JP3270706B2 - Multi-source refrigeration equipment - Google Patents

Multi-source refrigeration equipment

Info

Publication number
JP3270706B2
JP3270706B2 JP06964797A JP6964797A JP3270706B2 JP 3270706 B2 JP3270706 B2 JP 3270706B2 JP 06964797 A JP06964797 A JP 06964797A JP 6964797 A JP6964797 A JP 6964797A JP 3270706 B2 JP3270706 B2 JP 3270706B2
Authority
JP
Japan
Prior art keywords
refrigerant
superheat
evaporator
degree
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06964797A
Other languages
Japanese (ja)
Other versions
JPH10267441A (en
Inventor
史武 畝崎
俊昭 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06964797A priority Critical patent/JP3270706B2/en
Publication of JPH10267441A publication Critical patent/JPH10267441A/en
Application granted granted Critical
Publication of JP3270706B2 publication Critical patent/JP3270706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は多元冷凍装置に係
り、特に低元側冷凍サイクルの制御に関するものであ
る。なお、便宜上、二元冷凍装置について以下の説明を
行う。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-stage refrigeration system, and more particularly to control of a low-stage refrigeration cycle. In addition, the following description is given about the binary refrigeration apparatus for convenience.

【0002】[0002]

【従来の技術】従来、冷凍装置においては蒸発器出口ま
たは圧縮機吸入部の冷媒の過熱度をある目標値になるよ
う膨張装置を制御することで、安定した運転を図ること
が行われている。二元冷凍装置でも同様であり、高元
側、低元側のサイクルの蒸発器出口乾き度、または圧縮
機吸入部の冷媒の過熱度どちらかを目標値になるよう膨
張装置制御することで安定した運転を図ることが行われ
ている。
2. Description of the Related Art Conventionally, in a refrigerating apparatus, stable operation has been achieved by controlling an expansion apparatus so that the degree of superheat of refrigerant at an evaporator outlet or a compressor suction section becomes a target value. . The same applies to the binary refrigeration system, which is stabilized by controlling the expansion device so that either the dryness of the evaporator outlet in the high and low cycles or the superheat of the refrigerant at the compressor suction section becomes the target value. It is performed that the driving was done.

【0003】例えば、実開昭63−2053号に記載さ
れている考案には、高元側冷凍サイクルの凝縮器とが熱
交換を行うカスケードコンデンサによって高元側冷凍サ
イクルと低元側冷凍サイクルとを連結して成る二元冷凍
装置において、高元側冷凍サイクルの膨張器として比例
制御弁を設け、高元側蒸発器に設けた飽和温度検出器と
高元側圧縮機の吸入管に設けた吸入ガス温度検出器との
検出信号により、比例制御弁の開度を制御して吸入ガス
の過熱度を一定に保つ制御器を備えた二元冷凍装置が記
載されている。
[0003] For example, the invention described in Japanese Utility Model Laid-Open No. 63-2053 discloses that a condenser of a higher-end refrigeration cycle is connected to a condenser of a higher-end refrigeration cycle by a cascade condenser that exchanges heat. In the two-stage refrigeration apparatus, a proportional control valve is provided as an expander of the high-side refrigeration cycle, and a saturation temperature detector provided in the high-side evaporator and a suction pipe of the high-side compressor are provided. A binary refrigeration system including a controller that controls the opening degree of a proportional control valve based on a detection signal from an intake gas temperature detector and keeps the degree of superheat of the intake gas constant is described.

【0004】[0004]

【発明が解決しようとする課題】しかし、低元側冷凍サ
イクルにおいて蒸発器出口にアキュムレータや膨張タン
クが接続されている場合には、アキュムレータに液冷媒
が貯まっていることや、膨張タンクからのガス冷媒の流
出により、蒸発器出口部の冷媒の過熱度と圧縮機吸入部
の冷媒の過熱度が異なる状態が生じる。
However, when an accumulator or an expansion tank is connected to the evaporator outlet in the low-side refrigeration cycle, the liquid refrigerant is stored in the accumulator and the gas from the expansion tank is not charged. Due to the outflow of the refrigerant, a state occurs in which the degree of superheat of the refrigerant at the outlet of the evaporator is different from the degree of superheat of the refrigerant at the inlet of the compressor.

【0005】そのため蒸発器出口部の冷媒の過熱度のみ
で膨張装置の制御を行おうとした場合、次のような問題
が生じる。例えば膨張タンクからのガス冷媒の流出があ
り、流出するガス冷媒の温度が蒸発器出口部のガス冷媒
の温度よりかなり高い状態となると、蒸発器出口部の冷
媒の過熱度よりも蒸発器出口から流れてくるガス冷媒と
膨張タンクから流出するガス冷媒とが合流する圧縮機吸
入部の冷媒の過熱度がかなり大きくなる。蒸発器出口部
の冷媒の過熱度制御ではこの圧縮機吸入部の冷媒の過熱
度上昇を予見できないため、圧縮機吸入部の冷媒の過熱
度上昇に伴う圧縮機の吐出温度の上昇を抑制できない。
そのため吐出温度上昇に対しての冷凍装置の保護装置が
働き運転が停止するといった問題が生じる。
[0005] Therefore, when the expansion device is controlled only by the degree of superheat of the refrigerant at the outlet of the evaporator, the following problem occurs. For example, when the gas refrigerant flows out of the expansion tank, and the temperature of the gas refrigerant flowing out becomes considerably higher than the temperature of the gas refrigerant at the evaporator outlet, the degree of superheating of the refrigerant at the evaporator outlet is higher than the degree of superheating of the refrigerant at the evaporator outlet. The superheat degree of the refrigerant at the compressor suction portion where the flowing gas refrigerant and the gas refrigerant flowing out of the expansion tank merge is considerably large. In the superheat control of the refrigerant at the outlet of the evaporator, it is not possible to foresee an increase in the superheat of the refrigerant at the compressor suction section, and therefore it is impossible to suppress an increase in the discharge temperature of the compressor due to the increase in the superheat of the refrigerant at the compressor suction section.
Therefore, there is a problem that the protection device of the refrigerating apparatus operates against the rise of the discharge temperature to stop the operation.

【0006】またアキュムレータに液冷媒が存在する
と、液面変動などにより液冷媒の戻りが生じる可能性が
ある。長時間液冷媒の戻りを生じさせると、圧縮機で液
圧縮を行い圧縮機が破損する可能性がある。従ってアキ
ュムレータに液冷媒が存在する時間を短くなるような制
御を行うことが必要となる。しかし蒸発器出口部の冷媒
の過熱度制御ではアキュムレータに液冷媒が存在するこ
とを検知できないので、長時間液冷媒をアキュムレータ
に存在させる状態になる可能性があり、この場合長時間
の液冷媒の戻りにより圧縮機で液冷媒圧縮を行い圧縮機
が破損する問題が生じる。
If the liquid refrigerant is present in the accumulator, the liquid refrigerant may return due to fluctuations in the liquid level. If the liquid refrigerant returns for a long time, there is a possibility that the liquid is compressed by the compressor and the compressor is damaged. Therefore, it is necessary to perform control so as to shorten the time during which the liquid refrigerant is present in the accumulator. However, the superheat control of the refrigerant at the outlet of the evaporator cannot detect the presence of the liquid refrigerant in the accumulator.Therefore, there is a possibility that the liquid refrigerant will remain in the accumulator for a long time, and in this case, the long-term liquid refrigerant The return causes a problem that the compressor compresses the liquid refrigerant and breaks the compressor.

【0007】一方圧縮機吸入部の冷媒の過熱度のみで膨
張装置の制御を行う場合には次のような問題が生じる。
アキュムレータに液冷媒が存在すると圧縮機吸入には飽
和ガスが流れてくるので、過熱度がゼロとなる。そこで
圧縮機吸入部の冷媒の過熱度をある値に制御するときに
は、膨張装置の開度を小さくすることによって過熱度を
大きくなるよう制御を行う。しかしアキュムレータに液
冷媒がある間は、圧縮機吸入部の冷媒の過熱度はゼロの
ままとなるので、その間膨張装置の開度を小さくする制
御を継続して行うことになる。そこでアキュムレータに
多量の液冷媒が存在した場合には、膨張装置の開度を小
さく制御しすぎることになり、冷凍装置の高圧が高く、
低圧が低くなりすぎる状態となる。高圧が高くなりすぎ
る、または低圧が低くなりすぎると冷凍装置の保護装置
が作動し運転が停止するという問題が生じることにな
る。
On the other hand, when the expansion device is controlled only by the degree of superheat of the refrigerant at the suction portion of the compressor, the following problem occurs.
When a liquid refrigerant is present in the accumulator, a saturated gas flows into the compressor suction, so that the degree of superheat becomes zero. Therefore, when controlling the degree of superheat of the refrigerant at the compressor suction portion to a certain value, control is performed so as to increase the degree of superheat by reducing the degree of opening of the expansion device. However, while the liquid refrigerant is in the accumulator, the degree of superheat of the refrigerant in the compressor suction section remains zero, and the control for reducing the opening of the expansion device is performed continuously during that time. Therefore, when a large amount of liquid refrigerant is present in the accumulator, the opening degree of the expansion device is controlled to be too small, and the high pressure of the refrigeration device is high.
The low pressure becomes too low. If the high pressure is too high or the low pressure is too low, there arises a problem that the protection device of the refrigeration system is activated and the operation is stopped.

【0008】この発明はかかる問題点を解決するために
なされたもので、低元側冷凍サイクルの低圧側における
冷媒の過熱度を適切に制御し、安全かつ安定して運転で
きる多元冷凍装置を提供することを目的とする。
The present invention has been made to solve such a problem, and provides a multi-source refrigeration apparatus capable of appropriately controlling the degree of superheat of the refrigerant on the low-pressure side of the low-side refrigeration cycle and operating safely and stably. The purpose is to do.

【0009】[0009]

【課題を解決するための手段】この発明に係る多元冷凍
装置は、高元側圧縮機、高元側凝縮器、高元側膨張装
置、高元側蒸発器がこの順に接続された高元側冷凍サイ
クルと、低元側圧縮機、低元側凝縮器、電子膨張弁を用
いた低元側膨張装置、冷却媒体を介して冷凍負荷を冷却
する低元側蒸発器がこの順に接続された低元側冷凍サイ
クルと、低元側圧縮機の吸入側に接続され、運転休止時
の圧力を低下させるための膨張タンクと、高元側蒸発器
と低元側凝縮器とが熱交換できるように直接または間接
的に組み合わされて、高元側冷凍サイクルと低元側冷凍
サイクルとを連結するカスケードコンデンサと、低元側
圧縮機吸入部の冷媒の過熱度を検出する過熱度検出装置
と、高元側冷凍サイクルの運転によりカスケードコンデ
ンサにおいて低元側凝縮器が冷却された後における冷凍
負荷が高温状態からの低元側冷凍サイクルの起動時、膨
張タンクから流出する過熱状態の冷媒により低元側圧縮
機の吐出温度が上昇するのを抑制するために、過熱度検
出装置が検出した低元側圧縮機吸入部の冷媒の過熱度
が、低元側圧縮機の高圧が高くなりすぎず、および吐出
温度が高くなりすぎない予め定めた目標値となるように
電子膨張弁を制御する制御手段とを設けた。
A multi-stage refrigeration system according to the present invention comprises a high-stage compressor in which a high-stage compressor, a high-stage condenser, a high-stage expansion device, and a high-stage evaporator are connected in this order. A refrigeration cycle, a low-side compressor, a low-side condenser, a low-side expansion device using an electronic expansion valve, and a low-side evaporator that cools a refrigeration load through a cooling medium are connected in this order. An expansion tank connected to the suction side of the lower-side refrigeration cycle and the lower-side compressor to reduce the pressure at the time of suspension of operation, so that heat can be exchanged between the higher-side evaporator and the lower-side condenser. A cascade condenser that is directly or indirectly combined to connect the high-side refrigeration cycle and the low-side refrigeration cycle, a superheat degree detection device that detects the superheat degree of the refrigerant at the low-stage compressor suction section, Lower refrigeration cycle in the cascade condenser In order to prevent the discharge temperature of the lower compressor from rising due to the superheated refrigerant flowing out of the expansion tank when the lower refrigerant cycle is started from a high refrigeration load after the compressor is cooled. In addition, the superheat degree of the refrigerant in the low-stage compressor suction unit detected by the superheat degree detection device is a predetermined target value such that the high pressure of the low-stage compressor is not too high, and the discharge temperature is not too high. Control means for controlling the electronic expansion valve.

【0010】また、制御手段は、低元側冷凍サイクルが
起動してから所定時間経過後に、低元側圧縮機吸入部の
冷媒の過熱度の目標値を下げて電子膨張弁を制御する。
Further, the control means controls the electronic expansion valve by lowering the target value of the degree of superheat of the refrigerant in the suction section of the lower compressor after a predetermined time has elapsed since the start of the lower refrigerating cycle.

【0011】また、制御手段は、低元側冷凍サイクルの
起動後、多元冷凍装置の運転状態が所定の状態に変化し
た場合は、低元側圧縮機吸入部の冷媒の過熱度の目標値
を下げて電子膨張弁を制御する。
When the operating state of the multi-stage refrigeration system changes to a predetermined state after the start of the lower-stage refrigeration cycle, the control means sets the target value of the degree of superheat of the refrigerant in the suction section of the lower-stage compressor. Lower to control electronic expansion valve.

【0012】また、過熱度検出装置は低元側蒸発器の出
口部の冷媒の過熱度も検出し、冷却媒体の温度が低下し
安定した場合は、過熱度検出装置が検出した低元側蒸発
器の出口部の冷媒の過熱度が、低元側蒸発器の伝熱効率
が高くなる最適値である予め定めた目標値となるように
電子膨張弁を制御する他の制御手段を設けた。
The superheat detecting device also detects the superheat of the refrigerant at the outlet of the lower evaporator, and when the temperature of the cooling medium is lowered and stabilized, the lower evaporator detected by the superheat detecting device. Another control means is provided for controlling the electronic expansion valve so that the degree of superheat of the refrigerant at the outlet of the vessel becomes a predetermined target value which is an optimal value at which the heat transfer efficiency of the lower evaporator is increased.

【0013】また、高元側圧縮機、高元側凝縮器、高元
側膨張装置、高元側蒸発器がこの順に接続された高元側
冷凍サイクルと、低元側圧縮機、低元側凝縮器、電子膨
張弁を用いた低元側膨張装置、冷却媒体を介して冷凍負
荷を冷却する低元側蒸発器、低元側蒸発器から二相状態
の冷媒が流出した場合に、気液分離を行い液冷媒が低元
側圧縮機に流入するのを抑制するアキュームレータがこ
の順に接続された低元側冷凍サイクルと、低元側圧縮機
の吸入側に接続され、運転休止時の圧力を低下させるた
めの膨張タンクと、高元側蒸発器と低元側凝縮器とが熱
交換できるように直接または間接的に組み合わされて、
高元側冷凍サイクルと低元側冷凍サイクルとを連結する
カスケードコンデンサと、低元側蒸発器の出口部の冷媒
の過熱度を検出する過熱度検出装置と、低元側蒸発器の
蒸発温度より冷却媒体の温度が低い場合に、低元側蒸発
器より二相冷媒が流出しアキュームレータに液冷媒が溜
まる状態を早く回避するために、過熱度検出装置が検出
した低元側蒸発器の出口部の冷媒の過熱度が、低元側蒸
発器の伝熱効率が高くなる最適値よりやや大きい予め定
めた目標値となるように電子膨張弁を制御する制御手段
とを設けた。
[0013] Further, a high-side refrigeration cycle in which a high-side compressor, a high-side condenser, a high-side expansion device, and a high-side evaporator are connected in this order; a low-side compressor; When the refrigerant in the two-phase state flows out of the condenser, the lower expansion device using the electronic expansion valve, the lower evaporator that cools the refrigeration load through the cooling medium, An accumulator that separates and prevents liquid refrigerant from flowing into the lower compressor is connected to the lower refrigeration cycle connected in this order and the suction side of the lower compressor to reduce the pressure during operation stop. An expansion tank for lowering, and a high-side evaporator and a low-side condenser are directly or indirectly combined so that heat can be exchanged,
A cascade condenser that connects the high-side refrigeration cycle and the low-side refrigeration cycle, a superheat degree detection device that detects the degree of superheat of the refrigerant at the outlet of the low-side evaporator, When the temperature of the cooling medium is low, in order to quickly avoid a state in which the two-phase refrigerant flows out of the lower evaporator and the liquid refrigerant accumulates in the accumulator, the outlet of the lower evaporator detected by the superheat degree detection device is used. Control means for controlling the electronic expansion valve so that the degree of superheat of the refrigerant becomes a predetermined target value slightly larger than the optimum value at which the heat transfer efficiency of the lower evaporator is increased.

【0014】また、過熱度検出装置は低元側蒸発器の出
口部の冷媒の過熱度も検出し、過熱度検出装置が検出し
た低元側蒸発器の出口部の冷媒の過熱度が、低元側蒸発
器の伝熱効率が高くなる最適値よりやや大きい予め定め
た目標値となった場合、過熱度検出装置は低元側蒸発器
の出口部の冷媒の過熱度によりアキュームレータに液冷
媒が存在するか判定し、液冷媒が存在する場合は、引き
続き過熱度検出装置が検出した低元側蒸発器の出口部の
冷媒の過熱度が、低元側蒸発器の伝熱効率が高くなる最
適値よりやや大きい予め定めた目標値となるように電子
膨張弁を制御し、液冷媒が存在しない場合は、過熱度検
出装置が検出した低元側蒸発器の出口部の冷媒の過熱度
が、低元側蒸発器の伝熱効率が高くなる最適値である予
め定めた目標値となるように電子膨張弁を制御する他の
制御手段を設けた。
The superheat degree detecting device also detects the superheat degree of the refrigerant at the outlet of the lower evaporator, and the superheat degree of the refrigerant at the outlet part of the lower evaporator detected by the superheat degree detector is low. When the heat transfer efficiency of the lower evaporator becomes a predetermined target value slightly larger than the optimum value, the superheat detection device detects the presence of liquid refrigerant in the accumulator due to the superheat of the refrigerant at the outlet of the lower evaporator. It is determined whether the liquid refrigerant is present, if the superheat degree of the refrigerant at the outlet of the lower evaporator continuously detected by the superheat degree detection device is higher than the optimal value at which the heat transfer efficiency of the lower evaporator is increased. The electronic expansion valve is controlled so as to have a slightly larger target value, and when no liquid refrigerant is present, the degree of superheat of the refrigerant at the outlet of the lower evaporator detected by the superheat detection device is reduced to a lower level. The predetermined target value, which is the optimum value for increasing the heat transfer efficiency of the side evaporator, It provided other control means for controlling the electronic expansion valve so that.

【0015】また、高元側圧縮機、高元側凝縮器、高元
側膨張装置、高元側蒸発器がこの順に接続された高元側
冷凍サイクルと、低元側圧縮機、低元側凝縮器、電子膨
張弁を用いた低元側膨張装置、冷却媒体を介して冷凍負
荷を冷却する低元側蒸発器、前記低元側蒸発器から二相
状態の冷媒が流出した場合に、気液分離を行い液冷媒が
前記低元側圧縮機に流入するのを抑制するアキュームレ
ータがこの順に接続された低元側冷凍サイクルと、低元
側圧縮機の吸入側に接続され、運転休止時の圧力を低下
させるための膨張タンクと、高元側蒸発器と低元側凝縮
器とが熱交換できるように直接または間接的に組み合わ
されて、高元側冷凍サイクルと低元側冷凍サイクルとを
連結するカスケードコンデンサと、低元側蒸発器の出口
部の冷媒の過熱度と低元側圧縮機吸入部の冷媒の過熱度
とを検出する過熱度検出装置と、低元側冷凍サイクルの
安定運転時、低元側圧縮機吸入部の冷媒の過熱度により
アキュームレータに液冷媒が存在するか判定し、液冷媒
が存在する場合は、過熱度検出装置が検出した低元側蒸
発器の出口部の冷媒の過熱度が、低元側蒸発器の伝熱効
率が高くなる最適値よりやや大きい予め定めた目標値と
なるように電子膨張弁を制御し、液冷媒が存在しない場
合は、過熱度検出装置が検出した低元側蒸発器の出口部
の冷媒の過熱度が、低元側蒸発器の伝熱効率が高くなる
最適値である予め定めた目標値となるように電子膨張弁
を制御する制御手段とを設けた。
[0015] Further, a high-side refrigeration cycle in which a high-side compressor, a high-side condenser, a high-side expansion device, and a high-side evaporator are connected in this order; a low-side compressor; A condenser, a lower expansion device using an electronic expansion valve, a lower evaporator for cooling a refrigeration load via a cooling medium, and a gas in a two-phase state flowing out of the lower evaporator. An accumulator that performs liquid separation and suppresses the liquid refrigerant from flowing into the lower compressor is connected to the lower refrigeration cycle connected in this order, and to the suction side of the lower compressor, and when the operation is stopped. The expansion tank for lowering the pressure, and the high-side evaporator and the low-side condenser are directly or indirectly combined so that heat can be exchanged, and the high-side refrigeration cycle and the low-side refrigeration cycle are combined. Superheat degree of connected cascade condenser and refrigerant at outlet of lower evaporator A superheat degree detection device that detects the degree of superheat of the refrigerant in the lower-stage compressor suction section, and when the lower-stage refrigeration cycle is in a stable operation, the liquid refrigerant flows into the accumulator due to the superheat degree of the refrigerant in the lower-stage compressor suction section. It is determined whether or not the liquid refrigerant exists, and if the liquid refrigerant is present, the superheat degree of the refrigerant at the outlet of the lower evaporator detected by the superheat degree detection device is greater than the optimal value at which the heat transfer efficiency of the lower evaporator is increased. The electronic expansion valve is controlled so as to have a slightly larger target value, and when no liquid refrigerant is present, the degree of superheat of the refrigerant at the outlet of the lower evaporator detected by the superheat detection device is reduced to a lower level. A control means is provided for controlling the electronic expansion valve so as to reach a predetermined target value which is an optimum value for increasing the heat transfer efficiency of the side evaporator.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、この発明の実施の形態の一例を図
面を参照して説明する。図1はこの発明の実施の形態1
における二元冷凍装置の冷媒回路図である。図におい
て、1は高元側冷凍サイクル、2は低元側冷凍サイク
ル、31は高元側冷凍サイクルの圧縮機、32は低元側
冷凍サイクルの圧縮機、4は高元側冷凍サイクルの凝縮
器、51は高元側冷凍サイクルの電子膨張弁、52は低
元側冷凍サイクルの電子膨張弁、6は低元側冷凍サイク
ルの蒸発器である。
Embodiment 1 FIG. Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows Embodiment 1 of the present invention.
FIG. 4 is a refrigerant circuit diagram of the binary refrigeration apparatus in FIG. In the figure, 1 is a high-end refrigeration cycle, 2 is a low-end refrigeration cycle, 31 is a compressor of a high-end refrigeration cycle, 32 is a compressor of a low-end refrigeration cycle, and 4 is a condensation of a high-end refrigeration cycle. Reference numeral 51 denotes an electronic expansion valve of the high-side refrigeration cycle, 52 denotes an electronic expansion valve of the low-side refrigeration cycle, and 6 denotes an evaporator of the low-side refrigeration cycle.

【0017】7はカスケードコンデンサで、高元側冷凍
サイクルの蒸発器12の低圧の二相冷媒と低元側冷凍サ
イクル2の高圧のガス冷媒が熱交換を行い、高元側冷凍
サイクル1の低圧の二相冷媒を蒸発、ガス化させる一
方、低元側冷凍サイクル2の高圧のガス冷媒を凝縮、液
化させる構造となっている。
Reference numeral 7 denotes a cascade condenser, which exchanges heat between the low-pressure two-phase refrigerant of the evaporator 12 of the high-side refrigeration cycle and the high-pressure gas refrigerant of the low-side refrigeration cycle 2, and While the two-phase refrigerant is evaporated and gasified, the high-pressure gas refrigerant of the lower-stage refrigeration cycle 2 is condensed and liquefied.

【0018】8はアキュームレータで、低元側蒸発器6
から二相状態の冷媒が流出した場合に、気液分離を行い
液冷媒が低元側圧縮機32に流入するのを抑制する。
Reference numeral 8 denotes an accumulator, and the lower evaporator 6
When the refrigerant in the two-phase state flows out of the compressor, gas-liquid separation is performed to suppress the liquid refrigerant from flowing into the lower compressor 32.

【0019】9は低元側圧縮機32の吸入側に接続され
た膨張タンクで、低元側冷凍サイクルの冷媒が完全にガ
ス化しても、その圧力が許容圧力を越えないようにする
ためのものである。
Reference numeral 9 denotes an expansion tank connected to the suction side of the lower compressor 32, for preventing the pressure of the refrigerant in the lower refrigeration cycle from exceeding an allowable pressure even if the refrigerant is completely gasified. Things.

【0020】10は過熱度検出装置であり、低元側冷凍
サイクルの低圧側の圧力または低元側蒸発器6に設けた
温度センサー13により検出した飽和温度、低元側蒸発
器6の出口部に設けた温度センサー14により検出した
低元側蒸発器6の出口部の温度、及び低元側圧縮機32
の吸入部に設けた温度センサー15により検出した低元
側圧縮機32の吸入部の温度により、低元側圧縮機32
の吸入部の冷媒の過熱度と低元側蒸発器6の出口部の冷
媒の過熱度とを検出する。
Reference numeral 10 denotes a superheat degree detecting device which detects the pressure on the low pressure side of the lower-side refrigeration cycle or the saturation temperature detected by the temperature sensor 13 provided in the lower-side evaporator 6, and the outlet of the lower-side evaporator 6. The temperature of the outlet of the lower evaporator 6 detected by the temperature sensor 14 provided in the
The temperature of the suction section of the lower compressor 32 detected by the temperature sensor 15 provided at the suction section of the lower compressor 32
And the superheat degree of the refrigerant at the outlet of the lower evaporator 6 are detected.

【0021】11は膨張弁制御装置で、過熱度検出装置
10で検出された低元側圧縮機32の吸入部の冷媒の過
熱度と低元側蒸発器6の出口部の冷媒の過熱度の値を信
号としてもらい、その過熱度の値によって低元側冷凍サ
イクル2の電子膨張弁52の開度を制御する。
Reference numeral 11 denotes an expansion valve control unit which measures the degree of superheat of the refrigerant at the inlet of the lower compressor 32 and the degree of superheat of the refrigerant at the outlet of the lower evaporator 6 detected by the superheat detector 10. A value is received as a signal, and the degree of superheat is used to control the degree of opening of the electronic expansion valve 52 of the lower refrigeration cycle 2.

【0022】高元側冷凍サイクル1の冷媒としてはR4
04a、低元側冷凍サイクル2の冷媒としてはR23を
用いる。
R4 is used as the refrigerant of the high-stage refrigeration cycle 1.
04a, R23 is used as a refrigerant for the lower refrigeration cycle 2.

【0023】高元側冷凍サイクル1の凝縮器4では冷却
水で冷媒を凝縮、液冷媒化し、低元側冷凍サイクル2の
蒸発器6では冷却媒体であるブラインから熱を奪い、冷
媒を蒸発させる構造となっている。
In the condenser 4 of the higher-stage refrigeration cycle 1, the refrigerant is condensed with the cooling water to form a liquid refrigerant, and in the evaporator 6 of the lower-stage refrigeration cycle 2, heat is taken from the brine as the cooling medium to evaporate the refrigerant. It has a structure.

【0024】この冷凍装置では冷媒の特性より定常の運
転状態で、低元側冷凍サイクル2の蒸発温度が−70℃
程度、低元側冷凍サイクル2の凝縮温度および高元側冷
凍サイクル1の蒸発温度が−30℃程度、高元側冷凍サ
イクル1の凝縮温度が40℃程度となる。冷凍装置の機
能としては、低元側冷凍サイクル2の蒸発器6から−7
0℃程度の低温のブラインを得ることができる。
In this refrigerating apparatus, the evaporation temperature of the lower refrigerating cycle 2 is -70 ° C. in a steady operation state due to the characteristics of the refrigerant.
The condensation temperature of the lower refrigeration cycle 2 and the evaporation temperature of the higher refrigeration cycle 1 are about −30 ° C., and the condensation temperature of the higher refrigeration cycle 1 is about 40 ° C. The function of the refrigeration system is as follows:
Brine at a low temperature of about 0 ° C. can be obtained.

【0025】まず始めにこの二元冷凍装置の起動運転に
ついて説明する。冷凍装置の起動運転では外気温度と同
じ温度となっている熱負荷のある場所、例えば冷凍倉庫
をブラインで冷却し、−70℃まで冷却する運転を行
う。起動前はブラインの温度も冷凍倉庫と同じく外気温
となっており、まず冷凍装置でブラインを冷却する、冷
却したブラインで冷凍倉庫を冷却するという運転を行う
ことになる。冷凍倉庫を冷却したブラインは多少温度上
昇した後、冷凍装置に再び戻ってきて、冷凍装置によっ
て再度冷却される。冷凍倉庫を冷却し始める段階では冷
凍倉庫の温度と外気温度の差が小さいので熱負荷はそれ
ほど大きくなく、冷凍装置がブラインを冷却する冷却量
が、ブラインが冷凍倉庫を冷却する冷却量よりも大きく
なる。従ってブラインの温度は運転とともに低下してい
き、−70℃程度となったところで冷凍倉庫の熱負荷と
冷凍装置がブラインを冷却する冷却量とが釣り合い、冷
凍装置の運転が安定することになる。
First, the starting operation of the binary refrigeration system will be described. In the start-up operation of the refrigeration apparatus, a place having a heat load equal to the outside air temperature, for example, a refrigeration warehouse is cooled by brine and cooled to −70 ° C. Before the start-up, the temperature of the brine is the same as the outside temperature of the freezing warehouse, and the operation is performed such that the brine is first cooled by the refrigerating apparatus, and the freezing warehouse is cooled by the cooled brine. The brine that has cooled the freezing warehouse, after a slight rise in temperature, returns to the freezing device again and is cooled again by the freezing device. Since the difference between the temperature of the freezer warehouse and the outside air temperature is small at the beginning of cooling the freezer warehouse, the heat load is not so large, and the amount of cooling by which the refrigerator cools the brine is larger than the amount of cooling by which the brine cools the freezer warehouse. Become. Accordingly, the temperature of the brine decreases with the operation, and when the temperature reaches about -70 ° C., the heat load of the freezing warehouse and the amount of cooling by which the refrigerating apparatus cools the brine are balanced, and the operation of the refrigerating apparatus becomes stable.

【0026】次に起動運転での冷凍サイクルの状態の変
化について説明する。最初に停止時の二元冷凍装置の低
元側冷凍サイクル2の状態について説明する。低元側冷
凍サイクル2に用いている冷媒R23は大気圧での沸点
が−85℃と沸点が低い冷媒であるので、常温である2
5℃では飽和圧力が45kgf/cm2absとなる。そのため通
常の冷凍装置のように停止中に熱交換器やアキュムレー
タの中に液冷媒とガス冷媒が共存する形で冷媒を貯蔵す
ると、25℃の外気温度では圧力が45kgf/cm2absとな
ってしまい冷凍装置の許容圧力25kgf/cm2absを超えて
しまうことになる。
Next, the change in the state of the refrigeration cycle during the start-up operation will be described. First, the state of the lower refrigeration cycle 2 of the binary refrigeration apparatus at the time of stoppage will be described. Since the refrigerant R23 used in the low-stage refrigeration cycle 2 has a low boiling point of -85 ° C. at atmospheric pressure, it is at room temperature.
At 5 ° C., the saturation pressure is 45 kgf / cm 2 abs. Therefore, if the refrigerant is stored in a heat exchanger or accumulator in a state where the liquid refrigerant and the gas refrigerant coexist during shutdown as in a normal refrigeration system, the pressure becomes 45 kgf / cm2abs at an outside air temperature of 25 ° C. This will exceed the allowable pressure of the device of 25 kgf / cm2abs.

【0027】そこで低元側冷凍サイクル2には熱交換器
やアキュムレータ8よりも容積の大きい膨張タンク9を
設け、低元側冷凍サイクル2内に存在する冷媒が蒸発し
完全にガス化しても圧力が高くならないようにする。膨
張タンク9の大きさは膨張タンク9を除いた低元側冷凍
サイクル2の内容積の10倍程度の大きさにし、運転停
止時の低元側冷凍サイクル2内の圧力が、外気温度が4
0℃と高くなっても最大で15kgf/cm2abs程度になるよ
う設計される。このような膨張タンク9を用いると外気
温度が常温である25℃付近では低元側冷凍サイクル2
の圧力は14kgf/cm2abs程度となる。また膨張タンク9
の大きさは膨張タンク9を除いた低元側冷凍サイクル2
の内容積の10倍程度あるので、運転停止中には低元側
冷凍サイクル2内の冷媒のほとんどが膨張タンク9に存
在することになる。
Therefore, the lower refrigeration cycle 2 is provided with an expansion tank 9 having a larger volume than the heat exchanger and the accumulator 8, so that even if the refrigerant existing in the lower refrigeration cycle 2 evaporates and is completely gasified, the pressure increases. Should not be high. The size of the expansion tank 9 is about 10 times the internal volume of the low-side refrigeration cycle 2 excluding the expansion tank 9.
It is designed so that it will be about 15kgf / cm2abs at the maximum even at 0 ° C. When such an expansion tank 9 is used, when the outside air temperature is around 25 ° C., which is a normal temperature, the low-side refrigeration cycle 2
Is about 14 kgf / cm2abs. The expansion tank 9
The size of the lower refrigeration cycle 2 excluding the expansion tank 9
Therefore, most of the refrigerant in the lower-stage refrigeration cycle 2 is present in the expansion tank 9 during operation stoppage.

【0028】続いて二元冷凍装置の起動時の状態につい
て説明する。図2には本実施の形態の二元冷凍装置の起
動後の圧力変化を示す。冷凍装置の停止時には前述した
とおり低元側冷凍サイクル2内の圧力が14kgf/cm2abs
程度と高い状態にあるので、この状態で低元側冷凍サイ
クル2を起動すると高圧が30kgf/cm2abs以上となり冷
凍装置の許容圧力を超えてしまうことになる。
Next, the state of the binary refrigeration apparatus at the time of startup will be described. FIG. 2 shows a pressure change after the start of the binary refrigeration apparatus of the present embodiment. When the refrigeration system is stopped, the pressure in the lower refrigeration cycle 2 is 14 kgf / cm2abs as described above.
In this state, if the low-side refrigeration cycle 2 is started, the high pressure will be 30 kgf / cm2abs or more, exceeding the allowable pressure of the refrigeration system.

【0029】そこで二元冷凍装置では、まずはじめに高
元側冷凍サイクル1を起動し、高元側冷凍サイクル1の
蒸発器となるカスケードコンデンサ7を冷却する。カス
ケードコンデンサ7が冷却されると低元側冷凍サイクル
2内の冷媒が冷却、液冷媒化されるので低元側冷凍サイ
クル2の圧力が次第に低下してくる。
Therefore, in the binary refrigeration system, first, the high-stage refrigeration cycle 1 is started, and the cascade condenser 7 serving as the evaporator of the high-stage refrigeration cycle 1 is cooled. When the cascade condenser 7 is cooled, the refrigerant in the lower refrigeration cycle 2 is cooled and liquefied, so that the pressure of the lower refrigeration cycle 2 gradually decreases.

【0030】このときの低元側冷凍サイクル2内での冷
媒の移動を見ると、膨張タンク9からカスケードコンデ
ンサ7にガス冷媒が移動し、移動した冷媒が冷却、液化
されている。低元側冷凍サイクル2の圧力が低下し、9
kgf/cm2abs程度となると低元側冷凍サイクル2を起動し
たときに高圧が上昇しても冷凍装置の許容圧力を超えな
くなるので、低元側冷凍サイクル2を起動する。
Looking at the movement of the refrigerant in the lower refrigeration cycle 2, the gas refrigerant moves from the expansion tank 9 to the cascade condenser 7, and the moved refrigerant is cooled and liquefied. The pressure of the lower refrigeration cycle 2 decreases and 9
When the pressure becomes about kgf / cm2abs, the low pressure side refrigeration cycle 2 is started because the allowable pressure of the refrigerating apparatus does not exceed the allowable pressure of the refrigerating apparatus even if the high pressure rises when the low pressure side refrigeration cycle 2 is activated.

【0031】低元側冷凍サイクル2の起動時の冷媒状態
は冷媒が液化しているカスケードコンデンサ7では低元
側冷凍サイクル2の圧力の飽和温度となり、低元側冷凍
サイクル2の圧力が9kgf/cm2absであるときには−34
℃となる。膨張タンク9を始め低元側冷凍サイクル2の
カスケードコンデンサ7以外の部分は、低元側冷凍サイ
クル2の運転が始まっていない段階では冷凍装置周囲の
外気温度すなわち、常温では25℃程度と飽和温度より
はかなり高い温度となり、過熱度でみると60℃程度の
過熱度があることになる。この状態で起動すると、圧縮
機32入口では定常の吸入圧力(2kgf/cm2abs程度)よ
りも圧力の高い冷媒を吸入し、また過熱度も大きいガス
冷媒を吸入するので、低元側冷凍サイクル2の起動直後
は、高圧が急激に上昇し、吐出温度も高くなる。
In the cascade condenser 7 in which the refrigerant is liquefied, the state of the refrigerant at the start of the lower refrigeration cycle 2 is the saturation temperature of the pressure of the lower refrigeration cycle 2, and the pressure of the lower refrigeration cycle 2 is 9 kgf / -34 for cm2abs
° C. The parts other than the cascade condenser 7 of the lower-stage refrigeration cycle 2 including the expansion tank 9 are in a stage where the operation of the lower-stage refrigeration cycle 2 is not started, the outside air temperature around the refrigerating apparatus, that is, the saturation temperature is about 25 ° C. at room temperature. The temperature is much higher than that, and the degree of superheat indicates that the degree of superheat is about 60 ° C. When the compressor is started in this state, the refrigerant at the inlet of the compressor 32 sucks a refrigerant having a pressure higher than a steady suction pressure (about 2 kgf / cm2abs) and a gas refrigerant having a large superheat degree. Immediately after startup, the high pressure rises sharply and the discharge temperature also rises.

【0032】また起動直後の低元側冷凍サイクル2の低
圧は起動直前の低元側冷凍サイクル2の圧力より下がる
ので、膨張タンク9内の冷媒と圧力差が生じ膨張タンク
9から圧縮機32吸入側へガス冷媒が流出する。膨張タ
ンク9のガス冷媒の温度は低元側冷凍サイクル2内を循
環する冷媒ではないので外気温度と同じ温度となる。一
方蒸発器6から出てくる冷媒はブラインから熱を奪って
蒸発する冷媒なのでブライン温度より高い温度になるこ
とはない。ブライン温度は前述したように冷凍装置の運
転に従って低下していくので蒸発器6を出たガス冷媒の
温度は、膨張タンク9から圧縮機32吸入側へ流出する
ガス冷媒の温度より低くなる。蒸発器6を出たガス冷媒
の温度より高い温度のガス冷媒が膨張タンク9から流れ
てきて、圧縮機吸入で合流するので、過熱度を検出した
場合、蒸発器6出口部の冷媒の過熱度よりも圧縮機32
吸入での過熱度の方が大きくなる。
Since the low pressure of the lower refrigeration cycle 2 immediately after the start is lower than the pressure of the lower refrigeration cycle 2 immediately before the start, a pressure difference is generated between the refrigerant in the expansion tank 9 and the compressor 32 sucked from the expansion tank 9. The gas refrigerant flows out to the side. Since the temperature of the gas refrigerant in the expansion tank 9 is not the refrigerant circulating in the low-stage refrigeration cycle 2, the temperature of the gas refrigerant is the same as the outside air temperature. On the other hand, since the refrigerant coming out of the evaporator 6 removes heat from the brine and evaporates, it does not reach a temperature higher than the brine temperature. As described above, since the brine temperature decreases with the operation of the refrigeration apparatus, the temperature of the gas refrigerant exiting the evaporator 6 becomes lower than the temperature of the gas refrigerant flowing from the expansion tank 9 to the compressor 32 suction side. Since the gas refrigerant having a temperature higher than the temperature of the gas refrigerant that has exited the evaporator 6 flows from the expansion tank 9 and merges with the suction of the compressor, if the degree of superheat is detected, the degree of superheat of the refrigerant at the outlet of the evaporator 6 is detected. Compressor 32 than
Superheat at inhalation is greater.

【0033】起動後時間が経過すると、低元側冷凍サイ
クル2の蒸発器6に供給されるブラインの温度が低下
し、ブラインの温度低下の影響を受け低元側冷凍サイク
ル2の低圧は低下していく。低圧の低下に応じて膨張タ
ンク9からはガス冷媒が流出される。また低圧の低下に
よって圧縮機32の能力が減少していくので、高圧も低
下する。
After a lapse of time from the start, the temperature of the brine supplied to the evaporator 6 of the lower refrigeration cycle 2 decreases, and the low pressure of the lower refrigeration cycle 2 decreases due to the effect of the decrease in the brine temperature. To go. The gas refrigerant flows out of the expansion tank 9 according to the decrease in the low pressure. Further, since the capacity of the compressor 32 decreases due to the decrease in the low pressure, the high pressure also decreases.

【0034】起動後時間がさらに経過し、ブライン温度
の低下が止まり−70℃で安定するようになると、低元
側冷凍サイクル2の低圧の低下がゆるやかになり、ある
安定した圧力に落ち着く。膨張タンク9からのガス冷媒
の流出量は低圧の低下がゆるやかになるにつれて減少
し、低元側冷凍サイクル2の低圧が安定した圧力に落ち
着いた段階で流出量が0となる。従って蒸発器6出口部
の冷媒の過熱度と圧縮機32吸入部の冷媒の過熱度の差
は次第に小さくなり、低圧が安定した状態では両過熱度
は同一の値をとる。以上が二元冷凍装置の起動から安定
に至るまでの運転状態となる。
When the time after the start-up further elapses and the brine temperature stops decreasing and stabilizes at -70 ° C., the low pressure of the low-side refrigeration cycle 2 decreases gradually and settles at a certain stable pressure. The outflow amount of the gas refrigerant from the expansion tank 9 decreases as the low pressure gradually decreases, and the outflow amount becomes zero when the low pressure of the low-side refrigeration cycle 2 reaches a stable pressure. Accordingly, the difference between the degree of superheat of the refrigerant at the outlet of the evaporator 6 and the degree of superheat of the refrigerant at the suction of the compressor 32 gradually decreases, and both superheats have the same value when the low pressure is stable. The above is the operating state from the start of the binary refrigeration apparatus to the stable state.

【0035】次に低元側冷凍サイクル2の起動から安定
に至るまでの電子膨張弁52を用いた過熱度の制御方法
について説明する。図3は起動から安定にいたるまでの
電子膨張弁52の制御方法を示したフローチャートであ
る。まず、ステップS10で電子膨張弁52をある開度
に固定し、ステップS11で低元側冷凍サイクル2を起
動する。
Next, a method of controlling the degree of superheat using the electronic expansion valve 52 from the start of the low-stage refrigeration cycle 2 to the stabilization will be described. FIG. 3 is a flowchart showing a method of controlling the electronic expansion valve 52 from startup to stable operation. First, the electronic expansion valve 52 is fixed at a certain opening in step S10, and the low-side refrigeration cycle 2 is started in step S11.

【0036】このとき電子膨張弁52の開度が適切な値
よりも小さい開度であった場合の低元側冷凍サイクル2
の変化は以下のようになる。膨張弁の開度が小さいの
で、適切な膨張弁開度であった場合よりも低圧が低下す
る。低圧が低下すると圧縮機32の能力が減少するので
高圧も低下する。また低圧の低下に伴い蒸発器6出口部
の冷媒の過熱度は大きくなるので、圧縮機32吸入での
過熱度も大きくなり、それにより圧縮機32出口の吐出
温度も上昇する。
At this time, when the opening of the electronic expansion valve 52 is smaller than an appropriate value, the low-stage refrigeration cycle 2
Is as follows. Since the opening degree of the expansion valve is small, the low pressure is lower than when the expansion valve opening degree is appropriate. As the low pressure decreases, the capacity of the compressor 32 decreases, so that the high pressure also decreases. Further, the superheat degree of the refrigerant at the outlet of the evaporator 6 increases as the low pressure decreases, so that the superheat degree at the suction of the compressor 32 also increases, thereby increasing the discharge temperature at the outlet of the compressor 32.

【0037】一方電子膨張弁52の開度が適切な値より
も大きい開度であった場合の低元側冷凍サイクルの変化
は以下のようになる。膨張弁の開度が大きいので適切な
膨張弁開度であった場合よりも低圧が上昇する。低圧が
上昇すると圧縮機32の能力が増加するので高圧も上昇
する。また低圧の上昇に伴い蒸発器6出口部の冷媒の過
熱度は小さくなるので、圧縮機32吸入での過熱度も小
さくなり、それにより圧縮機32出口の吐出温度も低下
する。
On the other hand, when the opening of the electronic expansion valve 52 is larger than an appropriate value, the change of the lower-stage refrigeration cycle is as follows. Since the opening degree of the expansion valve is large, the low pressure rises as compared with the case where the opening degree of the expansion valve is appropriate. As the low pressure increases, the capacity of the compressor 32 increases, so that the high pressure also increases. In addition, the superheat degree of the refrigerant at the outlet of the evaporator 6 decreases with an increase in the low pressure, so that the superheat degree at the suction of the compressor 32 also decreases, and the discharge temperature at the outlet of the compressor 32 also decreases.

【0038】起動直後の低元側冷凍サイクル2は前述し
たとおり、高圧が高くまた吐出温度も高い状態となる。
従って電子膨張弁52の開度制御を行う場合、適正値よ
りも開度を大きく制御し、蒸発器6出口、圧縮機32吸
入部の冷媒の過熱度が小さくなるように制御すると高圧
が高くなりすぎ、冷凍装置の保護装置が作動し運転が停
止する。一方電子膨張弁52の開度を適正値よりも小さ
く制御し、蒸発器6出口、圧縮機32吸入部の冷媒の過
熱度が大きくなるように制御すると圧縮機32の吐出温
度が高くなりすぎ、保護装置が作動し運転が停止する。
そこで電子膨張弁52の開度は高圧が高くなりすぎず、
また吐出温度が高くなりすぎない過熱度に制御する必要
がある。
As described above, the low-side refrigeration cycle 2 immediately after the start-up has a high pressure and a high discharge temperature.
Therefore, when controlling the opening degree of the electronic expansion valve 52, the opening degree is controlled to be larger than an appropriate value and the superheat degree of the refrigerant at the outlet of the evaporator 6 and the suction part of the compressor 32 is controlled so as to increase the high pressure. The protection device of the refrigeration system is activated and the operation stops. On the other hand, if the opening degree of the electronic expansion valve 52 is controlled to be smaller than an appropriate value and the superheat degree of the refrigerant at the outlet of the evaporator 6 and the suction part of the compressor 32 is controlled to be large, the discharge temperature of the compressor 32 becomes too high. The protection device operates and the operation stops.
Therefore, the opening degree of the electronic expansion valve 52 does not become too high,
Further, it is necessary to control the degree of superheating so that the discharge temperature does not become too high.

【0039】また吐出温度は圧縮機32吸入部の冷媒の
過熱度の大小に大きな影響を受ける。過熱度の制御を行
うときに蒸発器6出口部の冷媒の過熱度で制御すること
を考えると、圧縮機32吸入部の冷媒の過熱度は膨張タ
ンク9からのガス冷媒の流出の影響を受け、蒸発器6出
口部の冷媒の過熱度より大きくなるので、膨張タンク9
からのガス冷媒の流出の影響を考えて制御せねばなら
ず、制御が困難となる。一方圧縮機32吸入部の冷媒の
過熱度で制御をおこなった場合には吐出温度のコントロ
ールを直接行えるので制御が容易になる。従って起動直
後の電子膨張弁52の開度の制御は、圧縮機32吸入部
の冷媒の過熱度が目標値になるように制御する。
The discharge temperature is greatly affected by the degree of superheat of the refrigerant at the suction part of the compressor 32. Considering that the superheat degree is controlled by the superheat degree of the refrigerant at the outlet of the evaporator 6, the superheat degree of the refrigerant at the suction part of the compressor 32 is affected by the outflow of the gas refrigerant from the expansion tank 9. , The degree of superheating of the refrigerant at the outlet of the evaporator 6 is larger than that of the expansion tank 9.
It is necessary to control in consideration of the influence of the outflow of the gas refrigerant from the fuel cell, which makes the control difficult. On the other hand, when the control is performed based on the degree of superheat of the refrigerant at the suction part of the compressor 32, the control of the discharge temperature can be directly performed, so that the control becomes easy. Therefore, the opening degree of the electronic expansion valve 52 immediately after the start is controlled so that the superheat degree of the refrigerant at the suction part of the compressor 32 becomes a target value.

【0040】なお制御の目標値は高圧が高くなりすぎ
ず、また吐出温度が高くなりすぎない過熱度に設定する
必要があるのは前述したとおりである。外気温度が25
℃で起動した場合はこの過熱度の目標値を50℃程度で
制御すると高圧、吐出温度が高くなりすぎないように制
御できる。外気温度が25℃である場合、起動直前には
カスケードコンデンサ7以外には過熱度60℃のガス冷
媒が存在しているのは前述したとおりである。従って起
動直後には過熱度60℃前後のかなり過熱度の高い冷媒
が圧縮機32に吸入される。ここで過熱度の目標値とし
て蒸発器6の伝熱効率が良くなる10℃を選んで制御を
行うと、電子膨張弁52の開度を大幅に大きくすること
になり、高圧が高くなりすぎる状態となる。一方過熱度
60℃前後の冷媒がそのまま吸い込まれるようにすると
吐出温度が高くなりすぎる。そこで過熱度が50℃程度
を目標値に制御すると、高圧が高くなりすぎず、また吐
出温度が高くなりすぎない制御を行える(ステップS1
2〜ステップS15)。
As described above, it is necessary to set the control target value to a degree of superheating at which the high pressure does not become too high and the discharge temperature does not become too high. Outside air temperature is 25
In the case of starting at a temperature of ℃, if the target value of the degree of superheat is controlled at about 50 ° C., it is possible to control the high pressure and the discharge temperature so as not to become too high. As described above, when the outside air temperature is 25 ° C., a gas refrigerant having a superheat degree of 60 ° C. exists other than the cascade condenser 7 immediately before starting. Therefore, immediately after the start, a refrigerant having a superheat degree of about 60 ° C. with a considerably high degree of superheat is sucked into the compressor 32. Here, if 10 ° C., at which the heat transfer efficiency of the evaporator 6 is improved, is selected and controlled as the target value of the degree of superheat, the opening degree of the electronic expansion valve 52 will be greatly increased, and the state in which the high pressure becomes excessively high will occur. Become. On the other hand, if the refrigerant having a superheat degree of about 60 ° C. is sucked as it is, the discharge temperature becomes too high. If the superheat degree is controlled to the target value of about 50 ° C., control can be performed so that the high pressure does not become too high and the discharge temperature does not become too high (step S1).
2 to step S15).

【0041】次に起動後ある程度の時間が立った場合の
制御について説明する。起動後ある程度時間が立つとブ
ラインの温度が低下し、それにともなって高低圧が低下
することは前述したとおりである。高低圧の低下に伴っ
て吐出温度も低下する。従って電子膨張弁52の制御で
高圧が高くなりすぎず、また吐出温度が高くなりすぎな
い制御を考えた場合、電子膨張弁52の開度選択の幅が
広がることになる。冷凍装置でブラインを冷却するとい
う目的から見た場合、ブラインを冷却する蒸発器6の効
率が良くなるよう運転をすることが望ましい。前述の起
動直後の制御では過熱度を50℃とかなり高い値にして
いたため、蒸発器6の伝熱効率はかなり損なわれてい
る。
Next, the control in the case where a certain period of time has elapsed after activation will be described. As described above, the brine temperature decreases when a certain period of time elapses after the startup, and the high and low pressures decrease accordingly. As the pressure decreases, the discharge temperature also decreases. Therefore, in the control of the electronic expansion valve 52, when considering a control in which the high pressure does not become too high and the discharge temperature does not become too high, the range of selecting the opening degree of the electronic expansion valve 52 is widened. From the viewpoint of cooling the brine with the refrigeration apparatus, it is desirable to operate the evaporator 6 for cooling the brine so that the efficiency is improved. In the control immediately after the start-up described above, the superheat degree is set to a considerably high value of 50 ° C., so that the heat transfer efficiency of the evaporator 6 is considerably impaired.

【0042】そこで起動時間後時間が経過し、電子膨張
弁52の開度選択幅が広がった状態では、過熱度を起動
直後より小さい値に制御し、蒸発器6の効率の上昇を図
る。ただしこの段階では起動直後よりも高低圧が低下し
たとはいえ、ブライン温度が−70℃まで低下した安定
した状態と比べると高低圧とも高い状態にある。そのた
め過熱度の目標値として蒸発器6の伝熱効率が良くなる
10℃を選んで制御を行うと、高圧が高くなりすぎる状
態となるのは起動直後とは変わらない。
In the state where the time after the start-up time has elapsed and the opening degree of the electronic expansion valve 52 has been widened, the superheat degree is controlled to a value smaller than immediately after the start-up, and the efficiency of the evaporator 6 is increased. However, at this stage, although the high and low pressures are lower than immediately after startup, both the high and low pressures are higher than the stable state in which the brine temperature has decreased to -70 ° C. Therefore, if 10 ° C., at which the heat transfer efficiency of the evaporator 6 is improved, is selected and controlled as the target value of the degree of superheat, the state in which the high pressure becomes too high does not change from immediately after the start.

【0043】そこで起動後ある程度の時間がたったとき
の過熱度の目標値は50℃から30℃に低下させる。目
標値の切換時間は過熱度を30℃に制御しても高圧が高
くなりすぎないぐらいに高圧が低下している時間という
ことで、低元側冷凍サイクル2の起動後30分経過した
時点で目標値を切り替える。また吐出温度も安定した状
態と比べると高い状態にあるので圧縮機32吸入部の冷
媒の過熱度が目標値となるよう制御し、吐出温度のコン
トロールを直接行える状態とする(ステップS17〜ス
テップS21)。
Therefore, the target value of the degree of superheat when a certain time has elapsed after the start is reduced from 50 ° C. to 30 ° C. The switching time of the target value is a time during which the high pressure is reduced so that the high pressure does not become too high even if the superheat degree is controlled to 30 ° C. Change the target value. Since the discharge temperature is higher than the stable state, the superheat degree of the refrigerant at the suction part of the compressor 32 is controlled to be the target value, and the discharge temperature can be controlled directly (steps S17 to S21). ).

【0044】過熱度の目標値を時間によって変更する方
法は前述したが、時間ではなく冷凍装置の運転状態を見
て変更する方法をとってもよい。例えば低元側冷凍サイ
クル2の高圧の変化を見て、高圧が低下してきて、過熱
度の目標値を小さく変更しても、高圧が高くなりすぎな
いという状態になったら、過熱度の目標値を小さく変更
するとしてもよい。
Although the method of changing the target value of the degree of superheat with time has been described above, a method of changing the target value with reference to the operating state of the refrigeration system instead of time may be adopted. For example, if the high pressure is reduced by looking at the change in the high pressure of the low-stage refrigeration cycle 2 and the high pressure does not become too high even if the target value of the superheat degree is changed to a small value, the target value of the superheat degree May be changed to be smaller.

【0045】さらに起動から時間が経過し、ブラインの
温度が−70℃に近づくと、低元側冷凍サイクル2の変
化は高低圧、吐出温度がさらに低くなり、ある値に安定
する。この段階では蒸発器6出口部の冷媒の過熱度と圧
縮機32吸入部の冷媒の過熱度の差はほとんどなくなる
ので、過熱度を用いて電子膨張弁52の制御を行う場
合、どちらの過熱度を用いても良い。
When the temperature of the brine approaches -70 ° C. after the start of operation, the change of the low-side refrigeration cycle 2 is changed to a high and low pressure, the discharge temperature is further lowered, and is stabilized at a certain value. At this stage, there is almost no difference between the degree of superheat of the refrigerant at the outlet of the evaporator 6 and the degree of superheat of the refrigerant at the inlet of the compressor 32. Therefore, when controlling the electronic expansion valve 52 using the degree of superheat, May be used.

【0046】ただし安定に近い状態、もしくは安定した
状態から負荷の変動によるブラインの温度変動があった
場合、低圧がブラインの温度変動の影響を受けて変化す
る。このとき低圧の変化に伴い膨張タンク9からのガス
冷媒の流出、または膨張タンク9へのガス冷媒の逆流が
生じるので、過熱度の変動は蒸発器6出口よりも圧縮機
32吸入の方が大きくなる。従って蒸発器6出口での過
熱度が目標値になるように制御することに比べ圧縮機3
2吸入での過熱度が目標値になるよう制御する場合で
は、より大きな変動を生じるものを目標値に制御しなけ
ればならず、制御が難しくなる。そこでこの段階では蒸
発器6出口での過熱度が目標値になるように制御するこ
とが望ましい。
However, when there is a temperature change of the brine due to a load change from a state close to stable or from the stable state, the low pressure changes under the influence of the temperature change of the brine. At this time, the outflow of the gas refrigerant from the expansion tank 9 or the reverse flow of the gas refrigerant to the expansion tank 9 occurs due to the change in the low pressure, so that the fluctuation of the degree of superheat is larger at the suction of the compressor 32 than at the outlet of the evaporator 6. Become. Therefore, compared to controlling the degree of superheat at the outlet of the evaporator 6 to the target value, the compressor 3
In the case where control is performed so that the degree of superheat in the two suctions becomes the target value, it is necessary to control a value that causes a larger fluctuation to the target value, and control becomes difficult. Therefore, at this stage, it is desirable to control the degree of superheat at the outlet of the evaporator 6 to a target value.

【0047】この段階では過熱度の目標値として蒸発器
6の伝熱効率が良くなる10℃を選んでも高圧が高くな
りすぎる状態とはならない。そこで冷凍装置の運転効率
が良くなるようこの段階では過熱度の目標値を10℃と
する。
At this stage, even if 10 ° C. at which the heat transfer efficiency of the evaporator 6 is improved is selected as the target value of the degree of superheat, the high pressure does not become too high. Therefore, at this stage, the target value of the degree of superheat is set to 10 ° C. so that the operation efficiency of the refrigeration system is improved.

【0048】また外気温度25℃で起動した場合では起
動後120分程度でブラインの温度が−70℃に近づ
く。そこで起動後120分で過熱度の目標値を10℃に
変更し蒸発器出口での過熱度が10℃になるよう制御を
行う(ステップS22〜S25)。
In the case of starting at an outside air temperature of 25 ° C., the brine temperature approaches −70 ° C. about 120 minutes after the start. Then, 120 minutes after the start, the target value of the superheat is changed to 10 ° C., and control is performed so that the superheat at the evaporator outlet becomes 10 ° C. (steps S22 to S25).

【0049】過熱度の目標値および圧縮機32吸入部の
冷媒の過熱度と蒸発器6出口部の冷媒の過熱度どちらを
目標に制御させるかの切り替えを時間によって変更する
方法は前述したが、時間ではなく冷凍装置の運転状態を
見て変更する方法をとってもよい。例えばブラインの温
度変化を見て−70℃程度に温度が安定し時間当たりの
温度変化幅が小さくなってきたら過熱度の目標値を10
℃に変更し蒸発器出口での過熱度が10℃になるよう制
御を行う。
The method of changing the target value of the degree of superheat and the method of controlling which of the degree of superheat of the refrigerant at the suction part of the compressor 32 and the degree of superheat of the refrigerant at the outlet part of the evaporator 6 is controlled by time has been described above. A method may be adopted in which the change is made not by looking at the time but by looking at the operating state of the refrigeration system. For example, by observing the temperature change of the brine, if the temperature stabilizes at about -70 ° C. and the temperature change width per time becomes smaller, the target value of the superheat degree is set to 10
° C and control is performed so that the degree of superheat at the evaporator outlet becomes 10 ° C.

【0050】上記実施例での過熱度に対する電子膨張弁
52の開度の制御方法は、現在の過熱度が過熱度の目標
値より大きい場合には開度を大きくし、現在の過熱度が
過熱度の目標値より小さい場合には開度を小さく制御す
る。このときの開度の変更幅は、固定値であってもよい
し、現在の過熱度を過熱度の目標値との偏差に定数をか
けた値としてもよい。
The method of controlling the degree of opening of the electronic expansion valve 52 with respect to the degree of superheating in the above embodiment increases the degree of opening when the current degree of superheating is greater than the target value of the degree of superheating. If the degree is smaller than the target value, the opening is controlled to be small. The change width of the opening at this time may be a fixed value, or may be a value obtained by multiplying a deviation of the current superheat degree from a target value of the superheat degree by a constant.

【0051】上記実施の形態での過熱度に対する電子膨
張弁52の開度の別の制御方法として、開度を制御せず
にいたときになるであろう将来の過熱度の値を予測し、
その予測値が過熱度の目標値より大きい場合には開度を
大きくし、予測値が過熱度の目標値より小さい場合には
開度を小さく制御するとしてもよい。このときの開度の
変更幅は、固定値であってもよいし、過熱度の予測値と
過熱度の目標値との偏差に定数をかけた値としてもよ
い。
As another method of controlling the degree of opening of the electronic expansion valve 52 with respect to the degree of superheating in the above-described embodiment, a value of the degree of superheating which will be obtained when the degree of opening is not controlled is estimated.
When the predicted value is larger than the target value of superheat, the opening may be increased, and when the predicted value is smaller than the target value of superheat, the opening may be controlled to be small. The change width of the opening at this time may be a fixed value, or may be a value obtained by multiplying a deviation between the predicted value of the superheat degree and the target value of the superheat degree by a constant.

【0052】また上記実施の形態で過熱度の目標値とし
て固定した値を与えて制御を行っているが、過熱度の目
標値として幅をもたせた目標ゾーンを設定し、ゾーン内
に制御することにしてもよい。
In the above embodiment, the control is performed by giving a fixed value as the target value of the superheat degree. However, a target zone having a width as the target value of the superheat degree is set, and the control is performed within the zone. It may be.

【0053】上記実施の形態は高元側の冷媒としてR4
04a、低元側の冷媒としてR23を用いた例を示した
が他の冷媒を用いてもよい。
In the above embodiment, R4 is used as the high-side refrigerant.
04a, the example using R23 as the lower refrigerant is shown, but other refrigerants may be used.

【0054】また上記実施の形態で熱交換器として、高
元側の凝縮器4には冷却水を用いた熱交換器、低元側の
蒸発器6にはブラインを用いた熱交換としているが、そ
れぞれの熱交換器に空気との熱交換を行う空冷式の熱交
換器など、他の形式の熱交換器を用いてもよい。
In the above embodiment, the heat exchanger using cooling water is used for the condenser 4 on the higher side and the heat exchanger using brine is used for the evaporator 6 on the lower side. Alternatively, other types of heat exchangers, such as an air-cooled heat exchanger that exchanges heat with air in each heat exchanger, may be used.

【0055】実施の形態2.以下、この発明の実施の形
態の他の例を図面を参照して説明する。実施の形態1で
はブライン温度が高い場合の起動運転時の制御方法を説
明したが、実施の形態2ではブライン温度が低い場合の
起動運転時の制御方法について説明する。なお冷媒回路
については図1の冷媒回路を用いるものとする。
Embodiment 2 Hereinafter, another example of the embodiment of the present invention will be described with reference to the drawings. In the first embodiment, the control method at the time of the startup operation when the brine temperature is high is described. In the second embodiment, the control method at the time of the startup operation when the brine temperature is low will be described. Note that the refrigerant circuit shown in FIG. 1 is used as the refrigerant circuit.

【0056】冷凍装置によって冷凍倉庫などの温度調整
を行う場合には、冷凍倉庫の温度が設定値よりも低くな
りすぎると冷凍装置の運転を停止し、停止後外界からの
熱進入により冷凍倉庫の温度が上昇し、設定値よりも高
くなったら冷凍装置を再度運転するといった運転方法が
ある。この再度運転する前の、低元側冷凍サイクル2の
状態、およびブラインの状態は次のようになる。低元側
冷凍サイクル2は外気との防熱を行っていないので、運
転停止後は外気温度と同じ温度となる。従って液冷媒は
蒸発、ガス化し、ガス化した冷媒の多くが容積の大きい
膨張タンク9に収容される。一方ブラインは外気との防
熱が十分に行われるため運転の停止後の温度変化がほと
んどなく、運転停止時と同じでほぼ冷凍倉庫の温度と等
しくなる。従って外気温度25℃の場合、冷媒の温度は
25℃となり、冷凍倉庫の温度が−70℃の場合はブラ
イン温度は−70℃となる。
When the temperature of the freezing warehouse or the like is adjusted by the freezing device, the operation of the freezing device is stopped when the temperature of the freezing warehouse becomes too low below the set value, and after the stoppage, the heat enters the freezing warehouse. There is an operation method in which the refrigeration apparatus is operated again when the temperature rises and becomes higher than a set value. Before the second operation, the state of the lower refrigeration cycle 2 and the state of the brine are as follows. Since the low-side refrigeration cycle 2 does not protect the outside air, the temperature of the refrigeration cycle 2 becomes the same as the outside air temperature after the operation is stopped. Therefore, the liquid refrigerant evaporates and gasifies, and most of the gasified refrigerant is stored in the large expansion tank 9. On the other hand, since the brine is sufficiently protected from the outside air, there is almost no temperature change after the operation is stopped, and the temperature is almost equal to the temperature of the freezer warehouse at the time of the operation stop. Therefore, when the outside air temperature is 25 ° C., the temperature of the refrigerant is 25 ° C., and when the temperature of the freezing warehouse is −70 ° C., the brine temperature is −70 ° C.

【0057】ブライン温度が低い状態で運転したときの
低元側冷凍サイクル2の起動後の状態は以下のようにな
る。まず高元側冷凍サイクル1を起動し、カスケードコ
ンデンサ7に冷媒を寝込ませるまでは実施例1での起動
状態と同じである。次に低元側冷凍サイクル2を起動す
るのであるが、ここではブライン温度が低いことによ
り、実施の形態1に記した冷媒状態の変化とは異なる点
を説明する。
The state after startup of the lower refrigeration cycle 2 when the apparatus is operated in a state where the brine temperature is low is as follows. First, the operation of the high-stage refrigeration cycle 1 is the same as that of the first embodiment until the refrigerant is stored in the cascade condenser 7. Next, the lower-stage refrigeration cycle 2 is started. Here, a point different from the change in the refrigerant state described in Embodiment 1 due to the low brine temperature will be described.

【0058】まずブライン温度が低いため、起動直後の
低元側冷凍サイクル2の低圧での蒸発温度よりもブライ
ン温度が低い状態となる。この状態では低元側冷凍サイ
クル2の蒸発器6では蒸発は起こらないので、蒸発器6
に入った二相の冷媒がそのまま蒸発器6を通り抜けアキ
ュムレータ8に流れ込む。二相の冷媒はアキュムレータ
8で気液分離され、飽和液はアキュムレータ8に貯めら
れ、分離された飽和ガスが膨張タンク9から流出する過
熱ガスと合わさって圧縮機32に流入する。
First, since the brine temperature is low, the brine temperature is lower than the low-temperature evaporation temperature of the low-pressure side refrigeration cycle 2 immediately after the start. In this state, evaporation does not occur in the evaporator 6 of the lower refrigeration cycle 2, so the evaporator 6
The entered two-phase refrigerant passes through the evaporator 6 as it is and flows into the accumulator 8. The two-phase refrigerant is gas-liquid separated by the accumulator 8, the saturated liquid is stored in the accumulator 8, and the separated saturated gas flows into the compressor 32 in combination with the superheated gas flowing out of the expansion tank 9.

【0059】もしアキュムレータ8がなかった場合蒸発
器6を出た二相の冷媒がそのまま圧縮機32に吸入され
るので、液圧縮などにより圧縮機32を破損する可能性
がある。従ってアキュムレータ8はこの冷凍装置では圧
縮機32保護のため必要となる。
If the accumulator 8 is not provided, the two-phase refrigerant flowing out of the evaporator 6 is sucked into the compressor 32 as it is, so that the compressor 32 may be damaged by liquid compression or the like. Therefore, the accumulator 8 is necessary for this compressor to protect the compressor 32.

【0060】またこの段階での過熱度は、蒸発器6出口
では二相の冷媒が流れるので過熱度は0となり、圧縮機
32吸入ではアキュムレータ8からの飽和ガスに膨張タ
ンク9から流出する過熱ガスが合わさるのである程度の
過熱度となる。ただしこの過熱度の値は、高低圧の圧力
レベルが、ブライン温度が低いことにより実施の形態1
のブライン温度が高いときに比べて低くなり、起動直後
はおおよそ20℃程度と実施の形態1での場合に比べか
なり小さい値となる。また圧縮機32の吐出温度も、高
圧が低いことと、圧縮機32吸入での過熱度が小さいこ
とによって実施の形態1の時よりは低い温度となる。
At this stage, the superheat degree becomes 0 because the two-phase refrigerant flows at the outlet of the evaporator 6, and the superheated gas flowing out of the expansion tank 9 into the saturated gas from the accumulator 8 at the suction of the compressor 32. Are superimposed to a certain degree. However, the value of this superheat degree is different from that of the first embodiment because the high and low pressure levels are low and the brine temperature is low.
Is lower than when the brine temperature is high, and is about 20 ° C. immediately after startup, which is a considerably smaller value than in the first embodiment. Also, the discharge temperature of the compressor 32 is lower than that in the first embodiment due to the low high pressure and the small degree of superheat at the suction of the compressor 32.

【0061】起動後時間が経過すると、ブライン温度が
低いことによって低元側冷凍サイクル2全体の圧力がさ
らに低下する。低元側冷凍サイクル2の低圧の蒸発温度
がブライン温度よりも低くなると、蒸発器6で蒸発が行
われるようになり、蒸発器6出口で冷媒がガス化し、過
熱度が0℃より大きくなる。蒸発器6出口での過熱度が
0℃より大きくなっても、アキュムレータ8に液冷媒が
存在するので、アキュムレータ8からは飽和ガスが圧縮
機32に流れる。低圧の圧力低下が激しいと膨張タンク
9からのガス冷媒の流入が大きいので、圧縮機32吸入
部の冷媒の過熱度はある程度の過熱度となるが、低圧の
圧力変化が少なくなってくると、膨張タンク9からのガ
ス冷媒の流入がほとんどなくなるので、この状態では圧
縮機32吸入部の冷媒の過熱度は0℃になる。従って圧
縮機32吸入部の冷媒の過熱度は起動から次第に小さく
なっていき、低圧が安定し始めるとほとんど0℃とな
る。
After a lapse of time after the start-up, the pressure of the entire low-side refrigeration cycle 2 further decreases due to the low brine temperature. When the low-pressure evaporation temperature of the lower refrigeration cycle 2 becomes lower than the brine temperature, evaporation is performed in the evaporator 6, the refrigerant gasifies at the outlet of the evaporator 6, and the degree of superheat becomes greater than 0 ° C. Even if the degree of superheat at the outlet of the evaporator 6 becomes larger than 0 ° C., since the liquid refrigerant exists in the accumulator 8, the saturated gas flows from the accumulator 8 to the compressor 32. If the low-pressure pressure drop is large, the gas refrigerant from the expansion tank 9 flows in a large amount, so that the superheat degree of the refrigerant at the suction part of the compressor 32 becomes a certain degree of superheat, but when the low-pressure pressure change decreases, Since almost no gas refrigerant flows from the expansion tank 9, the degree of superheat of the refrigerant at the suction part of the compressor 32 becomes 0 ° C. in this state. Accordingly, the degree of superheat of the refrigerant at the suction part of the compressor 32 gradually decreases from the start, and becomes almost 0 ° C. when the low pressure starts to stabilize.

【0062】アキュムレータ8に存在する液冷媒は蒸発
器6出口部の冷媒の過熱度が大きくなって、アキュムレ
ータ8に蒸発器6から過熱ガスが供給されるようになる
と、過熱ガスによって蒸発され次第に減少する。アキュ
ムレータ8の液冷媒がなくなったときは蒸発器6から供
給された過熱ガスがそのまま圧縮機32へと流れてい
く。この段階で圧縮機32吸入での過熱度も0℃より大
きくなり、蒸発器6出口での過熱度とほぼ同一の値をと
るようになる。以上がブライン温度が低い状態で運転し
たときの低元側冷凍サイクル2の起動後の状態である。
When the degree of superheating of the refrigerant at the outlet of the evaporator 6 is increased and the superheated gas is supplied from the evaporator 6 to the accumulator 8, the liquid refrigerant present in the accumulator 8 is evaporated by the superheated gas and gradually decreases. I do. When the liquid refrigerant in the accumulator 8 runs out, the superheated gas supplied from the evaporator 6 flows to the compressor 32 as it is. At this stage, the degree of superheat at the suction of the compressor 32 also becomes larger than 0 ° C., and takes substantially the same value as the degree of superheat at the outlet of the evaporator 6. The above is the state after the start of the low-stage refrigeration cycle 2 when the operation is performed in a state where the brine temperature is low.

【0063】次にブライン温度が低い状態で運転したと
きの電子膨張弁52の制御方法について説明する。図4
はこの制御方法のフローチャートを示した図である。起
動直後は蒸発器6出口部の冷媒の過熱度が0℃となり、
蒸発器6で充分蒸発がなされていない状態となってい
る。一方圧縮機32吸入部の冷媒の過熱度はある程度の
値となっているので、この値を見ただけでは蒸発器6で
蒸発が充分なされているかどうかわからない。そこで起
動後はまず、蒸発器6出口部の冷媒の過熱度が目標値に
なるよう電子膨張弁52の開度を制御する。
Next, a method of controlling the electronic expansion valve 52 when operating at a low brine temperature will be described. FIG.
FIG. 4 is a diagram showing a flowchart of this control method. Immediately after startup, the superheat of the refrigerant at the outlet of the evaporator 6 becomes 0 ° C.,
The evaporator 6 has not been sufficiently evaporated. On the other hand, since the degree of superheat of the refrigerant at the suction part of the compressor 32 is a certain value, it is not possible to determine whether or not the evaporator 6 is sufficiently evaporated just by looking at this value. Therefore, after startup, first, the opening of the electronic expansion valve 52 is controlled so that the degree of superheat of the refrigerant at the outlet of the evaporator 6 becomes the target value.

【0064】この段階での過熱度の目標値は次のように
決定する。ブライン温度が低い場合の起動では、圧力レ
ベルが実施の形態1の場合に比べて低くなるので、過熱
度を小さく制御しても高圧上昇の危険が生じない。ただ
しアキュムレータ8に液冷媒が存在すると液面変動など
で偶発的に液冷媒がアキュムレータ8から圧縮機32に
供給されることがあるので、圧縮機32の安全性を考え
るとアキュムレータ8に液冷媒が存在していない方がよ
い。従って過熱度の目標値は蒸発器6での伝熱効率が良
くなる10℃よりやや大きい20℃とし、アキュムレー
タ8に液冷媒が早く減少するようにする。
The target value of the degree of superheat at this stage is determined as follows. At the start-up when the brine temperature is low, the pressure level is lower than in the case of the first embodiment. Therefore, even if the degree of superheat is controlled to be small, there is no danger of a high pressure rise. However, if the liquid refrigerant is present in the accumulator 8, the liquid refrigerant may be accidentally supplied from the accumulator 8 to the compressor 32 due to fluctuations in the liquid level or the like. It is better not to be present. Therefore, the target value of the degree of superheat is set to 20 ° C., which is slightly higher than 10 ° C. at which the heat transfer efficiency in the evaporator 6 is improved, so that the liquid refrigerant in the accumulator 8 decreases quickly.

【0065】次に蒸発器6出口の過熱度が20℃に制御
できるようになったときに、例えば3分間蒸発器6出口
の過熱度が20℃±3℃にある状態になった場合、圧縮
機32吸入の過熱度をチェックする。このとき圧縮機3
2吸入の過熱度が0℃に近い値で、例えば3℃より小さ
い場合、まだ、アキュムレータ8に液冷媒があるので、
継続して蒸発器6出口の過熱度を20℃に制御する。
Next, when the degree of superheat at the outlet of the evaporator 6 can be controlled to 20 ° C., for example, when the degree of superheat at the outlet of the evaporator 6 is at 20 ° C. ± 3 ° C. Check the degree of superheating of the machine 32 suction. At this time, the compressor 3
2 If the degree of superheat of the suction is close to 0 ° C., for example, smaller than 3 ° C., the liquid refrigerant still exists in the accumulator 8,
Continuously, the degree of superheating at the outlet of the evaporator 6 is controlled to 20 ° C.

【0066】一方圧縮機32吸入部の冷媒の過熱度が0
℃より大きく、例えば3℃より大きい場合、アキュムレ
ータ8の液冷媒がなくなったことを示しているので、過
熱度の目標値は蒸発器6での伝熱効率が良くなる10℃
に設定し蒸発器6出口部の冷媒の過熱度が目標値になる
よう制御を行う。
On the other hand, the degree of superheat of the refrigerant at the suction part of the compressor 32 is zero.
If the temperature is greater than 0 ° C., for example, greater than 3 ° C., it indicates that the liquid refrigerant in the accumulator 8 has run out, and the target value of the degree of superheat is set to 10 ° C. at which the heat transfer efficiency in the evaporator 6 is improved.
Is controlled so that the superheat degree of the refrigerant at the outlet of the evaporator 6 becomes the target value.

【0067】実施の形態3.以下、この発明の実施の形
態の他の例を図面を参照して説明する。実施の形態1、
2では冷凍装置の起動運転における制御方法について説
明したが、実施の形態3では安定運転中に負荷変動など
により低元側冷凍サイクル2の変動があった場合の制御
について説明する。図5はこの場合における制御方法を
示したフローチャートである。なお冷媒回路については
図1の冷媒回路を用いるものとする。
Embodiment 3 Hereinafter, another example of the embodiment of the present invention will be described with reference to the drawings. Embodiment 1,
2 describes the control method in the start-up operation of the refrigeration apparatus, but in the third embodiment, the control in the case where there is a change in the lower refrigeration cycle 2 due to a load change or the like during stable operation will be described. FIG. 5 is a flowchart showing a control method in this case. Note that the refrigerant circuit shown in FIG. 1 is used as the refrigerant circuit.

【0068】まず負荷変動等が小さく、低元側冷凍サイ
クル2の変動が小さく、低元側冷凍サイクル2の変動に
よって蒸発器6出口が二相にならず、アキュムレータ8
に液冷媒が貯まらない場合の制御について説明する。こ
の場合は低元側冷凍サイクル2の変動として、圧力、温
度が小さく変動し過熱度がそれに応じて小さく変動す
る。この場合の制御としては、蒸発器6出口での過熱度
が目標値になるように制御する。なぜなら前述したよう
にこのとき低圧の変化に伴い膨張タンク9からのガス冷
媒の流出、または膨張タンク9へのガス冷媒の逆流が生
じるので、過熱度の変動は蒸発器6出口よりも圧縮機3
2吸入の方が大きくなる。従って蒸発器6出口での過熱
度が目標値になるように制御することに比べ圧縮機32
吸入での過熱度が目標値になるよう制御する場合では、
より大きな変動を生じるものを目標値に制御しなければ
ならず、制御が難しくなるからである。
First, load fluctuations and the like are small, and fluctuations in the lower refrigeration cycle 2 are small. Due to fluctuations in the lower refrigeration cycle 2, the outlet of the evaporator 6 does not become two-phase, and the accumulator 8
The control when the liquid refrigerant does not accumulate will be described. In this case, as the fluctuation of the lower refrigeration cycle 2, the pressure and the temperature fluctuate slightly, and the degree of superheat fluctuates accordingly. In this case, control is performed such that the degree of superheat at the outlet of the evaporator 6 becomes a target value. Because, as described above, at this time, the gas refrigerant flows out of the expansion tank 9 or the gas refrigerant flows backward to the expansion tank 9 due to the change in the low pressure.
2 Inhalation is larger. Therefore, compared to controlling the degree of superheat at the outlet of the evaporator 6 to a target value, the compressor 32
In the case of controlling so that the degree of superheat at the suction becomes the target value,
This is because it is necessary to control a value that causes a larger fluctuation to a target value, and control becomes difficult.

【0069】一方低元側冷凍サイクル2の変動が大き
く、低元側冷凍サイクル2の変動によって蒸発器6出口
が二相になり、アキュムレータ8に液冷媒が貯まるよう
な状況になった場合の制御について説明する。例えば、
冷凍倉庫等の負荷が急に減少した場合、冷凍装置から冷
凍倉庫に行って、再び戻ってくるブラインの温度がほと
んど上昇せず、低い温度のままで戻り、ブラインの温度
が低いので蒸発器6での伝熱量が減少し、蒸発器6出口
が二相になり、アキュムレータ8に液冷媒が貯まるよう
になる。アキュムレータ8に液冷媒が貯まると、蒸発器
6出口がガスとなりの過熱度が0℃より大きくなった場
合でも圧縮機32吸入での過熱度は蒸発器6出口よりも
小さく、ほぼ0℃となる。
On the other hand, the control in the case where the fluctuation of the low-stage refrigeration cycle 2 is large and the fluctuation of the low-stage refrigeration cycle 2 causes the outlet of the evaporator 6 to become two-phase and the liquid refrigerant is stored in the accumulator 8. Will be described. For example,
When the load on the freezing warehouse or the like suddenly decreases, the temperature of the brine that returns from the freezer to the freezing warehouse hardly rises and returns again at a low temperature, and the temperature of the brine is low. , The heat transfer amount at the outlet decreases, the outlet of the evaporator 6 becomes two-phase, and the liquid refrigerant is stored in the accumulator 8. When the liquid refrigerant is stored in the accumulator 8, the superheat degree at the suction of the compressor 32 is smaller than that at the evaporator 6 outlet and becomes almost 0 ° C. even when the superheat degree at which the evaporator 6 outlet becomes gas becomes larger than 0 ° C. .

【0070】このような場合では先述したように、液面
変動などで偶発的に液冷媒がアキュムレータ8から圧縮
機32に供給されることがあるので、圧縮機32の安全
を考えるとアキュムレータ8に液冷媒が存在していない
方がよい。そこで蒸発器6出口部の冷媒の過熱度を用い
て制御し過熱度の目標値は蒸発器6での伝熱効率が良く
なる10℃よりやや大きい20℃とし、アキュムレータ
8の液冷媒が早く減少するようにする。アキュムレータ
8に液冷媒が存在しなくなると、圧縮機32吸入部での
冷媒の過熱度が次第に大きくなり蒸発器6出口部の冷媒
の過熱度と同じ値をとるようになる。こうなると蒸発器
6での伝熱効率が良くなるように制御する方がいいの
で、蒸発器6出口部の冷媒の過熱度を用いて制御し過熱
度の目標値は蒸発器6での伝熱効率が良くなる10℃と
する。アキュムレータ8の液冷媒の有無の判断は前述し
たとおり、圧縮機32吸入部の冷媒の過熱度が0℃に近
い値で、例えば3℃より小さい場合は、アキュムレータ
8に液冷媒があるとし、圧縮機32吸入部の冷媒の過熱
度が0℃より大きく、例えば3℃より大きい場合は、ア
キュムレータ8の液冷媒がなくなったとする。
In such a case, as described above, the liquid refrigerant may be accidentally supplied from the accumulator 8 to the compressor 32 due to the liquid level fluctuation or the like. It is better that no liquid refrigerant is present. Therefore, control is performed using the degree of superheat of the refrigerant at the outlet of the evaporator 6, and the target value of the degree of superheat is set to 20 ° C., which is slightly larger than 10 ° C. at which the heat transfer efficiency in the evaporator 6 is improved, and the liquid refrigerant in the accumulator 8 decreases quickly. To do. When the liquid refrigerant no longer exists in the accumulator 8, the superheat degree of the refrigerant at the suction part of the compressor 32 gradually increases, and takes the same value as the superheat degree of the refrigerant at the outlet part of the evaporator 6. In this case, it is better to control so that the heat transfer efficiency in the evaporator 6 is improved. Therefore, the control is performed using the superheat degree of the refrigerant at the outlet of the evaporator 6 and the target value of the superheat degree is the heat transfer efficiency in the evaporator 6. 10 ° C., which is better. As described above, the determination of the presence or absence of the liquid refrigerant in the accumulator 8 is performed when the superheat degree of the refrigerant in the suction part of the compressor 32 is a value close to 0 ° C., for example, when it is smaller than 3 ° C. If the degree of superheating of the refrigerant at the suction part of the machine 32 is greater than 0 ° C., for example, greater than 3 ° C., it is assumed that the liquid refrigerant in the accumulator 8 has run out.

【0071】[0071]

【発明の効果】以上のように本発明によれば、制御手段
が冷凍負荷が高温状態からの低元側冷凍サイクルの起動
時、過熱度検出装置が検出した低元側圧縮機吸入部の冷
媒の過熱度が、低元側圧縮機の高圧が高くなりすぎず、
および吐出温度が高くなりすぎない予め定めた目標値と
なるように電子膨張弁を制御するので、安定して運転す
ることが可能となる。また、低元側冷凍サイクルが起動
してから所定時間経過後に、低元側圧縮機吸入部の冷媒
の過熱度の目標値を下げて電子膨張弁を制御するので、
安定して運転することができ、かつ早く冷凍負荷を冷却
できる。また、低元側冷凍サイクルの起動後、多元冷凍
装置の運転状態が所定の状態に変化した場合は、低元側
圧縮機吸入部の冷媒の過熱度の目標値を下げて電子膨張
弁を制御するので、安定して運転することができ、かつ
早く冷凍負荷を冷却できる。また、冷却媒体の温度が低
下し安定した場合は、過熱度検出装置が検出した低元側
蒸発器の出口部の冷媒の過熱度が、低元側蒸発器の伝熱
効率が高くなる最適値である予め定めた目標値となるよ
うに電子膨張弁を制御するので、効率が良い、安定した
運転ができる。また、冷却媒体の温度が低い場合の低元
側冷凍サイクルの起動時、過熱度検出装置が検出した低
元側蒸発器の出口部の冷媒の過熱度が、低元側蒸発器の
伝熱効率が高くなる最適値よりやや大きい予め定めた目
標値となるように電子膨張弁を制御するので、アキュー
ムレータに液が溜まり圧縮機が液圧縮するのを抑制す
る。また、低元側蒸発器の出口部の冷媒の過熱度が、低
元側蒸発器の伝熱効率が高くなる最適値よりやや大きい
予め定めた目標値となった場合、アキュームレータに液
冷媒が存在するか判定し、液冷媒が存在する場合は、引
き続き低元側蒸発器の出口部の冷媒の過熱度が、低元側
蒸発器の伝熱効率が高くなる最適値よりやや大きい予め
定めた目標値となるように電子膨張弁を制御し、液冷媒
が存在しない場合は、低元側蒸発器の出口部の冷媒の過
熱度が、低元側蒸発器の伝熱効率が高くなる最適値であ
る予め定めた目標値となるように電子膨張弁を制御する
他の制御手段を設けたので、効率の良い運転ができる。
また、低元側冷凍サイクルの安定運転時、低元側圧縮機
吸入部の冷媒の過熱度によりアキュームレータに液冷媒
が存在するか判定し、液冷媒が存在する場合は、過熱度
検出装置が検出した低元側蒸発器の出口部の冷媒の過熱
度が、低元側蒸発器の伝熱効率が高くなる最適値よりや
や大きい予め定めた目標値となるように電子膨張弁を制
御し、液冷媒が存在しない場合は、過熱度検出装置が検
出した低元側蒸発器の出口部の冷媒の過熱度が、低元側
蒸発器の伝熱効率が高くなる最適値である予め定めた目
標値となるように電子膨張弁を制御するので、負荷変動
による圧縮機の液圧縮を抑制できる。
As described above, according to the present invention, when the control unit starts the lower-stage refrigeration cycle from a high-temperature state of the refrigeration load, the refrigerant in the suction unit of the lower-stage compressor detected by the superheat degree detection device. Degree of superheat, the high pressure of the lower compressor does not become too high,
In addition , since the electronic expansion valve is controlled so as to be a predetermined target value at which the discharge temperature does not become too high, it is possible to operate stably. Further, after a predetermined time has elapsed since the start of the low-stage refrigeration cycle, the electronic expansion valve is controlled by lowering the target value of the degree of superheat of the refrigerant in the low-stage compressor suction section.
It can operate stably and can cool the refrigeration load quickly. If the operating state of the multi-stage refrigeration system changes to a predetermined state after the start of the lower-stage refrigeration cycle, the electronic expansion valve is controlled by lowering the target value of the degree of superheat of the refrigerant at the lower-stage compressor suction section. Therefore, stable operation can be performed, and the refrigeration load can be cooled quickly. Further, when the temperature of the cooling medium decreases and becomes stable, the superheat degree of the refrigerant at the outlet of the lower evaporator detected by the superheat degree detection device is an optimum value at which the heat transfer efficiency of the lower evaporator is increased. Since the electronic expansion valve is controlled to have a predetermined target value, efficient and stable operation can be performed. In addition, when the lower-side refrigeration cycle is started when the temperature of the cooling medium is low, the degree of superheat of the refrigerant at the outlet of the lower-side evaporator detected by the superheat degree detection device indicates that the heat transfer efficiency of the lower-side evaporator is lower. Since the electronic expansion valve is controlled so as to be a predetermined target value slightly larger than the increased optimum value, it is possible to suppress accumulation of liquid in the accumulator and liquid compression of the compressor. In addition, when the degree of superheat of the refrigerant at the outlet of the lower evaporator becomes a predetermined target value slightly larger than the optimum value at which the heat transfer efficiency of the lower evaporator is increased, the liquid refrigerant exists in the accumulator. If the liquid refrigerant is present, the degree of superheat of the refrigerant at the outlet of the lower evaporator is a predetermined target value slightly larger than the optimum value at which the heat transfer efficiency of the lower evaporator is increased. When the liquid refrigerant is not present, the degree of superheat of the refrigerant at the outlet of the lower evaporator is a predetermined value that is an optimum value at which the heat transfer efficiency of the lower evaporator is increased. Since other control means for controlling the electronic expansion valve so that the target value is obtained is provided, efficient operation can be performed.
In addition, during the stable operation of the low-stage refrigeration cycle, the superheat degree of the refrigerant at the low-stage compressor suction unit determines whether or not the liquid refrigerant is present in the accumulator. Controlling the electronic expansion valve so that the degree of superheat of the refrigerant at the outlet of the lower evaporator becomes a predetermined target value that is slightly larger than the optimum value at which the heat transfer efficiency of the lower evaporator is increased. Is not present, the superheat degree of the refrigerant at the outlet of the lower evaporator detected by the superheat degree detection device is a predetermined target value which is an optimum value at which the heat transfer efficiency of the lower evaporator is increased. Since the electronic expansion valve is controlled as described above, it is possible to suppress liquid compression of the compressor due to load fluctuation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1〜3における二元冷
凍装置の冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a binary refrigeration apparatus according to Embodiments 1 to 3 of the present invention.

【図2】 この発明の二元冷凍装置の起動運転時の圧力
変化を示す図である。
FIG. 2 is a diagram showing a pressure change during a start-up operation of the binary refrigeration apparatus of the present invention.

【図3】 この発明の実施の形態1での起動運転時の制
御方法を示すフローチャート図である。
FIG. 3 is a flowchart illustrating a control method during a start-up operation according to Embodiment 1 of the present invention;

【図4】 この発明の実施の形態2での起動運転時の制
御方法を示すフローチャート図である。
FIG. 4 is a flowchart illustrating a control method during start-up operation according to Embodiment 2 of the present invention.

【図5】 この発明の実施の形態2での運転時の制御方
法を示すフローチャート図である。
FIG. 5 is a flowchart illustrating a control method during operation according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 高元側冷凍サイクル、2 低元側冷凍サイクル、3
1 高元側冷凍サイクルの圧縮機、32 低元側冷凍サ
イクルの圧縮機、4 高元側冷凍サイクルの凝縮器、5
1 高元側冷凍サイクルの電子膨張弁、52 低元側冷
凍サイクルの電子膨張弁、6 低元側冷凍サイクルの蒸
発器、7 カスケードコンデンサ、8アキュームレー
タ、9 膨張タンク、10 過熱度検知装置、11 膨
張弁制御装置、12 高元側冷凍サイクルの蒸発器。
1 Higher refrigeration cycle, 2 Lower refrigeration cycle, 3
1 Compressor for high-end refrigeration cycle, 32 Compressor for low-end refrigeration cycle, 4 Condenser for high-end refrigeration cycle, 5
DESCRIPTION OF SYMBOLS 1 Electronic expansion valve of high-stage refrigeration cycle, 52 Electronic expansion valve of low-stage refrigeration cycle, 6 Evaporator of low-stage refrigeration cycle, 7 Cascade condenser, 8 accumulator, 9 Expansion tank, 10 Superheat degree detection device, 11 Expansion valve control unit, 12 Evaporator of high side refrigeration cycle.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 1/00 - 7/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F25B 1/00-7/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高元側圧縮機、高元側凝縮器、高元側膨
張装置、高元側蒸発器がこの順に接続された高元側冷凍
サイクルと、 低元側圧縮機、低元側凝縮器、電子膨張弁を用いた低元
側膨張装置、冷却媒体を介して冷凍負荷を冷却する低元
側蒸発器がこの順に接続された低元側冷凍サイクルと、 前記低元側圧縮機の吸入側に接続され、運転休止時の圧
力を低下させるための膨張タンクと、 前記高元側蒸発器と前記低元側凝縮器とが熱交換できる
ように直接または間接的に組み合わされて、前記高元側
冷凍サイクルと前記低元側冷凍サイクルとを連結するカ
スケードコンデンサと、 前記低元側圧縮機吸入部の冷媒の過熱度を検出する過熱
度検出装置と、 前記高元側冷凍サイクルの運転により前記カスケードコ
ンデンサにおいて前記低元側凝縮器が冷却された後にお
ける前記冷凍負荷が高温状態からの前記低元側冷凍サイ
クルの起動時、前記膨張タンクから流出する過熱状態の
冷媒により前記低元側圧縮機の吐出温度が上昇するのを
抑制するために、前記過熱度検出装置が検出した前記低
元側圧縮機吸入部の冷媒の過熱度が、前記低元側圧縮機
の高圧が高くなりすぎず、および前記吐出温度が高くな
りすぎない予め定めた目標値となるように前記電子膨張
弁を制御する制御手段と、 を備えたことを特徴とする多元冷凍装置。
1. A high-side refrigeration cycle in which a high-side compressor, a high-side condenser, a high-side expansion device, and a high-side evaporator are connected in this order, a low-side compressor, and a low-side compressor. A condenser, a lower-stage expansion device using an electronic expansion valve, a lower-stage refrigeration cycle in which a lower-stage evaporator for cooling a refrigeration load via a cooling medium is connected in this order, An expansion tank connected to the suction side, for reducing the pressure at the time of suspension of operation, and directly or indirectly combined so that the high-side evaporator and the low-side condenser can exchange heat, A cascade condenser connecting the higher-stage refrigeration cycle and the lower-stage refrigeration cycle; a superheat degree detection device for detecting the degree of superheat of the refrigerant in the lower-stage compressor suction section; and operation of the higher-stage refrigeration cycle. The lower condenser in the cascade condenser When starting the lower refrigeration cycle from the high temperature state of the refrigeration load after being cooled, the discharge temperature of the lower compressor is suppressed from rising due to the superheated refrigerant flowing out of the expansion tank. Therefore, the degree of superheat of the refrigerant in the low-stage compressor suction section detected by the superheat degree detection device, the high pressure of the low-stage compressor is not too high, and the discharge temperature is not too high in advance Control means for controlling the electronic expansion valve so as to reach a predetermined target value.
【請求項2】 前記制御手段は、前記低元側冷凍サイク
ルが起動してから所定時間経過後に、前記低元側圧縮機
吸入部の冷媒の過熱度の目標値を下げて前記電子膨張弁
を制御することを特徴とする請求項1記載の多元冷凍装
置。
2. The control device according to claim 1, wherein after a predetermined time has elapsed since the start of the low-stage refrigeration cycle, the control unit lowers the target value of the degree of superheat of the refrigerant in the low-stage compressor suction section to operate the electronic expansion valve. The multi-stage refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is controlled.
【請求項3】 前記制御手段は、前記低元側冷凍サイク
ルの起動後、当該多元冷凍装置の運転状態が所定の状態
に変化した場合は、前記低元側圧縮機吸入部の冷媒の過
熱度の目標値を下げて前記電子膨張弁を制御することを
特徴とする請求項1記載の多元冷凍装置。
3. When the operating state of the multi-stage refrigeration apparatus changes to a predetermined state after the start of the lower-stage refrigeration cycle, the control means controls the degree of superheat of the refrigerant in the suction unit of the lower-stage compressor. 2. The multi-stage refrigeration system according to claim 1, wherein the electronic expansion valve is controlled by lowering a target value of the electronic expansion valve.
【請求項4】 前記過熱度検出装置は前記低元側蒸発器
の出口部の冷媒の過熱度も検出し、前記冷却媒体の温度
が低下し安定した場合は、前記過熱度検出装置が検出し
た前記低元側蒸発器の出口部の冷媒の過熱度が、前記低
元側蒸発器の伝熱効率が高くなる最適値である予め定め
た目標値となるように前記電子膨張弁を制御する他の制
御手段を備えたことを特徴とする請求項1記載の多元冷
凍装置。
4. The superheat detection device also detects the superheat of the refrigerant at the outlet of the lower evaporator, and when the temperature of the cooling medium decreases and becomes stable, the superheat detection device detects the superheat. Another method of controlling the electronic expansion valve so that the degree of superheat of the refrigerant at the outlet of the lower evaporator is a predetermined target value that is an optimum value at which the heat transfer efficiency of the lower evaporator is increased. The multi-stage refrigeration apparatus according to claim 1, further comprising control means.
【請求項5】 高元側圧縮機、高元側凝縮器、高元側膨
張装置、高元側蒸発器がこの順に接続された高元側冷凍
サイクルと、 低元側圧縮機、低元側凝縮器、電子膨張弁を用いた低元
側膨張装置、冷却媒体を介して冷凍負荷を冷却する低元
側蒸発器、前記低元側蒸発器から二相状態の冷媒が流出
した場合に、気液分離を行い液冷媒が前記低元側圧縮機
に流入するのを抑制するアキュームレータがこの順に接
続された低元側冷凍サイクルと、 前記低元側圧縮機の吸入側に接続され、運転休止時の圧
力を低下させるための膨張タンクと、 前記高元側蒸発器と前記低元側凝縮器とが熱交換できる
ように直接または間接的に組み合わされて、前記高元側
冷凍サイクルと前記低元側冷凍サイクルとを連結するカ
スケードコンデンサと、 前記低元側蒸発器の出口部の冷媒の過熱度を検出する過
熱度検出装置と、 前記冷却媒体の温度が低い場合の前記低元側冷凍サイク
ルの起動時、前記低元側蒸発器より二相冷媒が流出し前
記アキュームレータに液冷媒が溜まる状態を早く回避す
るために、前記過熱度検出装置が検出した前記低元側蒸
発器の出口部の冷媒の過熱度が、前記低元側蒸発器の伝
熱効率が高くなる最適値よりやや大きい予め定めた目標
値となるように前記電子膨張弁を制御する制御手段と、
を備えたことを特徴とする多元冷凍装置。
5. A high-side refrigeration cycle in which a high-side compressor, a high-side condenser, a high-side expansion device, and a high-side evaporator are connected in this order, a low-side compressor, and a low-side compressor. A condenser, a lower expansion device using an electronic expansion valve, a lower evaporator for cooling a refrigeration load via a cooling medium, and a gas in a two-phase state flowing out of the lower evaporator. An accumulator that performs liquid separation and suppresses a liquid refrigerant from flowing into the lower compressor is connected in this order to the lower refrigeration cycle, and is connected to the suction side of the lower compressor, and when the operation is stopped. An expansion tank for lowering the pressure of the high-side refrigeration cycle and the low-side refrigeration cycle are directly or indirectly combined so that the high-side evaporator and the low-side condenser can exchange heat. A cascade condenser for connecting a side refrigeration cycle, and the low-side evaporator A superheat degree detection device for detecting a degree of superheat of the refrigerant at the outlet portion, and a two-phase refrigerant flowing out of the lower side evaporator when the lower refrigeration cycle starts when the temperature of the cooling medium is low, and the accumulator In order to quickly avoid the state in which the liquid refrigerant accumulates, the superheat degree of the refrigerant at the outlet of the lower evaporator detected by the superheat degree detection device is optimized to increase the heat transfer efficiency of the lower evaporator. Control means for controlling the electronic expansion valve to be a predetermined target value slightly larger than the value,
A multi-component refrigeration system comprising:
【請求項6】 前記過熱度検出装置は前記低元側蒸発器
の出口部の冷媒の過熱度も検出し、前記過熱度検出装置
が検出した前記低元側蒸発器の出口部の冷媒の過熱度
が、前記低元側蒸発器の伝熱効率が高くなる最適値より
やや大きい予め定めた目標値となった場合、前記過熱度
検出装置は前記低元側蒸発器の出口部の冷媒の過熱度に
より前記アキュームレータに液冷媒が存在するか判定
し、前記液冷媒が存在する場合は、引き続き前記過熱度
検出装置が検出した前記低元側蒸発器の出口部の冷媒の
過熱度が、前記低元側蒸発器の伝熱効率が高くなる最適
値よりやや大きい予め定めた目標値となるように前記電
子膨張弁を制御し、前記液冷媒が存在しない場合は、前
記過熱度検出装置が検出した前記低元側蒸発器の出口部
の冷媒の過熱度が、前記低元側蒸発器の伝熱効率が高く
なる最適値である予め定めた目標値となるように前記電
子膨張弁を制御する他の制御手段を備えたことを特徴と
する請求項5記載の多元冷凍装置。
6. The superheat degree detecting device also detects the superheat degree of the refrigerant at the outlet of the lower evaporator, and the superheat of the refrigerant at the outlet of the lower evaporator detected by the superheat degree detector. If the degree is a predetermined target value that is slightly larger than the optimum value at which the heat transfer efficiency of the lower evaporator is increased, the superheat degree detecting device detects the degree of superheat of the refrigerant at the outlet of the lower evaporator. It is determined whether or not a liquid refrigerant is present in the accumulator.If the liquid refrigerant is present, the degree of superheat of the refrigerant at the outlet of the lower evaporator continuously detected by the superheat degree detection device is the lower element. The electronic expansion valve is controlled to be a predetermined target value slightly larger than the optimum value at which the heat transfer efficiency of the side evaporator is increased, and when the liquid refrigerant is not present, the low heat detected by the superheat degree detection device is used. The superheat degree of the refrigerant at the outlet of the main evaporator is 6. The multi-stage refrigeration according to claim 5, further comprising another control means for controlling the electronic expansion valve so as to reach a predetermined target value which is an optimum value for increasing the heat transfer efficiency of the low-side evaporator. apparatus.
【請求項7】 高元側圧縮機、高元側凝縮器、高元側膨
張装置、高元側蒸発器がこの順に接続された高元側冷凍
サイクルと、 低元側圧縮機、低元側凝縮器、電子膨張弁を用いた低元
側膨張装置、冷却媒体を介して冷凍負荷を冷却する低元
側蒸発器、前記低元側蒸発器から二相状態の冷媒が流出
した場合に、気液分離を行い液冷媒が前記低元側圧縮機
に流入するのを抑制するアキュームレータがこの順に接
続された低元側冷凍サイクルと、 前記低元側圧縮機の吸入側に接続され、運転休止時の圧
力を低下させるための膨張タンクと、 前記高元側蒸発器と前記低元側凝縮器とが熱交換できる
ように直接または間接的に組み合わされて、前記高元側
冷凍サイクルと前記低元側冷凍サイクルとを連結するカ
スケードコンデンサと、 前記低元側蒸発器の出口部の冷媒の過熱度と前記低元側
圧縮機吸入部の冷媒の過熱度とを検出する過熱度検出装
置と、 前記低元側冷凍サイクルの安定運転時、前記低元側圧縮
機吸入部の冷媒の過熱度により前記アキュームレータに
液冷媒が存在するか判定し、前記液冷媒が存在する場合
は、前記過熱度検出装置が検出した前記低元側蒸発器の
出口部の冷媒の過熱度が、前記低元側蒸発器の伝熱効率
が高くなる最適値よりやや大きい予め定めた目標値とな
るように前記電子膨張弁を制御し、前記液冷媒が存在し
ない場合は、前記過熱度検出装置が検出した前記低元側
蒸発器の出口部の冷媒の過熱度が、前記低元側蒸発器の
伝熱効率が高くなる最適値である予め定めた目標値とな
るように前記電子膨張弁を制御する制御手段と、備えた
ことを特徴とする多元冷凍装置。
7. A high-side refrigeration cycle in which a high-side compressor, a high-side condenser, a high-side expansion device, and a high-side evaporator are connected in this order, a low-side compressor, and a low-side compressor. A condenser, a lower expansion device using an electronic expansion valve, a lower evaporator for cooling a refrigeration load via a cooling medium, and a gas in a two-phase state flowing out of the lower evaporator. An accumulator that performs liquid separation and suppresses a liquid refrigerant from flowing into the lower compressor is connected in this order to the lower refrigeration cycle, and is connected to the suction side of the lower compressor, and when the operation is stopped. An expansion tank for lowering the pressure of the high-side refrigeration cycle and the low-side refrigeration cycle are directly or indirectly combined so that the high-side evaporator and the low-side condenser can exchange heat. A cascade condenser for connecting a side refrigeration cycle, and the low-side evaporator A superheat degree detection device that detects a superheat degree of a refrigerant at an outlet part and a superheat degree of a refrigerant at a suction part of the lower compressor; and a lower compressor suction part during a stable operation of the lower refrigeration cycle. It is determined whether the liquid refrigerant is present in the accumulator based on the degree of superheat of the refrigerant.If the liquid refrigerant is present, the degree of superheat of the refrigerant at the outlet of the lower evaporator detected by the superheat degree detection device is determined. The electronic expansion valve is controlled to be a predetermined target value slightly larger than an optimum value at which the heat transfer efficiency of the lower evaporator is increased, and when the liquid refrigerant is not present, the superheat degree detection device The electronic expansion valve is controlled such that the detected degree of superheat of the refrigerant at the outlet of the lower evaporator becomes a predetermined target value which is an optimum value for increasing the heat transfer efficiency of the lower evaporator. Control means, and a multi-component refrigeration system characterized by comprising .
JP06964797A 1997-03-24 1997-03-24 Multi-source refrigeration equipment Expired - Fee Related JP3270706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06964797A JP3270706B2 (en) 1997-03-24 1997-03-24 Multi-source refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06964797A JP3270706B2 (en) 1997-03-24 1997-03-24 Multi-source refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH10267441A JPH10267441A (en) 1998-10-09
JP3270706B2 true JP3270706B2 (en) 2002-04-02

Family

ID=13408858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06964797A Expired - Fee Related JP3270706B2 (en) 1997-03-24 1997-03-24 Multi-source refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3270706B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184931A1 (en) 2013-05-16 2014-11-20 三菱電機株式会社 Refrigeration device
KR101786563B1 (en) * 2012-05-02 2017-11-15 마에카와 매뉴팩쳐링 캄파니 리미티드 Shipboard binary refrigeration system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177045A (en) * 2002-11-28 2004-06-24 Sanyo Electric Co Ltd Binary refrigerating plant
JP4786599B2 (en) * 2007-06-08 2011-10-05 株式会社東洋製作所 Cooling system
US20110209485A1 (en) * 2007-10-10 2011-09-01 Alexander Lifson Suction superheat conrol based on refrigerant condition at discharge
FR2936806B1 (en) * 2008-10-08 2012-08-31 Arkema France REFRIGERANT FLUID
US8011191B2 (en) * 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
WO2014030198A1 (en) 2012-08-20 2014-02-27 三菱電機株式会社 Refrigerating device
JP6288942B2 (en) * 2013-05-14 2018-03-07 三菱電機株式会社 Refrigeration equipment
CN108716789A (en) * 2018-06-20 2018-10-30 珠海格力电器股份有限公司 Heat exchanger, liquid separation control device, air conditioner and its control method
CN110779146B (en) * 2019-11-12 2020-11-13 珠海格力电器股份有限公司 Air conditioner and electronic expansion valve control method thereof, storage medium and computer equipment
CN114396734B (en) * 2022-01-07 2024-03-15 北京京仪自动化装备技术股份有限公司 Control method of temperature control system and temperature control system
CN115289703B (en) * 2022-06-23 2023-10-13 北京京仪自动化装备技术股份有限公司 Temperature control method
CN115289704B (en) * 2022-06-23 2023-10-13 北京京仪自动化装备技术股份有限公司 Temperature control device and temperature control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101786563B1 (en) * 2012-05-02 2017-11-15 마에카와 매뉴팩쳐링 캄파니 리미티드 Shipboard binary refrigeration system
WO2014184931A1 (en) 2013-05-16 2014-11-20 三菱電機株式会社 Refrigeration device

Also Published As

Publication number Publication date
JPH10267441A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
US7143593B2 (en) Refrigerant cycle apparatus
JP3270706B2 (en) Multi-source refrigeration equipment
JP5502459B2 (en) Refrigeration equipment
JP4179927B2 (en) Method for setting refrigerant filling amount of cooling device
JP5484889B2 (en) Refrigeration equipment
JP5484890B2 (en) Refrigeration equipment
JP5367100B2 (en) Dual refrigeration equipment
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP5449266B2 (en) Refrigeration cycle equipment
JP5496645B2 (en) Refrigeration equipment
JP5523817B2 (en) Refrigeration equipment
JP2011133206A (en) Refrigerating apparatus
JP5502460B2 (en) Refrigeration equipment
JP2006258418A (en) Refrigerating device
JP2013164250A (en) Refrigerating apparatus
JP2011133208A (en) Refrigerating apparatus
CN111121342B (en) Heat pump system
JP2014159950A (en) Freezer
JP4274250B2 (en) Refrigeration equipment
JP2787882B2 (en) Heat storage type cooling device
JPH04313647A (en) Heat pump type air conditioner
JP2008032391A (en) Refrigerating unit
JP2019163867A (en) Vapor-compression refrigerator
WO2023032138A1 (en) Refrigeration cycle device
JPH03233262A (en) Freezing cycle

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020108

LAPS Cancellation because of no payment of annual fees