JP3264940B2 - Method for separating transition elements in solution - Google Patents

Method for separating transition elements in solution

Info

Publication number
JP3264940B2
JP3264940B2 JP01990191A JP1990191A JP3264940B2 JP 3264940 B2 JP3264940 B2 JP 3264940B2 JP 01990191 A JP01990191 A JP 01990191A JP 1990191 A JP1990191 A JP 1990191A JP 3264940 B2 JP3264940 B2 JP 3264940B2
Authority
JP
Japan
Prior art keywords
solution
zero
ruthenium
valent
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01990191A
Other languages
Japanese (ja)
Other versions
JPH04260495A (en
Inventor
深沢哲生
朗 笹平
池田孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01990191A priority Critical patent/JP3264940B2/en
Publication of JPH04260495A publication Critical patent/JPH04260495A/en
Application granted granted Critical
Publication of JP3264940B2 publication Critical patent/JP3264940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は遷移元素を含む溶液(例
えば放射性廃液)中から遷移元素を分離する方法に関す
る。
The present invention relates to a method of separating transition elements from the solution containing a transition element (e.g. a radioactive waste liquid).

【0002】[0002]

【従来の技術】従来、溶液から遷移元素を分離する方法
として下記のものがある。例えば放射性廃液から超ウラ
ン元素を分離する方法がアイ・エー・イー・エー,テク
ニカル・ドキュメント,337(1985年)第97頁
から第112頁(IAEA−TECDOC−337(1
985)PP97−112)において論じられている。
これは、放射性廃液中で鉄化合物の沈殿を生ぜしめ、こ
れに該廃液中の超ウラン元素を共沈させる方法である。
また、特開昭57−170827号公報には、Rhを微
量含む排水に第1鉄塩および中和剤を添加して排水のp
Hを調整し、鉄と共にRhを沈殿させる方法が記載され
ている。
2. Description of the Related Art Conventionally, there are the following methods for separating a transition element from a solution. For example, a method for separating transuranium elements from radioactive liquid waste is described in IAE, Technical Document, 337 (1985) pp. 97-112 (IAEA-TECDOC-337 (1)).
985) PP97-112).
This is a method of causing precipitation of an iron compound in a radioactive waste liquid and co-precipitating the transuranium element in the waste liquid.
JP-A-57-170827 discloses that a ferrous salt and a neutralizing agent are added to wastewater containing a trace amount of Rh to reduce the wastewater p.
A method of adjusting H and precipitating Rh with iron is described.

【0003】[0003]

【発明が解決しようとする課題】上記前者の従来方法は
超ウラン元素に対して効果的であるが、その他の遷移元
素、特にルテニウム、テクネウムに対しては分離効率
が低いという問題点がある。上記後者の従来方法もルテ
ニウムやテクネウムの分離を対象とするものではな
い。
[SUMMARY OF THE INVENTION A conventional method of the former is effective against transuranium elements, other transition elements, in particular ruthenium, problem of low separation efficiency for Techne Chi um is is there. The latter conventional method is also not directed to the separation of ruthenium and Techne Ji um.

【0004】本発明の目的は、溶液中の遷移元素を分離
する方法であって、超ウラン元素以外の遷移元素、特に
ルテニウム、テクネウムの分離に対しても有効な方法
を提供することにある。
An object of the present invention is a method of separating transition elements in the solution, the transition element other than transuranium elements, in particular ruthenium, to provide an effective method against separation of Techne Ji um is there.

【0005】[0005]

【課題を解決するための手段】本発明による溶液中の遷
移元素の分離方法は特許請求の範囲の各請求項に記載さ
れたとおりである。本明細書において、0価の金属とい
うのは、イオンや化合物になっていない当該金属単体そ
のものを意味し、好適には金属粉末の形をなしているも
のである。
The method for separating transition elements in a solution according to the present invention is as described in each claim. In the present specification, the zero-valent metal means the metal itself that is not in the form of ions or compounds, and is preferably in the form of a metal powder.

【0006】溶液に添加する0価の金属としては、0価
の鉄が好適であるが、それ以外に、0価のクロム、マン
ガン、コバルト、ニッケル、銅、亜鉛等の金属を用いて
もよい。また溶液に添加する多価金属化合物としては、
3価又は2価の鉄化合物が好適であるが、それ以外に、
クロム、希土類元素等、溶液に可溶でアルカリ領域で水
酸化物沈殿を生成する多価金属化合物を用いてもよい。
[0006] As the zero-valent metal to be added to the solution, zero-valent iron is suitable, but other than that, zero-valent metals such as chromium, manganese, cobalt, nickel, copper, and zinc may be used. . Also, as the polyvalent metal compound to be added to the solution,
Trivalent or divalent iron compounds are preferred, but otherwise,
A polyvalent metal compound, such as chromium or a rare earth element, which is soluble in a solution and generates a hydroxide precipitate in an alkaline region may be used.

【0007】[0007]

【作用】溶液中において2価の鉄イオンおよび/又は3
価の鉄イオン等の多価金属イオンは、溶液がアルカリ性
であるとき、溶液中で水酸化物沈殿を生成する。その
際、アクチノイド元素等の希土類元素は上記沈殿体内に
取込まれるか又は該沈殿体に吸着されて共沈する。これ
により大部分の遷移元素は多価金属と共に沈殿中へ移行
し、溶液中から分離することができる。一方、ルテニウ
ムやテクネウム等の一部の遷移元素は、多価金属の沈
殿に共沈せず溶液中に安定に存在するが、溶液中で0価
の金属により還元されるので、前記多価金属の沈殿とと
もに挙動するようになる。このようにして、溶液中に安
定に存在し得るルテニウムやテクネウム等の遷移元素
も溶液中から分離することができる。
The divalent iron ions and / or 3
Polyvalent metal ions, such as multivalent iron ions, form hydroxide precipitates in the solution when the solution is alkaline. At this time, a rare earth element such as an actinoid element is taken into the precipitate or adsorbed on the precipitate to coprecipitate. As a result, most of the transition elements move into the precipitate together with the polyvalent metal and can be separated from the solution. On the other hand, part of the transition elements such as ruthenium or Techne Ji um, so exist stably in the solution without coprecipitation polyvalent metal precipitation, but is reduced by 0-valent metal in solution, the multi Behaves with the precipitation of the valent metal. In this way, the transition elements such as ruthenium or Techne Chi um that can exist stably in the solution can also be separated from the solution.

【0008】前記の多価金属イオンは、溶液に添加した
多価金属化合物が溶解することによって生じたイオンで
あってよいし、又は、溶液に添加した0価の金属一部が
溶液中で酸化されて生じたイオンでもよい。あるいは、
溶液に添加した3価の鉄化合物の少なくとも一部が溶液
中で還元されて生じたイオンであってもよい。上記の酸
化あるいは還元のために溶液に酸化剤あるいは還元剤を
添加してもよい。
The polyvalent metal ion may be an ion generated by dissolving the polyvalent metal compound added to the solution, or a part of the zero-valent metal added to the solution may be oxidized in the solution. It may be an ion generated. Or,
An ion generated by at least a part of the trivalent iron compound added to the solution being reduced in the solution may be used. An oxidizing agent or a reducing agent may be added to the solution for the above oxidation or reduction.

【0009】[0009]

【実施例】以下に述べる本発明の第1,第2,第3,第
4の実施例は、放射性廃液中から超ウラン元素、ルテニ
ウムやテクネウムを除去する方法として本発明を適用
する場合について示す。
EXAMPLES first invention described below, the second, third, fourth embodiment, when applying the present invention as a method for removing transuranic elements, ruthenium and Texnai Chi um from among radioactive liquid waste It shows about.

【0010】まず第1の実施例を図1により説明する。
図1は本実施例で用いる基本的な装置構成を示した図で
ある。使用済核燃料の再処理工程より発生する中低レベ
ル放射性廃液6を沈殿生成槽1に入れ、0価の鉄と可溶
性の3価の鉄化合物との混合物(混合鉄)7を添加す
る。次にpH調整剤11を加えて溶液中のpHをアルカ
リ域に調整して鉄の水酸化物沈殿を生成させる。放射性
廃液中に含まれる超ウラン元素、ルテニウムやテクネ
ウム等の核種は上記の沈殿とともに共沈する。この際、
攪拌機構10を用いれば沈殿生成は効果的に起こる。沈
殿が十分に成長した後、沈殿除去機構(フィルタ)2で
沈殿の混入を避けながら処理済の廃液9を取り出す。そ
して沈殿体8を最後に取り出す。以上の手順で廃液中の
超ウラン元素、ルテニウムやテクネウムは沈殿体とし
て廃液から除去される。
First, a first embodiment will be described with reference to FIG.
FIG. 1 is a diagram showing a basic device configuration used in the present embodiment. The low-level radioactive waste liquid 6 generated from the reprocessing step of spent nuclear fuel is put into the precipitation tank 1, and a mixture (mixed iron) 7 of zero-valent iron and a soluble trivalent iron compound is added. Next, a pH adjuster 11 is added to adjust the pH in the solution to an alkaline range, thereby causing precipitation of iron hydroxide. Transuranic elements contained in the radioactive liquid waste, nuclides such as ruthenium or Techne Chi <br/> um is co-precipitated with the above precipitate. On this occasion,
When the stirring mechanism 10 is used, the precipitation is effectively generated. After the sediment has sufficiently grown, the treated waste liquid 9 is taken out by the sediment removing mechanism (filter) 2 while preventing the sediment from being mixed. Then, the precipitate 8 is finally taken out. Transuranic elements in the effluent by the above procedure, ruthenium and Texnai Chi um is removed from the waste liquid as a precipitate body.

【0011】本実施例による超ウラン元素(アメリシウ
ムとネプツニウム)及びルテニウムの分離性能について
図2により説明する。図2は分離性能の指標となる除染
係数(DF)を実験により求めた結果である。DFは元
の溶液中に含まれている元素濃度を処理後の溶液中の元
素濃度で割った値であり、DFが高い程分離性能が優れ
ていることになる。DF=103を得られる方法はかな
り効果的な分離方法である。図2ではa,bで示す2つ
の分離方法の実験結果を比較して示している。aは可溶
性の3価の鉄化合物を添加して水酸化第二鉄沈殿を生成
させて遷移元素を共沈させる従来の方法の場合であり、
アメリシウム(Am)とネプツニウム(Np)に対して
は効果的だがルテニウム(Ru)に対しては効果的でな
いことがわかる。bは本実施例による方法での実験結果
であり、可溶性の3価の鉄化合物の他に0価の鉄をも添
加することによりルテニウム(Ru)の分離性能も向上
することがわかる。図2には示していないが、テクネ
ウム(Tc)もルテニウム(Ru)と同様の挙動を示
す。
The separation performance of transuranium elements (americium and neptunium) and ruthenium according to the present embodiment will be described with reference to FIG. FIG. 2 shows the results of experimentally determining a decontamination coefficient (DF) as an index of the separation performance. DF is a value obtained by dividing the concentration of the element contained in the original solution by the concentration of the element in the solution after the treatment, and the higher the DF, the better the separation performance. The method of obtaining DF = 10 3 is a fairly effective separation method. FIG. 2 shows the experimental results of the two separation methods indicated by a and b in comparison. a is the case of a conventional method of adding a soluble trivalent iron compound to form a ferric hydroxide precipitate to coprecipitate a transition element,
It can be seen that it is effective for americium (Am) and neptunium (Np) but not for ruthenium (Ru). b is the experimental result of the method according to the present example, and it can be seen that the separation performance of ruthenium (Ru) is also improved by adding zero-valent iron in addition to the soluble trivalent iron compound. Although not shown in FIG. 2, Techne Ji <br/> um (Tc) also shows the same behavior as ruthenium (Ru).

【0012】本実施例によれば超ウラン元素だけでなく
Ru、Tcも効果的に放射性廃液中より除去することが
できる。また、添加剤として鉄および鉄化合物しか添加
していず、pH操作だけなので、沈殿の処理が容易で、
操作が単純となる利点も有している。
According to this embodiment, not only the transuranium element but also Ru and Tc can be effectively removed from the radioactive waste liquid. In addition, since only iron and iron compounds are added as additives and only pH operation is performed, the treatment of precipitation is easy,
It also has the advantage of simple operation.

【0013】本実施例では0価の鉄の代りに0価のクロ
ム、マンガン、コバルト、ニッケル、銅、亜鉛等の、溶
液に溶解する金属を添加しても同様の効果がある。ま
た、可溶性の3価の鉄化合物の代りにクロム、希土類元
素等の、アルカリ領域で水酸化物沈殿を生成する可溶性
の多価金属化合物を添加しても同様の効果を奏する。
In this embodiment, the same effect can be obtained by adding a metal which dissolves in a solution, such as zero-valent chromium, manganese, cobalt, nickel, copper or zinc, instead of zero-valent iron. Furthermore, exhibits instead chrome trivalent iron compound soluble, such as rare earth elements, the same effect can be added polyvalent metal compound soluble to produce a hydroxide precipitate with an alkaline region.

【0014】次に、沈殿回収の便を考慮した本発明の第
2の実施例を図3により説明する。予めアルカリ領域に
pHを調整した放射性廃液6を沈殿生成槽1中に入れ、
0価の鉄、可溶性の2価の鉄化合物、3価の鉄化合物の
混合物(混合鉄)7を添加して鉄の水酸化物の沈殿を生
成させる。沈殿熟成後、沈殿を含むスラリー溶液はスラ
リー移送ポンプ3によって開閉弁5を経て沈殿除去機構
2へ移送され、ここでフィルタにより沈殿を溶液から分
離する。処理済後の溶液9はそのまま溶液貯槽へ移送さ
れ、他方、フィルタ上に付着した沈殿8は逆洗水12に
より開閉弁5を介して別の貯槽へ移送される。沈殿8は
超ウラン元素等の長寿命核種を含むため、厳密に保管管
理され、将来的には安定固化される。処理済後の放射性
廃液9は長寿命核種を含まないため、比較的簡単な濃縮
等の処理が可能である。
Next, a second embodiment of the present invention will be described with reference to FIG. The radioactive waste liquid 6 whose pH has been adjusted to an alkaline region in advance is put into the precipitation generating tank 1,
A mixture of zero-valent iron, a soluble divalent iron compound, and a trivalent iron compound (mixed iron) 7 is added to form a precipitate of iron hydroxide. After the sedimentation, the slurry solution containing the sediment is transferred by the slurry transfer pump 3 to the sediment removal mechanism 2 via the on-off valve 5, where the sediment is separated from the solution by a filter. The solution 9 after the treatment is transferred to a solution storage tank as it is, while the precipitate 8 attached to the filter is transferred to another storage tank by the backwash water 12 via the on-off valve 5. Since the precipitate 8 contains long-lived nuclides such as transuranium elements, it is strictly stored and managed, and will be stabilized and solidified in the future. Since the radioactive waste liquid 9 after the treatment does not contain a long-lived nuclide, a relatively simple treatment such as concentration can be performed.

【0015】本実施例によれば、放射性廃液中より超ウ
ラン元素、Ru、Tc、希土類元素等の遷移元素を鉄の
水酸化物沈殿中に共沈させ、かつ、この沈殿を効果的に
廃液から除去できる。
According to this embodiment, a transition element such as a transuranium element, Ru, Tc, or a rare earth element is co-precipitated from the radioactive waste liquid into the iron hydroxide precipitate, and this precipitate is effectively removed from the waste liquid. Can be removed from

【0016】本実施例では沈殿の分離方法として通常の
フィルタによる方法を採用したが、パルスフィルタ法、
減圧ろ過法、重力分離法、遠心分離法を用いても同様の
効果がある。また逆洗水12として水を用いたが、他の
溶液を用いても同様の効果がある。
In this embodiment, a method using an ordinary filter is adopted as a method for separating a precipitate, but a pulse filter method,
The same effect can be obtained by using a vacuum filtration method, a gravity separation method, or a centrifugal separation method. Although water was used as the backwash water 12, the same effect can be obtained by using another solution.

【0017】本発明による第3の実施例を図4により説
明する。沈殿生成槽1に放射性廃液6を入れ、0価の鉄
13を添加すると共に、該0価の鉄の一部を廃液6中で
酸化して2価の鉄イオンおよび/又は3価の鉄イオンを
生成せしめる様な酸化剤を放射性廃液6中に添加する。
この様にして、槽1内の放射性廃液6中に0価の鉄と2
価の鉄イオンおよび/又は3価の鉄イオンを共存させ
る。次いで、pH調整剤11を加えて該廃液をアルカリ
性にし、鉄の水酸化物の沈殿を生成させる。この際、溶
液中のpHはpH測定機構14により監視制御する。沈
殿生成後の放射性廃液は沈殿除去機構2により沈殿の混
入を避けながらポンプ3により別の槽へ移送される。処
理済廃液9を除去した後の沈殿体8も別の槽へ移送して
保管管理される。鉄の水酸化物沈殿は比較的安定であ
り、そのままの状態でも長期の保管に適している。
A third embodiment according to the present invention will be described with reference to FIG. The radioactive waste liquid 6 is put into the precipitation tank 1, zero-valent iron 13 is added, and a part of the zero-valent iron is oxidized in the waste liquid 6 to obtain divalent iron ions and / or trivalent iron ions. Is added to the radioactive waste liquid 6.
In this way, zero-valent iron and 2 are contained in the radioactive waste liquid 6 in the tank 1.
A valent iron ion and / or a trivalent iron ion coexist. Next, a pH adjuster 11 is added to make the waste liquid alkaline, and a precipitate of iron hydroxide is generated. At this time, the pH in the solution is monitored and controlled by the pH measuring mechanism 14. The radioactive waste liquid after the formation of the precipitate is transferred to another tank by the pump 3 while the precipitation removing mechanism 2 avoids mixing of the precipitate. The precipitate 8 from which the treated waste liquid 9 has been removed is also transferred to another tank and stored and managed. The hydroxide precipitation of iron is relatively stable and suitable for long-term storage as it is.

【0018】本実施例によれば溶液中に0価の鉄から2
価の鉄イオンまたは/および3価の鉄イオンを生成させ
る必要はあるが、0価の鉄(粉であることが好適)(又
は必要に応じそれに酸化剤を混ぜたもの)のみを添加剤
として準備すればよい。また、pH測定機構により溶液
pHの微妙な調整も容易となる。さらにポンプ3には沈
殿が入らないので通常の液移送ポンプを用いることがで
きる。放射性廃液からの超ウラン元素、ルテニウムおよ
びテクネチウムの分離性能は第1の実施例に示した方法
の場合のそれ(図2参照)と同様である。
According to the present embodiment, the solution containing zero-valent iron
Although it is necessary to generate trivalent iron ions and / or trivalent iron ions, only zero-valent iron (preferably a powder) (or a mixture obtained by mixing an oxidizing agent as necessary) is used as an additive. Just prepare. Further, fine adjustment of the solution pH is facilitated by the pH measurement mechanism. Further, since no sediment enters the pump 3, an ordinary liquid transfer pump can be used. Transuranium elements, ruthenium and
And technetium separation performance is the same as that of the method shown in the first embodiment (see FIG. 2).

【0019】本実施例では0価の鉄を添加剤として用い
たが、溶液に溶解し且つアルカリ領域で沈殿を生成する
0価のニッケル又はコバルト等の金属(粉)を用いても
同様の効果を奏する。
In this embodiment, zero-valent iron is used as an additive. However, similar effects can be obtained by using a zero-valent metal (powder) such as nickel or cobalt which dissolves in a solution and produces a precipitate in an alkaline region. To play.

【0020】第4の実施例を次に説明する。沈殿生成槽
に入れた放射性廃液に0価の鉄と可溶性の3価の鉄化合
物を添加すると共に、該3価の鉄化合物から生じた3価
の鉄イオンの少くとも一部を上記放射性廃液中で還元し
て2価の鉄イオンを生成せしめる様な還元剤を該放射性
廃液中に添加する。この還元剤は、添加する上記0価の
鉄および3価の鉄化合物と予め配合しておいてもよい。
この様にして槽内の放射性廃液中に0価の鉄と2価の鉄
イオンおよび/又は3価の鉄イオンを共存させる。次い
で、前記第3の実施例と同様、該廃液をアルカリ性に
し、鉄の水酸化物の沈殿を生ぜしめ、前記と同様に分離
・移送する。
Next, a fourth embodiment will be described. Zero-valent iron and a soluble trivalent iron compound are added to the radioactive liquid waste placed in the precipitation tank, and at least a part of trivalent iron ions generated from the trivalent iron compound is contained in the radioactive liquid waste. Is added to the radioactive waste liquid so as to generate divalent iron ions by the reduction. This reducing agent may be previously blended with the above-mentioned zero-valent iron and trivalent iron compounds to be added.
In this way, zero-valent iron and divalent iron ions and / or trivalent iron ions coexist in the radioactive waste liquid in the tank. Next, as in the third embodiment, the waste liquid is made alkaline, causing precipitation of iron hydroxide, and separated and transferred in the same manner as described above.

【0021】[0021]

【0022】[0022]

【0023】図は本発明による操作手順を溶液のpH
の調整に着目してブロックフローで示したものである。
本発明では廃液6のpH調整が比較的重要であり、その
ための3通りの方法が考えられる。第1の方法は、まず
廃液のpHを7以下、望ましくは4以下に調整した上で
本発明による添加剤、例えば混合鉄を添加し、次にpH
を7以上、望ましくは9以上13以下に調整して沈殿を
生成させる。この際遷移元素は沈殿中に含有されるの
で、沈殿分離により廃液から分離することができる。第
2の方法は廃液のpHが元々7より低い場合、まず混合
鉄を添加してからpHを7以上に調節し、次に生成した
沈殿を分離する方法である。第3の方法は、廃液のpH
を7以上に調整してから混合鉄を添加して沈殿を生成さ
せる方法であり、この場合、元々廃液のpHが7以上の
場合は上記pH調整のプロセスは当然不必要となる。以
上の如く、いずれの方法も比較的単純な手順で廃液中か
ら遷移元素を分離できる。
FIG. 5 shows the operating procedure according to the invention,
This is shown in a block flow with attention paid to the adjustment of.
In the present invention, the pH adjustment of the waste liquid 6 is relatively important, and three methods are conceivable. In the first method, the pH of the waste liquid is first adjusted to 7 or less, preferably 4 or less, and then the additive according to the present invention, for example, mixed iron is added.
Is adjusted to 7 or more, preferably 9 or more and 13 or less to generate a precipitate. At this time, since the transition element is contained in the precipitate, it can be separated from the waste liquid by precipitation separation. In the second method, when the pH of the waste liquid is originally lower than 7, a mixed iron is first added, the pH is adjusted to 7 or more, and then the generated precipitate is separated. The third method is the pH of the waste liquid.
Is adjusted to 7 or more, and mixed iron is added to generate a precipitate. In this case, if the pH of the waste liquid is originally 7 or more, the pH adjustment process is naturally unnecessary. As described above, in any of the methods, the transition element can be separated from the waste liquid by a relatively simple procedure.

【0024】[0024]

【発明の効果】本発明によれば、に含まれるルテニ
ウムおよびテクネチウムを多価金属の水酸化物沈殿と共
に共沈させることができるので、液からルテニウムお
よびテクネチウムを高効率で分離できる効果がある。
溶液が放射性廃液である場合に、放射性廃液から長
寿命核種の超ウラン元素およびテクネウムならびにγ
線放出核種のルテニウムを分離できるので、廃液の取扱
いを容易にでき、上記危険性の高い放射性核種の減容、
安定貯蔵に資する効果がある。
According to the present invention, it is included in the solvent solution Ruteni
Since the presence and technetium can be coprecipitated along with the polyvalent metal hydroxide precipitate, Contact ruthenium from solvent solution
And technetium can be separated with high efficiency . Ma
And, when the solution is radioactive waste, transuranic elements and Techne Chi um and γ long lived nuclides from the radioactive liquid waste
Since ruthenium, which is a radionuclide, can be separated, waste liquids can be easily handled, and the volume of the high-risk radionuclide can be reduced.
Effect contribute to the stable storage there Ru.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に用いる装置の図。FIG. 1 is a diagram of an apparatus used in a first embodiment of the present invention.

【図2】本発明の効果を従来技術と比較して例示した
図。
FIG. 2 is a diagram illustrating the effect of the present invention in comparison with a conventional technique.

【図3】本発明の第2の実施例に用いる装置の図。FIG. 3 is a diagram of an apparatus used in a second embodiment of the present invention.

【図4】本発明の第3の実施例に用いる装置の図。FIG. 4 is a diagram of an apparatus used in a third embodiment of the present invention.

【図5】本発明の操作フローの例示図。FIG. 5 is an exemplary diagram of an operation flow according to the present invention.

【符号の説明】[Explanation of symbols]

1…沈殿生成槽 2…沈殿除去機構 3…スラリー移送ポンプ 6…廃液 7…沈殿化剤 11…pH調整剤 DESCRIPTION OF SYMBOLS 1 ... Precipitation production tank 2 ... Precipitation removal mechanism 3 ... Slurry transfer pump 6 ... Waste liquid 7 ... Precipitating agent 11 ... pH adjuster

フロントページの続き (51)Int.Cl.7 識別記号 FI G01N 31/00 G01N 31/00 Y 31/02 31/02 G21F 9/10 G21F 9/10 (56)参考文献 特開 昭50−140799(JP,A) 特開 昭62−204200(JP,A) 伊藤勝雄,テクネチウムイオンの水酸 化鉄による共沈反応,日本原子力学会 誌,日本,日本原子力学会,1982年 2 月28日,24巻2号,64−68頁 (58)調査した分野(Int.Cl.7,DB名) C02F 1/70 C01G 55/00 C01G 57/00 C02F 1/62 G01N 31/00 G21F 9/10 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI G01N 31/00 G01N 31/00 Y 31/02 31/02 G21F 9/10 G21F 9/10 (56) References JP-A-50-140799 ( JP, A) JP-A-62-204200 (JP, A) Katsuo Ito, Coprecipitation reaction of technetium ion with iron hydroxide, Journal of the Atomic Energy Society of Japan, Japan, Atomic Energy Society of Japan, February 28, 1982, Vol. 24 No. 2, pp. 64-68 (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/70 C01G 55/00 C01G 57/00 C02F 1/62 G01N 31/00 G21F 9/10

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくともルテニウムおよびテクネチウ
ムを含む溶液に、アルカリ性領域で水酸化物を生成する
多価金属化合物と、該溶液に溶解してルテニウムおよび
テクネチウムを還元しかつアルカリ性領域で水酸化物を
生成する0価の金属とを添加し、前記溶液がアルカリ性
であるという条件下でかつ前記多価金属のイオンと前記
0価の金属が共存する条件下で、前記多価金属の水酸化
物とルテニウムおよびテクネチウムとを共沈させること
を特徴とする溶液中の遷移元素の分離方法。
At least ruthenium and technetium
Produces hydroxides in solutions containing alkaline in the alkaline region
A polyvalent metal compound, ruthenium and
Reduces technetium and produces hydroxide in the alkaline region
A 0-valent metal to produce the addition, the solution is the condition under a and the polyvalent metal ion that is alkaline
Under the condition that zero-valent metal coexists, hydroxylation of the polyvalent metal
A method for separating transition elements in a solution, comprising coprecipitating a substance with ruthenium and technetium .
【請求項2】 少なくとも超ウラン元素、ルテニウムお
よびテクネチウムを含む溶液に、アルカリ性領域で水酸
化物を生成する多価金属化合物と、該溶液に溶解してル
テニウムおよびテクネチウムを還元しかつアルカリ性領
域で水酸化物を生成する0価の金属とを添加し、前記
液がアルカリ性であるという条件下でかつ前記多価金属
のイオンと前記0価の金属が共存する条件下で、前記多
価金属の水酸化物と超ウラン元素、ルテニウムおよびテ
クネチウムとを共沈させることを特徴とする溶液中の遷
移元素の分離方法。
(2) at least a transuranium element, ruthenium and
And technetium in a solution containing
A polyvalent metal compound that forms a chloride;
Reduces ruthenium and technetium and reduces alkalinity
It was added and 0-valent metal to produce a hydroxide in range, a condition under that the solvent <br/> solution is alkaline and the polyvalent metal
Under the condition that the above-mentioned ion and the zero-valent metal coexist,
Hydroxides of valent metals and transuranium elements, ruthenium and te
The method of separating transition elements dissolved solution you characterized by co-precipitation and Kunechiumu.
【請求項3】 前記多価金属化合物および前記0価の金
属を前記溶液に添加した後、この溶液をアルカリ性にす
ることを特徴とする請求項1または請求項2のいずれか
記載の溶液中の遷移元素の分離方法。
3. The polyvalent metal compound and the zero-valent gold
After the genus is added to the solution, the solution is made alkaline.
3. The method according to claim 1, wherein
The method of separating transition elements in solution according to.
【請求項4】 アルカリ性に調整された前記溶液に、前
記多価金属化合物および前記0価の金属を添加すること
を特徴とする請求項1または請求項2のいずれかに記載
の溶液中の遷移元素の分離方法。
4. The method according to claim 1 , wherein said solution adjusted to be alkaline has
Adding said polyvalent metal compound and said zero-valent metal
The method for separating a transition element in a solution according to claim 1, wherein:
【請求項5】 前記溶液がアルカリ性である場合に、前
記多価金属化合物および前記0価の金属を前記溶液に添
加することを特徴とする請求項1または請求項2のいず
れかに記載の溶液中の遷移元素の分離方法。
5. The method according to claim 1, wherein said solution is alkaline.
The polyvalent metal compound and the zero-valent metal are added to the solution.
3. The method according to claim 1, further comprising:
A method for separating a transition element from a solution according to any of the above items .
【請求項6】 少なくともルテニウムおよびテクネチウ
ムを含む溶液を酸性にし、アルカリ性領域で水酸化物を
生成する多価金属化合物と、該溶液に溶解してルテニウ
ムおよびテクネチウムを還元しかつアルカリ性領域で水
酸化物を生成する0価の金属とを前記溶液に添加し、次
に、前記溶液をアルカリ性にし、前記溶液がアルカリ性
であるという条件下でかつ前記多価金属のイオンと前記
0価の 金属が共存する条件下で、前記金属の水酸化物と
ルテニウムおよびテクネチウムとを共沈させることを特
徴とする溶液中の遷移元素の分離方法。
6. At least ruthenium and technetium
The solution containing the acid is acidified and the hydroxide is removed in the alkaline region.
The resulting polyvalent metal compound and ruthenium dissolved in the solution
And technetium in the alkaline region
Adding a zero-valent metal that forms an oxide to the solution;
The solution is made alkaline, and the solution is made alkaline.
And the polyvalent metal ion and the
Under the condition that a zero-valent metal coexists, the hydroxide of the metal and
It specially co-precipitates ruthenium and technetium.
A method for separating transition elements in a solution.
【請求項7】 少なくとも超ウラン元素、ルテニウムお
よびテクネチウムを含む溶液を酸性にし、アルカリ性領
域で水酸化物を生成する多価金属化合物と、該溶液に溶
解してルテニウムおよびテクネチウムを還元しかつアル
カリ性領域で水酸化物を生成する0価の金属を前記溶液
に添加し、次に、前記溶液をアルカリ性にし、前記溶液
がアルカリ性であるという条件下でかつ前記多価金属の
イオンと前記0価の金属が共存する条件下で、前記金属
の水酸化物と超ウラン元素、ルテニウムおよびテクネチ
ウムとを共沈させることを特徴とする溶液中の遷移元素
の分離方法。
7. At least a transuranium element, ruthenium and
Acid and the solution containing technetium
Metal compounds that form hydroxides in the
To reduce ruthenium and technetium
A solution in which a zero-valent metal that forms a hydroxide in the potash region is added to the solution
And then make the solution alkaline and add the solution
Is alkaline and the polyvalent metal
Under conditions where ions and the zero-valent metal coexist, the metal
Hydroxide and transuranium, ruthenium and technetic
A method for separating transition elements in a solution, comprising coprecipitating the transition element with a solution.
【請求項8】 前記多価金属化合物が2価の鉄化合物お
よび/または3価の鉄化合物であり、前記0価の金属が
0価の鉄であることを特徴とする請求項1ないし請求項
7のいずれかに記載の溶液中の遷移元素の分離方法。
8. The method according to claim 1, wherein the polyvalent metal compound is a divalent iron compound.
And / or a trivalent iron compound, wherein the zero-valent metal is
Claim 1 or Claim 2 which is zero-valent iron.
8. The method for separating a transition element from a solution according to any one of items 7 to 7 .
【請求項9】 前記0価の金属がFe、NiおよびCo
のいずれかであることを特徴とする請求項1ないし請求
項7のいずれかに記載の溶液中の遷移元素の分離方法。
9. The method according to claim 8, wherein said zero-valent metal is Fe, Ni and Co.
The method for separating transition elements in a solution according to any one of claims 1 to 7, wherein the method is any of the following.
【請求項10】 少なくとも超ウラン元素、ルテニウム
およびテクネチウムを含む放射性廃液に、アルカリ性領
域で水酸化物を生成する多価金属化合物と、該溶液に溶
解してルテニウムおよびテクネチウムを還元しかつアル
カリ性領域で水酸化物を生成する0価の金属とを添加
し、前記放射性廃液がアルカリ性であるという条件下で
かつ前記多価金属のイオンと前記0価の金属が共存する
条件下で、前記多価金属の水酸化物と超ウラン元素、ル
テニウムおよびテクネチウムとを共沈させることを特徴
とする溶液中の遷移元素の分離方法。
10. At least transuranium element, ruthenium
And radioactive waste containing technetium
Metal compounds that form hydroxides in the
To reduce ruthenium and technetium
Adds a zero-valent metal that produces hydroxide in the potash region
And under the condition that the radioactive waste liquid is alkaline
And the ion of the polyvalent metal and the zero-valent metal coexist
Under the conditions, the hydroxide of the polyvalent metal and the transuranium element,
Co-precipitated with ruthenium and technetium
A method for separating transition elements in a solution.
【請求項11】 前記多価金属化合物が2価の鉄化合物
および/または3価の鉄化合物であり、前記0価の金属
が0価の鉄であることを特徴とする請求項10に記載の
溶液中に遷移元素の分離方法。
11. The polyvalent metal compound is a divalent iron compound.
And / or a trivalent iron compound, wherein said zero-valent metal
Is zero-valent iron.
Method for separating transition elements in solution.
JP01990191A 1991-02-13 1991-02-13 Method for separating transition elements in solution Expired - Fee Related JP3264940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01990191A JP3264940B2 (en) 1991-02-13 1991-02-13 Method for separating transition elements in solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01990191A JP3264940B2 (en) 1991-02-13 1991-02-13 Method for separating transition elements in solution

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000401559A Division JP2001232375A (en) 2000-12-28 2000-12-28 Method for separating transition metal in solution

Publications (2)

Publication Number Publication Date
JPH04260495A JPH04260495A (en) 1992-09-16
JP3264940B2 true JP3264940B2 (en) 2002-03-11

Family

ID=12012110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01990191A Expired - Fee Related JP3264940B2 (en) 1991-02-13 1991-02-13 Method for separating transition elements in solution

Country Status (1)

Country Link
JP (1) JP3264940B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714478B2 (en) * 2005-02-18 2011-06-29 パナソニック株式会社 Heavy metal containing wastewater treatment method and heavy metal containing wastewater treatment equipment
KR102231760B1 (en) * 2018-01-03 2021-03-25 주식회사 엘지화학 Coprecipitation reactor
CN111686685B (en) * 2020-05-06 2022-11-15 广州大学 Biochar-based composite material and preparation method and application thereof
CN115353158A (en) * 2022-08-11 2022-11-18 中冶瑞木新能源科技有限公司 Method for preparing sulfate solution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
伊藤勝雄,テクネチウムイオンの水酸化鉄による共沈反応,日本原子力学会誌,日本,日本原子力学会,1982年 2月28日,24巻2号,64−68頁

Also Published As

Publication number Publication date
JPH04260495A (en) 1992-09-16

Similar Documents

Publication Publication Date Title
US4800024A (en) Removal of heavy metals and heavy metal radioactive isotopes from liquids
Cornell et al. The effect of nickel on the conversion of amorphous iron (III) hydroxide into more crystalline iron oxides in alkaline media
JP3264940B2 (en) Method for separating transition elements in solution
Nash et al. Speciation patterns of actinides in natural waters: a laboratory investigation
JP2001232375A (en) Method for separating transition metal in solution
JP2016061784A (en) Method for treating radioactive waste liquid generated in serious accident of atomic power plant
JPH05220467A (en) Method for separating radioactive nuclide in radioactive waste liquid and method for separating useful or toxic elements in industrial waste liquid
CN112908508B (en) Method for treating radioactive analysis waste liquid by one-step method
JPS642918B2 (en)
Sanchez Chemical speciation and adsorption behavior of plutonium in natural waters
JPS60214299A (en) Method of removing radioactivity in radioactive waste liquor
Kim et al. Magnetite dissolution using hydrazine-acid solution for chemical decontamination
JP4225659B2 (en) Decontamination method of radioactive liquid waste
JP2021120662A (en) Radioactive waste liquid treatment system and method for treating radioactive waste liquid
Hummel et al. The effect of degradation products of strong acidic cation exchange resins on radionuclide speciation: A case study with Ni2+
Joseph et al. Dissolution behaviour of chromium substituted haematites in an oxidative/reductive-complexing agent environment
Vadivelu et al. Dissolution of chromite in oxidizing media and sorption of dissolved metal ion onto in situ formed manganese dioxide
Fukuda et al. Adsorption/desorption of lanthanides on metal oxides interfaces
JPH1194993A (en) Method for treating radioactive material containing waste liquid
Kim et al. A concept for an emergency countermeasure against radioactive wastewater generated in severe nuclear accidents like the Fukushima Daiichi disaster
RU2753107C1 (en) Method for purifying nitrogen acid solutions from americium
Navratil Wastewater treatment technology based on iron oxides
Moorthy et al. Laboratory and loop studies on chemical methodologies for decontamination of BWR coolant system surfaces
Rosinski et al. Scavenging Radionuclides in Substitute Ocean Water
JPS6039596A (en) Method of removing transition metal from solution containingcomplexing agent

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees