JP3264106B2 - Ceramic composite materials - Google Patents

Ceramic composite materials

Info

Publication number
JP3264106B2
JP3264106B2 JP19347094A JP19347094A JP3264106B2 JP 3264106 B2 JP3264106 B2 JP 3264106B2 JP 19347094 A JP19347094 A JP 19347094A JP 19347094 A JP19347094 A JP 19347094A JP 3264106 B2 JP3264106 B2 JP 3264106B2
Authority
JP
Japan
Prior art keywords
composite material
ceramic composite
yag
plane
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19347094A
Other languages
Japanese (ja)
Other versions
JPH07187893A (en
Inventor
芳春 和久
英樹 大坪
泰彦 神徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP19347094A priority Critical patent/JP3264106B2/en
Priority to US08/335,919 priority patent/US5484752A/en
Priority to DE69408939T priority patent/DE69408939T2/en
Priority to EP94117640A priority patent/EP0654456B1/en
Publication of JPH07187893A publication Critical patent/JPH07187893A/en
Application granted granted Critical
Publication of JP3264106B2 publication Critical patent/JP3264106B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は室温から高温までの広い
範囲にわたって機械的強度が大きくかつ耐クリープ特性
が良好であり、さらに耐酸化性が優れており、高温に曝
される構造材料として好適に使用することのできる、セ
ラミックス複合材料に関する。
The present invention has high mechanical strength over a wide range from room temperature to high temperature, has good creep resistance, and has excellent oxidation resistance, and is suitable as a structural material exposed to high temperatures. The present invention relates to a ceramic composite material that can be used for:

【0002】[0002]

【従来の技術】高温下で用いられるセラミックス材料と
してSiCあるいはSiが期待され、その実用化
が研究されてきたが、これらの材料は高温特性が充分で
はなく、実用化する上で問題となっている。その代替材
料としてSEP社の化学気相含浸法によるSiC/Si
C複合材料が脚光を浴び、現在では世界最高の高温材料
と考えられており、その研究開発が進められているが、
その使用温度範囲は1400℃以下とされている。
SiC or Si 3 N 4 is of the Prior Art Ceramic materials used at high temperatures is expected, although its practical application has been studied, these materials are not sufficient high temperature properties, problems in practical use It has become. As an alternative material, SiC / Si by chemical vapor impregnation of SEP
C-composite material is in the spotlight and is currently considered to be the world's best high-temperature material.
The operating temperature range is set to 1400 ° C. or less.

【0003】Journal of the Amer
ican Ceramics Society76巻1
号29〜32ページ(1993年)には、Al
Al12共晶で示されるアルミナとイットリア
・アルミナ・ガーネット(以下において「YAG」とい
うことがある。)とからなる複合体が開示されている。
さらに、この文献には、上記複合体の製法として、Al
とYとの混合粉末を溶融し、ついでルツボ
内で一方向に溶解凝固する方法が開示されている。
[0003] Journal of the Amer
ican Ceramics Society Volume 76 1
No. 29-32 (1993), Al 2 O 3
A composite comprising alumina represented by Y 3 Al 5 O 12 eutectic and yttria-alumina-garnet (hereinafter sometimes referred to as “YAG”) is disclosed.
Further, this document discloses that the production method of the above-mentioned composite is Al
A method is disclosed in which a mixed powder of 2 O 3 and Y 2 O 3 is melted and then melted and solidified in one direction in a crucible.

【0004】上記文献29ページ右欄9〜10行の記載
及び同ページ図1及び図2から、上記複合体は、多結晶
からなり、粒界相を有していることがわかる。換言する
と、この複合体はコロニーの集合体から構成されてい
る。このことは、例えば、上記文献30ページ左欄最終
行〜同右欄1行の「破壊は通常Al−YAG界面
に沿って走る亀裂を有するコロニー境界に沿っており」
との記載からも裏付けられる。そして、このコロニー境
界が上記文献30ペ−ジの図2中において他の部分に比
較して組織が大きくなっている部分で示されている。
From the description on page 29, right column, lines 9 to 10 and FIGS. 1 and 2 on the same page, it can be seen that the composite is made of polycrystal and has a grain boundary phase. In other words, this complex is composed of an aggregate of colonies. This can, for example, "is along the colony boundaries with destruction running along the usual Al 2 O 3-YAG interface crack" of the document 30 page left column, last line - the right column, line 1
This is supported by the description. The boundary of the colony is shown in FIG. 2 on page 30 of the document where the tissue is larger than the other portions.

【0005】[0005]

【発明が解決しようとする課題】前記文献に開示されて
いる複合材料は、例えば図4に示されるように、歪み速
度と一定にした場合の応力は1530℃及び1650℃
でサファイア繊維のそれとほぼ同程度である。さらに、
本発明者の実験によると、上記文献に記載の複合体は、
複合体内部に気泡あるいはボイドを含有しており、高温
において機械的強度が急激に低下することが認められ
た。
As shown in FIG. 4, for example, as shown in FIG. 4, when the strain rate is constant and the stress is constant at 1530 ° C. and 1650 ° C.
About the same as that of sapphire fiber. further,
According to the experiments of the present inventors, the complex described in the above-mentioned literature is:
It was confirmed that the composite contained bubbles or voids, and the mechanical strength was rapidly reduced at high temperatures.

【0006】本発明の目的は、単結晶α−Al
多結晶YAGとからなり、室温から高温にわたって優れ
た機械的強度及びクリープ特性を有し、特に高温におけ
るこれら特性が飛躍的に改善されたセラミックス複合材
料を提供することにある。
An object of the present invention is to provide a single crystal α-Al 2 O 3 and a polycrystalline YAG, which have excellent mechanical strength and creep characteristics from room temperature to high temperature, and that these characteristics particularly at high temperature are dramatically improved. It is to provide an improved ceramic composite material.

【0007】[0007]

【課題を解決するための手段】 本発明の上記目的は、
単結晶α−Alと多結晶YAl12とから
なるセラミックス複合材料によって達成される。
Means for Solving the Problems The object of the present invention is to
This is achieved by a ceramic composite material composed of single crystal α-Al 2 O 3 and polycrystalline Y 3 Al 5 O 12 .

【0008】以下に本発明のセラミックス複合材料を詳
細に説明する。図1及び図2は、それぞれ、後述する実
施例1で得られたセラミックス複合材料の凝固方向に対
して直角な面及び約9度傾けた面(直角な面ではAl
の回折ピークが得られないので約9度傾けた面から
測定した。)からのX線回折を示す図である。
Hereinafter, the ceramic composite material of the present invention will be described in detail. 1 and 2 show a plane perpendicular to the solidification direction of the ceramic composite material obtained in Example 1 to be described later and a plane inclined by about 9 degrees (Al 2 in the plane perpendicular to the solidification direction).
Since the diffraction peak of O 3 was not obtained, the measurement was performed from a plane inclined by about 9 degrees. FIG. 3 is a diagram showing X-ray diffraction from the above.

【0009】図1にはYAGの(211)面、(22
0)面、(422)面、(431)面、(541)面、
(721)面及び(651)面からの回折に相当する2
θ=18.06度、20.88度、36.58度、3
8.16度、49.1度、56.22度及び60.64
度のピークが観察される。
FIG. 1 shows the (211) plane of YAG, (22)
0) plane, (422) plane, (431) plane, (541) plane,
2 corresponding to diffraction from the (721) plane and the (651) plane
θ = 18.06 degrees, 20.88 degrees, 36.58 degrees, 3
8.16 degrees, 49.1 degrees, 56.22 degrees and 60.64
A degree peak is observed.

【0010】図2には、Alについてはその(1
10)面からの回折に相当する2θ=37.8度のピー
クのみが観察され、他方、YAGについてはその(22
0)面、(440)面、(640)面及び(660)面
からの回折に相当する2θ=20.74度、42.5度
及び54.92度のピークが観察される。図1及び図2
から、本発明のセラミックス複合材料は単結晶α−Al
と多結晶YAGとから構成されていることがわか
る。
FIG. 2 shows that (1) for Al 2 O 3.
Only the peak at 2θ = 37.8 degrees corresponding to the diffraction from the 10) plane is observed, while for YAG, the (22)
Peaks at 2θ = 20.74 °, 42.5 ° and 54.92 ° corresponding to diffraction from the (0), (440), (640) and (660) planes are observed. 1 and 2
Therefore, the ceramic composite material of the present invention is a single crystal α-Al
It can be seen that it is composed of 2 O 3 and polycrystalline YAG.

【0011】図3は後述する実施例1で得られたセラミ
ックス複合材料の光学顕微鏡写真であり、前記した公知
文献の図1及び図2に見られるような、コロニー、粒界
相あるいは粗大粒子は観察されない。なお、コロニーと
は粗大粒子で特徴付けられる粒界で囲まれた領域を意味
する。
FIG. 3 is an optical micrograph of the ceramic composite material obtained in Example 1 described later. As shown in FIGS. 1 and 2 of the above-mentioned known document, colonies, grain boundary phases or coarse particles are Not observed. Note that a colony means a region surrounded by grain boundaries characterized by coarse particles.

【0012】他方、図4は後述する比較例1で得られた
複合材料の光学顕微鏡写真であり、この複合材料は前記
した公知文献の図1及び図2に示されているようなコロ
ニー、粒界相あるいは粗大粒子を有していることがわか
る。
On the other hand, FIG. 4 is an optical micrograph of a composite material obtained in Comparative Example 1 described later. This composite material has colonies and grains as shown in FIG. 1 and FIG. It turns out that it has a boundary phase or coarse particles.

【0013】本発明のセラミックス複合材料は、単結晶
α−Alと多結晶YAGとが微細なレベルで均質
に海島構造を形成しており、単結晶α−Alが海
を、多結晶YAGが島を、それぞれ、形成している。海
島の大きさは凝固条件を変更することによって制御が可
能であるが、一般には5〜50μmである。
In the ceramic composite material of the present invention, the single crystal α-Al 2 O 3 and the polycrystalline YAG form a sea-island structure uniformly at a fine level, and the single crystal α-Al 2 O 3 forms the sea. , Polycrystalline YAG form islands, respectively. The size of the sea-island can be controlled by changing the coagulation conditions, but is generally 5 to 50 μm.

【0014】AlとYAGとは、Al55
容積%、YAG45容積%で共晶を形成するが、本発明
のセラミックス複合材料においては、原料粉末のAl
及びYAG粉末の配合割合を変えることにより、単
結晶α−Al約20〜80容積%、多結晶YAG
約80〜20容積%の範囲内でその分率を変化させるこ
とができる。
Al 2 O 3 and YAG are Al 2 O 3 55
A eutectic is formed by volume% and YAG 45 volume%. In the ceramic composite material of the present invention, Al 2 of the raw material powder is used.
By changing the mixing ratio of O 3 and YAG powder, about 20 to 80% by volume of single crystal α-Al 2 O 3 and polycrystalline YAG
The fraction can vary within the range of about 80 to 20% by volume.

【0015】本発明のセラミックス複合材料は、例えば
以下の方法によって調製することができる。最初にα−
Al粉末及びY粉末を、所望する成分比率
のセラミックス複合材料を生成する割合で混合して、混
合粉末を調製する。混合方法については特別の制限はな
く、乾式混合法及び湿式混合法のいずれも採用すること
ができる。湿式混合法を用いる際の媒体としては、メタ
ノール、エタノールのようなアルコールが一般に使用さ
れる。ついで、この混合粉末を公知の溶解炉、例えばア
ーク溶解炉を用いて、両原料が溶解する温度、例えば1
800〜2500℃に加熱して溶解する。
The ceramic composite material of the present invention can be prepared, for example, by the following method. First α-
The mixed powder is prepared by mixing the Al 2 O 3 powder and the Y 2 O 3 powder at a ratio that produces a ceramic composite material having a desired component ratio. There is no particular limitation on the mixing method, and any of a dry mixing method and a wet mixing method can be employed. As a medium when using the wet mixing method, an alcohol such as methanol or ethanol is generally used. Then, using a known melting furnace, for example, an arc melting furnace, the mixed powder is melted at a temperature at which both raw materials are melted, for example, at 1 ° C.
Heat to 800 to 2500 ° C to dissolve.

【0016】引き続き、上記の溶解物をそのままルツボ
に仕込み一方向に凝固させて、本発明のセラミックス複
合材料を調製する。別の方法として、上記の溶解物を一
旦凝固させた後に粉砕し、粉砕物をルツボに仕込み、つ
いで溶解させて一方向に凝固させる方法も採用すること
ができる。
Subsequently, the above-mentioned melt is charged into a crucible as it is and solidified in one direction to prepare a ceramic composite material of the present invention. As another method, a method in which the above-mentioned melt is once solidified and then pulverized, the pulverized material is charged in a crucible, and then dissolved and solidified in one direction can be adopted.

【0017】溶解凝固の際の雰囲気圧力は、通常10
−3torr以下である。また、一方向に凝固させると
きのルツボの移動速度、換言するとセラミックス複合材
料の成長速度は通常50mm/時間より大きくかつ20
0mm/時間である。雰囲気圧力及び移動速度以外の調
製条件ははそれ自体公知の方法の条件と同様である。
Atmospheric pressure during melt-solidification is usually 10
−3 torr or less. In addition, the moving speed of the crucible when solidifying in one direction, in other words, the growth speed of the ceramic composite material is usually larger than 50 mm / hour and less than 20 mm.
0 mm / hour. The preparation conditions other than the atmospheric pressure and the moving speed are the same as those of the method known per se.

【0018】溶解凝固の際の雰囲気圧力が条件範囲外に
なると、コロニーが生成し、かつボイドがコロニー界面
に生成しやすくなり、機械的強度及びクリープ特性の優
れた複合材料を得ることが困難になる。
If the atmospheric pressure during the melt-solidification is out of the range, colonies are formed and voids are easily formed at the colony interface, and it is difficult to obtain a composite material having excellent mechanical strength and creep characteristics. Become.

【0019】一方向凝固させる装置としては、垂直方向
に設置された円筒状の容器内にルツボが上下方向に移動
可能に収納されており、円筒状容器の略中央部外側に加
熱用の誘導コイルが取り付けられており、容器内空間を
減圧にするための真空ポンプが設置されている、それ自
体公知の装置を使用することができる。
As an apparatus for one-way solidification, a crucible is housed in a vertically disposed cylindrical container so as to be movable in the vertical direction, and an induction coil for heating is provided outside a substantially central portion of the cylindrical container. And a device known per se in which a vacuum pump for reducing the pressure in the container is installed can be used.

【0020】[0020]

【実施例】以下に実施例及び比較例を示す。EXAMPLES Examples and comparative examples are shown below.

【0021】実施例1 α−Al粉末(住友化学工業製、商品名AKP−
30)及びY粉末(信越化学工業製、微粉タイ
プ)を、前者対後者のモル比が82%対18%になる割
合で、エタノールを用いて湿式ボールミルによって混合
し、得られたスラリからロータリエバポレイタを用いて
エタノールを除去した。
Example 1 α-Al 2 O 3 powder (AKP-, trade name, manufactured by Sumitomo Chemical Co., Ltd.)
30) and Y 2 O 3 powder (fine powder type, manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed by a wet ball mill using ethanol in a molar ratio of the former to the latter of 82% to 18%, and the resulting slurry was obtained. The ethanol was removed from the mixture using a rotary evaporator.

【0022】こうして得られたα−Al及びY
からなる混合粉末をチャンバー内に設置されたルツ
ボに仕込み、10−5torrの雰囲気圧力に維持し
て、高周波コイルを用いてルツボを1850〜1900
℃に加熱して、金型内の混合粉末を溶解した。つぎに、
上記と同一の雰囲気圧力下にルツボを60mm/時間の
速度で降下させ一方向凝固させて、セラミックス複合材
料を得た。
The α-Al 2 O 3 and Y 2 thus obtained
The mixed powder made of O 3 is charged into a crucible installed in a chamber, and the crucible is maintained at an atmospheric pressure of 10 −5 torr, and the crucible is heated to 1850 to 1900 using a high-frequency coil.
C. to dissolve the mixed powder in the mold. Next,
The crucible was lowered at a speed of 60 mm / hour under the same atmospheric pressure as above, and was unidirectionally solidified to obtain a ceramic composite material.

【0023】この複合材料の凝固方向に垂直な面及び約
9度傾けた面からのX線回折図を図1及び図2に示す。
図1には多結晶YAGからの回折ピークが観察され、図
2には、Alについては単結晶α−Al
(110)面からの回折ピークのみが観察される。この
ことから、上記複合材料が単結晶α−Alと多結
晶YAGとから構成されていることがわかる。
FIGS. 1 and 2 show X-ray diffraction patterns of the composite material from a plane perpendicular to the solidification direction and a plane inclined at about 9 degrees.
In Figure 1 the diffraction peak was observed from the polycrystalline YAG, FIG. 2, for the Al 2 O 3 only a diffraction peak from (110) plane of the single crystal α-Al 2 O 3 is observed. This indicates that the composite material is composed of single-crystal α-Al 2 O 3 and polycrystalline YAG.

【0024】また、この複合材料の光学顕微鏡写真を図
3に示す。図3から、この複合材料はコロニーあるいは
粒界相を有しておらず、さらに気泡又はボイドが存在し
ない均一な海島構造を取っていることがわかる。
FIG. 3 shows an optical microscope photograph of this composite material. FIG. 3 shows that this composite material has no colony or grain boundary phase and has a uniform sea-island structure without bubbles or voids.

【0025】この複合材料の機械的強度を表1に示す。
表1において、三点曲げ強度及び圧縮クリープ特性はい
ずれも大気中で測定した値である。また、この複合材料
を1700℃の大気中に100時間保持した後の重量増
は0.007mg/cmであった。
Table 1 shows the mechanical strength of this composite material.
In Table 1, the three-point bending strength and the compression creep characteristics are values measured in the air. The weight increase of this composite material after being kept in the air at 1700 ° C. for 100 hours was 0.007 mg / cm 3 .

【0026】実施例2 チャンバー内の雰囲気圧力及びルツボの降下速度を、そ
れぞれ、10−3torr及び100mm/時間に変え
た以外は実施例1を繰り返して、セラミックス複合材料
を得た。
Example 2 A ceramic composite material was obtained by repeating Example 1 except that the atmospheric pressure in the chamber and the crucible lowering speed were changed to 10 −3 torr and 100 mm / hour, respectively.

【0027】この複合材料の凝固方向に垂直な面及び約
9度傾けた面からのX線回折図は、前者が図1と、後者
が図2と同一であり、上記複合材料が単結晶α−Al
と多結晶YAGとから構成されていることが判明し
た。
The X-ray diffraction patterns from the plane perpendicular to the solidification direction of the composite material and the plane inclined at about 9 degrees are the same as FIG. 1 for the former and FIG. 2 for the latter. -Al 2
It was found that it was composed of O 3 and polycrystalline YAG.

【0028】この複合材料の光学顕微鏡写真から、この
複合材料はコロニーあるいは粒界相を有しておらず、さ
らに気泡又はボイドが存在しない均一な海島構造をとっ
ていることが観察された。
From an optical micrograph of this composite material, it was observed that this composite material had no colony or grain boundary phase and had a uniform sea-island structure free of bubbles or voids.

【0029】この複合材料の機械的特性を表1に示す。
また、この複合材料を1700℃の大気中に100時間
保持した後の重量増は0.007mg/cmであっ
た。
Table 1 shows the mechanical properties of this composite material.
The weight increase of this composite material after being kept in the air at 1700 ° C. for 100 hours was 0.007 mg / cm 3 .

【0030】比較例1 チャンバー内の圧力を常圧にした以外は実施例1を繰り
返して、セラミックス複合材料を調製した。得られた複
合材料のX線回折図を図4に示す。
Comparative Example 1 A ceramic composite material was prepared by repeating Example 1 except that the pressure in the chamber was changed to normal pressure. FIG. 4 shows an X-ray diffraction pattern of the obtained composite material.

【0031】図4から、この複合材料はコロニー又は粒
界相、並びに気泡を有していることがわかる。この複合
材料の機械的特性を表1に示す。また、この複合材料を
1700℃の大気中に100時間保持した後の重量増は
0.02mg/cmであった。
FIG. 4 shows that the composite material has a colony or grain boundary phase and bubbles. Table 1 shows the mechanical properties of this composite material. The weight increase of this composite material after being kept in the air at 1700 ° C. for 100 hours was 0.02 mg / cm 3 .

【0032】[0032]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例1で得られた複合材料のX線回折
図である。
FIG. 1 is an X-ray diffraction diagram of the composite material obtained in Example 1.

【図2】図2は実施例1で得られた複合材料のX線回折
図である。
FIG. 2 is an X-ray diffraction diagram of the composite material obtained in Example 1.

【図3】図3は実施例1で得られた複合材料の粒子構造
を示す図面に代える光学顕微鏡写真である。
FIG. 3 is an optical microscope photograph instead of a drawing showing the particle structure of the composite material obtained in Example 1.

【図4】図4は比較例1で得られた複合材料の粒子構造
を示す図面に代える光学顕微鏡写真である。
FIG. 4 is an optical microscope photograph instead of a drawing showing the particle structure of the composite material obtained in Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 TRIPLICANE A.et a l.,Deformation beh avior of an AI203−Y 3AI5012 eutectic com posite in comparis on with sapphire a nd YAG,Journal of the American Ceram ic Society,Vol.76,N o.1,pp.29−32,Jan.1993 (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 CA(STN) EPAT(QUESTEL) WPI(DIALOG)──────────────────────────────────────────────────続 き Continued on the front page (56) References TRIPLICANE A. et al. , Deformation behavior of an AI203-Y 3AI5012 eutectic compost in comparis on with sapphire and YAG, Journal of the Americas. 76, No. 1, pp. 29-32, Jan. 1993 (58) Field surveyed (Int. Cl. 7 , DB name) C30B 1/00-35/00 CA (STN) EPAT (QUESTEL) WPI (DIALOG)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単結晶α−Alと多結晶YAl
12とからなるセラミックス複合材料。
1. Single crystal α-Al 2 O 3 and polycrystalline Y 3 Al
Ceramic composite material consisting of 5 O 12 Prefecture.
JP19347094A 1993-11-12 1994-07-15 Ceramic composite materials Expired - Fee Related JP3264106B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19347094A JP3264106B2 (en) 1993-11-12 1994-07-15 Ceramic composite materials
US08/335,919 US5484752A (en) 1993-11-12 1994-11-08 Ceramic composite material
DE69408939T DE69408939T2 (en) 1993-11-12 1994-11-09 Ceramic composite
EP94117640A EP0654456B1 (en) 1993-11-12 1994-11-09 Ceramic composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31724393 1993-11-12
JP5-317243 1993-11-12
JP19347094A JP3264106B2 (en) 1993-11-12 1994-07-15 Ceramic composite materials

Publications (2)

Publication Number Publication Date
JPH07187893A JPH07187893A (en) 1995-07-25
JP3264106B2 true JP3264106B2 (en) 2002-03-11

Family

ID=26507908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19347094A Expired - Fee Related JP3264106B2 (en) 1993-11-12 1994-07-15 Ceramic composite materials

Country Status (1)

Country Link
JP (1) JP3264106B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0722919B1 (en) * 1995-01-19 1999-08-11 Ube Industries, Ltd. Ceramic composite
CN1211312C (en) * 1996-07-01 2005-07-20 宇部兴产株式会社 Ceramic composite material and porous ceramic material
JP4723127B2 (en) * 2001-07-23 2011-07-13 日本特殊陶業株式会社 Alumina ceramic sintered body, method for producing the same, and cutting tool
CN101555128A (en) 2003-01-20 2009-10-14 宇部兴产株式会社 Ceramic composite material for optical conversion and use thereof
EP1760794B1 (en) * 2004-06-24 2014-01-15 Ube Industries, Ltd. White light emitting diode device
WO2006043719A1 (en) 2004-10-21 2006-04-27 Ube Industries, Ltd. Light emitting diode element, board for light emitting diode and method for manufacturing light emitting diode element
CN101238595B (en) 2005-08-10 2012-07-04 宇部兴产株式会社 Substrate for light emitting diode and light emitting diode
CN101370908B (en) 2006-01-19 2012-04-18 宇部兴产株式会社 Ceramic composite light converting member and light emitting device using the same
WO2008041566A1 (en) 2006-09-25 2008-04-10 Ube Industries, Ltd. Ceramic composite for phototransformation and light emitting device using the same
JP5246376B2 (en) 2010-03-31 2013-07-24 宇部興産株式会社 CERAMIC COMPOSITE FOR LIGHT CONVERSION, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE HAVING THE SAME
JP5370595B2 (en) 2010-12-10 2013-12-18 宇部興産株式会社 Ceramic composite for light conversion and method for producing the same
US9074126B2 (en) 2010-12-16 2015-07-07 Ube Industries, Ltd. Ceramic composite for light conversion
US9334197B2 (en) 2011-07-08 2016-05-10 Ube Industries, Ltd. Method for producing ceramic composite for light conversion
US9611426B2 (en) 2012-03-30 2017-04-04 Ube Industries, Ltd. Ceramic composite for light conversion and light-emitting device using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TRIPLICANE A.et al.,Deformation behavior of an AI203−Y3AI5012 eutectic composite in comparison with sapphire and YAG,Journal of the American Ceramic Society,Vol.76,No.1,pp.29−32,Jan.1993

Also Published As

Publication number Publication date
JPH07187893A (en) 1995-07-25

Similar Documents

Publication Publication Date Title
JP3216683B2 (en) Ceramic composite materials
US5484752A (en) Ceramic composite material
JP3264106B2 (en) Ceramic composite materials
EP0722919B1 (en) Ceramic composite
JP3128044B2 (en) Ceramic composite materials
KR101160140B1 (en) Manufacturing method of zirconium diboride-silicon carbide composite
Kang et al. Growth of BaTiO3 seed grains by the twin‐plane reentrant edge mechanism
JPS62128918A (en) Alumina powder and manufacture
JP3743462B2 (en) Ceramic composite material
JP3412381B2 (en) Ceramic composite materials
JP3412378B2 (en) Ceramic composite materials
JP2882575B2 (en) High thermal conductive silicon nitride ceramics and method for producing the same
JP3412379B2 (en) Ceramic composite materials
JPH02129070A (en) Highly reinforced object prepared from organopolysiloxane filled with silicon carbide powder
JP4368033B2 (en) Ceramic composite material
Park et al. The α-to β-Si 3 N 4 transformation in the presence of liquid silicon
JP3878976B2 (en) High strength and high toughness alumina sintered body and manufacturing method thereof
JP3412380B2 (en) Ceramic composite materials
JPS63277570A (en) Production of sintered aluminum nitride having high thermal conductivity
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
JP3224406B2 (en) Method for producing silicon carbide single crystal
JP2793635B2 (en) Silicon nitride powder composition
JP3126059B2 (en) Alumina-based composite sintered body
JP2855471B2 (en) Silicate-bonded silicon carbide carrier and method for producing the same
JP2000007453A (en) High heat resistance fiber reinforced ceramic composite material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees