する。この反応機構として
は、まず、加水分解反応により、ポリ乳酸の分子鎖がラ
ンダムに切断され、低分子量体であるオリゴマーが生成
する。また、それに加えて、スクリュ式押出機10のス
クリュにより加えられる剪断力によっても、ポリ乳酸の
分子鎖はランダムに切断される。そして、加熱及び触媒
の添加による解重合反応により、このように低分子量化
したポリ乳酸分解物の分子鎖末端から順にエステル結合
が切断され、ラクチドが生成する。生成昇華したラクチ
ドは、シリンダ内部を真空ポンプ18により減圧状態に
保持することにより、ベント口16から吸引され、冷却
手段を付した第1トラップ20において回収される。ま
た、必要に応じて、この第1トラップ20中に低級アル
コールを満たし、そこにラクチドを導き析出させ、フィ
ルター22で濾過し、乾燥機24で乾燥する。フィルタ
ー22で得られた濾液には析出せずに不純物と一緒に溶
解してしまったラクチドも含まれるため、これを減圧蒸
留装置23で蒸留しながら再度結晶化させ、回収を行
う。更にここで蒸留成分として得られた低級アルコール
は再利用できる。なお、スクリュ式押出機10内に残留
するラクチド回収後の廃液は、タンク26に送られ回収
される。
Next, an embodiment of the method of the present invention will be described with reference to FIG. 1 attached to the specification. First, the washed or pulverized waste polylactic acid product is put into the hopper 12 and further sent into the screw type extruder 10. The waste polylactic acid product is heated by a plurality of heating units 14 in the course of traveling inside the cylinder by a rotating screw (not shown). At this time, water and a catalyst are added before and after, mixed with the waste polylactic acid product, and the hydrolysis reaction and the depolymerization reaction proceed simultaneously or before and after. As the reaction mechanism, first, the molecular chain of polylactic acid is randomly cleaved by a hydrolysis reaction, and an oligomer which is a low molecular weight substance is generated. In addition, the molecular chain of polylactic acid is also randomly cut by the shearing force applied by the screw of the screw type extruder 10. Then, by a depolymerization reaction by heating and addition of a catalyst, ester bonds are sequentially cut from the molecular chain terminals of the polylactic acid decomposed product having a reduced molecular weight, and lactide is generated. The generated and sublimated lactide is sucked from the vent port 16 by keeping the inside of the cylinder in a reduced pressure state by the vacuum pump 18, and is collected in the first trap 20 provided with a cooling means. If necessary, the first trap 20 is filled with a lower alcohol, and lactide is introduced and precipitated there, filtered with a filter 22 and dried with a drier 24. Since the filtrate obtained by the filter 22 contains lactide dissolved together with impurities without being precipitated, the lactide is crystallized again while being distilled by the reduced-pressure distillation device 23 and collected. Further, the lower alcohol obtained here as a distillation component can be reused. In addition, the waste liquid after the lactide recovery remaining in the screw type extruder 10 is sent to the tank 26 and recovered.

【0020】[0020]

【実施例】以下、実施例により本発明を更に詳しく説明
するが、本発明はこれらにより限定されるものではな
い。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0021】実施例1 廃棄されたポリ乳酸フィルム(Mw=130,000)
を水で洗浄して付着物を除去したのち、そのままかみ合
い型二軸スクリュ式押出機に投入した。この二軸スクリ
ュ式押出機は、L/D比=42及びスクリュ径32mmの
異方向回転タイプのもので、図2に示すように、シリン
ダの計11ゾーンのそれぞれが異なる温度に設定可能
で、かつ6,8,10の3箇所のゾーンに脱気可能なベ
ント口を有しているものである。なお、ここでいうゾー
ンとは、シリンダの異なる位置が異なる加熱温度に設定
可能という意味で用いており、各ゾーン間が区切られて
いるという意味に限定されるものではない。次に、11
のゾーンすべてを250〜300℃に加熱し、ダイ出口
部に取り付けたストップバルブを閉じて押出機内を密閉
状態とし、スクリュ回転数を300rpm に設定して原料
を押出機内に充満させた。スクリュ回転数300rpm で
押出機を運転しつつ、ホッパー部及びゾーン1〜6で
は、ゾーン1から原料に対して0.5重量%量の水を添
加して加水分解反応を行い(この段階におけるMw=
9,000)、更にゾーン7〜11では、ゾーン7から
触媒としてアルキルアルミニウムを原料の0.5重量%
量添加して約15分間回分式に解重合反応を行った。ま
た、この解重合反応と並行して、ゾーン7〜11に設け
られているベント口を介して真空ポンプにより押出機内
を40mmHgに減圧し、気化してくるラクチドを回収した
(回収率85〜93%。ただし、原料であるポリ乳酸製
品重量に対して。以下、同様)。なお、ラクチドとして
回収されずに残存した分解生成物は、反応終了後にスト
ップバルブを開放にして取り出し、専用タンクに貯蔵し
た。これらの反応で要した時間は、回分操作を含めた押
出機内における原料の平均滞留時間から、約25分であ
った。この所要時間は、従来の回分式リアクターで同様
なプロセスを検討した場合に比べて約2分の1であっ
た。なお、ゾーン6に設けられたベント口からは、解重
合反応前に生成した乳酸エーテル、無水乳酸等の低分子
量副生物等の不純物を吸引し、第2トラップ21に回収
している。このようにして押出機から回収されたラクチ
ドを、冷却トラップ内のエタノール中に導き、不純物を
溶解・除去しながら針状結晶として析出させ、更に、濾
過、乾燥工程を経て精製ラクチドを得た。最終的な回収
率は72〜80%であり、前記従来法の回収率約10%
(精製物として)と比べると、著しく向上した。また、
このラクチドは、不純物も除去されており、ポリマー製
造原料として好適なものであった。
Example 1 Discarded polylactic acid film (Mw = 130,000)
Was washed with water to remove deposits, and then charged as it was into an interlocking twin-screw extruder. This twin-screw extruder is of a different direction rotation type having an L / D ratio of 42 and a screw diameter of 32 mm. As shown in FIG. 2, each of a total of 11 zones of a cylinder can be set to different temperatures. In addition, three zones 6, 8, and 10 have vent ports that can be degassed. Here, the zones are used in the sense that different positions of the cylinder can be set to different heating temperatures, and are not limited to the meaning that each zone is separated. Next, 11
Were heated to 250 to 300 ° C., the stop valve attached to the die outlet was closed to make the inside of the extruder hermetically closed, and the screw rotation speed was set to 300 rpm to fill the extruder with the raw material. While operating the extruder at a screw rotation speed of 300 rpm, a hydrolysis reaction was performed in the hopper and zones 1 to 6 by adding 0.5% by weight of water to the raw material from zone 1 (Mw at this stage). =
9,000), and in Zones 7 to 11, alkyl aluminum was used as a catalyst from Zone 7 at 0.5% by weight of the raw material.
After the addition, the depolymerization reaction was carried out batchwise for about 15 minutes. In parallel with this depolymerization reaction, the pressure in the extruder was reduced to 40 mmHg by a vacuum pump through a vent port provided in zones 7 to 11, and vaporized lactide was recovered (recovery rate 85 to 93). %, Based on the weight of the raw material polylactic acid product. The decomposition product remaining without being recovered as lactide was taken out with the stop valve opened after the reaction was completed, and stored in a dedicated tank. The time required for these reactions was about 25 minutes from the average residence time of the raw materials in the extruder including the batch operation. This time was about one-half that required when a similar process was studied in a conventional batch reactor. In addition, impurities such as low molecular weight by-products such as lactic acid ether and lactic anhydride generated before the depolymerization reaction are sucked from the vent port provided in the zone 6 and collected in the second trap 21. The lactide thus recovered from the extruder was introduced into ethanol in a cooling trap, precipitated as needle-like crystals while dissolving and removing impurities, and further subjected to filtration and drying steps to obtain purified lactide. The final recovery is 72-80%, and the recovery of the conventional method is about 10%.
(As a purified product), it was significantly improved. Also,
This lactide, from which impurities were also removed, was suitable as a polymer production raw material.

【0022】実施例2 廃棄されたポリ乳酸フィルム(Mw=145,000)
を水で洗浄し、これを粗粉砕して、実施例1と同様の押
出機に供給した。ただし、3箇所のベント口は全てトラ
ップ20に接続されている。次に、11のゾーンすべて
を320℃に加熱し、スクリュ回転数320rpm で押出
機を運転しつつ、ゾーン1〜3では、ゾーン1から原料
に対して1重量%量の水を添加して加水分解反応を行い
(この段階におけるMw=8,500)、更にゾーン4
〜11では、ゾーン4から触媒として酢酸マンガンを原
料の0.6重量%量添加して解重合反応を行った。な
お、ゾーン6,8,10に設置されているベント口を介
して真空ポンプにより押出機内を80mmHgに減圧して、
気化してくるラクチドを回収した(回収率93〜96
%)。これらの反応で要した時間は、回分操作を含めた
押出機内における原料の平均滞留時間から、約22分で
あった。この所要時間は、従来の回分式リアクターで同
様なプロセスを検討した場合に比べて約2分の1であっ
た。このようにして押出機から回収されたラクチドを、
冷却トラップ内のメタノール中で不純物を溶解・除去し
ながら針状結晶として析出させ、更に、濾過、乾燥工程
を経て精製ラクチドを得た。最終的な回収率は68〜7
0%であり、前記従来法の回収率約10%(精製物とし
て)と比べると、著しく向上した。また、このラクチド
は、不純物も除去されており、ポリマー製造原料として
好適なものであった。
Example 2 Discarded polylactic acid film (Mw = 145,000)
Was washed with water, coarsely pulverized, and supplied to the same extruder as in Example 1. However, all three vent ports are connected to the trap 20. Next, all the eleventh zones were heated to 320 ° C., and the extruder was operated at a screw rotation speed of 320 rpm. A decomposition reaction was performed (Mw = 8,500 at this stage), and
In Nos. To 11, manganese acetate was added as a catalyst from zone 4 in an amount of 0.6% by weight of the raw material to perform a depolymerization reaction. In addition, the pressure inside the extruder was reduced to 80 mmHg by a vacuum pump through vent ports installed in zones 6, 8, and 10,
Evaporated lactide was recovered (recovery rate 93 to 96).
%). The time required for these reactions was about 22 minutes from the average residence time of the raw materials in the extruder including the batch operation. This time was about one-half that required when a similar process was studied in a conventional batch reactor. The lactide thus recovered from the extruder is
Needle-like crystals were precipitated while dissolving and removing impurities in methanol in a cooling trap. Further, a filtration and drying step were performed to obtain purified lactide. Final recovery rate is 68-7
0%, which is significantly improved as compared with the recovery rate of the conventional method of about 10% (as a purified product). This lactide was also free of impurities, and was suitable as a raw material for polymer production.

【0023】[0023]

【発明の効果】本発明の方法は、スクリュ式押出機内
で、加水分解反応と解重合反応を行い、ラクチドを回収
する方法である。このため、短時間で、かつ高収率でラ
クチドを半連続的に回収することができ、処理コストを
低くすることができる。
The method of the present invention is a method for recovering lactide by performing a hydrolysis reaction and a depolymerization reaction in a screw type extruder. Therefore, lactide can be recovered semi-continuously in a short time and with high yield, and the processing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法説明するための概略図である。FIG. 1 is a schematic diagram for explaining a method of the present invention.

【図2】スクリュ式押出機の一例を示す概略図である。FIG. 2 is a schematic view showing an example of a screw type extruder.

【符号の説明】[Explanation of symbols]

10 スクリュ式押出機 12 ホッパー 14 加熱ユニット 16 ベント口 18 真空ポンプ 20 第1トラップ 21 第2トラップ 22 フィルター 23 減圧蒸留装置 24 乾燥機 26 タンク DESCRIPTION OF SYMBOLS 10 Screw-type extruder 12 Hopper 14 Heating unit 16 Vent port 18 Vacuum pump 20 1st trap 21 2nd trap 22 Filter 23 Vacuum distillation apparatus 24 Dryer 26 Tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 炭廣 幸弘 広島県広島市安芸区船越南1丁目6−1 株式会社日本製鋼所内 (72)発明者 横田 佳代子 広島県広島市安芸区船越南1丁目6−1 株式会社日本製鋼所内 (56)参考文献 特開 昭63−101378(JP,A) 特開 平7−304859(JP,A) 特開 平6−298754(JP,A) (58)調査した分野(Int.Cl.6,DB名) C07D 319/12 C08G 63/06──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yukihiro Sumihiro 1-6-1, Funakoshi-minami, Aki-ku, Hiroshima-shi, Hiroshima Japan Steel Works Co., Ltd. (72) Inventor Kayoko Yokota 1-chome, Funakoshi-minami, Aki-ku, Hiroshima-shi, Hiroshima 6-1 Japan Steel Works, Ltd. (56) References JP-A-63-101378 (JP, A) JP-A-7-304859 (JP, A) JP-A-6-298754 (JP, A) (58) Survey Field (Int.Cl. 6 , DB name) C07D 319/12 C08G 63/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリ乳酸製品をスクリュ式押出機内にお
いて水及び触媒の存在下、200〜400℃に加熱し、
混合することを特徴とするポリ乳酸製品からラクチドを
回収する方法。
1. A polylactic acid product is heated to 200 to 400 ° C. in a screw extruder in the presence of water and a catalyst,
A method for recovering lactide from a polylactic acid product, which comprises mixing.
【請求項2】 生成したラクチドを、減圧下に気化させ
て回収するものである請求項1記載の回収方法。
2. The method according to claim 1, wherein the produced lactide is vaporized and recovered under reduced pressure.
【請求項3】 請求項1又は2の方法により回収したラ
クチドを、更にアルコール中に導くことにより精製する
工程を有することを特徴とするポリ乳酸製品からラクチ
ドを回収する方法。
3. A method for recovering lactide from a polylactic acid product, further comprising a step of purifying the lactide recovered by the method according to claim 1 or 2 by introducing it into alcohol.
JP10309194A 1994-05-17 1994-05-17 Method for recovering lactide from polylactic acid products Expired - Fee Related JP2821986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10309194A JP2821986B2 (en) 1994-05-17 1994-05-17 Method for recovering lactide from polylactic acid products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10309194A JP2821986B2 (en) 1994-05-17 1994-05-17 Method for recovering lactide from polylactic acid products

Publications (2)

Publication Number Publication Date
JPH07309863A JPH07309863A (en) 1995-11-28
JP2821986B2 true JP2821986B2 (en) 1998-11-05

Family

ID=14344972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10309194A Expired - Fee Related JP2821986B2 (en) 1994-05-17 1994-05-17 Method for recovering lactide from polylactic acid products

Country Status (1)

Country Link
JP (1) JP2821986B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330284B2 (en) * 1996-07-03 2002-09-30 株式会社神戸製鋼所 Method for producing polylactic acid
JP4647413B2 (en) * 2005-06-27 2011-03-09 帝人ファイバー株式会社 Depolymerization method of biodegradable polyester
JP2007023176A (en) * 2005-07-19 2007-02-01 Teijin Fibers Ltd Method for depolymerizing biodegradable polyester
JP2007224113A (en) * 2006-02-22 2007-09-06 Teijin Fibers Ltd Method for recovering effective components from recovered biodegradable polyester
JP5208697B2 (en) * 2008-11-28 2013-06-12 株式会社日本製鋼所 Lactide recovery device and recovery method
WO2010071019A1 (en) * 2008-12-17 2010-06-24 国立大学法人九州工業大学 Method for producing 2-hydroxyisobutyric acid polymer and method for depolymerizing same
JP5051729B2 (en) * 2009-01-20 2012-10-17 公益財団法人北九州産業学術推進機構 Lactide recovery device and recovery method
EP2559725B1 (en) * 2011-08-19 2024-05-08 Uhde Inventa-Fischer GmbH Method and device for recovery of lactide from polylactide and glycolide from polyglycolide
JP6691656B2 (en) * 2016-01-29 2020-05-13 東洋製罐株式会社 Lactide recovery method
CN109438411A (en) * 2018-10-24 2019-03-08 深圳光华伟业股份有限公司 Glycolide process units and production method
JP7425181B2 (en) * 2020-03-10 2024-01-30 マクセル株式会社 How to decompose polylactic acid
BE1028893B1 (en) * 2020-12-15 2022-07-19 Despriet Gebroeders Nv RECYCLING PROCESS FOR POLYlactic Acid IN WASTE FLOWS TO OBTAIN LACTIDE
CN114773811B (en) * 2022-06-27 2022-09-02 广东美联新材料股份有限公司 Color master batch taking polylactic acid recovered waste material as carrier and preparation method thereof

Also Published As

Publication number Publication date
JPH07309863A (en) 1995-11-28

Similar Documents

Publication Publication Date Title
JP2821986B2 (en) Method for recovering lactide from polylactic acid products
JP7071528B2 (en) How to collect waste polyester material
US9475790B2 (en) Method for preparing refined lactide from recovered polylactic acid
TW386093B (en) process for producing polyester articles having low acetaldehyde content
CN111138641A (en) Method for preparing bottle-grade slices by recycling waste polyester bottles
JP2008088096A (en) Method for producing bis-(2-hydroxyethyl) terephthalate and method for producing polyethylene terephthalate
JP3503127B2 (en) Method for recovering lactide from high molecular weight polylactic acid
CN113941169B (en) Preparation method and preparation device of electronic grade dimethyl carbonate
CN102746270B (en) Method for preparing refined level lactide from recovered polylactic acid
JP2005515965A5 (en)
EP0707563B1 (en) Production of dicarboxylic acids or esters thereof
JP3251888B2 (en) Method and apparatus for producing high molecular weight polylactic acid
JP4994314B2 (en) Method and apparatus for synthesizing lactide and polylactic acid
JP3622327B2 (en)   Cleaning method for aliphatic polyester pellets
EP0662466A1 (en) Continuous process for the recovery of terephthalic acid from waste or used products of polyalkylene terephthalate polymers
TW202411325A (en) Method for preparing bis-2-hydroxyethyl terephthalate using continuous depolymerization
JP2847617B2 (en) Method for producing high molecular weight polylactic acid and molded article thereof
CN113087885B (en) Production method of recycled polyester chips
JP3024907B2 (en) Method for producing polylactic acid
JP2008260893A (en) Method for producing polylactic acid
JP2006176757A (en) Production method for polyester
JP2850101B2 (en) Method for producing polylactic acid
JP2002060369A (en) Method for recycling polyester waste
JPH0853380A (en) Avoiding method for dioxane generation during recovering monomer from polyester resin
JP4457654B2 (en) Method for producing aliphatic polyester

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070904

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080904

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090904

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100904

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees