JP3267667B2 - Method for producing positive electrode for lithium secondary battery - Google Patents

Method for producing positive electrode for lithium secondary battery

Info

Publication number
JP3267667B2
JP3267667B2 JP09677592A JP9677592A JP3267667B2 JP 3267667 B2 JP3267667 B2 JP 3267667B2 JP 09677592 A JP09677592 A JP 09677592A JP 9677592 A JP9677592 A JP 9677592A JP 3267667 B2 JP3267667 B2 JP 3267667B2
Authority
JP
Japan
Prior art keywords
lithium
particle size
positive electrode
secondary battery
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09677592A
Other languages
Japanese (ja)
Other versions
JPH05290832A (en
Inventor
浩平 山本
義久 日野
吉郎 原田
勇人 小松原
秀哲 名倉
Original Assignee
エフ・ディ−・ケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エフ・ディ−・ケイ株式会社 filed Critical エフ・ディ−・ケイ株式会社
Priority to JP09677592A priority Critical patent/JP3267667B2/en
Publication of JPH05290832A publication Critical patent/JPH05290832A/en
Application granted granted Critical
Publication of JP3267667B2 publication Critical patent/JP3267667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、粉砕工程を付加するこ
となしに正極活物質の粒度分布を一定にできるリチウム
二次電池用正極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode for a lithium secondary battery, which can maintain a constant particle size distribution of a positive electrode active material without adding a pulverizing step.

【0002】[0002]

【従来の技術】リチウム二次電池は、正極と、リチウム
負極と、これら正,負極間に介在されるセパレータおよ
び非水電解液から構成され、これらをケース内に収納し
ている。
2. Description of the Related Art A lithium secondary battery comprises a positive electrode, a lithium negative electrode, a separator and a non-aqueous electrolyte interposed between the positive and negative electrodes, and these are housed in a case.

【0003】正極活物質としてLiCoO2 ,LiNi
2 等のリチウム金属複合酸化物を用いた場合には、4
V以上の高電圧を得ることが可能で、電池の性能向上に
好適である。この複合酸化物に用いられる金属として
は、Co,Ni,Fe,Mnの中から選ばれる1種ない
し数種の金属または合金粉末がある。これら金属は、従
来は合成時に反応性がよく微粒子が得られる炭酸リチウ
ム,炭酸ニッケルなどの炭酸塩,CoO,NiO等の酸
化物あるいはCo(OH)2 などの水酸化物の形態を出
発原料としてリチウム塩とともに加熱処理することで正
極活物質としていた。
As a positive electrode active material, LiCoO 2 , LiNi
When a lithium metal composite oxide such as O 2 is used, 4
A high voltage of V or more can be obtained, which is suitable for improving the performance of a battery. As the metal used for the composite oxide, there is one or several kinds of metals or alloy powders selected from Co, Ni, Fe, and Mn. These metals have conventionally been used as starting materials in the form of carbonates such as lithium carbonate and nickel carbonate, oxides such as CoO and NiO, or hydroxides such as Co (OH) 2 , which are highly reactive during synthesis to obtain fine particles. Heat treatment together with the lithium salt provided a positive electrode active material.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、Co,
Ni,Feの炭酸塩や酸化物,水酸化物を出発原料とし
た場合には反応性が高く、加熱処理中に結晶が成長して
粗大粒子を生ずるため、後工程で粉砕する必要がある。
この粉砕工程では粒度分布のコントロールが難しく、ま
た粉砕する過程での不純物の混入によると見られる特性
劣化が問題となっていた。
However, Co,
When carbonates, oxides, and hydroxides of Ni and Fe are used as starting materials, the reactivity is high, and the crystals grow during the heat treatment to produce coarse particles.
In this pulverizing step, it is difficult to control the particle size distribution, and there has been a problem of deterioration of characteristics which is considered to be caused by contamination of impurities in the pulverizing process.

【0005】この発明は以上の問題を解決するものであ
って、その目的は、粉砕工程を省略でき、所望の粒度分
布を持つ正極活物質の粉体を容易に得られるようにした
リチウム二次電池用正極の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to eliminate a pulverization step and to easily obtain a powder of a positive electrode active material having a desired particle size distribution. An object of the present invention is to provide a method for manufacturing a battery positive electrode.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、負極に金属リチウムまたはその合金ある
いはリチウム吸蔵体を用い、正極の活物質としてCo,
Ni,Feの中から選ばれる1種ないし数種の金属とリ
チウムとの複合酸化物を用いるリチウム二次電池におい
て、正極活物質の出発原料となる前記Co,Ni,Fe
金属または合金粉末で構成し、これら原料粉末の平均
粒径を0.2〜9μmに揃え、これをリチウム化合物と
ともに加熱処理することにより、リチウム金属複合酸化
物を製造するものである。
In order to achieve the above-mentioned object, the present invention provides a method of using lithium metal or an alloy thereof or a lithium occlusion material for a negative electrode, and using Co,
In a lithium secondary battery using a composite oxide of one or several kinds of metals selected from Ni and Fe and lithium, the Co, Ni, Fe used as a starting material of a positive electrode active material is used.
Is composed of a metal or alloy powder, the average particle size of these raw material powders is adjusted to 0.2 to 9 μm, and this is heated together with a lithium compound to produce a lithium metal composite oxide. is there.

【0007】また、前記リチウム化合物としてLi2
3 またはLiOHを用い、この化合物と前記金属また
はその合金粉末とを混合し、自然落下により容器内に堆
積させた後に加熱処理を行うことができる。
Further, Li 2 C is used as the lithium compound.
This compound can be mixed with the metal or its alloy powder using O 3 or LiOH, and can be subjected to heat treatment after being deposited in a container by natural fall.

【0008】[0008]

【作用】粒径が0.2〜9μmの金属または合金粉末を
出発原料とすることにより、加熱処理後のリチウム金属
複合酸化物からなる正極活物質を構成する生成物の粒径
が原料粉末の粒径とほぼ同じとなり、粒径を制御する上
で粉砕工程を省略できる。
By using a metal or alloy powder having a particle size of 0.2 to 9 μm as a starting material, the particle size of a product constituting the positive electrode active material composed of a lithium metal composite oxide after the heat treatment has a particle size of the raw material powder. The particle size is almost the same, and the pulverizing step can be omitted in controlling the particle size.

【0009】このような作用は、金属または合金粒子を
中心として、リチウムおよび酸素が金属粒子中に侵入す
ることにより反応が進行するためであると推定される。
[0009] Such an effect is presumed to be due to the reaction proceeding when lithium and oxygen enter the metal particles, mainly in the metal or alloy particles.

【0010】[0010]

【実施例】次に、本発明の実施例について説明する。た
だし、本発明は以下の実施例に限定されるものではな
い。
Next, an embodiment of the present invention will be described. However, the present invention is not limited to the following examples.

【0011】実施例1.アトマイズ法およびその粉砕に
よる平均粒径約0.1μm,0.2μm,0.5μm,
1μm,5μm,10μmのCo粉末とLi2 CO3
を、Co:Liのモル比で1:1に調整して混合し、自
然落下により容器内に堆積させ、空気中で800℃,1
2時間加熱処理した。得られたリチウムコバルト複合酸
化物からなる生成物は、二次凝集しているものの軽く押
すだけで崩れ粉状になった。以上の各生成物の平均粒径
を測定した結果、表1に示すように、出発原料の平均粒
径と生成物の平均粒径との間に相関があることを確認し
た。
Embodiment 1 FIG. The average particle diameters of about 0.1 μm, 0.2 μm, 0.5 μm,
1 μm, 5 μm, and 10 μm Co powder and Li 2 CO 3 were adjusted and mixed at a molar ratio of Co: Li of 1: 1 and deposited in a container by gravity falling.
Heat treatment was performed for 2 hours. Although the obtained product composed of the lithium-cobalt composite oxide was secondary-agglomerated, it was collapsed into a powdery state by lightly pressing. As a result of measuring the average particle diameter of each of the above products, as shown in Table 1, it was confirmed that there was a correlation between the average particle diameter of the starting material and the average particle diameter of the product.

【0012】[0012]

【表1】 この表1に示すように、原料粉末として粒径0.2〜1
0μmのCo粉末を用いたものは生成物の粒子径も揃っ
ており、その平均粒径は原料粉末とほとんど差がなかっ
た。また、原料粉末が0.1μmの場合のみ生成物の平
均粒径が大きくなり、粒子の形状,大きさもまちまちで
あった。このことは、原料粉末の平均粒径を0.1μm
とすると、出発原料として市販の炭酸コバルトを用いた
場合と同様に反応性が高くなり、結晶成長が生じたため
であると推定される。
[Table 1] As shown in Table 1, the raw material powder has a particle size of 0.2 to 1
The product using 0 μm Co powder had the same particle size of the product, and the average particle size was almost the same as that of the raw material powder. Also, only when the raw material powder was 0.1 μm, the average particle size of the product was large, and the shape and size of the particles were also varied. This means that the average particle size of the raw material powder is 0.1 μm
If so, it is presumed that the reactivity was increased as in the case where commercially available cobalt carbonate was used as a starting material, and crystal growth occurred.

【0013】比較例1.市販の炭酸コバルトとLi2
3 をCo:Liのモル比で1:1に混合し、空気中で
800℃,12時間加熱処理した。得られた生成物は平
均粒径17μmで、2〜30μmと粒径が広く分布して
いた。この生成物をサンプル記号Gとし、これとは別に
生成物をボ―ルミルで粉砕し、平均粒径3μm(サンプ
ル記号H)および1μm(サンプル記号I)の生成物を
得た。
Comparative Example 1 Commercially available cobalt carbonate and Li 2 C
O 3 was mixed at a molar ratio of Co: Li of 1: 1 and heated in air at 800 ° C. for 12 hours. The obtained product had an average particle size of 17 μm, and the particle size was widely distributed as 2 to 30 μm. This product was designated as sample symbol G. Separately, the product was pulverized with a ball mill to obtain products having an average particle size of 3 μm (sample symbol H) and 1 μm (sample symbol I).

【0014】次に、以上の実施例1.および比較例1.
で得られた各サンプルA〜Iを用いて正極を作り、コイ
ン形の2016形電池を試作して、その充放電時のサイ
クルにおける容量特性を調べたところ、図1に示す結果
が得られた。なお、正極は、活物質(各サンプル):グ
ラファイト:PTFE=8:1:1の割合で混合し、
0.1gペレットとして作製した。対極には金属リチウ
ムを用い、電解液としてはPC/1モルLiClO4
用いた。
Next, the first embodiment will be described. And Comparative Example 1.
A positive electrode was made using each of the samples A to I obtained in the above, and a coin type 2016 battery was prototyped, and its capacity characteristics in the cycle at the time of charging and discharging were examined. The result shown in FIG. 1 was obtained. . The positive electrode was mixed at a ratio of active material (each sample): graphite: PTFE = 8: 1: 1,
It was prepared as a 0.1 g pellet. Metal lithium was used as a counter electrode, and PC / 1 mol LiClO 4 was used as an electrolyte.

【0015】試験で採用した充放電電圧は4.2V−
3.5Vであり、これを30回繰返した。図中の容量比
(単位:%)は、サンプルBの1サイクル目を100と
した相対的な値である。
The charge / discharge voltage employed in the test was 4.2 V-
3.5 V and this was repeated 30 times. The capacity ratio (unit:%) in the figure is a relative value when the first cycle of sample B is 100.

【0016】図1から明らかなように、サンプルB〜E
のCoの粒径が0.2〜5μmでは生成物の粒径が安定
しており、また粒径が小さいため、30サイクル後の放
電容量も大きい。
As apparent from FIG. 1, samples B to E
When the particle size of Co is 0.2 to 5 μm, the particle size of the product is stable, and since the particle size is small, the discharge capacity after 30 cycles is large.

【0017】また、粒径10μmのサンプルFでは、粒
径が大きく、拡散抵抗のため特性が劣ると推定される。
サンプルA,Gでは粒径の大きいものが存在し、このた
め特性が劣るものと推定される。さらに、サンプルH,
Iのように粉砕したものでは、1サイクル目が本発明と
同等であるにしても、サイクル特性は劣っている。ま
た、このことは、粉砕により粒子の層構造が破壊される
か、あるいは不純物が混入したからであると推定され
る。
Further, it is presumed that the sample F having a particle diameter of 10 μm has a large particle diameter and has poor characteristics due to diffusion resistance.
Some of the samples A and G have a large particle size, and it is presumed that the characteristics are inferior. Further, sample H,
In the case of the pulverized material like I, the cycle characteristics are inferior even if the first cycle is equivalent to the present invention. It is also presumed that this is because the layer structure of the particles was destroyed by the pulverization or impurities were mixed.

【0018】実施例2.アトマイズ法およびその粉砕に
よる平均粒径約0.2μm,5μm,10μmのNi−
Co合金粉末(Ni:Co=1:1)とLi2 CO3
を、Ni:Co:Liのモル比で1:1:2に調整して
混合し、自然落下により容器内に堆積させた後、酸素雰
囲気中で700℃,24時間加熱処理した。
Embodiment 2 FIG. Atomization method and pulverization of the Ni—
Co alloy powder (Ni: Co = 1: 1) and Li 2 CO 3 were adjusted to a molar ratio of Ni: Co: Li of 1: 1: 2, mixed, and deposited in a container by gravity falling. Thereafter, heat treatment was performed at 700 ° C. for 24 hours in an oxygen atmosphere.

【0019】比較例2.市販の炭酸ニッケル,炭酸コバ
ルトおよびLi2 CO3 を、Ni:Co:Liのモル比
で1:1:2に調整して混合し、実施例2と同一条件で
加熱処理を行った。
Comparative Example 2 Commercially available nickel carbonate, cobalt carbonate and Li 2 CO 3 were adjusted at a molar ratio of Ni: Co: Li of 1: 1: 2 and mixed, and heat treatment was performed under the same conditions as in Example 2.

【0020】以上の各生成物の平均粒径を測定した結
果、表2に示すように、出発原料の平均粒径と生成物の
平均粒径との間に相関があることを確認した。
As a result of measuring the average particle size of each of the above products, as shown in Table 2, it was confirmed that there was a correlation between the average particle size of the starting material and the average particle size of the product.

【0021】[0021]

【表2】 なお、比較例2.の原料粉末の平均粒径は0.1μmで
あったのに対し、生成物サンプルは結晶成長し、出発原
料よりも粒径が大きくなったので、粉砕して平均粒径3
μmのサンプルNとした。
[Table 2] In addition, Comparative Example 2. Although the average particle size of the raw material powder was 0.1 μm, the product sample grew crystal and became larger in particle size than the starting material.
A sample N of μm was used.

【0022】次に、以上の実施例2.および比較例2.
で得られた各サンプルJ〜Nを用いて前記実施例1と同
様の条件で正極を作り、コイン形の2016形電池を試
作して、その充放電時のサイクルにおける容量特性を調
べたところ、図2に示す結果が得られた。
Next, the second embodiment will be described. And Comparative Example 2.
Using each of the samples J to N obtained in the above, a positive electrode was made under the same conditions as in Example 1, and a coin-type 2016 battery was prototyped, and the capacity characteristics in the cycle at the time of charging and discharging were examined. The result shown in FIG. 2 was obtained.

【0023】図中の容量比(単位:%)は、サンプルJ
の1サイクル目を100とした相対的な値である。
The capacity ratio (unit:%) in the figure is the sample J
Is a relative value when the first cycle of is set to 100.

【0024】図2から明らかなように、サンプルJ,K
のNi−Co合金の粒径が0.2〜9μmでは生成物の
粒径が安定しており、また粒径が小さいため、30サイ
クル後の放電容量も大きい。
As apparent from FIG. 2, samples J and K
When the particle size of the Ni—Co alloy is 0.2 to 9 μm, the particle size of the product is stable and the particle size is small, so that the discharge capacity after 30 cycles is large.

【0025】また、サンプルL,Mは粒径が大きく、拡
散抵抗のため特性が劣ると推定される。さらに、サンプ
ルNのように粉砕したものは、1サイクル目が本発明と
同等であるにしても、サイクル特性は劣っている。この
ことは、前記と同じく粉砕により粒子の層構造が破壊さ
れるか、あるいは不純物が混入したからであると推定さ
れる。
Samples L and M are presumed to have inferior characteristics due to large particle size and diffusion resistance. Further, the pulverized product such as sample N is inferior in cycle characteristics even if the first cycle is equivalent to the present invention. This is presumed to be because the layer structure of the particles was destroyed by the pulverization as described above, or impurities were mixed.

【0026】実施例3.,比較例3.アトマイズ法およ
びその粉砕による平均粒径約0.2μm,5μm,10
μmのFe−Co合金粉末(Fe:Co=1:1)とL
2 CO3 とを、Ni:Co:Liのモル比で1:1:
2に調整して混合し、自然落下により容器内に堆積させ
た状態で、酸素雰囲気中で700℃,24時間加熱処理
した。
Embodiment 3 FIG. , Comparative Example 3. Average particle size of about 0.2 μm, 5 μm, 10
μm Fe—Co alloy powder (Fe: Co = 1: 1) and L
i 2 CO 3 at a molar ratio of Ni: Co: Li of 1: 1:
Then, the mixture was adjusted to 2, mixed, and deposited in a container by natural fall, and then heat-treated at 700 ° C. for 24 hours in an oxygen atmosphere.

【0027】また、比較例3.では酸化物を用い、Fe
2 3 ,Co3 4 およびLi2 CO3 を、Fe:C
o:Liのモル比で1:1:2に調整して混合し、実施
例2と同一条件で加熱処理を行った。
Comparative Example 3 In this case, an oxide is used and Fe
2 O 3 , Co 3 O 4 and Li 2 CO 3 are converted to Fe: C
The mixture was adjusted at a molar ratio of o: Li of 1: 1: 2, and heat-treated under the same conditions as in Example 2.

【0028】以上の各生成物の平均粒径を測定した結
果、表3に示すように、出発原料の平均粒径と生成物の
平均粒径との間に相関があることを確認した。
As a result of measuring the average particle size of each of the above products, as shown in Table 3, it was confirmed that there was a correlation between the average particle size of the starting material and the average particle size of the product.

【0029】[0029]

【表3】 なお、比較例3.の原料粉末の平均粒径は1μmであっ
たのに対し、生成物サンプルは15μmまで結晶成長
し、出発原料よりも粒径が大きくなったことが確認され
ている。
[Table 3] Comparative Example 3. Although the average particle size of the raw material powder was 1 μm, it was confirmed that the product sample grew to a crystal size of 15 μm and was larger in particle size than the starting material.

【0030】以上の各実施例ではリチウム金属複合酸化
物のリチウム原料としてLi CO を用いたが、Li
OHを用いても同様の効果が得られる。
In each of the above embodiments, Li 2 CO 3 was used as the lithium source of the lithium metal composite oxide.
The same effect by using the OH is Ru obtained.

【0031】[0031]

【発明の効果】以上実施例によって詳細に説明したよう
に、本発明に係るリチウム二次電池用正極の製造方法に
よれば、粒径が0.2〜9μmの金属または合金粉末を
出発原料とすることにより加熱処理後のリチウム金属複
合酸化物からなる正極活物質を構成する生成物の粒径が
原料粉末の粒径とほぼ同じとなり、正極活物質の粒径を
制御する上で粉砕工程を省略できる。また、これによっ
て粒子の層構造の破壊や不純物の混入を防止できるの
で、放電容量が向上するとともに、サイクル特性を向上
させることができる。
As described in detail in the above examples, according to the method for manufacturing a positive electrode for a lithium secondary battery according to the present invention, a metal or alloy powder having a particle size of 0.2 to 9 μm is used as a starting material. As a result, the particle size of the product constituting the positive electrode active material composed of the lithium metal composite oxide after the heat treatment becomes substantially the same as the particle size of the raw material powder, and a pulverizing step is performed in controlling the particle size of the positive electrode active material. Can be omitted. In addition, since the destruction of the layer structure of the particles and the incorporation of impurities can thereby be prevented, the discharge capacity can be improved and the cycle characteristics can be improved.

【0032】また、実施例に示すように、混合後自然落
下により容器内に堆積させた後に加熱処理を行う方法で
は、従来に比べてさらに製造が容易になる。
In addition, as shown in the examples, the method of performing heat treatment after depositing in a container by natural dropping after mixing makes the production easier than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1.,比較例1.の充放電時のサイクル
における容量特性を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. , Comparative Example 1. 3 is a graph showing capacity characteristics in a cycle at the time of charging and discharging of FIG.

【図2】実施例2.,比較例2.の充放電時のサイクル
における容量特性を示すグラフである。
FIG. , Comparative Example 2. 3 is a graph showing capacity characteristics in a cycle at the time of charging and discharging of FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松原 勇人 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (72)発明者 名倉 秀哲 東京都港区新橋5丁目36番11号 富士電 気化学株式会社内 (56)参考文献 特開 平1−289066(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 C01G 25/00 - 47/00 C01G 49/10 - 57/00 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hayato Komatsubara 5-36-11 Shimbashi, Minato-ku, Tokyo Inside Fuji Electric Chemical Co., Ltd. (72) Inventor Hidenori Nakura 5-36-11 Shimbashi, Minato-ku, Tokyo (56) References JP-A-1-289066 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/58 C01G 25/00-47 / 00 C01G 49/10-57/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 負極に金属リチウムまたはその合金ある
いはリチウム吸蔵体を用い、正極の活物質としてCo,
Ni,Feの中から選ばれる1種ないし数種の金属とリ
チウムとの複合酸化物を用いるリチウム二次電池におい
て、 正極活物質の出発原料となる前記Co,Ni,Feを
属または合金粉末で構成し、これら原料粉末の平均粒径
を0.2〜9μmに揃え、これをリチウム化合物ととも
に加熱処理することにより、リチウム金属複合酸化物を
製造することを特徴とするリチウム二次電池用正極の製
造方法。
1. A negative electrode comprising metallic lithium or an alloy thereof or a lithium absorbing material, and Co, Co,
In a lithium secondary battery using a composite oxide of one or more kinds of metals selected from Ni and Fe and lithium, the Co, Ni, Fe, which is a starting material of a positive electrode active material, is made of gold. A lithium metal composite oxide by subjecting these raw material powders to an average particle size of 0.2 to 9 μm and subjecting them to heat treatment together with a lithium compound. Method for producing positive electrode for secondary battery.
【請求項2】 前記リチウム化合物としてLi2 CO3
またはLiOHを用い、この化合物と前記金属またはそ
の合金粉末とを混合し、自然落下により容器内に堆積さ
せた後に加熱処理を行うことを特徴とする請求項1に記
載のリチウム二次電池用正極の製造方法。
2. The method according to claim 1, wherein the lithium compound is Li 2 CO 3.
2. The positive electrode for a lithium secondary battery according to claim 1, wherein the compound is mixed with the metal or its alloy powder using LiOH, and heat-treated after being deposited in a container by natural fall. 3. Manufacturing method.
JP09677592A 1992-04-16 1992-04-16 Method for producing positive electrode for lithium secondary battery Expired - Fee Related JP3267667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09677592A JP3267667B2 (en) 1992-04-16 1992-04-16 Method for producing positive electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09677592A JP3267667B2 (en) 1992-04-16 1992-04-16 Method for producing positive electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH05290832A JPH05290832A (en) 1993-11-05
JP3267667B2 true JP3267667B2 (en) 2002-03-18

Family

ID=14174016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09677592A Expired - Fee Related JP3267667B2 (en) 1992-04-16 1992-04-16 Method for producing positive electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3267667B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651469B2 (en) 2016-07-21 2020-05-12 Lg Chem, Ltd. Lithium secondary battery comprising positive electrode active material for synthesis of lithium cobalt oxide and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100201056B1 (en) * 1994-10-19 1999-06-15 이노우에 노리유끼 Binder for cell and composition for electrode and cell prepared therefrom
JPH1173966A (en) 1997-07-01 1999-03-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
KR101065307B1 (en) 2004-01-19 2011-09-16 삼성에스디아이 주식회사 Cathode active material for lithium secondary battery and lithium secondary battery using the same
JP5877817B2 (en) * 2011-05-30 2016-03-08 住友金属鉱山株式会社 Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
WO2012164752A1 (en) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
WO2012169274A1 (en) 2011-06-07 2012-12-13 住友金属鉱山株式会社 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651469B2 (en) 2016-07-21 2020-05-12 Lg Chem, Ltd. Lithium secondary battery comprising positive electrode active material for synthesis of lithium cobalt oxide and preparation method thereof

Also Published As

Publication number Publication date
JPH05290832A (en) 1993-11-05

Similar Documents

Publication Publication Date Title
US7998619B2 (en) Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery
CN111081987B (en) Lithium cobaltate cathode material of lithium ion battery with voltage of more than 4.45V and preparation method thereof
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
JP3232984B2 (en) Method for producing nonaqueous electrolyte battery and positive electrode active material
JP4954451B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JPH11273678A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP3036694B2 (en) Method for producing Li composite oxide for Li-ion battery electrode material
JP2000235857A (en) Lithium secondary battery
JP2016103477A (en) Positive electrode material for sodium secondary battery
JPH09175825A (en) Production of compound oxide using sol-gel method
US11984586B1 (en) Surface-coated positive electrode material and preparation method therefor, and lithium ion battery
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP2020004537A (en) Positive electrode active material for nonaqueous electrolyte secondary battery
CN112678879A (en) Preparation method of single crystal ternary cathode material
JP2001080920A (en) Aggregated granular lithium multiple oxide, its production and lithium secondary battery
JP2000260432A (en) Positive electrode active material, manufacture thereof, and lithium ion secondary battery using it
CN115241449A (en) Composite positive electrode material, preparation method and application thereof
EP1492180A1 (en) Positive electrode material for lithium secondary cell and secondary cell using the same, and method for producing positive electrode material for lithium secondary cell
JP4172622B2 (en) Lithium-containing composite oxide and method for producing the same
JP3267667B2 (en) Method for producing positive electrode for lithium secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
CN108878871A (en) A kind of preparation method of high capacity type lithium cobaltate cathode material
JP3396076B2 (en) Method for producing lithium cobaltate-based positive electrode active material for lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees