JP3265981B2 - Entrapping immobilization carrier for nitrogen removal and method for forming the same - Google Patents
Entrapping immobilization carrier for nitrogen removal and method for forming the sameInfo
- Publication number
- JP3265981B2 JP3265981B2 JP09438996A JP9438996A JP3265981B2 JP 3265981 B2 JP3265981 B2 JP 3265981B2 JP 09438996 A JP09438996 A JP 09438996A JP 9438996 A JP9438996 A JP 9438996A JP 3265981 B2 JP3265981 B2 JP 3265981B2
- Authority
- JP
- Japan
- Prior art keywords
- entrapping immobilization
- nitrogen
- metal oxide
- immobilization carrier
- bacteria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Biological Treatment Of Waste Water (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は窒素除去用包括固定
化担体及びその形成方法に係り、特に、硝化反応や脱窒
反応に用いられる硝化菌と脱窒菌を含む活性汚泥を包括
固定した窒素除去用包括固定化担体とその形成方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an entrapping immobilization carrier for nitrogen removal and a method for forming the same, and more particularly to a nitrogen removal entrapping and fixing activated sludge containing nitrifying bacteria and denitrifying bacteria used for nitrification and denitrification reactions. The present invention relates to an entrapping immobilization carrier for use and a method for forming the same.
【0002】[0002]
【従来の技術】微生物を高分子含水ゲル中に包括固定し
た包括固定化担体を用いた廃水処理は、処理効率の向
上、反応槽のコンパクト化、発生汚泥の低減等の特徴が
ある。2. Description of the Related Art Wastewater treatment using an entrapping immobilization carrier in which microorganisms are entrapped and immobilized in a polymer hydrogel has characteristics such as improvement of treatment efficiency, downsizing of a reaction tank, and reduction of generated sludge.
【0003】包括固定化担体は、通常、活性汚泥をポリ
アクリルアミド、ポリビニルアルコール等のゲル原料液
に懸濁させた懸濁液を、重合剤によりゲル化したものを
所定の大きさに切断してペレット化することにより形成
する。[0003] The entrapping immobilization carrier is usually prepared by cutting a suspension obtained by suspending activated sludge in a gel raw material such as polyacrylamide or polyvinyl alcohol into a predetermined size after gelling the suspension with a polymerization agent. It is formed by pelletizing.
【0004】そして、この包括固定化担体は、砂、活性
炭、セラミックス等のように表面に微生物を付着させる
生物膜型の固定化方法に比べて、微生物を選択的に且つ
高濃度に固定化することができるこのことから、特に増
殖能力の小さな硝化菌の固定化方法として注目されてい
る。[0004] This entrapping immobilization carrier selectively immobilizes microorganisms at a higher concentration than a biofilm-type immobilization method of adhering microorganisms to the surface, such as sand, activated carbon, and ceramics. For this reason, it has attracted attention as a method for immobilizing nitrifying bacteria having a small growth ability.
【0005】硝化菌を包括固定化した包括固定化担体
は、廃水中のアンモニア性窒素を除去する硝化工程に既
に実用化されており、脱窒菌を包括固定化した担体を使
った脱窒工程の実用化も検討されている。[0005] The entrapping immobilization carrier entrapping and immobilizing nitrifying bacteria has already been put to practical use in the nitrification step for removing ammonia nitrogen in wastewater. Practical application is also being considered.
【0006】ところで、硝化・脱窒工程での窒素除去効
果を高めるためには、硝化工程での硝化速度を大きくし
てアンモニア性窒素を効率的に亜硝酸イオン或いは硝酸
イオンに硝化すると共に、脱窒工程での脱窒速度を大き
くして硝化工程で生成された亜硝酸イオン、硝酸イオン
を効率的に脱窒する必要がある。特に、亜硝酸イオンは
微生物に対する毒性があるため、これを窒素ガスに還元
することは微生物の活性を高める上で有効である。Incidentally, in order to enhance the nitrogen removal effect in the nitrification / denitrification step, the nitrification rate in the nitrification step is increased to efficiently nitrify ammoniacal nitrogen into nitrite ions or nitrate ions, It is necessary to increase the denitrification rate in the nitrification step to efficiently denitrify nitrite ions and nitrate ions generated in the nitrification step. In particular, since nitrite ions are toxic to microorganisms, reducing them to nitrogen gas is effective in increasing the activity of microorganisms.
【0007】この為には、硝化菌或いは脱窒菌を担体中
に高濃度に保持する必要があると共に、担体を反応槽内
で効率良く流動させて廃水との接触効率を高めることが
重要である。For this purpose, it is necessary to keep nitrifying bacteria or denitrifying bacteria at a high concentration in the carrier, and it is important to efficiently flow the carrier in the reaction tank to increase the contact efficiency with the wastewater. .
【0008】[0008]
【発明が解決しようとする課題】しかしながら、従来の
担体は、以下の点でまだ十分なものではなかった。脱
窒工程で十分に脱窒処理がされないと、特に毒性の強い
亜硝酸イオンが残存した状態で放流されてしまうため、
亜硝酸イオンをより効率的に除去することができる担体
が要望されている。反応槽内で流動する担体同志の衝
突等により担体が破損されると処理水の水質に濁り等が
で易く、耐磨耗性の点で充分とは言えないという欠点が
ある。従来の担体は、汚泥とゲル化剤の混合性が悪
く、形成し易い材料組成が望まれている。担体の比重
は、通常1.03程度であるが、廃水処理において廃水
中のつりがね虫が付着すると、見掛け上の比重が軽くな
り水面に浮き上がってしまい、反応槽内での流動性が悪
くなるという欠点がある。However, the conventional carrier has not been sufficient in the following points. If the denitrification process is not sufficiently performed in the denitrification process, particularly toxic nitrite ions will be released in a state where they remain,
There is a need for a carrier that can more efficiently remove nitrite ions. If the carrier is broken by collision of the carriers flowing in the reaction tank, the quality of the treated water tends to be turbid and the abrasion resistance is not sufficient. Conventional carriers have poor mixing properties between the sludge and the gelling agent, and a material composition that is easy to form is desired. The specific gravity of the carrier is usually about 1.03. However, if a worm is attached to the wastewater in the wastewater treatment, the apparent specific gravity becomes light and floats on the water surface, resulting in poor fluidity in the reaction tank. Disadvantage.
【0009】本発明はこのような事情に鑑みてなされた
もので、窒素除去性能及び耐磨耗性の向上、更には担体
成形時の成形性の向上という複数の課題を簡単な方法で
同時に解決することのできる窒素除去用包括固定化担体
及びその形成方法を提供することを目的とする。The present invention has been made in view of such circumstances, and simultaneously solves a plurality of problems of improving nitrogen removal performance and abrasion resistance, and further improving moldability in molding a carrier by a simple method. It is an object of the present invention to provide an entrapping immobilization carrier for removing nitrogen and a method for forming the same.
【0010】[0010]
【課題を解決する為の手段】本発明は前記目的を達成す
る為に、硝化菌と脱窒菌を含む活性汚泥を高分子含水ゲ
ル中に包括固定して窒素除去用包括固定化担体を形成す
ると共に、前記高分子含水ゲル中に酸化鉄、酸化珪素か
ら選ばれた少なくとも1種の金属酸化物微粉末を含有す
ることを特徴とする。According to the present invention, in order to achieve the above object, an activated sludge containing nitrifying bacteria and denitrifying bacteria is entrapped and fixed in a polymer hydrogel to form a entrapped fixed carrier for nitrogen removal .
In addition, the polymer hydrogel contains at least one metal oxide fine powder selected from iron oxide and silicon oxide.
【0011】また、本発明は前記目的を達成する為に、
硝化菌と脱窒菌を含む活性汚泥と金属酸化物微粉末を混
合して1〜2時間放置した混合液を、ゲル原料液に懸濁
させて懸濁液を調製し、該懸濁液をゲル化することを特
徴とする。[0011] Further, the present invention provides
Activated sludge containing nitrifying bacteria and denitrifying bacteria and metal oxide fine powder were mixed and allowed to stand for 1 to 2 hours. A mixed solution was suspended in a gel raw material solution to prepare a suspension. It is characterized in that
【0012】本発明によれば、高分子含水ゲルに酸化
鉄、二酸化珪素又はその混合物を主成分とする金属酸化
物微粉末を含有させるという簡単な方法で、硝化菌や脱
窒菌の活性を高め、含水ゲルの耐磨耗性を向上でき、更
には廃水中の窒素除去性能を高めた成形性に優れた窒素
除去用包括固定化担体を得ることができる。According to the present invention, nitrifying bacteria and denitrification can be carried out by a simple method of including a metal oxide fine powder containing iron oxide, silicon dioxide or a mixture thereof as a main component in a polymer hydrogel.
Enhance the activity of denitrifying bacteria, it can improve the abrasion resistance of the water-containing gel, more excellent in formability with enhanced nitrogen removal performance in the wastewater nitrogen
An entrapping immobilization carrier for removal can be obtained.
【0013】[0013]
【発明の実施の形態】以下添付図面に従って本発明に係
る窒素除去用包括固定化担体及びその形成方法の好まし
い実施の形態について詳説する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a nitrogen-containing entrapping immobilization carrier and a method for forming the same according to the present invention will be described below in detail with reference to the accompanying drawings.
【0014】本発明の発明者らは、窒素除去用包括固定
化担体を形成する際に、酸化鉄、二酸化珪素又はその混
合物を主成分とする金属酸化物の微粉末を所定量含有さ
せることにより硝化菌や脱窒菌の活性を高め、含水ゲル
の耐磨耗性を向上でき、更には廃水中の窒素除去性能を
高めた成形性に優れた窒素除去用包括固定化担体を得る
ことができるという予想外の事実を見つけ出し、本発明
はこのような知見に基づいて成されたものである。[0014] The inventors of the present invention, when forming the entrapping immobilization carrier for nitrogen removal, by containing a predetermined amount of a metal oxide fine powder containing iron oxide, silicon dioxide or a mixture thereof as a main component. It can increase the activity of nitrifying bacteria and denitrifying bacteria , improve the abrasion resistance of hydrous gel, and further improve the nitrogen removal performance in wastewater to obtain an encapsulating immobilized carrier for nitrogen removal with excellent moldability. The present invention has been made based on such findings by finding out unexpected facts.
【0015】図1は、本発明に係る窒素除去用包括固定
化担体の形成方法の一例を示したフローチャートで、3
mmφ、3mm長さの円柱状ペレットを形成する場合で
ある。FIG. 1 is a flow chart showing an example of a method for forming the entrapping immobilization carrier for removing nitrogen according to the present invention.
In this case, a cylindrical pellet having a length of 3 mm and a diameter of 3 mm is formed.
【0016】図1に示すように、濃縮活性汚泥と、金属
酸化物微粉末とを混合して混合液を調製し、この混合液
を1〜2時間放置する。一方、含水ゲルとしてポリエチ
レングリコールプレポリマー(以下、PEGという)と
重合剤としてNNN' N’─テトラミチルエチレンジア
ミンとの混合液をPH7.5に調整したゲル原料液を調
製する。次に、混合液をゲル原料液に懸濁して懸濁液を
調製し、この懸濁液に重合開始剤として過硫酸カリウム
を添加し、直ちに内径3mmの塩化ビニルチューブに流
し込み、20°Cで10分放置してゲル化する。次に、
ゲル化した棒状円柱物を長さ3mmに切断してペレット
状の窒素除去用包括固定化担体を形成する。As shown in FIG. 1, a concentrated activated sludge and a metal oxide fine powder are mixed to prepare a mixed liquid, and the mixed liquid is left for 1 to 2 hours. On the other hand, a gel raw material liquid is prepared by adjusting a mixture of a polyethylene glycol prepolymer (hereinafter, referred to as PEG) as a hydrogel and NNN'N '@ tetramitylethylenediamine as a polymerization agent to pH 7.5. Next, a suspension was prepared by suspending the mixed solution in the gel raw material solution, potassium persulfate was added as a polymerization initiator to the suspension, and the mixture was immediately poured into a vinyl chloride tube having an inner diameter of 3 mm and heated at 20 ° C. Gel for 10 minutes. next,
The gelled rod-shaped column is cut into a length of 3 mm to form a pellet-shaped entrapping immobilization carrier for removing nitrogen .
【0017】この窒素除去用包括固定化担体の形成方法
において、硝化菌と脱窒菌を含む活性汚泥と金属酸化物
微粉末を混合した混合液を1〜2時間放置することによ
り、粉末粒子が活性汚泥に均一に分散される。この分散
された混合液は、粘度もハンドリングに適した値にな
る。これをゲル原料液に懸濁させて懸濁液を調製し、該
懸濁液をゲル化するようにしたので、ペレットにした時
に金属酸化物の含有量を均一にすることができる。In this method for forming the entrapping immobilization carrier for removing nitrogen , the mixed particles of activated sludge containing nitrifying bacteria and denitrifying bacteria and metal oxide fine powder are allowed to stand for 1 to 2 hours, whereby powder particles are activated. Evenly dispersed in sludge. This dispersed mixture has a viscosity suitable for handling. This was suspended in a gel raw material solution to prepare a suspension, and the suspension was gelled, so that the content of the metal oxide can be made uniform when pelletized.
【0018】本発明に使用する金属酸化物微粉末は、酸
化鉄、酸化珪素、鉄と珪素の混合物等を主成分とし、平
均粒径が5〜40μmのものが好適である。酸化鉄の原
料としては、製鉄所から排出される鉄鋼酸洗排液から回
収されるフェライト、マグネタイト等の酸化物が用いる
ことができる。酸化珪素の原料としては、窯業で使うカ
オリン、モンロナイト、パイロフィライト等の粘度粉末
が用いられる。鉄とケイ素の混合物としては石炭燃焼炉
や汚泥燃焼炉排ガス中から分離除去したフライアッシュ
が利用できる。The metal oxide fine powder used in the present invention preferably contains iron oxide, silicon oxide, a mixture of iron and silicon as a main component, and has an average particle size of 5 to 40 μm. As a raw material of the iron oxide, oxides such as ferrite and magnetite recovered from a steel pickling wastewater discharged from an ironworks can be used. As a raw material of silicon oxide, a viscous powder such as kaolin, monlonite, or pyrophyllite used in the ceramic industry is used. As a mixture of iron and silicon, fly ash separated and removed from flue gas of a coal combustion furnace or a sludge combustion furnace can be used.
【0019】金属酸化物の平均粒子径は5〜40μmの
範囲のものを使うと、活性汚泥に容易に混じり合い、均
一で安定した懸濁状態を維持する。粒子径が前記の範囲
よりも小さいと、混合した時に粉末の塊りができ易く、
大き過ぎる場合は、粒子の一部が沈降し、ゲル化剤を加
えて成形すると不均一な成形物になる。When a metal oxide having an average particle diameter in the range of 5 to 40 μm is used, the metal oxide easily mixes with the activated sludge and maintains a uniform and stable suspension state. If the particle size is smaller than the above range, it is easy to form a lump of powder when mixed,
If it is too large, some of the particles will settle out and become non-uniform when molded with a gelling agent.
【0020】金属酸化物の添加量としては、含水ゲルの
強度向上の点でみると、水が飽和した含水ゲルの5重量
%以上が好ましい。また、窒素除去性能の点でみると、
脱窒菌の数が増加する6重量%以上が好ましく、更に
は、脱窒菌が顕著に増加する10%以上が好ましい。The addition amount of the metal oxide is preferably at least 5% by weight of the water-saturated hydrogel in view of improving the strength of the hydrogel. In terms of nitrogen removal performance,
It is preferably at least 6% by weight for increasing the number of denitrifying bacteria, and more preferably at least 10% for increasing the number of denitrifying bacteria remarkably.
【0021】強度並びに菌数の増加は添加量に比例して
いるが、同時に比重が大きくなる。重い含水ゲルを液中
に浮遊させようとすると、それだけ曝気量を多くしなけ
ればならないので、実用的には20%が限界である。例
えば、汚泥入りポリビニールアルコール含水ゲルの比重
は1.02で、水中に落としたときの沈降速度は約3.
3cm/秒であった。酸化鉄の粉末を10%添加すると
比重は約1.09になり、沈降速度は6.1cm/秒
に、酸化鉄の添加量を20%にすると見掛けの比重は
1.17で沈降速度は9.9cm/秒に増加する。The increase in strength and the number of bacteria is proportional to the amount added, but at the same time the specific gravity increases. If a heavy hydrogel is to be suspended in the liquid, the amount of aeration must be increased accordingly, so that the practical limit is 20%. For example, the specific gravity of the polyvinyl alcohol hydrogel containing sludge is 1.02, and the sedimentation speed when dropped into water is about 3.
3 cm / sec. When 10% of iron oxide powder is added, the specific gravity becomes about 1.09, the sedimentation velocity is 6.1 cm / sec, and when the addition amount of iron oxide is 20%, the apparent specific gravity is 1.17 and the sedimentation velocity is 9 .9 cm / sec.
【0022】上向流の充填層ないし流動層において使う
場合には、見掛け比重は大きい方が好ましいが、曝気に
よって流動化させようとすると、見掛け比重は1.1以
下程度が適当である。When used in an upwardly packed packed bed or fluidized bed, the apparent specific gravity is preferably large, but when fluidized by aeration, the apparent specific gravity is suitably about 1.1 or less.
【0023】十分に馴養処理した含水ゲルの内部では硝
化菌や脱窒菌はコロニーを形成して活発な生物反応を起
こしていることが、電子顕微鏡等の観察から推定され
る。しかし、濃縮汚泥中では数個から数十個の細胞がゆ
るくつながって分離、集合をくり返している。この濃縮
汚泥に平均粒径が10μmの二酸化ケイ素を添加する
と、硝化菌や脱窒菌の細胞の群の間に二酸化ケイ素が、
分散し、安定した懸濁液になる。懸濁液をしばらく放置
しておくと、硝化菌や脱窒菌の群の大きさは、ほぼ添加
した金属酸化物の大きさと同程度になり硝化菌や脱窒菌
の菌同士の結合も強まる。硝化菌や脱窒菌はゲル化剤に
含まれる有機溶剤や触媒によって被毒し、ゲルの成形時
に菌数は大幅に減少する。しかし、金属酸化物粒子の添
加は被毒の影響を緩和し、窒素除去用包括固定化担体の
初期立上期間を短縮する。また、菌体密度とくに脱窒菌
の菌数は金属酸化物の添加によって十倍ないし十数倍に
増加し、硝化菌によって生成した亜硝酸、硝酸を迅速に
窒素に還元することができる。[0023] In the interior of the well-acclimated treated water-containing gel nitric
It is inferred from observations with an electron microscope and the like that the germs and the denitrifying bacteria form colonies and cause an active biological reaction. However, in concentrated sludge, several to several tens of cells are loosely connected and separated and aggregated repeatedly. When silicon dioxide having an average particle size of 10 μm is added to this concentrated sludge, silicon dioxide is generated between a group of cells of nitrifying bacteria and denitrifying bacteria ,
Disperses into a stable suspension. If you leave the suspension was left for a while, the size of the group of nitrifying bacteria and denitrifying bacteria is substantially added metal oxides size and nitrifying bacteria and denitrifying bacteria becomes comparable
Of bacteria are strengthened. Nitrifying bacteria and denitrifying bacteria are poisoned by organic solvents and catalysts contained in the gelling agent, and the number of bacteria is greatly reduced during gel formation. However, the addition of metal oxide particles mitigates the effects of poisoning and shortens the initial startup time of the entrapping immobilization carrier for nitrogen removal . In addition, the cell density, particularly the number of denitrifying bacteria, is increased by a factor of ten or more by adding metal oxides, and nitrite and nitric acid generated by nitrifying bacteria can be rapidly reduced to nitrogen.
【0024】また、窒素除去用固定化担体を成形する際
の含水ゲルとしては特に制限はなく、例えば、ポリアク
リルアミド、カラギーナン、寒天、ポリビニルアルコー
ル、アルギン酸ナトリウム等を用いることができる。ま
た、重合剤や重合開始剤は上記薬剤に限定するものでは
ない。There is no particular limitation on the hydrogel used when the immobilizing carrier for removing nitrogen is formed. For example, polyacrylamide, carrageenan, agar, polyvinyl alcohol, sodium alginate and the like can be used. Further, the polymerization agent and the polymerization initiator are not limited to the above agents.
【0025】[0025]
【実施例】図2は、上記実施の形態で説明した本発明の
形成方法により、金属酸化物含有量が5、10、15、
20%になるように成形した窒素除去用包括固定化担体
の物性データであり、且つ金属酸化物の好ましい含有量
を決定するためのデータである。表1は本発明の窒素除
去用包括固定化担体を形成する上での組成物の組成比率
を示したものである。そして、それぞれの窒素除去用包
括固定化担体について比重、沈降速度及び耐磨耗性の指
標となる圧縮強度を調べた。図2中の比較例は、金属酸
化物を含有していないだけで、他の組成物は同じにして
形成した従来品である。FIG. 2 shows that the metal oxide content is 5, 10, 15 or less by the method of the present invention described in the above embodiment.
It is physical property data of the nitrogen- containing entrapping immobilization carrier molded to 20% and data for determining a preferable content of the metal oxide. Table 1 shows nitrogen removal according to the present invention.
Fig. 3 shows the composition ratio of the composition for forming the entrapping immobilization carrier for leaving . Then, the specific gravity, the sedimentation velocity, and the compressive strength as an index of abrasion resistance were examined for each of the nitrogen- immobilized encapsulation-immobilized carriers. The comparative example in FIG. 2 is a conventional product which does not contain a metal oxide but is formed in the same manner as other compositions.
【0026】[0026]
【表1】 本実施例の金属酸化物としては、酸化鉄(含有量5、1
5%)、カオリン(含有量10、20%)及びフライア
ッシュ(含有量5〜20%)を用いた。フライアッシュ
については、JIS規格適合品を用い、二酸化珪素含有
量が50%のフライアッシュ(A)と47%のフライア
ッシュ(B)の2種類について行った。包括固定化担体
のペレット形状としては、3mm角のサイコロ状ペレッ
ト及び3mmφ×3mmの円柱状ペレットの2種類であ
る。[Table 1] Examples of the metal oxide of this example include iron oxide (contents of 5, 1
5%), kaolin (contents 10, 20%) and fly ash (contents 5 to 20%). Regarding fly ash, two types of fly ash (A) having a silicon dioxide content of 50% and fly ash (B) having a silicon dioxide content of 47% were used. There are two types of pellet shapes of the entrapping immobilization carrier: a 3 mm square die pellet and a 3 mm φ × 3 mm columnar pellet.
【0027】また、耐磨耗性については圧縮強度を測定
することにより評価した。圧縮強度は、レオメータを使
用し、ペレット面に徐々に圧力をかけてペレットが破損
した圧力(kg)を測定し、ペレットの断面積(c
m2 )で割り圧縮強度(kg/cm2 )を算出した。The abrasion resistance was evaluated by measuring the compressive strength. The compressive strength was measured by using a rheometer and gradually applying pressure to the pellet surface to measure the pressure (kg) at which the pellet was broken.
m 2 ) to calculate the compressive strength (kg / cm 2 ).
【0028】図2の結果から、先ず、つりがね虫対策に
ついて検討する。From the results shown in FIG. 2, first, the measures against the hanging insects will be discussed.
【0029】ところで、本発明者等が実験を行ったつり
がね虫対策では、つりがね虫が付着していない状態で沈
降速度が5〜8(cm/sec)程度にすることが担体
の流動性の点から適切であるという知見を得、これを比
重にすると、1.07〜1.14程度になる。In the meantime, in the measures against the rodent insects which the present inventors conducted an experiment, the sedimentation speed of the carrier was set to about 5 to 8 (cm / sec) in a state where the rodent was not attached. It is found that the fluidity is appropriate in terms of fluidity, and the specific gravity is about 1.07 to 1.14.
【0030】上記知見を基に図2の結果を見ると、金属
酸化物として酸化鉄及びフライアッシュを使用した場合
は、含有量が10%以下ではつりがね虫付着時に十分な
沈降速度或いは比重を得ることができず、20%以上で
は窒素除去用包括固定化担体を流動させるためのエネル
ギー消費が大きくなる。カオリンの場合には、カオリン
自体の比重が軽いので20%以上の添加も可能である。According to the results shown in FIG. 2 based on the above findings, when iron oxide and fly ash are used as the metal oxide, if the content is 10% or less, a sufficient sedimentation velocity or specific gravity at the time of sticking of the worm is sufficient. Cannot be obtained, and if it is 20% or more, the energy consumption for flowing the entrapping immobilization carrier for nitrogen removal becomes large. In the case of kaolin, since the specific gravity of kaolin itself is light, addition of 20% or more is also possible.
【0031】次に、図2の結果から、窒素除去用包括固
定化担体の耐磨耗性に影響のある圧縮強度についてみる
と、含有量が0%の従来品は、圧縮強度が2〜3kg/
cm2 であり、この程度の圧縮強度では、長期間の使用
により破損しやすいという欠点がある。これに対し、金
属酸化物を含有させた本発明の窒素除去用包括固定化担
体は、含有量に比例して大きくなり、5%含有量でも従
来品の約1.5倍の圧縮強度を得ることができた。この
圧縮強度の結果と前記したつりがね虫対策の結果を合わ
せて含有量を検討すると、含有料は5%〜20%が良
く、好ましくは10%〜20%の範囲内である。Next, looking at the compressive strength which affects the abrasion resistance of the entrapping immobilization carrier for removing nitrogen from the results of FIG. 2, the conventional product having a content of 0% has a compressive strength of 2-3 kg. /
cm 2 , and this degree of compressive strength has a disadvantage that it is easily damaged by long-term use. On the other hand, the entrapping immobilization carrier for nitrogen removal of the present invention containing a metal oxide increases in proportion to the content, and even at a 5% content, obtains about 1.5 times the compressive strength of the conventional product. I was able to. When the content is examined in consideration of the result of the compressive strength and the result of the measures against the hanging insect, the content is preferably 5% to 20%, and more preferably 10% to 20%.
【0032】図3は、下水処理場の活性汚泥を種菌とし
て、金属酸化物を添加した窒素除去用包括固定化担体を
本発明の形成方法により形成し、アンモニア水中で2か
月間馴養した後の窒素除去用包括固定化担体中の硝化
菌、脱窒菌、一般菌のそれぞれの菌数の密度を調べた結
果である。金属酸化物は、二酸化ケイ素と酸化鉄とを主
成分とするフライアッシュを用い、含有量は10、20
%の2水準について行った。また、比較例としては金属
酸化物を添加しない従来品を用いた。FIG. 3 shows that the activated sludge at the sewage treatment plant is used as a seed fungus to form a nitrogen- added entrapping immobilization carrier to which metal oxide has been added according to the method of the present invention, and that it has been acclimated in ammonia water for 2 months. It is a result of examining the densities of the respective numbers of nitrifying bacteria, denitrifying bacteria, and general bacteria in the entrapping immobilization carrier for removing nitrogen . As the metal oxide, fly ash containing silicon dioxide and iron oxide as main components was used.
% For two levels. As a comparative example, a conventional product to which no metal oxide was added was used.
【0033】図3より、従来品の菌数は、硝化菌、脱窒
菌が共に108 、一般菌が5×108 であった。これに
対し、本発明の窒素除去用包括固定化担体の菌数は、フ
ライアッシュ含有量10%では、硝化菌が7×108 、
脱窒菌が3×109 、一般菌が5×109 であり、フラ
イアッシュ含有量20%では、硝化菌が109 、脱窒菌
が8×109 、一般菌が1010となった。この結果から
分かるように、フライアッシュを含有させることによ
り、硝化菌、一般菌、脱窒菌ともに菌数が増加するが、
特に脱窒菌の増加が顕著であることが分かった。そし
て、図3の結果は、フライアッシュを含有した本発明の
窒素除去用包括固定化担体は、フライアッシュを含有し
ない従来品に比べてアンモニア性窒素廃水の窒素除去性
能、特に脱窒処理の性能向上の可能性を示唆している。According to FIG. 3, the number of bacteria of the conventional product was 10 8 for both nitrifying bacteria and denitrifying bacteria, and 5 × 10 8 for general bacteria. On the other hand, the number of bacteria of the entrapping immobilization carrier for nitrogen removal of the present invention is 7 × 10 8 for nitrifying bacteria at a fly ash content of 10%,
Denitrifying bacteria were 3 × 10 9 and general bacteria were 5 × 10 9. At a fly ash content of 20%, nitrifying bacteria were 10 9 , denitrifying bacteria were 8 × 10 9 , and general bacteria were 10 10 . As can be seen from this result, by including fly ash, nitrifying bacteria, general bacteria, and the number of both denitrifying bacteria increase,
In particular, it was found that the increase in denitrifying bacteria was remarkable. And the result of FIG. 3 shows the result of the present invention containing fly ash.
The entrapment immobilization carrier for nitrogen removal suggests the possibility of improving the nitrogen removal performance of ammoniacal nitrogen wastewater, especially the performance of denitrification treatment, as compared with the conventional product containing no fly ash.
【0034】この馴養試験の結果から、本発明者らは、
酸化鉄(含有量10%)、フライアッシュ(含有量5、
10%)、カオリン(20%)を含有した本発明の窒素
除去用包括固定化担体について、アンモニア性窒素濃度
が20mg/lの下水を使った窒素除去性能の確認試験
を30日間連続して試験した。比較例としては、金属酸
化物を添加しない従来品を用いた。図4はその結果であ
る。From the results of this acclimatization test, the present inventors
Iron oxide (content 10%), fly ash (content 5,
10%), the nitrogen of the present invention containing kaolin (20%)
With respect to the entrapping immobilization carrier for removal, a confirmation test of nitrogen removal performance using sewage having an ammonia nitrogen concentration of 20 mg / l was continuously performed for 30 days. As a comparative example, a conventional product to which no metal oxide was added was used. FIG. 4 shows the result.
【0035】図4において、試験30日後の処理水のア
ンモニア性窒素(NH4 −N)の濃度は、金属酸化物を
含有した本発明の窒素除去用包括固定化担体も、金属酸
化物を含有しない従来品も2mg/l以下であり同等で
あった。In FIG. 4, the concentration of ammoniacal nitrogen (NH 4 —N) in the treated water 30 days after the test was such that the entrapping immobilization carrier for nitrogen removal of the present invention containing a metal oxide also contained a metal oxide. The conventional product which did not have the same value of 2 mg / l or less.
【0036】しかしながら、処理水の亜硝酸イオン(N
O2 −N)の濃度は、従来品が5mg/l以下であるの
に対し、フライアッシュ5%の場合で2mg/l以下
に、フライアッシュ10%、酸化鉄10%及びカオリン
20%場合には1mg/l以下にまで低減することがで
きた。一方処理水の硝酸イオン(NO3 −N)の濃度
は、従来品が18〜19mg/lであるのに対し、フラ
イアッシュ5%の場合で14mg/l以下に、フライア
ッシュ10%で10mg/l以下に、酸化鉄10%で8
mg/l以下に、カオリン20%で7mg/l以下にな
った。However, nitrite ions (N
The concentration of O 2 -N) is 5 mg / l or less for the conventional product, 2 mg / l or less for 5% fly ash, and 10% for fly ash, 10% iron oxide and 20% kaolin. Could be reduced to 1 mg / l or less. On the other hand, the concentration of nitrate ion (NO 3 -N) in the treated water is 18 to 19 mg / l for the conventional product, 14 mg / l or less for 5% fly ash, and 10 mg / l for 10% fly ash. 1 or less, 8% with 10% iron oxide
mg / l or less, and kaolin 20% reduced to 7 mg / l or less.
【0037】このように、亜硝酸イオン(NO2 −N)
濃度が低減した原因としては、図3で説明したように、
金属酸化物を含有させることにより脱窒菌の密度が著し
く増加し、これにより、硝酸菌によって生成した亜硝酸
及び硝酸を迅速に窒素に還元した為と考えられる。Thus, the nitrite ion (NO 2 -N)
As explained in FIG. 3, the cause of the decrease in the density is as follows.
It is considered that the density of the denitrifying bacterium was remarkably increased by the inclusion of the metal oxide, whereby the nitrous acid and nitric acid generated by the nitric acid bacterium were rapidly reduced to nitrogen.
【0038】上記の確認試験では、窒素除去性能の他
に、図4に示すように、試験スタート時(0日目)と試
験30日後の窒素除去用包括固定化担体の圧縮強度、比
重、沈降速度の変化についても調査した。In the above confirmation test, in addition to the nitrogen removal performance, as shown in FIG. 4, the compressive strength, specific gravity, and sedimentation of the entrapping immobilization carrier for nitrogen removal at the start of the test (day 0) and after 30 days from the test Changes in speed were also investigated.
【0039】この結果、試験30日後において、本発明
の窒素除去用包括固定化担体及び従来品ともに試験スタ
ート時に比べて圧縮強度、沈降速度が試験スタート時に
比べて数値が小さくなっている。しかし、従来品の一部
には破損が認められたのに対し、本発明の窒素除去用包
括固定化担体は、試験スタート時の圧縮強度が大きくな
っているので、破損は全く認められなかった。また本発
明の窒素除去用包括固定化担体は流動性の点でも従来品
に比べて向上が認められた。As a result, after 30 days from the test, both the compressive strength and the sedimentation speed of the entrapping immobilization carrier for removing nitrogen of the present invention and the conventional product were smaller than those at the start of the test. However, while some of the conventional products were broken, the nitrogen- immobilized encapsulating immobilization carrier of the present invention has a high compressive strength at the start of the test. Not at all. In addition , the entrapping immobilization carrier for removing nitrogen of the present invention was also improved in fluidity as compared with the conventional product.
【0040】このように、本発明は、高分子含水ゲルに
金属酸化物を含有させるという簡単な方法で、硝化菌や
脱窒菌に悪影響を及ぼすことなく流動性を向上でき、耐
磨耗性を向上でき、更には廃水中の窒素除去性能を高め
た窒素除去用包括固定化担体を得ることができる。更に
は、材料コストの安価な 添加物材料を含有させること
により、高価な含水ゲルの使用量を低減することができ
るので、窒素除去用包括固定化担体のコスト削減を図る
こともできる。As described above, according to the present invention, a nitrifying bacterium,
It is possible to improve the fluidity without adversely affecting the denitrifying bacteria , improve the abrasion resistance, and obtain an entrapping immobilization carrier for nitrogen removal having an enhanced performance of removing nitrogen from wastewater. Furthermore, by including an additive material having a low material cost, the amount of expensive hydrogel can be reduced, so that the cost of the entrapping immobilization carrier for nitrogen removal can be reduced.
【0041】[0041]
【発明の効果】以上説明したように、本発明の、窒素除
去用包括固定化担体及びその形成方法によれば、高分子
含水ゲルに金属酸化物を含有させて窒素除去用包括固定
化担体を形成したので、窒素除去性能及び耐磨耗性の向
上、更には担体成形時の成形性の向上という複数の課題
を簡単な方法で同時に解決することができ、極めて有用
である。As described above, according to the present invention, it is possible to remove nitrogen.
According to the leaving entrapping immobilization carrier and the method of forming the same, since the entrapping immobilization carrier for nitrogen removal is formed by adding a metal oxide to the polymer hydrogel, the nitrogen removal performance and abrasion resistance are improved, Can be simultaneously solved by a simple method to improve a plurality of problems of moldability at the time of molding a carrier, and is extremely useful.
【0042】また、金属酸化物を含有させることにより
比重が大きくなるので、つりがね虫対策も合わせて行う
ことができた。Further, since the specific gravity is increased by including the metal oxide, it was possible to take measures against the hanging insect.
【図1】図1は本発明の窒素除去用包括固定化担体の形
成方法を説明するフローの構成図である。FIG. 1 is a configuration diagram of a flow illustrating a method for forming an entrapping immobilization carrier for nitrogen removal according to the present invention.
【図2】図2は本発明の窒素除去用包括固定化担体の物
性を示した表図である。FIG. 2 is a table showing the physical properties of the entrapping immobilization carrier for nitrogen removal of the present invention.
【図3】図3は金属酸化物含有量と硝化菌、一般菌、脱
窒菌との増殖速度の関係を示したグラフである。FIG. 3 is a graph showing the relationship between the metal oxide content and the growth rate of nitrifying bacteria, general bacteria, and denitrifying bacteria.
【図4】図4は本発明の窒素除去用包括固定化担体を用
いてアンモニア性窒素廃水を処理した時の処理水の水質
等を示した表図である。FIG. 4 is a table showing water quality and the like of treated water when ammoniacal nitrogen wastewater is treated using the entrapping immobilization carrier for nitrogen removal of the present invention.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−257180(JP,A) 特開 昭63−137681(JP,A) 特開 平2−65782(JP,A) (58)調査した分野(Int.Cl.7,DB名) C12N 11/00 - 11/18 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-257180 (JP, A) JP-A-63-137681 (JP, A) JP-A-2-65782 (JP, A) (58) Field (Int.Cl. 7 , DB name) C12N 11/00-11/18
Claims (5)
含水ゲル中に包括固定して窒素除去用包括固定化担体を
形成すると共に、 前記高分子含水ゲル中に酸化鉄、酸化珪素から選ばれた
少なくとも1種の金属酸化物微粉末を含有することを特
徴とする窒素除去用包括固定化担体。1. A nitrifying bacteria and entrapping immobilization pellets for entrapping immobilization to nitrogen removal activated sludge in the water-containing polymer gel containing denitrifying bacteria and
Thereby forming iron oxide in said water-containing polymer gel, at least one metal oxide powder and nitrogen removal entrapping immobilization pellets, characterized in that it contains selected from silicon oxide.
ルの状態において5〜20重量%であることを特徴とす
る請求項1の窒素除去用包括固定化担体。2. The entrapping immobilization carrier for removing nitrogen according to claim 1, wherein the content of the metal oxide fine powder is 5 to 20% by weight in a state of a hydrogel.
〜40μであることを特徴とする請求項1又は2の窒素
除去用包括固定化担体。3. The metal oxide fine powder has an average particle size of 5
The nitrogen of claim 1 or 2, wherein
Entrapping immobilization carrier for removal .
素を主成分とする混合物であることを特徴とする請求項
2又は3の窒素除去用包括固定化担体。4. The entrapping immobilization carrier for nitrogen removal according to claim 2, wherein the metal oxide fine powder is a mixture containing iron oxide and silicon oxide as main components.
化物微粉末を混合して1〜2時間放置した混合液を、ゲ
ル原料液に懸濁させて懸濁液を調製し、該懸濁液をゲル
化することを特徴とする窒素除去用包括固定化担体の形
成方法。5. A mixed liquid obtained by mixing activated sludge containing nitrifying bacteria and denitrifying bacteria and metal oxide fine powder and allowed to stand for 1 to 2 hours is suspended in a gel raw material liquid to prepare a suspension. A method for forming an entrapping immobilization carrier for removing nitrogen , wherein the suspension is gelled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09438996A JP3265981B2 (en) | 1996-04-16 | 1996-04-16 | Entrapping immobilization carrier for nitrogen removal and method for forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09438996A JP3265981B2 (en) | 1996-04-16 | 1996-04-16 | Entrapping immobilization carrier for nitrogen removal and method for forming the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09275981A JPH09275981A (en) | 1997-10-28 |
JP3265981B2 true JP3265981B2 (en) | 2002-03-18 |
Family
ID=14108936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09438996A Expired - Fee Related JP3265981B2 (en) | 1996-04-16 | 1996-04-16 | Entrapping immobilization carrier for nitrogen removal and method for forming the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3265981B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69942210D1 (en) | 1999-10-19 | 2010-05-12 | Japan Science & Tech Agency | TRACK ELEMENTS OF THE SUPPORTING SUPPORT FOR BREEDING MICROORGANISMS |
JP3737689B2 (en) * | 2000-09-27 | 2006-01-18 | 青木電器工業株式会社 | How to use pellets containing humic substances |
JP4000593B2 (en) * | 2002-08-30 | 2007-10-31 | 株式会社日立プラントテクノロジー | Immobilized microorganism carrier and method for producing the same |
JP2007268368A (en) * | 2006-03-30 | 2007-10-18 | Hitachi Plant Technologies Ltd | Entrapping immobilization carrier and wastewater treatment system using it |
KR101426730B1 (en) * | 2012-11-20 | 2014-08-05 | 한국과학기술연구원 | Apparatus and method for reduction of nitrate nitrogen using Fe-dependent microbe |
-
1996
- 1996-04-16 JP JP09438996A patent/JP3265981B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09275981A (en) | 1997-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1780271A1 (en) | Entrapping immobilization pellets of anaerobic ammonium oxidizing bacteria and process for producing the same | |
US4791061A (en) | Immobilization of microorganisms by entrapment | |
KR101344801B1 (en) | Entrapping immobilization pellets and process for producing the same, and wastewater treatment process and equipment using the same | |
JP3608913B2 (en) | Bioreactor carrier and production method | |
JP4600817B2 (en) | Method for treating ammonia-containing water | |
JP3265981B2 (en) | Entrapping immobilization carrier for nitrogen removal and method for forming the same | |
JP3801717B2 (en) | Bioreactor carrier and catalyst | |
CN100334008C (en) | Method for treaing uaste water containing aminopolycanboxylic acid | |
JPS6352556B2 (en) | ||
JP2003000238A (en) | Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier | |
CN111465690A (en) | Microorganism immobilization carrier | |
JP2001246397A (en) | Method for removing nitrogen in waste water | |
JP2007268368A (en) | Entrapping immobilization carrier and wastewater treatment system using it | |
JP4131315B2 (en) | Encapsulated microbial carrier and method for producing the same | |
JPH0137987B2 (en) | ||
JP4006750B2 (en) | Immobilized microorganism carrier and environmental purification method using the same | |
JP2007237144A (en) | Nitrogen containing water treatment process and arrangement | |
WO2016067970A1 (en) | Carrier for inclusive immobilization and wastewater treatment device using same | |
JPH09163981A (en) | Entrapped immobilized bacterium carrier and its production | |
JPH05200392A (en) | Carrier for microbe | |
JP2003001284A (en) | Method for cleaning water and device therefor | |
JP6832685B2 (en) | Treatment method of nitrogen-containing wastewater | |
JPH04176399A (en) | Method for preventing flotation of sludge in waste water treating equipment | |
JPH10263575A (en) | Inclusive immobilizing carrier | |
JPH0427837B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080111 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100111 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |