JP3268193B2 - Method for producing shielded argon for welding from furnace exhaust gas - Google Patents

Method for producing shielded argon for welding from furnace exhaust gas

Info

Publication number
JP3268193B2
JP3268193B2 JP03269696A JP3269696A JP3268193B2 JP 3268193 B2 JP3268193 B2 JP 3268193B2 JP 03269696 A JP03269696 A JP 03269696A JP 3269696 A JP3269696 A JP 3269696A JP 3268193 B2 JP3268193 B2 JP 3268193B2
Authority
JP
Japan
Prior art keywords
gas
argon
oxygen
water
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03269696A
Other languages
Japanese (ja)
Other versions
JPH09201530A (en
Inventor
勝彦 塚田
良富 山下
敏晶 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP03269696A priority Critical patent/JP3268193B2/en
Publication of JPH09201530A publication Critical patent/JPH09201530A/en
Application granted granted Critical
Publication of JP3268193B2 publication Critical patent/JP3268193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、半導体の基板素
材として使用されるシリコン単結晶等を製造するに際
し、炉雰囲気ガスとして供給されるアルゴンガスが使用
されたのち、排出ガスとして排出するのを回収し、これ
を精製して溶接用シールドアルゴンガスとして回収する
炉雰囲気排ガスからの溶接用シールドアルゴンガス製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a silicon single crystal or the like used as a semiconductor substrate material, in which an argon gas supplied as a furnace atmosphere gas is used and then discharged as an exhaust gas. The present invention relates to a method for producing a shielded argon gas for welding from furnace atmosphere exhaust gas which is recovered, purified and recovered as a shielded argon gas for welding.

【0002】[0002]

【従来の技術】アルゴンは、空気中に約0.93%含有
されており、沸点が酸素と窒素の中間にあるため、空気
深冷分離の際に95〜98%に濃縮される。この粗アル
ゴンは、水素添加し触媒により水と酸素を除去したの
ち、窒素を精留により除去して99.999%以上の高
純度アルゴンが製造される。アルゴンガスは、その不活
性な性質を利用して溶接用のシールドガスや、金属精錬
用、熱処理用の雰囲気ガス、電子工業用の保護ガス等各
種産業分野で広く使用されている。
2. Description of the Related Art Argon is contained in air at about 0.93%, and its boiling point is between oxygen and nitrogen, so that it is concentrated to 95-98% during cryogenic air separation. This crude argon is hydrogenated to remove water and oxygen with a catalyst, and then nitrogen is removed by rectification to produce high-purity argon of 99.999% or more. Utilizing its inert nature, argon gas is widely used in various industrial fields such as a shielding gas for welding, an atmosphere gas for metal refining and heat treatment, and a protective gas for the electronics industry.

【0003】また、近年の半導体産業の著しい発展は、
その基板となる半導体単結晶板の目覚ましい増加とな
り、半導体単結晶板製造のためのシリコン単結晶製造炉
の増設と、単結晶の高品質化の要求から、不活性ガスで
あるアルゴンガスのシリコン単結晶炉の雰囲気ガスとし
ての使用が急増している。
[0003] The remarkable development of the semiconductor industry in recent years is
Due to the remarkable increase in the number of semiconductor single crystal plates serving as the substrate, an increase in the number of silicon single crystal production furnaces for the production of semiconductor single crystal plates and the demand for higher quality single crystals have led to the depletion of silicon gas from argon gas, which is an inert gas. The use as atmospheric gas in crystallization furnaces is increasing rapidly.

【0004】半導体用単結晶製造炉の雰囲気ガスとして
使用される高純度アルゴンガスは、通常液体で貯槽に貯
蔵されており、使用する際気化器で大気との熱交換を行
い、冷熱を放出して常温ガスとして使用され、使用後は
大気中に放出されていた。この放出ガスは、アルゴンを
主成分とするガスであり、単結晶製造炉での雰囲気ガス
として使用した後、排気ポンプで排出させる結果、重金
属粉、油ミストなどが混入して同伴するばかりでなく、
不純物として水素、酸素、一酸化炭素、二酸化炭素のほ
かに、窒素、炭化水素、水分等が少量混入したものであ
る。したがって、半導体用単結晶製造炉の雰囲気ガスと
して使用したアルゴンを主成分とするガスは、有効利用
することなくそのまま大気中に放出したのでは極めて不
経済である。
A high-purity argon gas used as an atmosphere gas in a single crystal manufacturing furnace for semiconductors is usually stored in a storage tank as a liquid, and when used, exchanges heat with the atmosphere in a vaporizer to release cold heat. It was used as a room temperature gas and was released into the atmosphere after use. This released gas is a gas containing argon as a main component, and after being used as an atmosphere gas in a single crystal manufacturing furnace and then discharged by an exhaust pump, not only heavy metal powder, oil mist and the like are mixed and entrained, but also ,
It contains a small amount of impurities such as hydrogen, oxygen, carbon monoxide, and carbon dioxide, as well as nitrogen, hydrocarbons, and moisture. Therefore, it is extremely uneconomical if the gas containing argon as a main component used as an atmosphere gas in a single crystal manufacturing furnace for semiconductors is released into the atmosphere as it is without effective use.

【0005】シリコン単結晶製造炉で雰囲気ガスとして
使用したアルゴンを主成分とするガスから高純度アルゴ
ンガスを回収する方法としては、シリコン単結晶製造炉
の雰囲気ガスに使用後のアルゴンを主成分とするガス
を、昇圧して反応装置中で酸素または空気と反応させて
該ガス中に含有する可燃性成分を二酸化炭素と水に変換
したのち、さらに水素と反応させてアルゴンを主成分と
するガス中に残存する酸素を水に変換し、冷却して吸着
塔に導入して水分を除去し、熱交換器で低温高純度アル
ゴンガスと熱交換させたのち低温吸着塔に導入して二酸
化炭素を除去し、さらに熱交換器で高純度液化アルゴン
ガスと熱交換させて冷却した後蒸留塔で深冷液化分離す
る方法(特開昭59−46473号公報)、単結晶製造
炉より排出されるアルゴンを主成分とし粉塵、炭化水
素、一酸化炭素、酸素、水素、窒素等を含むガスを、先
ず粉塵等の固形分を除去した後、酸素を水素添加による
触媒反応で水に転換し、ついで一酸化炭素および水素を
酸化銅の存在下で反応せしめて二酸化炭素と水に転換せ
しめ、フロン冷凍機で冷却して吸着筒を通して前記転換
した水、二酸化炭素を除去し、再度フロン冷凍機で冷却
(−50℃程度)して吸着塔に導入し、温度変動式吸脱
着法(以下TSA法という)で不純窒素を除去して高純
度アルゴンを回収する方法(特開昭62−119104
号公報)が提案されている。
As a method for recovering high-purity argon gas from a gas containing argon as a main component used as an atmosphere gas in a silicon single crystal manufacturing furnace, argon used as an atmosphere gas in a silicon single crystal manufacturing furnace contains argon as a main component. The gas is pressurized and reacted with oxygen or air in a reactor to convert the combustible components contained in the gas into carbon dioxide and water, and then further reacted with hydrogen to produce a gas containing argon as a main component. The remaining oxygen is converted to water, cooled and introduced into the adsorption tower to remove water, and heat exchanged with low-temperature, high-purity argon gas in a heat exchanger. A method in which the gas is cooled by exchanging heat with high-purity liquefied argon gas in a heat exchanger and then cryogenically liquefied and separated in a distillation column (Japanese Patent Application Laid-Open No. 59-46473). A gas containing gon as a main component and containing dust, hydrocarbons, carbon monoxide, oxygen, hydrogen, nitrogen, etc. is first removed from solids such as dust, and then oxygen is converted into water by a catalytic reaction by hydrogenation, and then Carbon monoxide and hydrogen are reacted in the presence of copper oxide to convert them into carbon dioxide and water, cooled with a Freon refrigerator and the converted water and carbon dioxide are removed through the adsorption column, and cooled again with a Freon refrigerator. (About -50 ° C.) and introduced into an adsorption tower, and a high-purity argon is recovered by removing impurity nitrogen by a temperature fluctuation type adsorption / desorption method (hereinafter referred to as TSA method) (Japanese Patent Laid-Open No. 62-119104).
Publication).

【0006】[0006]

【発明が解決しようとする課題】上記特開昭59−46
473号公報に開示の方法は、蒸留塔で深冷液化分離す
る方法を用いているため、装置が大型化すると共に複雑
であり、運転管理も容易ではない。また、特開昭62−
119104号公報に開示の方法は、TSA法で窒素を
除去しているため、冷却(約−50℃)、昇温(約70
℃)操作が必要であり、また、酸化銅の存在下で可燃性
成分の除去を行っているため、ある時間毎に酸素を添加
し、酸化を行う必要がある。さらに、特開昭62−11
9104号公報に開示の方法は、特開昭59−4647
3号公報に開示の方法に比較して装置の小型化は可能で
あるが、装置がより複雑化し、運転管理も容易ではな
く、アルゴン回収率も70%程度と低いという欠点を有
している。
SUMMARY OF THE INVENTION The above-mentioned JP-A-59-46 is disclosed.
The method disclosed in Japanese Patent No. 473 uses a method of cryogenic liquefaction and separation in a distillation column, so that the apparatus becomes large and complicated, and operation management is not easy. Also, Japanese Patent Application Laid-Open
In the method disclosed in JP-A-119104, since nitrogen is removed by the TSA method, cooling (about −50 ° C.) and heating (about 70 ° C.) are performed.
° C) operation, and since flammable components are removed in the presence of copper oxide, it is necessary to add oxygen every certain time to perform oxidation. Further, JP-A-62-11
The method disclosed in Japanese Patent Application No. 9104 is disclosed in Japanese Patent Application Laid-Open No. 59-4647.
Although the apparatus can be reduced in size as compared with the method disclosed in Japanese Patent Publication No. 3 (1993), it has the drawback that the apparatus becomes more complicated, operation management is not easy, and the argon recovery is as low as about 70%. .

【0007】この発明の目的は、上記従来技術の欠点を
解消し、圧力変動式吸脱着法(以下PSAという)を主
体とするプロセスを用い、単結晶製造炉から排出される
アルゴンを主成分とするガスから、安価にしかも比較的
容易に溶接用シールドアルゴンガスとしてアルゴンを
する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned disadvantages of the prior art and to use a process mainly based on a pressure fluctuation type adsorption / desorption method (hereinafter referred to as PSA), and mainly contain argon discharged from a single crystal manufacturing furnace. From the gas to be produced, as a welding shield argon gas, inexpensively and relatively easily .
It is to provide a method of manufacturing .

【0008】[0008]

【課題を解決するための手段】この発明は、単結晶製造
炉から排出されるアルゴンを主成分とするガスを昇圧し
て、ガス中の水素、炭化水素、一酸化炭素を反応装置中
で触媒操作で酸素と反応させて二酸化炭素、水に転換し
たのち、冷却して合成ゼオライトを用いたPSAに導入
して窒素、二酸化炭素、水を吸着除去し、しかる後酸素
濃度調整器を介してガス中の酸素濃度を溶接シールド用
調整したのち、熱交換器で単結晶製造炉雰囲気ガスと
して使用する高純度液化アルゴンと熱交換させて液化さ
せる。このように、単結晶製造炉から排出されるアルゴ
ンを主成分とするガス中の水素、炭化水素、一酸化炭素
を二酸化炭素、水に転換したのち、PSAに導入して窒
素、二酸化炭素、水を吸着除去し、しかる後酸素濃度調
整器を介してガス中の酸素濃度を溶接シールド用に調整
したのち、高純度液化アルゴンと熱交換させて液化する
ことにより、安価で比較的容易に溶接用シールドアルゴ
ンガスとして回収することができる。
SUMMARY OF THE INVENTION According to the present invention, a gas mainly containing argon discharged from a single crystal manufacturing furnace is pressurized, and hydrogen, hydrocarbon, and carbon monoxide in the gas are catalyzed in a reactor. After being converted into carbon dioxide and water by reaction with oxygen by operation, it is cooled and introduced into PSA using synthetic zeolite to adsorb and remove nitrogen, carbon dioxide and water, and then oxygen
Oxygen concentration in gas through a concentration controller for welding shield
After adjustment, it is liquefied high purity liquid argon and allowed to heat exchange be used as a single crystal production furnace atmosphere gas in the heat exchanger. As described above, hydrogen, hydrocarbons, and carbon monoxide in a gas mainly containing argon discharged from a single crystal manufacturing furnace are converted into carbon dioxide and water, and then introduced into PSA to supply nitrogen, carbon dioxide, and water. To remove oxygen , and then adjust the oxygen concentration.
Adjust the oxygen concentration in the gas for the welding shield via the integrator
After that, by exchanging heat with high- purity liquefied argon for liquefaction, the gas can be recovered relatively inexpensively and relatively easily as shielded argon gas for welding.

【0009】[0009]

【発明の実施の形態】この発明は、貯槽に貯えられた高
純度液化アルゴンを、気化(気化させる際の寒冷の大部
分は本プロセスで利用)させ、シリコン単結晶製造炉の
雰囲気ガスとして使用した後のアルゴンガスを主成分と
するガスを回収し、先ず該ガス中に同伴される重金属
粉、油ミストを除塵装置を用いて分離除去する。重金属
粉、油ミストを除去したアルゴンガスを主成分とするガ
スは、昇圧して反応装置中で触媒操作で酸素と反応させ
てガス中の水素、炭化水素、一酸化炭素を二酸化炭素、
水に転換したのち、冷却して合成ゼオライトを用いた圧
力変動式吸脱着塔に導入して窒素、二酸化炭素、水を吸
着除去する。しかる後酸素濃度調整器を介してガス中の
酸素濃度を溶接シールド用に調整したのち、シリコン単
結晶製造炉の雰囲気ガスとして使用する高純度液化アル
ゴンと熱交換させて液化する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is to vaporize high-purity liquefied argon stored in a storage tank (most of the cold during vaporization is used in this process) and use it as an atmospheric gas in a silicon single crystal manufacturing furnace. The gas containing argon gas as a main component is recovered, and heavy metal powder and oil mist entrained in the gas are separated and removed using a dust remover. The gas mainly composed of argon gas from which heavy metal powder and oil mist have been removed is pressurized and reacted with oxygen by a catalytic operation in the reactor to convert hydrogen, hydrocarbons and carbon monoxide in the gas into carbon dioxide,
After being converted to water, it is cooled and introduced into a pressure fluctuation type adsorption / desorption column using synthetic zeolite to adsorb and remove nitrogen, carbon dioxide and water. After that, the gas in the gas passes through the oxygen concentration controller.
After adjusting the oxygen concentration for the welding shield, it is liquefied by heat exchange with high-purity liquefied argon used as an atmosphere gas in a silicon single crystal manufacturing furnace.

【0010】この発明における溶接用シールドアルゴン
ガスとは、MAG溶接(MetalActive Ga
s Welding)用シールドアルゴンガスを意味
し、従来は高純度アルゴンガスと二酸化炭素を混合し使
用していたが、近年5%以下の酸素が含有されたアルゴ
ンガスと二酸化炭素を混合使用した方が、鋼板等の溶接
性に優れていること、安価であること等の理由から使用
が拡大してきている。したがって、この発明における溶
接用シールドアルゴンガスとは、酸素5%以下、窒素
0.1%以下のアルゴンガスを意味する。なお、溶接用
シールドアルゴンガス中の窒素0.1%以下は、溶融金
属の衝撃特性が悪化しない限界窒素濃度である。
The welding shield argon gas in the present invention is MAG welding (MetalActive Ga).
s Welding) means shield argon gas, which used to be a mixture of high-purity argon gas and carbon dioxide, but in recent years it has been better to use a mixture of carbon dioxide and argon gas containing less than 5% oxygen. Its use has been expanding for reasons such as excellent weldability of steel sheets and the like and low cost. Therefore, the shield argon gas for welding in the present invention means an argon gas of 5% or less of oxygen and 0.1% or less of nitrogen. In addition, 0.1% or less of nitrogen in the welding shield argon gas is a limit nitrogen concentration at which the impact characteristics of the molten metal do not deteriorate.

【0011】この発明は、シリコン単結晶製造炉の雰囲
気ガスとして使用した後のアルゴンガスを主成分とする
ガスから、溶接用シールドアルゴンガスとして回収し、
シリコン単結晶製造炉で再使用しないことから、リサイ
クル時に微量含有される重金属や回収ガスの純度悪化に
よるシリコン単結晶の品質悪化も防止することができ
る。
According to the present invention, a welding shield argon gas is recovered from a gas containing argon gas as a main component after being used as an atmosphere gas in a silicon single crystal manufacturing furnace,
Since the silicon single crystal is not reused in the silicon single crystal manufacturing furnace, it is possible to prevent the quality of the silicon single crystal from being deteriorated due to the deterioration of the purity of the heavy metal and the recovery gas contained in a small amount during recycling.

【0012】この発明において溶接シールド用の濃度調
整は、通常は酸素濃度5%以下であるため、特殊なユー
ザーを除き不要である。なお、シリコン単結晶製造炉の
雰囲気ガスとして使用した後のアルゴンガスを主成分と
するガス中に酸素が少なく、反応装置中で可燃性成分を
除去するための酸素が不足する場合は、反応装置に導入
するに先立ち、酸素ガスを供給して酸素濃度調整を実施
する必要がある。
In the present invention, the concentration adjustment for the welding shield is usually unnecessary for the special user because the oxygen concentration is 5% or less. If the gas containing argon gas as a main component after use as an atmosphere gas in the silicon single crystal production furnace has a small amount of oxygen, and oxygen for removing combustible components is insufficient in the reaction apparatus, the reaction apparatus may be used. It is necessary to supply oxygen gas and adjust the oxygen concentration before introducing the oxygen gas.

【0013】[0013]

【実施例】実施例1 以下にこの発明方法の詳細を実施の一例を示す図1に基
づいて説明する。図1はこの発明方法によるシリコン単
結晶製造炉の雰囲気ガスとして使用した後のアルゴンガ
スを主成分とするガスから溶接用シールドアルゴンガス
製造工程の系統図である。
Embodiment 1 The details of the method of the present invention will be described below with reference to FIG. 1 showing an embodiment. FIG. 1 shows a welding shield argon gas from a gas containing argon gas as a main component after use as an atmosphere gas in a silicon single crystal manufacturing furnace according to the present invention.
It is a system diagram of a manufacturing process.

【0014】図1において、1はシリコン単結晶製造炉
の雰囲気ガスとして使用した後回収されたアルゴンガス
を主成分とするガス、2はアルゴンガスを主成分とする
ガス1中に同伴される重金属粉、油ミストを分離除去す
る除塵装置、3は除塵装置2で重金属粉、油ミストが分
離除去されたアルゴンガスを主成分とするガスを8kg
f/cm2・Gに昇圧する圧縮機、4は圧縮機3で8k
gf/cm2・Gに昇圧されたガスを約250℃以上に
昇温するための加熱器である。5はパラジウム触媒が充
填されている可燃性成分除去塔で、加熱器4で約250
℃以上に昇温して供給されたガス中に含有される酸素
は、触媒作用によって可燃性成分の水素、炭化水素、一
酸化炭素と反応し、二酸化炭素と水に転換する。可燃性
成分除去塔5の出口ガスは、反応熱により約350℃ま
で温度上昇するため、水冷却器6に導入して冷却する。
この際、ガス中の水蒸気は、一部水として析出するた
め、水抜き弁7を開放して水のみを放出する。
In FIG. 1, reference numeral 1 denotes a gas mainly composed of argon gas recovered after use as an atmosphere gas in a silicon single crystal manufacturing furnace, and 2 denotes a heavy metal entrained in the gas 1 mainly composed of argon gas. A dust remover for separating and removing powder and oil mist 3 is a dust remover 2 for 8 kg of gas mainly composed of argon gas from which heavy metal powder and oil mist are separated and removed.
Compressor for increasing pressure to f / cm 2 · G, 4 for compressor 3
This is a heater for raising the temperature of the gas pressurized to gf / cm 2 · G to about 250 ° C. or higher. Reference numeral 5 denotes a combustible component removal tower filled with a palladium catalyst.
Oxygen contained in the gas supplied at a temperature of not less than ° C. reacts with hydrogen, hydrocarbon, and carbon monoxide as combustible components by a catalytic action, and is converted into carbon dioxide and water. Since the temperature of the outlet gas of the combustible component removal tower 5 rises to about 350 ° C. due to reaction heat, it is introduced into the water cooler 6 and cooled.
At this time, since the water vapor in the gas partially precipitates as water, the water drain valve 7 is opened to release only water.

【0015】8は活性アルミナと合成ゼオライトが充填
された窒素除去塔で、可燃性成分が二酸化炭素と水に転
換されたガスから窒素、二酸化炭素、水を選択的に吸着
除去する。窒素除去塔8は、3塔切替え方式によって吸
着、回収・再生、昇圧工程で操業される。例えば、窒素
除去塔8aが吸着工程であり、切替え弁9a、10aが
開放され、切替え弁11a、12aが閉止しており、圧
力8kgf/cm2・G、温度常温の吸着条件で、ガス
中の二酸化炭素、水と共に窒素を0.1%以下に吸着除
去し、溶接用シールドアルゴンガスを得る。窒素除去塔
8bは回収・再生工程であり、切替え弁9b、10b、
12bが閉止し、切替え弁11b、13、14が開放さ
れ、圧力8kgf/cm2・Gから2kgf/cm2・G
程度までの減圧時に生じるアルゴンリッチガスを、バッ
ファータンク15を経由して圧縮機3の吸入ラインに戻
し、アルゴン回収率向上を図る。窒素除去塔8b内圧力
が2kgf/cm2・G程度まで低下した段階で、切替
え弁13、14を閉止し、切替え弁16を開放して真空
ポンプ17を起動し、10Torr以下程度まで減圧す
ることによって、活性アルミナと合成ゼオライトに吸着
されていた窒素、二酸化炭素、水を脱着させ、系外に放
出する。なお、切替え弁18は、窒素除去塔8内を2k
gf/cm2・G程度から大気圧まで減圧する際に開放
する。窒素除去塔8cは昇圧工程であり、切替え弁9
c、10c、11cが閉止し、吸着工程である窒素除去
塔8aの出口ガスを切替え弁19、切替え弁12cを経
由して窒素除去塔8cに供給し、吸着圧力である8kg
f/cm2・Gまで塔内圧力を上昇させる。以上の操作
を繰り返すことによって、窒素濃度0.1%以下の溶接
用シールドアルゴンガスを連続的に得ることができる。
Reference numeral 8 denotes a nitrogen removal tower filled with activated alumina and synthetic zeolite, which selectively adsorbs and removes nitrogen, carbon dioxide, and water from a gas whose flammable components have been converted to carbon dioxide and water. The nitrogen removal tower 8 is operated in the adsorption, recovery / regeneration, and pressure increasing steps by a three-tower switching system. For example, the nitrogen removal tower 8a is an adsorption step, the switching valves 9a and 10a are opened, the switching valves 11a and 12a are closed, and the pressure in the gas is 8 kgf / cm 2 . Nitrogen is adsorbed to 0.1% or less together with carbon dioxide and water to obtain a shielded argon gas for welding. The nitrogen removal tower 8b is a recovery / regeneration step, and the switching valves 9b, 10b,
12b is closed, the switching valves 11b, 13 and 14 are opened, and the pressure is from 8 kgf / cm 2 · G to 2 kgf / cm 2 · G.
The argon-rich gas generated at the time of pressure reduction to the extent is returned to the suction line of the compressor 3 via the buffer tank 15 to improve the argon recovery rate. When the pressure in the nitrogen removal tower 8b has dropped to about 2 kgf / cm 2 · G, the switching valves 13 and 14 are closed, the switching valve 16 is opened, and the vacuum pump 17 is started to reduce the pressure to about 10 Torr or less. As a result, nitrogen, carbon dioxide and water adsorbed on the activated alumina and the synthetic zeolite are desorbed and released outside the system. In addition, the switching valve 18 controls the inside of the nitrogen removal tower 8 by 2 k.
Open when pressure is reduced from about gf / cm 2 · G to atmospheric pressure. The nitrogen removal tower 8c is a pressure step, and the switching valve 9
c, 10c, and 11c are closed, and the outlet gas of the nitrogen removal tower 8a, which is the adsorption step, is supplied to the nitrogen removal tower 8c via the switching valve 19 and the switching valve 12c, and the adsorption pressure of 8 kg
The pressure in the tower is increased to f / cm 2 · G. By repeating the above operation, a welding shield argon gas having a nitrogen concentration of 0.1% or less can be continuously obtained.

【0016】20は酸素濃度調整器で、窒素除去塔8で
窒素、二酸化炭素、水が吸着除去されたガス中には、約
1.6%の酸素しか含有されていないため、所定の酸素
濃度になるよう流量調整弁21を介して酸素を供給す
る。ただし、酸素濃度1.6%以下で使用可能な溶接用
シールドアルゴンガスである場合は、この酸素濃度調整
器20は省略することができる。
Reference numeral 20 denotes an oxygen concentration controller. Since the gas from which nitrogen, carbon dioxide and water are adsorbed and removed in the nitrogen removal tower 8 contains only about 1.6% of oxygen, a predetermined oxygen concentration is provided. Oxygen is supplied via the flow control valve 21 such that However, if the welding shield argon gas can be used at an oxygen concentration of 1.6% or less, the oxygen concentration adjuster 20 can be omitted.

【0017】22はアルゴン熱交換器で、酸素濃度が調
整されたガスは、アルゴン熱交換器22で高純度液化ア
ルゴンタンク23からの高純度液化アルゴンとを間接熱
交換して液化され、液化アルゴンタンク24に回収され
る。一方、アルゴン熱交換器22で酸素濃度が調整され
たガスと熱交換して気化した高純度アルゴンガスは、図
示しないシリコン単結晶製造炉に雰囲気ガスとして供給
される。液化アルゴンタンク24に液化アルゴンを供給
した際に発生するフラッシュガスは、弁25を介して前
記圧縮機3の吸入ラインに戻し、アルゴン回収率の悪化
を防止する。なお、26は高純度液化アルゴンを気化す
るための蒸発器で、蒸発器26で気化した高純度アルゴ
ンガスは、図示しないシリコン単結晶製造炉に雰囲気ガ
スとして供給される。液化アルゴンタンク24に回収さ
れた液化アルゴンは、液体アルゴンポンプ27によりタ
ンクローリ28に積み込まれ、ユーザーに供給される。
Reference numeral 22 denotes an argon heat exchanger, and the gas whose oxygen concentration has been adjusted is liquefied by indirect heat exchange with the high-purity liquefied argon from the high-purity liquefied argon tank 23 in the argon heat exchanger 22 to obtain a liquefied argon gas. Collected in the tank 24. On the other hand, the high-purity argon gas that has been vaporized by heat exchange with the gas whose oxygen concentration has been adjusted in the argon heat exchanger 22 is supplied as an atmosphere gas to a silicon single crystal manufacturing furnace (not shown). The flash gas generated when liquefied argon is supplied to the liquefied argon tank 24 is returned to the suction line of the compressor 3 via the valve 25 to prevent the argon recovery rate from deteriorating. Reference numeral 26 denotes an evaporator for vaporizing high-purity liquefied argon, and the high-purity argon gas vaporized by the evaporator 26 is supplied as an atmosphere gas to a silicon single crystal manufacturing furnace (not shown). The liquefied argon collected in the liquefied argon tank 24 is loaded on the tank truck 28 by the liquid argon pump 27 and supplied to the user.

【0018】実施例2 シリコン単結晶製造炉から回収された不純物として酸素
2.4%、窒素7%、水素0.1%、一酸化炭素0.1
%、炭化水素0.5%を含有するアルゴンガスを主成分
とするガスから、図1に示す除塵装置2によって重金属
粉、油ミスト等を分離除去したのち、圧縮機3により8
kg/cm2・Gに昇圧して加熱器4に導入し、約25
0℃に加熱した。約250℃に加熱したアルゴンガスを
主成分とするガスは、パラジウム触媒が充填された可燃
性成分除去塔5に供給され、パラジウム触媒の触媒作用
によってガス中の可燃性成分の水素、炭化水素、一酸化
炭素と酸素が反応し、二酸化炭素と水に転換する。可燃
性成分除去塔5の出口ガス中の不純物は、酸素1.6
%、窒素7%、二酸化炭素0.4%、水3.5kg/H
rであった。
Example 2 2.4% of oxygen, 7% of nitrogen, 0.1% of hydrogen, 0.1% of carbon monoxide were recovered as impurities from a silicon single crystal manufacturing furnace.
1 and heavy metal powder, oil mist and the like are separated and removed by a dust remover 2 shown in FIG.
The pressure is increased to kg / cm 2 · G and introduced into the heater 4, and the
Heated to 0 ° C. The gas mainly composed of argon gas heated to about 250 ° C. is supplied to a combustible component removal tower 5 filled with a palladium catalyst, and the combustible components of the gas, such as hydrogen, hydrocarbons, Carbon monoxide and oxygen react and convert to carbon dioxide and water. Impurities in the gas at the outlet of the combustible component removal tower 5 are oxygen 1.6
%, Nitrogen 7%, carbon dioxide 0.4%, water 3.5kg / H
r.

【0019】可燃性成分除去塔5の出口ガスは、水冷却
器6に導入して冷却水と熱交換させて常温まで冷却し、
一部析出した水を水抜き弁7を開放して抜き出したの
ち、活性アルミナと合成ゼオライトが充填された窒素除
去塔8に供給し、圧力8kgf/cm2・G、温度常温
の吸着条件で、ガス中の二酸化炭素、水と共に窒素を
0.1%以下に吸着除去した。窒素除去塔8の出口のガ
ス中の不純物は、酸素1.6%、窒素0.05%であっ
た。この不純物として酸素1.6%、窒素0.05%の
アルゴンガスは、そのままで溶接用シールドアルゴンガ
スとして使用可能であったので、8kg/cm2・Gの
圧力でアルゴン熱交換器22に供給し、高純度液化アル
ゴンタンク23からの高純度液化アルゴンとを間接熱交
換させて液化し、液化アルゴンタンク24に回収した。
この場合のアルゴンの回収率は、約80%であった。
The outlet gas of the combustible component removing tower 5 is introduced into a water cooler 6 and exchanges heat with cooling water to cool to room temperature.
After the partially precipitated water is extracted by opening the drain valve 7, the water is supplied to a nitrogen removal tower 8 filled with activated alumina and synthetic zeolite, and is adsorbed under the conditions of a pressure of 8 kgf / cm 2 · G and a temperature of normal temperature. Nitrogen was adsorbed to 0.1% or less together with carbon dioxide and water in the gas. Impurities in the gas at the outlet of the nitrogen removal tower 8 were 1.6% oxygen and 0.05% nitrogen. Since argon gas containing 1.6% of oxygen and 0.05% of nitrogen as this impurity could be used as it is as a shielding argon gas for welding, it was supplied to the argon heat exchanger 22 at a pressure of 8 kg / cm 2 · G. Then, the liquid was liquefied by indirect heat exchange with the high-purity liquefied argon from the high-purity liquefied argon tank 23 and collected in the liquefied argon tank 24.
The argon recovery in this case was about 80%.

【0020】[0020]

【発明の効果】この発明は、シリコン単結晶製造炉から
のアルゴンガスを主成分とするガスから、触媒作用によ
る反応装置によってガス中の酸素と可燃性成分を反応さ
せて二酸化炭素と水に転換した後、PSA装置によって
二酸化炭素、水と共に窒素を0.1%以下に吸着除去す
ることによって、溶接用シールドアルゴンガスを安価
で、比較的容易に製造することができる。
According to the present invention, the gas containing argon gas as a main component from a silicon single crystal manufacturing furnace is converted into carbon dioxide and water by reacting oxygen and combustible components in the gas with a catalytic reactor. After that, by using a PSA apparatus to adsorb and remove nitrogen together with carbon dioxide and water to 0.1% or less, a shielded argon gas for welding can be produced at low cost and relatively easily.

【0021】この発明においては、シリコン単結晶製造
炉からのアルゴンガスを主成分とするガスから、溶接用
シールドアルゴンガスとして回収し、シリコン単結晶製
造炉の雰囲気ガスとして再使用しないから、微量含有さ
れる重金属や回収アルゴンガスの純度低下によるシリコ
ン単結晶の品質悪化をも防止することができる。
In the present invention, a gas containing argon gas as a main component from a silicon single crystal manufacturing furnace is recovered as a shielding argon gas for welding and is not reused as an atmosphere gas of the silicon single crystal manufacturing furnace. It is also possible to prevent deterioration of the quality of the silicon single crystal due to the reduced purity of the heavy metal and the recovered argon gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のアルゴンガスを主成分とするガスか
ら溶接用シールドアルゴンガス回収工程の系統図であ
る。
FIG. 1 is a system diagram of a step of recovering a shielded argon gas for welding from a gas containing argon gas as a main component of the present invention.

【符号の説明】[Explanation of symbols]

1 アルゴンガスを主成分とするガス 2 除塵装置 3 圧縮機 4 加熱器 5 可燃性成分除去塔 6 水冷却器 7 水抜き弁 8、8a、8b、8c 窒素除去塔 9a、9b、9c、10a、10b、10c 切替え弁 11a、11b、11c、12a、12b、12c、1
3、14、16、18、19 切替え弁 15 バッファータンク 17 真空ポンプ 20 酸素濃度調整器 21 流量調整弁 22 アルゴン熱交換器 23 高純度液化アルゴンタンク 24 液化アルゴンタンク 25 弁 26 蒸発器 27 液体アルゴンポンプ 28 タンクローリ
Reference Signs List 1 Gas mainly composed of argon gas 2 Dedusting device 3 Compressor 4 Heater 5 Flammable component removal tower 6 Water cooler 7 Drain valve 8, 8a, 8b, 8c Nitrogen removal tower 9a, 9b, 9c, 10a, 10b, 10c Switching valve 11a, 11b, 11c, 12a, 12b, 12c, 1
3, 14, 16, 18, 19 Switching valve 15 Buffer tank 17 Vacuum pump 20 Oxygen concentration controller 21 Flow rate control valve 22 Argon heat exchanger 23 High purity liquefied argon tank 24 Liquefied argon tank 25 Valve 26 Evaporator 27 Liquid argon pump 28 Tank Lorry

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−239309(JP,A) 特開 平7−33581(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 20/18 B01D 53/02 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-60-239309 (JP, A) JP-A-7-33581 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 20/18 B01D 53/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単結晶製造炉から排出されるアルゴンを
主成分とし酸素、窒素、水素、炭化水素、一酸化炭素等
の不純物を含むガスを、先ず重金属粉および油ミストを
除去し、昇圧して反応装置中で触媒操作で酸素と反応さ
せてガス中の水素、炭化水素、一酸化炭素を二酸化炭
素、水に転換したのち、冷却して合成ゼオライトを用い
た圧力変動式吸脱着塔に導入して窒素、二酸化炭素、水
を吸着除去し、しかる後酸素濃度調整器を介してガス中
の酸素濃度を溶接シールド用に調整したのち、熱交換器
で単結晶製造炉雰囲気ガスとして使用する高純度液化ア
ルゴンと熱交換させて液化することを特徴とする炉雰囲
気排ガスからの溶接用シールドアルゴン製造方法。
1. A gas mainly containing argon discharged from a single crystal manufacturing furnace and containing impurities such as oxygen, nitrogen, hydrogen, hydrocarbons, carbon monoxide, etc., is first removed by removing heavy metal powder and oil mist and then pressurized. After converting hydrogen, hydrocarbons and carbon monoxide in the gas into carbon dioxide and water by reacting with oxygen by a catalytic operation in the reactor, it is cooled and introduced into a pressure fluctuation type adsorption / desorption column using synthetic zeolite. To remove nitrogen, carbon dioxide, and water, and then adjust the oxygen concentration in the gas for the welding shield via an oxygen concentration controller. welding shield argon production how from the furnace atmosphere gas, characterized in that the liquefied purity liquid argon and allowed to heat exchange.
JP03269696A 1996-01-25 1996-01-25 Method for producing shielded argon for welding from furnace exhaust gas Expired - Fee Related JP3268193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03269696A JP3268193B2 (en) 1996-01-25 1996-01-25 Method for producing shielded argon for welding from furnace exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03269696A JP3268193B2 (en) 1996-01-25 1996-01-25 Method for producing shielded argon for welding from furnace exhaust gas

Publications (2)

Publication Number Publication Date
JPH09201530A JPH09201530A (en) 1997-08-05
JP3268193B2 true JP3268193B2 (en) 2002-03-25

Family

ID=12366026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03269696A Expired - Fee Related JP3268193B2 (en) 1996-01-25 1996-01-25 Method for producing shielded argon for welding from furnace exhaust gas

Country Status (1)

Country Link
JP (1) JP3268193B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733960B2 (en) * 2004-10-18 2011-07-27 大陽日酸株式会社 Method and apparatus for purifying argon gas containing impurities by thermal swing adsorption method
JP5101540B2 (en) * 2009-02-03 2012-12-19 住友精化株式会社 Argon purification method and argon purification apparatus
US9644890B2 (en) 2013-03-01 2017-05-09 Praxair Technology, Inc. Argon production method and apparatus

Also Published As

Publication number Publication date
JPH09201530A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
US5656557A (en) Process for producing various gases for semiconductor production factories
JPH04222381A (en) Manufacture of high-purity argon
JP3092101B2 (en) Recovery and purification of impure argon
JP2966999B2 (en) Ultra high purity nitrogen / oxygen production equipment
JP3020842B2 (en) Argon purification method and apparatus
US4623524A (en) Process and apparatus for recovering inert gas
JP3737900B2 (en) Purification method of exhaust gas argon from single crystal production furnace
JP5614808B2 (en) Helium gas purification method and purification apparatus
JP2000088455A (en) Method and apparatus for recovering and refining argon
JP3268193B2 (en) Method for producing shielded argon for welding from furnace exhaust gas
JPS62119104A (en) Method for recovering high-purity argon from exhaust gas of single crystal producing furnace
JPH0243684B2 (en)
JP3268177B2 (en) Method for producing neon and helium
US3169845A (en) Method of and apparatus for producing high purity inert gases
JPS5939800A (en) Recovery of argon used for atmospheric gas of furnace for producing single crystal for semiconductor
US5787730A (en) Thermal swing helium purifier and process
JPH0624737A (en) Purification of ammonia gas
JP2981396B2 (en) Noble gas purification method
JP3256811B2 (en) Method for purifying krypton and xenon
JPH0412393B2 (en)
JPS6129768B2 (en)
JPH01148703A (en) Recovery of gaseous argon
JP3466437B2 (en) Air separation equipment
KR910001996B1 (en) Inert gas recovering method and apparatus
JP3467178B2 (en) Air separation equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011205

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees