JP3261677B2 - Manufacturing method of flux for brazing aluminum - Google Patents

Manufacturing method of flux for brazing aluminum

Info

Publication number
JP3261677B2
JP3261677B2 JP15988091A JP15988091A JP3261677B2 JP 3261677 B2 JP3261677 B2 JP 3261677B2 JP 15988091 A JP15988091 A JP 15988091A JP 15988091 A JP15988091 A JP 15988091A JP 3261677 B2 JP3261677 B2 JP 3261677B2
Authority
JP
Japan
Prior art keywords
aluminum
alf
fluoride
potassium
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15988091A
Other languages
Japanese (ja)
Other versions
JPH04361895A (en
Inventor
保 長尾
仁 石川
Original Assignee
株式会社ジェムコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェムコ filed Critical 株式会社ジェムコ
Priority to JP15988091A priority Critical patent/JP3261677B2/en
Publication of JPH04361895A publication Critical patent/JPH04361895A/en
Application granted granted Critical
Publication of JP3261677B2 publication Critical patent/JP3261677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアルミニウムろう付け用
フラックスの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a flux for brazing aluminum.

【0002】[0002]

【従来技術とその問題点】近年、自動車のラジエーター
等の熱交換器にアルミニウムを使用することが多くな
り、これにともなってアルミニウムのろう付け技術が注
目されている。
2. Description of the Related Art In recent years, aluminum is often used for heat exchangers such as radiators of automobiles, and accordingly, attention has been paid to aluminum brazing technology.

【0003】たとえば、特公昭58−27037号公報
には、固体のフッ化アルミニウムとフッ化カリウムを粉
砕し、フッ化アルミニウム50〜60%、フッ化カリウ
ム50〜40%の割合で緊密に混合し、得られた混合物
を黒鉛ルツボ中、625〜650℃で溶融攪拌してテト
ラフルオロアルミニウム酸カリウム(KAlF4):65.
6〜99.9%、ヘキサフルオロアルミニウム酸カリウ
ム(K3AlF6):34.4〜0.1%の溶融混合物とし、
これを急速に固化させた後、微粉に粉砕してアルミニウ
ムろう付け用フラックスとして用いる方法が記載されて
いる。
[0003] For example, Japanese Patent Publication No. 58-27037 discloses that solid aluminum fluoride and potassium fluoride are pulverized, and the ratio of aluminum fluoride is 50 to 60% and potassium fluoride is 50 to 40%. The mixture was intimately mixed, and the resulting mixture was melted and stirred in a graphite crucible at 625 to 650 ° C., and potassium tetrafluoroaluminate (KAlF 4 ): 65.
6-99.9%, potassium hexafluoroaluminate (K 3 AlF 6 ): 34.4-0.1% as a molten mixture,
A method is described in which this is rapidly solidified and then pulverized into fine powder and used as a flux for brazing aluminum.

【0004】この方法で用いるフラックスは非吸湿性で
あり、従来の塩化物系フラックスと異なりアルミニウム
の耐腐食性を害することがない。しかし、製造に際して
固体混合物を625〜650℃で溶融させるため多量の
エネルギーを必要とする。また、原料の粉砕、緊密な混
合、溶融、急冷、および固化した生成物の粉砕などの製
造工程が複雑で、最終製品の製造までに時間がかかる。
特に、均一な製品を得るためには細心の管理が必要で、
工程の煩雑さは、製品コスト上、大きな負担となる。
[0004] The flux used in this method is non-hygroscopic and does not impair the corrosion resistance of aluminum unlike conventional fluxes based on chlorides. However, a large amount of energy is required to melt the solid mixture at 625 to 650 ° C. during production. In addition, manufacturing processes such as pulverization of raw materials, intimate mixing, melting, quenching, and pulverization of a solidified product are complicated, and it takes time to produce a final product.
In particular, meticulous management is necessary to obtain a uniform product,
The complexity of the process imposes a heavy burden on product costs.

【0005】一方、特開昭57−205317号公報に
は、フルオロアルミニウム酸溶液に過少量の苛性カリま
たは塩化カリ等のカリウム化合物を加えてテトラフルオ
ロアルミニウム酸カリウムを沈殿・製造する方法が記載
されている。(ただし、ここで「テトラフルオロアルミ
ニウム酸カリウム」とはヘキサフルオロアルミニウム酸
カリウムとの混合物をも含むとされている)。また、特
公平1−60360号公報には、フッ化水素酸にAl:F
が1:4〜4.5となる範囲内で水酸化アルミニウムを溶
解し、pH4以下の酸性条件下にカリウム化合物を添加
してペンタフルオロアルミニウム酸カリウム水和物(K2
AlF5・H2O)とテトラフルオロアルミニウム酸カリウ
ムからなるろう付け用フラックスを製造する方法が記載
されている。
On the other hand, Japanese Patent Application Laid-Open No. 57-205317 describes a method in which a small amount of a potassium compound such as potassium hydroxide or potassium chloride is added to a fluoroaluminic acid solution to precipitate and produce potassium tetrafluoroaluminate. I have. (However, here, "potassium tetrafluoroaluminate" includes a mixture with potassium hexafluoroaluminate). Japanese Patent Publication No. 1-60360 discloses that Al: F is added to hydrofluoric acid.
Is within a range from 1: 4 to 4.5, and a potassium compound is added thereto under acidic conditions of pH 4 or less, and potassium pentafluoroaluminate hydrate (K 2
A method for producing a brazing flux consisting of AlF 5 .H 2 O) and potassium tetrafluoroaluminate is described.

【0006】前者(特開昭57-205317号)の発明では、カ
リウム化合物を過少量(K:Alのモル比で0.60〜0.
95:1)用いることが必須である。従って、カリウム
化合物として塩化カリを用いた場合はもちろん、苛性カ
リを使用した場合においても反応液の液性は酸性とな
る。同様に、後者(特公平1-60360号)の発明は反応液の
pHがカリウム化合物との反応終了時において4以下で
あることが必須である。この理由はフルオロアルミニウ
ムイオンの加水分解を避けるためであると説明されてい
る。このように、従来はいずれの方法においてもカリウ
ム塩を酸性下で沈殿させているためにフルオロアルミニ
ウム酸カリウムの収率は低い。前者(特開昭57-205317
号)の実施例において、収率はフッ素基準収率で70〜
80%を超えない(Al基準でも同程度)。後者(特公平1-
60360号)には収率に関するデータは記載されていないが
前者(特開昭57-205317号)と同程度と考えられる。
In the former invention (JP-A-57-205317) , a potassium compound is used in an excessively small amount (K: Al molar ratio of 0.60 to 0.6).
95: 1) must be used. Therefore, not only when potassium chloride is used as the potassium compound, but also when caustic potassium is used, the liquidity of the reaction solution becomes acidic. Similarly, in the latter invention (Japanese Patent Publication No. 1-60360) , it is essential that the pH of the reaction solution is 4 or less at the end of the reaction with the potassium compound. The reason is described as being to avoid hydrolysis of the fluoroaluminum ion. As described above, in any of the conventional methods, the yield of potassium fluoroaluminate is low because the potassium salt is precipitated under acidic conditions. The former (JP-A-57-205317
No.) , the yield is 70 to 70% based on fluorine.
It does not exceed 80% (almost the same on Al basis). The latter (Tokuhei 1-
No. 60360) does not provide data on the yield,
It is considered to be about the same as the former (JP-A-57-205317) .

【0007】さらに、いずれの反応もフルオロアルミニ
ウム酸の中和によりフルオロアルミニウム酸カリウムを
製造する方法であるため(フッ化水素酸にAl:Fが1:
4〜4.5となる範囲内で水酸化アルミニウムを溶解し
て生じるのはフルオロアルミニウム酸である)、中和の
際のpH、および温度の変化によって析出塩の組成の変
化は避けられず、テトラフルオロ体とペンタフルオロ体
の比が厳密に制御された均一な製品を得ることは著しく
困難である。このため溶融点が安定せず、ろう付け用
ラックスとして用いた場合、均一なろう付けに支障が生
じるおそれがある。
Further, since each reaction is a method for producing potassium fluoroaluminate by neutralizing fluoroaluminic acid (Al: F in hydrofluoric acid is 1: 1).
It is fluoroaluminic acid that is produced by dissolving aluminum hydroxide within the range of 4 to 4.5), the change in pH during neutralization, and the change in temperature inevitably change the composition of the precipitated salt. It is extremely difficult to obtain a uniform product in which the ratio between the tetrafluoro and pentafluoro forms is strictly controlled. Thus the melting point is not stabilized, when used as full <br/> Lux for brazing, there is a possibility that trouble occurs in a uniform brazing.

【0008】フラックスを製造する場合、フラックス中
へのK2AlF5・H2Oの混入はできるだけ避けるべきで
ある。なぜなら、K2AlF5・H2Oは490〜550℃
で吸熱的にKAlF4とK3AlF6に分解を起こす。発明
者らが実際にK2AlF5・H2Oの含有量を変えたフラッ
クス(残部はKAlF4とK3AlF6からなる)を使用して
アルミニウムのろう付けテストを行なったところ、K2
AlF5・H2Oの含有量が5%以上で接合強度が弱くな
る傾向が見出された。一方、5%以下の場合は殆ど影響
は見られなかった。この原因については未解明である
が、塗布されたフラックスの脱水あるいは熱分解時にお
ける吸熱現象によってフラックス粒子の構造変化が起こ
り、フラックスとアルミニウムとの密着度を損なう等の
影響を及ぼしているものと推測される。
[0008] In the production of a flux, the incorporation of K 2 AlF 5 .H 2 O into the flux should be avoided as much as possible. Because K 2 AlF 5 .H 2 O is 490-550 ° C
Endothermically decomposes into KAlF 4 and K 3 AlF 6 . Inventors have actually changed the content of K 2 AlF 5 · H 2 O fluxes where (the balance being KAlF 4 and K 3 AlF 6) was subjected to brazing test aluminum using, K 2
It has been found that when the content of AlF 5 .H 2 O is 5% or more, the bonding strength tends to be weak. On the other hand, when the content was 5% or less, almost no effect was observed. Although the cause is not known, it is thought that the structural change of the flux particles occurs due to the endothermic phenomenon during the dehydration or thermal decomposition of the applied flux, which has an effect such as impairing the adhesion between the flux and aluminum. Guessed.

【0009】[0009]

【問題を解決するための知見】本発明者らは、均一組成
で有用なろう付け剤を低コストで供給するため、各種フ
ッ化物について検討を重ねた結果、α−フッ化アルミニ
ウム水溶液を使用すれば、極めて簡便に均一なろう付け
剤が製造できることを見出した。すなわち、フッ化アル
ミニウムは、水の存在下においては、溶解度の低い(0.
4%程度)のβ-フッ化アルミニウム・3水和物が安定相
であり、水溶液中からは通常このかたちで析出してく
る。しかし、一定の条件下で調製・保存した場合、溶解
度の大きい準安定なα−フッ化アルミニウムを特に過飽
和溶液として存在させることが可能であり、これにフッ
化カリウム溶液を添加することによって、好ましくは両
液を同時に一定条件下でチャージし反応させることによ
り、一定組成の均一なフルオロアルミニウム塩混合物の
製造が可能であることを見出した。
The present inventors have conducted various studies on various fluorides in order to supply a useful brazing agent having a uniform composition at a low cost. For example, it has been found that a uniform brazing agent can be produced very easily. That is, in the presence of water, aluminum fluoride has low solubility (0.
Β-aluminum fluoride trihydrate (about 4%) is a stable phase, and usually precipitates in this form from an aqueous solution. However, when prepared and stored under certain conditions, it is possible to make metastable α-aluminum fluoride having high solubility particularly exist as a supersaturated solution, and it is preferable to add a potassium fluoride solution thereto. Have found that a uniform mixture of fluoroaluminum salts having a constant composition can be produced by simultaneously charging and reacting both solutions under certain conditions.

【0010】[0010]

【発明の構成】すなわち、本発明は、(1)フッ化アル
ミニウム水溶液とフッ化カリウム水溶液とを反応させて
フルオロアルミニウム塩からなるアルミニウムろう付け
用フラックスを製造する方法であって、F/Alモル比
を調整したα−フッ化アルミニウム水溶液を用い、フッ
化カリウム水溶液を混合する際にK/Alのモル比を調整
してK 2 AlF 5 ・H 2 O含有量4.9以下のアルミニウム
ろう付け用フラックスを製造する方法に関する。
SUMMARY OF THE INVENTION The present invention provides: (1) fluorinated Al
Reacting the aqueous solution of minium with the aqueous solution of potassium fluoride
Aluminum brazing made of fluoroaluminum salt
A method for producing a flux for use, comprising a F / Al molar ratio
Using an aqueous solution of α-aluminum fluoride adjusted to
Adjust K / Al molar ratio when mixing potassium iodide aqueous solution
And K 2 to AlF 5 · H 2 O content of 4.9 or less of aluminum
The present invention relates to a method for producing a brazing flux.

【0011】本発明の製造方法は、(2)F/Alモル
比3.2〜3.6のα−フッ化アルミニウム水溶液を
い、これにフッ化カリウム水溶液をK/Alモル比1.0
0〜1.20の範囲内で混合し、反応させることによ
り、0.1〜20%のK3AlF6、4.9%以下のK2Al
5・H2O、および残部がKAlF4からなるアルミニウ
ムろう付け用フラックスを製造する方法、(3)濃度3
0重量%以下のα-フッ化アルミニウム溶液と濃度30
重量%以上のフッ化カリウム溶液の割合が一定になるよ
うに、両液を同時に一定割合で反応容器内に装入して
0〜90℃の温度範囲で反応させる製造方法を含む。
The production method of the present invention is characterized in that (2) F / Al mole
Use the α- aluminum fluoride aqueous solution the ratio 3.2 to 3.6
Then, an aqueous solution of potassium fluoride was added with a K / Al molar ratio of 1.0.
By mixing and reacting in the range of 0 to 1.20, 0.1 to 20% of K 3 AlF 6 , 4.9% or less of K 2 Al
A method for producing an aluminum brazing flux consisting of F 5 .H 2 O and the balance KAlF 4 , (3) concentration 3
Α-aluminum fluoride solution of 0% by weight or less and a concentration of 30
The two solutions were simultaneously charged into the reaction vessel at a constant rate so that the rate of the potassium fluoride solution of at least
Includes a production method in which the reaction is performed in a temperature range of 0 to 90 ° C.

【0012】本発明で使用するフッ化アルミニウム水溶
液はα−フッ化アルミニウム水溶液であることが必要で
ある。これは、一般的には、希フッ酸と水酸化アルミニ
ウムとを反応させるか、または、ケイフッ酸と水酸化ア
ルミニウムとを反応させ、生成するシリカを分離するこ
とによって得られる。後者の場合、リン酸製造プラント
からの回収ケイフッ酸が利用できるので経済的に特に有
利である。この溶液を準安定状態に保つためには、溶液
の濃度を30%以下、液温を80℃以下、F/Alのモル
比を3.2〜3.6に保つことが好ましい。
The aqueous solution of aluminum fluoride used in the present invention must be an aqueous solution of α-aluminum fluoride. This is generally obtained by reacting dilute hydrofluoric acid with aluminum hydroxide or by reacting silicic hydrofluoric acid with aluminum hydroxide and separating the resulting silica. The latter case is particularly economically advantageous because the recovered silicic acid from the phosphoric acid production plant is available. In order to keep this solution in a metastable state, it is preferable to keep the concentration of the solution at 30% or less, the solution temperature at 80 ° C or less, and the molar ratio of F / Al at 3.2 to 3.6.

【0013】フッ化カリウム溶液は飽和濃度以下いずれ
の濃度でも使用することができる。好ましい溶液濃度は
30重量%以上である。フッ化カリウム濃度が30%未
満の場合には、生成物濃度が低く、収率が著しく低下す
る。
The potassium fluoride solution can be used at any concentration below the saturation concentration. A preferred solution concentration is 30% by weight or more. When the potassium fluoride concentration is less than 30%, the product concentration is low, and the yield is significantly reduced.

【0014】フッ化アルミニウム溶液とフッ化カリウム
溶液をK/Alのモル比が1.00〜1.20の範囲で反応
させる。このモル比が1.20を超えると、生成物中の
3AlF6の含有率が20%を上回り、フラックスの融
点が580℃以上に上昇するので好ましくない。また、
モル比が1.00未満であると、生成物であるフルオロ
アルミニウム塩の収率が低下する。特に好ましいモル比
は1.05〜1.15の範囲内である。
An aluminum fluoride solution and a potassium fluoride solution are reacted in a molar ratio of K / Al in the range of 1.0 to 1.20. When the molar ratio exceeds 1.20, the content of K 3 AlF 6 in the product exceeds 20%, and the melting point of the flux increases to 580 ° C. or more, which is not preferable. Also,
When the molar ratio is less than 1.00, the yield of the product fluoroaluminum salt decreases. Particularly preferred molar ratios are in the range of 1.05-1.15.

【0015】フッ化アルミニウム溶液とフッ化カリウム
溶液との反応は、10〜90℃の範囲内で行なうことが
好ましい。液温が90℃を超えるとβ−フッ化アルミニ
ウム塩が析出し、溶液中のフッ化アルミニウム濃度が減
少するため収率が低下する。また、液温が10℃を下回
ると生成物沈殿の濾過性が悪化する。特に好ましい温度
範囲は60〜80℃である。反応はほとんど発熱をとも
なわないので、必要に応じて加温する。また、二液が十
分に混合するように適宜攪拌する。反応時のK/Al 比
が一定に保たれるように、反応容器への二液の装入は、
同時に一定の割合で少量づつ行なうことが好ましい。ま
た、反応容器への装入口も同一とするか近接した位置に
設けることが好ましい。
The reaction between the aluminum fluoride solution and the potassium fluoride solution is preferably performed at a temperature in the range of 10 to 90 ° C. When the liquid temperature exceeds 90 ° C., β-aluminum fluoride salt precipitates, and the concentration of aluminum fluoride in the solution decreases, so that the yield decreases. On the other hand, if the liquid temperature is lower than 10 ° C., the filterability of the product precipitate deteriorates. A particularly preferred temperature range is 60 to 80C. Since the reaction is hardly exothermic, it is heated if necessary. Also, the mixture is appropriately stirred so that the two liquids are sufficiently mixed. In order to keep the K / Al ratio constant during the reaction, the two components were charged into the reaction vessel.
At the same time, it is preferable to carry out a small amount at a constant rate. Further, it is preferable that the charging port to the reaction vessel is also the same or is provided at a position close to the charging port.

【0016】フッ化アルミニウム溶液とフッ化カリウム
溶液との反応により、KAlF4、K3AlF6およびK2
lF5・H2Oが生成する。フルオロアルミニウムカリウム
塩混合物の組成は、前述のとおり、反応におけるK/Al
モル比によって決まる。
By the reaction of the aluminum fluoride solution and the potassium fluoride solution, KAlF 4 , K 3 AlF 6 and K 2 A
1F 5 .H 2 O is produced. As described above, the composition of the potassium fluoroaluminum salt mixture is K / Al in the reaction.
It depends on the molar ratio.

【0017】[0017]

【発明の効果】本発明の方法は、易溶性塩の溶液の混合
によって行なわれるので、従来法におけるような原料物
質の粉砕や溶融といった煩雑でエネルギーコストの高い
工程が不要となり、簡便かつ低コストで均一な目的物を
製造することができる。また、本発明の方法は、塩と塩
との間で起こる非発熱性の穏やかな反応によるため、組
成の安定性が高く、反応の制御が極めて容易である上、
反応収率も極めて高い。
The method of the present invention is carried out by mixing a solution of a readily soluble salt, so that complicated and high energy cost steps such as pulverization and melting of the raw material as in the conventional method are not required, and the method is simple and low cost. And a uniform target product can be manufactured. In addition, the method of the present invention is based on a mild, non-pyrogenic reaction that occurs between salts, so that the composition is highly stable and the control of the reaction is extremely easy.
The reaction yield is also very high.

【0018】[0018]

【発明の具体的開示】以下、実施例によって本発明を詳
細に説明する。なお、実施例および比較例の結果を表1
にまとめて示した。分析法はアルミニウムはオキシン重
量法、カリウムは炎光光度法、フッ素はトリウム滴定法
によった。
DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples. Table 1 shows the results of Examples and Comparative Examples.
Are shown together. Analytical method is aluminum is oxine weight
Method, potassium for flame photometry, fluorine for thorium titration
According to

【0019】[0019]

【実施例1】攪拌器を備えた5リットルのポリエチレン製反
応槽(A)に20%の希フッ化水素酸2340g(23.4
モル)を仕込み、水浴中で40℃まで加温し、これに水酸
化アルミニウム553g(7.09モル)を液温が80℃を
超えないように水浴で冷やしながら少量づつ添加して反
応させ、溶解させた。反応後のフッ化アルミニウム溶液
のF/Alモル比は3.30、濃度は20.6重量%であ
る。攪拌器を備えた別の5リットルポリエチレン製反応槽
(B)に80℃に加温した温水約1リットルを装入しておき、
これに上記フッ化アルミニウム溶液と50%フッ化カリ
ウム溶液とを、K/Alのモル比が1.1になる割合で、
それぞれ定量ポンプで同時に装入した。具体的には、フ
ッ化アルミニウム溶液の装入を48.2g/分、50%フ
ッ化カリウム溶液の装入を15.1g/分の割合とし、約
1時間で装入を終えた。両液の装入口は反応槽内の同一
場所とした。また、反応槽(B)は反応中外浴加熱により
80℃を保持するようにした。
Example 1 In a 5 liter polyethylene reaction vessel (A) equipped with a stirrer, 2340 g (23.4 g) of 20% dilute hydrofluoric acid was added.
Was heated to 40 ° C. in a water bath, and 553 g (7.09 mol) of aluminum hydroxide was added thereto little by little while cooling in a water bath so that the liquid temperature did not exceed 80 ° C., and reacted. Dissolved. The F / Al molar ratio of the aluminum fluoride solution after the reaction was 3.30, and the concentration was 20.6% by weight. Another 5 liter polyethylene reactor with stirrer
About 1 liter of warm water heated to 80 ° C. is charged into (B),
The aluminum fluoride solution and the 50% potassium fluoride solution were added thereto at a molar ratio of K / Al of 1.1,
Each was charged simultaneously with a metering pump. Specifically, the charging of the aluminum fluoride solution was set at 48.2 g / min, and the charging of the 50% potassium fluoride solution was set at 15.1 g / min, and the charging was completed in about 1 hour. The inlets for both solutions were at the same location in the reaction tank. The reaction tank (B) was kept at 80 ° C. by heating the external bath during the reaction.

【0020】装入終了後、約1時間、80℃で攪拌を続
け、その後、常温まで冷却し、生成した沈殿を吸引濾
過、水洗し、100℃で乾燥した。乾燥後の沈殿の収率
は、反応液中の全フッ素によるKAlF4生成量を100
としたときに98.7%であり、極めて高い値であっ
た。
After completion of the charging, stirring was continued at 80 ° C. for about 1 hour, and then the mixture was cooled to room temperature, and the formed precipitate was filtered by suction, washed with water, and dried at 100 ° C. The yield of the precipitate after drying was determined by calculating the amount of KAlF 4 produced by total fluorine in the reaction mixture by 100%.
% And 98.7% when, was extremely high value.

【0021】反応開始後20分経過時と反応終了時と
で、反応液をサンプリングし分析を行なったが、両者と
もほとんど変わらない結果を示し、均一な組成物が得ら
れることを確認した。分析結果による最終生成物中の
素量はAl:18.02%、K:29.42%、F:5
1.90%、合計99.34%であった。
The reaction solution was sampled and analyzed at 20 minutes after the start of the reaction and at the end of the reaction. Both samples showed almost the same results, and it was confirmed that a uniform composition was obtained. The original final product by analysis
Elementary charges Al: 18.02%, K: 29.42 %, F: 5
1.90%, for a total of 99.34% .

【0022】生成物であるフルオロアルミニウムカリウ
ム塩混合物はX線回折によって分析した(K3AlF6
回折角(2θ):29.9、K2AlF5・H2Oは回折角(2
θ):38.1、KAlF4は回折角(2θ):28.9)。そ
れぞれの標準試料によりその含有量とX線回折強度のピ
ークの高さより検量線を作成し、上記X線回折チャート
からの各成分の定量値および上記元素分析結果から各カ
リウム塩の含有量値を総合して判断すると成分組成は、
KAlF4:89%、K3AlF6:8〜10%、K2AlF5
・H2O:3〜4%であった。また生成物の融点は562
℃であった(DTA測定による)。
The product fluoroaluminum potassium salt mixture was analyzed by X-ray diffraction (K 3 AlF 6 has a diffraction angle (2θ) of 29.9, and K 2 AlF 5 .H 2 O has a diffraction angle (2θ).
θ): 38.1, KAlF 4 has a diffraction angle (2θ): 28.9). A calibration curve was prepared from the content of each standard sample and the peak height of the X-ray diffraction intensity, and the quantitative value of each component from the X-ray diffraction chart and the content value of each potassium salt from the elemental analysis results were calculated. Judging comprehensively, the component composition is
KAlF 4 : 89%, K 3 AlF 6 : 8 to 10%, K 2 AlF 5
· H 2 O: was 3-4%. The melting point of the product is 562.
° C (by DTA measurement).

【0023】[0023]

【比較例1】実施例と同じ反応槽(A)に30%希フッ化
水素酸1500g(22.5モル)を仕込み、水浴中で40
℃まで加温し、これに水酸化アルミニウム580g(7.
44モル)を、液温80℃を超えないように少量づつ添加
し、α-フッ化アルミニウム水溶液を調製した(反応後の
フッ化アルミニウム水溶液のF/Alモル比は3.02、
濃度は30.0重量%)。なお、この後の反応装置、方
法は、フッ化アルミニウム水溶液と50%フッ化カリウ
ム水溶液の装入速度が34.7g/分と15.8g/分と異
なる以外はすべて実施例1と同じである。また、K/Al
のモル比も実施例1と同じく1.1である。この場合、
後半にβ−フッ化アルミニウム三水塩が析出し、溶液が
白濁してフッ化アルミニウム水溶液をポンプで装入でき
なくなることがしばしば起きた。反応終了後の生成物の
処理方法も実施例1と同じである。乾燥後の生成フラッ
クスの収率はフッ素基準で97.3%であったが、X線
回折の結果、AlF3・3H2Oの結晶ピークが認めら
れ、β-フッ化アルミニウムが混入していることが確認
された。その他、KAlF4>K2AlF5・H2O>K3Al
6のピークがこの順で認められた。生成フラックスの
元素量はAl:17.73%、K:28.51%、F:5
1.64%、合計97.88%であった。X線回折ピーク
および元素分析結果に基づく成分組成は、AlF3・3H2
O:6〜8%、KAlF4:70%、K2AlF5・H2O:
11〜15%、K3AlF6:8〜10%であった。
Comparative Example 1 The same reaction vessel (A) as in Example was charged with 1500 g (22.5 mol) of 30% dilute hydrofluoric acid and placed in a water bath at 40 g.
And heated to 580 g of aluminum hydroxide (7.
Was added little by little so as not to exceed a liquid temperature of 80 ° C. to prepare an α-aluminum fluoride aqueous solution (the F / Al molar ratio of the aluminum fluoride aqueous solution after the reaction was 3.02,
The concentration is 30.0% by weight). Incidentally, the reaction apparatus, method after this are the same as in Example 1 instrumentation other than input speed different from the 34.7 g / min 15.8 g / min is aluminum fluoride aqueous solution and 50% aqueous potassium fluoride solution . Also, K / Al
Is 1.1 as in Example 1. in this case,
In the latter half, β-aluminum fluoride trihydrate was precipitated, and the solution became cloudy, and it often occurred that the aluminum fluoride aqueous solution could not be charged by the pump. The method of treating the product after the completion of the reaction is the same as in Example 1. The yield of the generated flux after drying was 97.3% on a fluorine basis, but as a result of X-ray diffraction, a crystal peak of AlF 3 .3H 2 O was recognized, and β-aluminum fluoride was mixed. It was confirmed that. In addition, KAlF 4 > K 2 AlF 5 .H 2 O> K 3 Al
The peak of the F 6 was observed in this order. Of generated flux
Element amount : Al: 17.73%, K: 28.51%, F: 5
1.64%, for a total of 97.88% . The component composition based on the X-ray diffraction peak and the elemental analysis result is AlF 3 .3H 2
O: 6~8%, KAlF 4: 70%, K 2 AlF 5 · H 2 O:
11~15%, K 3 AlF 6: was 8% to 10%.

【0024】[0024]

【実施例2】ケイフッ酸濃度18.0%のリン酸製造プ
ラントからの回収ケイフッ酸1900g(2.37モル)
を、攪拌器を備えた5リットルのポリエチレン反応槽(A)に
とり、これを70℃まで加温する。その後、これに水酸
化アルミニウム345g(4.42モル)を約5分間でほぼ
均等に装入し反応させる。この間、液温は反応熱で98
〜100℃まで上昇する。反応時のAl(OH)3/H2Si
6モル比は1.86である。水酸化アルミニウム装入
後、約10分間攪拌を続けた後、析出シリカを小型縦型
遠心分離機で分離した。よく振り切った後、シリカを1
60mlの90℃の温水で2回に分けて洗浄し、洗液は前
のろ液と合わせた。この液はα-フッ化アルミニウムの
水溶液である。フッ化アルミニウムの濃度は16.5%
(Alによる換算値)AlF3で363g(4.32モル)を得
た。これ以後の装置、方法は、フッ化アルミニウム水溶
液と50%フッ化カリウム水溶液の具体的装入速度がそ
れぞれ36.6g/分、9.2g/分である他はすべて実施
例1と同じである。最終生成フラックスの収率はフッ素
基準で92.7%であった。元素分析による元素量は
l:17.29%、K :30.25%、F:51.61
%、合計99.15%であった。X線回折ピークおよび
元素分析結果による成分組成は、KAlF4:84%、K
3AlF6:13〜15%、K2AlF5・H2O:2%であっ
た。
EXAMPLE 2 1900 g (2.37 mol) of recovered hydrofluoric acid from a phosphoric acid production plant having a concentration of 18.0% of hydrofluoric acid
Is placed in a 5 liter polyethylene reactor (A) equipped with a stirrer, which is heated to 70 ° C. After that, 345 g (4.42 mol) of aluminum hydroxide is almost uniformly charged in about 5 minutes and reacted. During this time, the liquid temperature was 98
ま で 100 ° C. Al (OH) 3 / H 2 Si during the reaction
The F 6 molar ratio is 1.86. After charging the aluminum hydroxide, stirring was continued for about 10 minutes, and then precipitated silica was separated by a small vertical centrifuge. After shaking well, remove silica
Washing was performed twice with 60 ml of warm water at 90 ° C., and the washing was combined with the previous filtrate. This liquid is an aqueous solution of α-aluminum fluoride. The concentration of aluminum fluoride is 16.5%
(Conversion value by Al) 363 g (4.32 mol) was obtained with AlF 3 . The subsequent apparatus and method are all the same as Example 1 except that the specific charging rates of the aluminum fluoride aqueous solution and the 50% potassium fluoride aqueous solution are 36.6 g / min and 9.2 g / min, respectively. . The yield of the final product flux was 92.7% based on fluorine. Elemental amount by elemental analysis is A
l: 17.29%, K: 30.25%, F: 51.61
% And a total of 99.15% . The composition of the component according to the X-ray diffraction peak and the result of elemental analysis is as follows : KAlF 4 : 84%, K
3 AlF 6 : 13 to 15%, K 2 AlF 5 .H 2 O: 2%
Was.

【0025】[0025]

【実施例3】フラックスの製造工程で50%フッ化カリ
ウム水溶液と反応させる際の反応モル比をK/Al=1.
20とした他は実施例1と同様の操作を繰り返した(具
体的には、フッ化アルミニウムが48.2g/分、50%
フッ化カリウム水溶液が16.4g/分の割合で約1時間
で同時装入した)。乾燥後の生成フラックスの収率はフ
ッ素基準で99.6%であった。分析結果による元素量
Al:17.20%、K:31.05%、F:51.41
%、合計99.66%であった。X線回折結果および元
素分析値による成分組成は、KAlF4:78%、K3Al
6:17〜19%、K2AlF5・H2O:4〜4.9%
あった。
Example 3 The reaction molar ratio when reacting with a 50% aqueous solution of potassium fluoride in the flux production process was K / Al = 1.
The same operation as in Example 1 was repeated except that the value was 20 (specifically, aluminum fluoride was 48.2 g / min, 50%
An aqueous solution of potassium fluoride was simultaneously charged at a rate of 16.4 g / min in about 1 hour). The yield of the produced flux after drying was 99.6% on a fluorine basis. Elemental amount based on analysis results
The Al: 17.20%, K: 31.05 %, F: 51.41
%, For a total of 99.66%. The composition of the component based on the X-ray diffraction results and the elemental analysis values was as follows : KAlF 4 : 78%, K 3 Al
F 6: 17~19%, K 2 AlF 5 · H 2 O: at 4 to 4.9%
there were.

【0026】[0026]

【実施例4】フラックスの製造工程で50%フッ化カリ
ウム水溶液と反応させる際の反応モル比をK/Al=1.
00とした他は実施例1と同様の操作を繰り返した(具
体的には、フッ化アルミニウムが48.2g/分、50%
フッ化カリウム水溶液が13.7g/分の割合で約1時間
で同時装入した)。乾燥後の生成フラックスの収率はフ
ッ素基準で96.4%であった。分析結果による元素量
Al:18.36%、K:28.65%、F:52.73
%、合計99.74%であった。X線回折結果および元
素分析値による成分組成は、KAlF4:91%、K3Al
6:4〜6%、K2AlF5・H2O:3〜4%であっ
た。
Embodiment 4 The reaction molar ratio when reacting with a 50% aqueous solution of potassium fluoride in the production process of the flux is K / Al = 1.
The same operation as in Example 1 was repeated except that the amount was set to 00 (specifically, 48.2 g / min of aluminum fluoride, 50%
An aqueous potassium fluoride solution was simultaneously charged at a rate of 13.7 g / min in about one hour.) The yield of the produced flux after drying was 96.4% on a fluorine basis. Elemental amount based on analysis results
Is Al: 18.36%, K: 28.65%, F: 52.73
%, For a total of 99.74%. The component composition based on the X-ray diffraction results and the elemental analysis values was as follows : KAlF 4 : 91%, K 3 Al
F 6: 4~6%, K 2 AlF 5 · H 2 O: was 3-4%.

【0027】[0027]

【実施例5】フラックス製造工程で、α−フッ化アルミ
ニウム水溶液をあらかじめ反応容器に装入し、50%フ
ッ化カリウム水溶液をこれに少量ずつ滴下した他は実施
例1と同様の操作を繰り返した(K/Alの最終モル比お
よび全反応時間も同じ)。滴下開始後20分と1時間に
生成物のサンプリングをし元素分析を行なった。分析結
による元素量は、20分後ではAl:18.76%、
K:27.42%、F:53.11%、合計、99.29
であり、1時間後ではAl:17.12%、K:31.
24%、F:50.90%、合計99.26%であった。
また、X線回折の結果、20分後のサンプルではKAl
4が主成分で、K2AlF5・H2O、AlF3・3H2Oの
ピークもわずかながら認められた。1時間後の最終生成
物ではKAlF4を主成分とし、K2AlF5・H2O、K3
lF6のピークも認められたが、AlF3・3H2Oのピーク
は消失していた。乾燥後のフラックスの収率はフッ素基
準で 99.0%であった。X線回折結果および元素分析
による成分組成は、KAlF4:76%、K3AlF6
19〜20%、K2AlF5・H2O:4〜4.9%であっ
た。
Example 5 In the flux production process, the same operation as in Example 1 was repeated except that an aqueous solution of α-aluminum fluoride was charged into a reaction vessel in advance, and a 50% aqueous solution of potassium fluoride was added dropwise thereto little by little. (Same for final molar ratio of K / Al and total reaction time). At 20 minutes and 1 hour after the start of the dropping, the product was sampled and subjected to elemental analysis. The elemental amount according to the analysis result is: Al: 18.76% after 20 minutes,
K: 27.42%, F: 53.11%, total, 99.29
% , Al: 17.12% and K: 31.% after 1 hour.
24%, F: 50.90%, a total of 99.26% .
As a result of X-ray diffraction, the sample after 20 minutes had a KAl
F 4 was the main component, and peaks of K 2 AlF 5 .H 2 O and AlF 3 .3H 2 O were slightly observed. After 1 hour, the final product is composed mainly of KAlF 4 , K 2 AlF 5 .H 2 O, K 3 A
Although a peak of IF 6 was also observed, the peak of AlF 3 .3H 2 O disappeared. The flux yield after drying was 99.0% on a fluorine basis. The component composition based on the X-ray diffraction results and the elemental analysis values was as follows: KAlF 4 : 76%, K 3 AlF 6 :
19~20%, K 2 AlF 5 · H 2 O: 4~4.9% met
Was.

【0028】[0028]

【比較例2】実施例1と同じ装置、スケール、方法でα
-フッ化アルミニウム水溶液をつくり、これに続くフラ
ックス製造工程において50%フッ化カリウム水溶液と
反応させる際の反応モル比をK/Al=0.9とした他は
実施例1と同様の操作を繰り返した。具体的には、フッ
化アルミニウムが48.2g/分、50%フッ化カリウム
水溶液が12.3g/分の割合で約1時間で同時装入し
た。最終生成フラックスの収率はフッ素基準で84.2
%であった。分析結果による元素量はAl:18.89
%、K:28.02%、F:52.90%、合計99.8
1%であった。X線回折結果はKAlF4が主成分である
ことを示し、K2AlF5・H2Oのピークも認められたが
3AlF6のピークは認められなかった。
Comparative Example 2 Using the same apparatus, scale and method as in Example 1, α
-The same operation as in Example 1 was repeated except that an aqueous solution of aluminum fluoride was prepared, and in the subsequent flux production step , the reaction molar ratio when reacting with a 50% aqueous solution of potassium fluoride was changed to K / Al = 0.9. Was. Specifically, 48.2 g / minute of aluminum fluoride and 12.3 g / minute of a 50% aqueous solution of potassium fluoride were simultaneously charged in about 1 hour. The yield of the final product flux was 84.2 based on fluorine.
%Met. The elemental amount according to the analysis result is Al: 18.89
%, K: 28.02%, F: 52.90%, total 99.8
1%. The X-ray diffraction result showed that KAlF 4 was the main component, and a peak of K 2 AlF 5 .H 2 O was also recognized, but a peak of K 3 AlF 6 was not recognized.

【0029】[0029]

【比較例3】実施例1と同じ装置、スケール、方法でα
-フッ化アルミニウム水溶液をつくり、これに続くフラ
ックス製造工程において50%フッ化カリウム水溶液と
反応させる際の反応モル比をK/Al=1.30とした他
は実施例1と同様の操作を繰り返した。具体的には、フ
ッ化アルミニウムが48.2g/分、50%フッ化カリウ
ム水溶液が17.8g/分の割合で約1時間で同時装入し
た。最終生成フラックスの収率はフッ素基準で103.
9%であった。分析結果による元素量はAl:16.24
%、K:50.04%、F:32.66%、合計98.9
4%であった。X線回折結果および元素分析結果よる成
分組成は、KAlF4:65%、K3AlF6:27〜29
%、K2AlF5・H2O:6〜8%であった。
Comparative Example 3 Using the same apparatus, scale and method as in Example 1, α
-The same operation as in Example 1 was repeated except that an aqueous solution of aluminum fluoride was prepared, and in the subsequent flux production process , the reaction molar ratio when reacting with a 50% aqueous solution of potassium fluoride was changed to K / Al = 1.30. Was. Specifically, 48.2 g / minute of aluminum fluoride and 17.8 g / minute of a 50% aqueous solution of potassium fluoride were simultaneously charged in about 1 hour. The yield of the final product flux is 103.
9%. The elemental amount according to the analysis result is Al: 16.24
%, K: 50.04%, F: 32.66%, total 98.9
4%. The component composition based on the results of X-ray diffraction and elemental analysis was as follows: KAlF 4 : 65%, K 3 AlF 6 : 27 to 29
%, K 2 AlF 5 .H 2 O: 6 to 8%.

【0030】表1 Table 1

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23K 35/363 C01F 7/54 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B23K 35/363 C01F 7/54

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フッ化アルミニウム水溶液とフッ化カリ
ウム水溶液とを反応させてフルオロアルミニウム塩から
なるアルミニウムろう付け用フラックスを製造する方法
であって、F/Alモル比を調整したα−フッ化アルミ
ニウム水溶液を用い、フッ化カリウム水溶液を混合する
際にK/Alのモル比を調整してK 2 AlF 5 ・H 2 O含有量
4.9以下のアルミニウムろう付け用フラックスを製造
する方法。
An aqueous solution of aluminum fluoride and potassium fluoride
Reaction with an aqueous solution of
For producing aluminum brazing flux
An α-aluminum fluoride having an adjusted F / Al molar ratio
Mix aqueous potassium fluoride solution using aqueous sodium solution
By adjusting the molar ratio of K / Al K 2 AlF 5 · H 2 O content in
Manufacture flux of 4.9 or less for brazing aluminum
how to.
【請求項2】 F/Alモル比3.2〜3.6のα−フッ
化アルミニウム水溶液を用い、これにフッ化カリウム水
溶液をK/Alモル比1.00〜1.20の範囲内で混合
し、反応させることにより、0.1〜20%のK3Al
6、4.9%以下のK2AlF5・H2O、および残部がK
AlF4からなるアルミニウムろう付け用フラックスを製
造する請求項1の製造方法。
2. An aqueous solution of α-aluminum fluoride having a molar ratio of F / Al of 3.2 to 3.6 is used, and an aqueous solution of potassium fluoride is added thereto within a molar ratio of K / Al of 1.0 to 1.20. By mixing and reacting, 0.1 to 20% of K 3 Al
F 6 , 4.9% or less of K 2 AlF 5 .H 2 O, with the balance being K
2. The production method according to claim 1, wherein an aluminum brazing flux comprising AlF 4 is produced.
【請求項3】 濃度30重量%以下のα-フッ化アルミ
ニウム溶液と濃度30重量%以上のフッ化カリウム溶液
の割合が一定になるように、両液を同時に一定割合で反
応容器内に装入して10〜90℃の温度範囲で反応させ
る請求項1または2の製造方法。
3. A mixture of α-aluminum fluoride having a concentration of 30% by weight or less and a potassium fluoride solution having a concentration of 30% by weight or more is simultaneously charged into the reaction vessel at a constant rate so that the proportions thereof are constant. And react in the temperature range of 10-90 ° C
The method according to claim 1 or 2, wherein
JP15988091A 1991-06-05 1991-06-05 Manufacturing method of flux for brazing aluminum Expired - Lifetime JP3261677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15988091A JP3261677B2 (en) 1991-06-05 1991-06-05 Manufacturing method of flux for brazing aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15988091A JP3261677B2 (en) 1991-06-05 1991-06-05 Manufacturing method of flux for brazing aluminum

Publications (2)

Publication Number Publication Date
JPH04361895A JPH04361895A (en) 1992-12-15
JP3261677B2 true JP3261677B2 (en) 2002-03-04

Family

ID=15703219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15988091A Expired - Lifetime JP3261677B2 (en) 1991-06-05 1991-06-05 Manufacturing method of flux for brazing aluminum

Country Status (1)

Country Link
JP (1) JP3261677B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318764A (en) * 1992-11-09 1994-06-07 Advance Research Chemicals, Inc. Processes of producing potassium fluoroaluminates
JP4845360B2 (en) * 2003-09-29 2011-12-28 三菱マテリアル株式会社 Flux powder for brazing aluminum material and coating method of the flux powder
EP1862251A4 (en) * 2005-03-25 2009-07-29 Jemco Inc Flux powder for brazing aluminum material and process for producing the flux powder
CN107098371A (en) * 2016-02-23 2017-08-29 达州励志环保科技有限公司 A kind of method that utilization aluminum fluoride production waste water prepares elpasolite

Also Published As

Publication number Publication date
JPH04361895A (en) 1992-12-15

Similar Documents

Publication Publication Date Title
CA1188483A (en) Process of producing potassium tetrafluoro aluminate
EP0597652B1 (en) Processes of producing potassium fluoroaluminates
US6264096B1 (en) Flux suitable for soldering light metals such as aluminum
US20070277908A1 (en) Non-Corrosive Auxiliary Agents For Soldering Aluminium
WO1999059919A1 (en) Method for producing barium titanate powder
US6350424B1 (en) Low-melting potassium fluoroaluminate
JP3211215B2 (en) Method for producing crystalline zirconium phosphate compound
JPH0769621A (en) Magnesium fluoride hydrate sol and production thereof
JPH08337418A (en) Method for preparing mixture usable as solvent for solder and reaction mixture for use in said method
US8715615B2 (en) Recovery of high purity lead oxide from lead acid battery paste
JP3261677B2 (en) Manufacturing method of flux for brazing aluminum
US4437888A (en) Preparation of titanium/aluminum alloys
JP4276322B2 (en) Method for producing high purity alkali stannate compound
US2819945A (en) Method of separating values of columbium and/or tantalum from a concentrate also containing an element of group iv b
CN105002521B (en) A kind of method that impurity magnesium in electrolytic manganese system is removed using fluorine-containing mineral
EP0085287A1 (en) A method for recovering useful products from waste products obtained when manufacturing aluminium fluoride
JPH01313333A (en) Production of niobium hydroxide or tantalum hydroxide having high purity
CN109019649A (en) A kind of preparation method of high molecule ratio potassium fluoroaluminate
JPS6272519A (en) Production of fluoroaluminium acid alkali salt
JP4241257B2 (en) Method for producing high purity aluminum fluoride
CN108946782A (en) A method of preparing high-purity strontium fluoride in ethanol system
WO2019070852A1 (en) Low melting point potassium aluminum fluoride flux agent
JP2856636B2 (en) Production method of ammonium cryolite
CN115536049B (en) Method for preparing cryolite
KR100418811B1 (en) New solvent

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10