JP2005047785A - Method for producing high purity aluminum fluoride - Google Patents

Method for producing high purity aluminum fluoride Download PDF

Info

Publication number
JP2005047785A
JP2005047785A JP2003284372A JP2003284372A JP2005047785A JP 2005047785 A JP2005047785 A JP 2005047785A JP 2003284372 A JP2003284372 A JP 2003284372A JP 2003284372 A JP2003284372 A JP 2003284372A JP 2005047785 A JP2005047785 A JP 2005047785A
Authority
JP
Japan
Prior art keywords
acid
hydrofluoric acid
aluminum fluoride
reaction
aluminum hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003284372A
Other languages
Japanese (ja)
Other versions
JP4241257B2 (en
Inventor
Toshio Sakai
敏夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2003284372A priority Critical patent/JP4241257B2/en
Publication of JP2005047785A publication Critical patent/JP2005047785A/en
Application granted granted Critical
Publication of JP4241257B2 publication Critical patent/JP4241257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing high purity aluminum fluoride which has no problems such as yield down, equipment corrosion and the like and by which high purity aluminum fluoride can be produced with an industrial advantage. <P>SOLUTION: Hydrofuluoric acid is reacted with aluminum hydroxide by adding and dissolving aluminum hydroxide in a hydrofuluoric acid solution. Aluminum fluoride is produced by depositing aluminum fluoride as a hydrate from the obtained reaction solution. The pure reaction equivalent ratio based on pure hydrofuluoric acid which is denoted as Al(OH)<SB>3</SB>/6HF and which omits impurity acids except hydrofuluoric acid from total acids reacted with aluminum hydroxide in raw material hydrofuluoric acid is calculated. The value of the pure reaction equivalent ratio at a reaction system between hydrofuluoric acid and aluminum fluoride is controlled to be in the range: 0.90<Al(OH)<SB>3</SB>/6HF<1.05. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、フッ化水素酸に水酸化アルミニウムを反応させ、湿式法により工業的に有利に高純度のフッ化アルミニウムを製造するための方法に関する。   The present invention relates to a method for producing aluminum fluoride of high purity industrially advantageously by reacting aluminum hydroxide with hydrofluoric acid and using a wet method.

フッ化アルミニウムは、その無水物がアルミニウム電解精錬の融剤、溶接棒の被覆剤、陶磁器等の上薬、有機フッ化物の合成触媒等として多くの分野で広く用いられる無機固体物質であり、その製造方法としては、フッ化水素ガスと水酸化アルミニウムとを反応させる乾式製法(特開平11-335,118号公報参照)と、フッ化水素酸と水酸化アルミニウムとを反応させてフッ化アルミニウムの過飽和溶液を生成させ、この溶液からフッ化アルミニウムを析出させる湿式製法(特公平02-62,492号、特開平07-2,517号及び特開平11-92,137号の各公報参照)とが知られており、湿式製法の方が乾式製法よりも比較的純度の高い製品が得られる利点を有する。   Aluminum fluoride is an inorganic solid substance whose anhydride is widely used in many fields as a flux for aluminum electrolytic refining, coating for welding rods, ceramics and other chemicals, organic fluoride synthesis catalyst, etc. As the production method, a dry production method in which hydrogen fluoride gas and aluminum hydroxide are reacted (see JP-A-11-335,118), and hydrofluoric acid and aluminum hydroxide are reacted to form a supersaturated solution of aluminum fluoride. And a wet process for depositing aluminum fluoride from this solution (see Japanese Patent Publication Nos. 02-62,492, JP 07-2517, and JP 11-92,137). This has the advantage that a product having a relatively high purity can be obtained compared to the dry process.

しかしながら、近年においては、例えば鋳造速度の厳密な制御が要求される耐火物のような新たな用途が開発され、比較的比表面積が大きく、未反応酸化アルミニウムの含有量も少なく、より高純度のフッ化アルミニウムが求められており、湿式製法でないと対応できない場合が生じており、また、この湿式製法で高純度のフッ化アルミニウムを製造するために単純に反応当量比〔Al(OH)3/6HF〕を下げるとフッ素と反応するアルミニウムが少なくなって収率が低下するという問題(収率低下)が生じるほか、製造設備の金属部分等に腐食の問題(機器腐食)が生じる。 However, in recent years, new applications such as refractories that require strict control of the casting speed, for example, have been developed, have a relatively large specific surface area, a low content of unreacted aluminum oxide, and higher purity. There is a demand for aluminum fluoride, and there are cases where it is not possible to cope with it by a wet process, and in order to produce high purity aluminum fluoride by this wet process, a reaction equivalent ratio [Al (OH) 3 / If [6HF] is lowered, the amount of aluminum that reacts with fluorine decreases and the yield decreases (yield decrease), and the corrosion problem (equipment corrosion) occurs in the metal part of the manufacturing facility.

特開平11-335,118号公報Japanese Patent Laid-Open No. 11-335,118 特公平02-62,492号公報Japanese Patent Publication No. 02-62,492 特開平07-2,517号公報Japanese Patent Application Laid-Open No. 07-2,517 特開平11-92,137号公報Japanese Patent Laid-Open No. 11-92,137

そこで、本発明者は、収率低下や機器腐食等の問題が無く、しかも、高純度のフッ化アルミニウムを工業的に有利に製造するための方法について鋭意検討した結果、フッ化水素酸と水酸化アルミニウムとを反応せしめる際の反応当量比をこれまでの原料フッ化水素酸中における水酸化アルミニウムと反応する全酸分基準ではなく、この全酸分からフッ化水素酸以外の不純物酸分を除いた純フッ化水素酸分(純HF酸分)を基準にし、この純HF酸分に基づいて計算された純反応当量比〔Al(OH)3/6HF〕を0.90<Al(OH)3/6HF<1.05の範囲内に制御することにより、この目的を達成できることを見出し、本発明を完成した。 Therefore, the present inventor has found that there is no problem such as a decrease in yield and equipment corrosion, and as a result of earnestly examining a method for industrially producing high-purity aluminum fluoride, hydrofluoric acid and water. The reaction equivalent ratio when reacting with aluminum oxide is not based on the total acid content that reacts with aluminum hydroxide in the raw material hydrofluoric acid so far, but impurities other than hydrofluoric acid are excluded from this total acid content. Based on the pure hydrofluoric acid content (pure HF acid content), the pure reaction equivalent ratio [Al (OH) 3 / 6HF] calculated based on this pure HF acid content is 0.90 <Al (OH) It has been found that this object can be achieved by controlling within the range of 3 / 6HF <1.05, and the present invention has been completed.

従って、本発明の目的は、収率低下や機器腐食等の問題が無く、しかも、高純度のフッ化アルミニウムを工業的に有利に製造することができる高純度フッ化アルミニウムの製造方法を提供することにある。   Therefore, an object of the present invention is to provide a method for producing high-purity aluminum fluoride that is free from problems such as yield reduction and equipment corrosion, and that can produce high-purity aluminum fluoride industrially advantageously. There is.

すなわち、本発明は、フッ化水素酸水溶液中に水酸化アルミニウムを添加し溶解させてフッ化水素酸と水酸化アルミニウムとを反応せしめ、得られた反応溶液中からフッ化アルミニウムを水和物として析出させるフッ化アルミニウムの製造方法であり、原料フッ化水素酸について水酸化アルミニウムと反応する全酸分からフッ化水素酸以外の不純物酸分を除いた純フッ化水素酸分(純HF酸分)を求め、この純HF酸分に基づく純反応当量比〔Al(OH)3/6HF〕を算出し、フッ化水素酸と水酸化アルミニウムとの反応系の純反応当量比を0.90<Al(OH)3/6HF<1.05の範囲内に制御する、高純度フッ化アルミニウムの製造方法である。 That is, in the present invention, aluminum hydroxide is added and dissolved in a hydrofluoric acid aqueous solution to react hydrofluoric acid and aluminum hydroxide, and aluminum fluoride is converted into a hydrate from the obtained reaction solution. Pure hydrofluoric acid content (pure HF acid content), which is a method for producing aluminum fluoride to be deposited, and excluding impurity acids other than hydrofluoric acid from the total acid content of raw material hydrofluoric acid that reacts with aluminum hydroxide The pure reaction equivalent ratio [Al (OH) 3 / 6HF] based on this pure HF acid content was calculated, and the pure reaction equivalent ratio of the reaction system of hydrofluoric acid and aluminum hydroxide was 0.90 <Al This is a method for producing high-purity aluminum fluoride, which is controlled within the range of (OH) 3 /6HF<1.05.

本発明において、原料として使用するフッ化水素酸としては、特に制限はなく、従来よりこの種の湿式製法で用いられているフッ化水素酸と同様に、フッ化水素酸濃度(HF濃度)50〜350g/Lのもの、好ましくは150〜250g/Lのもの、より好ましくは180〜200g/Lのものが用いられ、フッ化水素酸の製造時に不可避的に混入して水酸化アルミニウムと反応するフッ化水素酸以外の不純物酸分(珪フッ酸、硫酸及び燐酸)についても水酸化アルミニウムと反応する全酸分に対して2重量%程度まで、好ましくは1重量%程度まで許容される。   In the present invention, the hydrofluoric acid used as a raw material is not particularly limited, and the hydrofluoric acid concentration (HF concentration) is 50 similarly to the hydrofluoric acid conventionally used in this type of wet manufacturing method. ˜350 g / L, preferably 150 to 250 g / L, more preferably 180 to 200 g / L, which are inevitably mixed during the production of hydrofluoric acid and react with aluminum hydroxide. Impurity acids other than hydrofluoric acid (silicic acid, sulfuric acid, and phosphoric acid) are allowed to be about 2% by weight, preferably about 1% by weight, based on the total acid content that reacts with aluminum hydroxide.

また、一方の原料として使用する水酸化アルミニウムについては、その純度が90重量%以上であるのがよく、好ましくは98重量%以上であり、より好ましくは99重量%以上であるのがよい。原料として使用する水酸化アルミニウムの純度が90重量%より低いと、水酸化アルミニウム由来の不純物が増加し、意図した高純度のフッ化アルミニウムの製造が困難になる。   In addition, the aluminum hydroxide used as one of the raw materials should have a purity of 90% by weight or more, preferably 98% by weight or more, and more preferably 99% by weight or more. When the purity of aluminum hydroxide used as a raw material is lower than 90% by weight, impurities derived from aluminum hydroxide increase, making it difficult to produce intended high-purity aluminum fluoride.

本発明においては、フッ化水素酸水溶液中に水酸化アルミニウムを添加し溶解させてフッ化水素酸と水酸化アルミニウムとを反応させる際には、原料として用いるフッ化水素酸中の純フッ化水素酸分(純HF酸分)に基づく純反応当量比〔Al(OH)3/6HF〕を0.90<Al(OH)3/6HF<1.05、好ましくは0.91≦Al(OH)3/6HF≦1.04の範囲内に制御する必要がある。 In the present invention, when hydrogen hydroxide is added and dissolved in a hydrofluoric acid aqueous solution to react hydrofluoric acid with aluminum hydroxide, pure hydrogen fluoride in hydrofluoric acid used as a raw material is used. Pure reaction equivalent ratio [Al (OH) 3 / 6HF] based on acid content (pure HF acid content) is 0.90 <Al (OH) 3 /6HF<1.05, preferably 0.91 ≦ Al (OH) It is necessary to control within the range of 3 / 6HF ≦ 1.04.

ここで、上記の純フッ化水素酸分(純HF酸分)は、原料フッ化水素酸について水酸化アルミニウムと反応する全酸分からフッ化水素酸以外の不純物酸分、すなわち、フッ化水素酸の製造時に不可避的に混入する主として珪フッ酸、硫酸及び燐酸からなる酸分)を除いた純フッ化水素酸分(純HF酸分)であり、一般的には次のようにして求められる。   Here, the pure hydrofluoric acid content (pure HF acid content) is the total acid content that reacts with aluminum hydroxide in the raw hydrofluoric acid to the impurity acid content other than hydrofluoric acid, that is, hydrofluoric acid. Is a pure hydrofluoric acid content (pure HF acid content) excluding an acid content mainly composed of silicofluoric acid, sulfuric acid and phosphoric acid, which is inevitably mixed during the production of the resin, and is generally determined as follows. .

すなわち、先ず、原料フッ化水素酸の試料中に硝酸カリウムを過飽和となるように添加し、珪フッ酸を完全に沈殿せしめると共にこの珪フッ酸と当量の硝酸を精製させる。次に、水酸化ナトリウム水溶液で滴定し、試料中に存在する全ての酸分〔HF, H2SO4, H3PO4, HNO3(H2SiF6)〕を定量し、これを全酸分(T.HF; g/L)とする。
次に、試料を加熱して沈殿している珪フッ酸カリウムを完全に溶解させ、水酸化ナトリウム水溶液で滴定し、消費された水酸化ナトリウムからSiO2を算出し、これをSiO2分(SiO2; g/L)とする。ここで、珪フッ酸分(H2SiF6)をSiO2分として表示するのは、水酸化アルミニウムと反応するフッ化水素酸の反応当量比を算出し易くするためである。
That is, first, potassium nitrate is added to a sample of raw hydrofluoric acid so as to be supersaturated to completely precipitate silicic acid and purify nitric acid equivalent to the silicic acid. Next, titration with an aqueous sodium hydroxide solution quantifies all the acid content (HF, H 2 SO 4 , H 3 PO 4 , HNO 3 (H 2 SiF 6 )) present in the sample, Minute (T.HF; g / L).
Next, the sample is completely dissolved potassium silicofluoride acid heated are precipitated, titrated with sodium hydroxide solution, to calculate the SiO 2 from spent sodium hydroxide, which SiO 2 minutes (SiO 2 ; g / L). Here, the reason why the silicon hydrofluoric acid content (H 2 SiF 6 ) is displayed as SiO 2 content is to facilitate calculation of the reaction equivalent ratio of hydrofluoric acid that reacts with aluminum hydroxide.

次に、試料を加熱してフッ化水素酸と珪フッ酸とを気化させて除去し、一方では水酸化ナトリウム水溶液で滴定して硫酸・燐酸の合計量を定量し、これを硫酸・燐酸分(T.H2SO4; g/L)とし、また、他方ではモリブデンブルー法で燐酸を定量し、これら硫酸と燐酸とをそれぞれ定量する。 Next, the sample is heated to vaporize and remove hydrofluoric acid and silicic acid, and on the other hand, titrate with an aqueous sodium hydroxide solution to determine the total amount of sulfuric acid and phosphoric acid. (TH 2 SO 4 ; g / L). On the other hand, phosphoric acid is quantified by the molybdenum blue method, and the sulfuric acid and phosphoric acid are quantified.

そして、フッ化水素酸と水酸化アルミニウムの純反応当量比〔Al(OH)3/6HF〕を決定する際に用いる純HF酸分(HF)は、下記の反応式
主反応 3HF+Al(OH)3→AlF3+3H2
副反応 (a) 3H2SO4+2Al(OH)3→Al2(SO43+6H2
(b) H3PO4+Al(OH)3→AlPO4+3H2
(c) H2SiF6+2Al(OH)3→2AlF3+SiO2+4H2
に基づいて、SiO2分や硫酸・燐酸分(T.H2SO4)が水酸化ナトリウムと反応する当量分をHFに換算し、SiO2分のHF換算係数を2、また、硫酸・燐酸分を0.408とし、次の計算式から算出される。
純HF酸分(HF)=
全酸分(T.HF)−{SiO2分(SiO2)×2 + 硫酸・燐酸分(T.H2SO4)×0.408}
なお、ここでは、燐酸の分子量が硫酸と同じであり、しかも、燐酸の副反応は他の副反応に比べて少ないので、燐酸を硫酸の一部として扱っている。
The pure HF acid content (HF) used in determining the pure reaction equivalent ratio [Al (OH) 3 / 6HF] of hydrofluoric acid and aluminum hydroxide is the following reaction formula: Main reaction 3HF + Al (OH 3 ) → AlF 3 + 3H 2 O
Side reaction (a) 3H 2 SO 4 + 2Al (OH) 3 → Al 2 (SO 4 ) 3 + 6H 2 O
(b) H 3 PO 4 + Al (OH) 3 → AlPO 4 + 3H 2 O
(c) H 2 SiF 6 + 2Al (OH) 3 → 2AlF 3 + SiO 2 + 4H 2 O
Based on the above, the equivalent of the SiO 2 minute and sulfuric acid / phosphoric acid content (TH 2 SO 4 ) reacting with sodium hydroxide is converted to HF, the HF conversion factor of SiO 2 is 2, and the sulfuric acid / phosphoric acid content is It is set to 0.408 and is calculated from the following calculation formula.
Pure HF acid content (HF) =
Total acid content (T.HF)-{SiO 2 min (SiO 2 ) x 2 + sulfuric acid / phosphoric acid content (TH 2 SO 4 ) x 0.408}
Here, since the molecular weight of phosphoric acid is the same as that of sulfuric acid and the side reaction of phosphoric acid is smaller than other side reactions, phosphoric acid is treated as a part of sulfuric acid.

次に、このようにして求めた原料フッ化水素酸の純HF酸分(HF)を基に、この原料フッ化水素酸と反応させる水酸化アルミニウムとの純反応当量比〔Al(OH)3/6HF〕を0.90<Al(OH)3/6HF<1.05の範囲内で決定するが、好ましくは、この際に原料フッ化水素酸中に含まれる不純物酸分の濃度が高いときには低くなるように、また、この不純物酸分の濃度が低いときには高くなるように補正するのがよい。この補正を行うことにより、品質、製造コスト共に最適化できるという利点が生じる。 Next, based on the pure HF acid content (HF) of the raw material hydrofluoric acid thus obtained, the pure reaction equivalent ratio [Al (OH) 3 with aluminum hydroxide to be reacted with this raw material hydrofluoric acid. / 6HF] is determined within the range of 0.90 <Al (OH) 3 /6HF<1.05, preferably, when the concentration of the impurity acid contained in the raw hydrofluoric acid is high at this time It is preferable to make correction so that the impurity acid content is low and the impurity acid content is high when the concentration is low. By performing this correction, there is an advantage that both quality and manufacturing cost can be optimized.

上記の反応系内の反応当量比〔Al(OH)3/6HF〕の補正は、具体的には、原料フッ化水素酸中の不純物酸分における珪フッ酸分(H2SiF6分)と硫酸及び燐酸の合計の硫酸・燐酸分(T-H2SO4分)とを比較し、より高い不純物濃度の珪フッ酸分(H2SiF6分)又は硫酸・燐酸分(T-H2SO4分)に基づいて、珪フッ酸分(H2SiF6分)の場合には下記補正式(1)により、また、硫酸・燐酸分(T-H2SO4分)の場合には下記補正式(2)により行われる。
y=1.05−0.0075x (1)
y=1.05−0.0060x (2)
〔但し、補正式(1)及び(2)中、yは反応系内の純反応当量比〔Al(OH)3/6HF〕を示し、xは原料フッ化水素酸中の珪フッ酸分(H2SiF6分)又は硫酸・燐酸分(T-H2SO4分)の濃度(HF200g/L換算のg/L)を示す。〕
これらの補正式(1)及び(2)はいずれも実験的に求められてものであり、これらの補正式(1)及び(2)に基づいて補正することにより、より高純度のフッ化アルミニウムを製造することができる。
Specifically, the correction of the reaction equivalent ratio [Al (OH) 3 / 6HF] in the reaction system described above is based on the silicic acid content (H 2 SiF 6 minutes) in the impurity acid content in the raw hydrofluoric acid. Compared to the total sulfuric acid and phosphoric acid content (TH 2 SO 4 min) of sulfuric acid and phosphoric acid, silicic acid (H 2 SiF 6 min) with higher impurity concentration or sulfuric acid and phosphoric acid content (TH 2 SO 4 min) In the case of silicic acid content (H 2 SiF 6 minutes), the following correction formula (1), and in the case of sulfuric acid / phosphoric acid content (TH 2 SO 4 minutes), the following correction formula (2) Is done.
y = 1.05-0.0075x (1)
y = 1.05-0.0060x (2)
[However, in the correction equations (1) and (2), y represents the pure reaction equivalent ratio [Al (OH) 3 / 6HF] in the reaction system, and x represents the content of silicofluoric acid in the raw hydrofluoric acid ( H 2 SiF 6 minutes) or sulfuric acid / phosphoric acid content (TH 2 SO 4 minutes) concentration (g / L in terms of HF 200 g / L). ]
These correction equations (1) and (2) are both obtained experimentally, and by correcting based on these correction equations (1) and (2), higher-purity aluminum fluoride Can be manufactured.

また、本発明においては、水酸化アルミニウム溶解後の反応系のピーク温度を100±2℃の範囲に、好ましくは101±1℃の範囲に制御するのがよい。この反応系のピーク温度の制御は、好ましくは水酸化アルミニウム溶解前のフッ化水素酸水溶液の液温に応じて、反応系のフッ化水素酸濃度(HF濃度)を170〜200g/Lの範囲で調整することにより行うのがよく、フッ化水素酸と水酸化アルミニウムとの反応により発生する反応熱による反応系の温度上昇に水酸化アルミニウム溶解前のフッ化水素酸水溶液の液温を考慮して反応系のフッ化水素酸濃度(HF濃度)を決定する。反応系のピーク温度を100±2℃の範囲に制御することにより、反応系からフッ化水素が気化して純反応当量比〔Al(OH)3/6HF〕が変化するのを防止することができ、生成するフッ化アルミニウムの純度低下を未然に防止することができる。 In the present invention, the peak temperature of the reaction system after dissolution of aluminum hydroxide is controlled in the range of 100 ± 2 ° C., preferably in the range of 101 ± 1 ° C. The peak temperature of this reaction system is preferably controlled in the range of 170 to 200 g / L of hydrofluoric acid concentration (HF concentration) in the reaction system, depending on the liquid temperature of the hydrofluoric acid aqueous solution before dissolution of aluminum hydroxide. The temperature of the reaction system due to the reaction heat generated by the reaction between hydrofluoric acid and aluminum hydroxide should be taken into account in consideration of the temperature of the hydrofluoric acid aqueous solution before dissolution of aluminum hydroxide. Thus, the hydrofluoric acid concentration (HF concentration) of the reaction system is determined. By controlling the peak temperature of the reaction system within a range of 100 ± 2 ° C., it is possible to prevent hydrogen fluoride from evaporating from the reaction system and change the pure reaction equivalent ratio [Al (OH) 3 / 6HF]. It is possible to prevent a decrease in the purity of the produced aluminum fluoride.

更に、本発明においては、フッ化水素酸水溶液中への水酸化アルミニウムの添加を反応系がピーク温度に達する前に、好ましくは50分以内に、より好ましくは30分以内に行うのがよい。この水酸化アルミニウムの添加時間が50分を超えると、生成したフッ化アルミニウムの析出速度が速くなり、析出時間が短くなって微粒の発生が多くなる。   Furthermore, in the present invention, the addition of aluminum hydroxide to the hydrofluoric acid aqueous solution is preferably performed within 50 minutes, more preferably within 30 minutes, before the reaction system reaches the peak temperature. When the addition time of the aluminum hydroxide exceeds 50 minutes, the precipitation rate of the produced aluminum fluoride is increased, the precipitation time is shortened, and the generation of fine particles increases.

本発明において、フッ化水素酸水溶液への水酸化アルミニウムの添加終了後、反応系の撹拌を継続すると、反応系の液温は次第に上昇し、沸点あるいは沸点近くまで上昇し、ピーク温度に到達する。その後、更に撹拌を継続すると、反応系で生成して反応液中に溶解したフッ化アルミニウムは、次第にその水和物となって反応液中から析出してくる。この反応において、フッ化水素酸水溶液への水酸化アルミニウムの添加終了後の発熱反応におけるピーク温度から、生成したフッ化アルミニウム水和物が析出する析出反応におけるピーク温度までのピーク温度間の時間は、通常2〜5時間であり、好ましくは3〜4時間である。このピーク温度間の時間が2時間より短いと微粒の発生が多くなって収率が低下し、反対に、5時間より長くなると機器の腐食が問題になり始める。   In the present invention, if the stirring of the reaction system is continued after the addition of aluminum hydroxide to the hydrofluoric acid aqueous solution, the liquid temperature of the reaction system gradually rises to the boiling point or near the boiling point, and reaches the peak temperature. . Thereafter, when stirring is further continued, aluminum fluoride produced in the reaction system and dissolved in the reaction solution gradually becomes a hydrate and precipitates from the reaction solution. In this reaction, the time between peak temperatures from the peak temperature in the exothermic reaction after the addition of aluminum hydroxide to the hydrofluoric acid aqueous solution to the peak temperature in the precipitation reaction in which the produced aluminum fluoride hydrate precipitates is Usually, 2 to 5 hours, preferably 3 to 4 hours. When the time between the peak temperatures is shorter than 2 hours, the generation of fine particles increases and the yield decreases. On the other hand, when the time between the peak temperatures is longer than 5 hours, corrosion of the apparatus starts to become a problem.

このようにしてフッ化水素酸と水酸化アルミニウムとを反応させ、その反応系からフッ化アルミニウム水和物を析出させて得られた反応液(スラリー)については、次にろ過し、遠心脱水等の手段で付着水を除去した後、常法に従って乾燥し、焼成して無水フッ化アルミニウムとすることができる。
ここで、反応系で析出したフッ化アルミニウム水和物の反応液(スラリー)を反応系からろ過工程に移行させる際の反応液温度については、通常30〜50℃以下、好ましくは30〜40℃であり、スラリーを30℃より低い温度まで反応系に留めておくと、反応系での攪拌により粒径が小さくなり、ろ過工程でのろ布の目詰まり等のトラブル発生の原因になり、反対に、50℃より高くなると、次工程において分級装置等の機器の腐食が促進される等の問題が生じる。
The reaction solution (slurry) obtained by reacting hydrofluoric acid and aluminum hydroxide in this manner and precipitating aluminum fluoride hydrate from the reaction system is then filtered, centrifuged, etc. After removing the adhering water by the above means, it can be dried and calcined according to a conventional method to obtain anhydrous aluminum fluoride.
Here, about the reaction liquid temperature at the time of making the reaction liquid (slurry) of the aluminum fluoride hydrate which precipitated in the reaction system transfer to a filtration process from a reaction system, it is 30-30 degrees C or less normally, Preferably it is 30-40 degrees C If the slurry is kept in the reaction system to a temperature lower than 30 ° C., the particle size becomes smaller due to stirring in the reaction system, which causes troubles such as clogging of the filter cloth in the filtration process. In addition, when the temperature is higher than 50 ° C., there arises a problem that corrosion of equipment such as a classifier is accelerated in the next process.

本発明の製造方法によれば、収率低下や機器腐食等の問題が無く、しかも、高純度のフッ化アルミニウムを工業的に有利に製造することができる。   According to the production method of the present invention, there are no problems such as a decrease in yield and equipment corrosion, and high-purity aluminum fluoride can be produced industrially advantageously.

以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail based on examples and comparative examples.

〔実施例1〜10〕
原料のフッ化水素酸として表1に示す組成のフッ化水素酸を用い、また、このフッ化水素酸と反応させる原料の水酸化アルミニウムとしてバイヤー法で製造され、付着水8重量%の水酸化アルミニウムを用いた。
原料フッ化水素酸については、その液温に応じて表1に示すフッ化水素酸濃度(HF濃度)に調整し、反応槽内に原料フッ化水素酸の液温に応じて表1に示すフッ化水素酸濃度(HF濃度)に調整されたフッ化水素酸を表1に示す仕込量で仕込んだ。
なお、原料仕込量は1バッチ当り2tHF/日であり、反応当量比1.00及び付着水8重量%の水酸化アルミニウムの仕込量2,826kgを基準とした。
[Examples 1 to 10]
Hydrofluoric acid having the composition shown in Table 1 was used as the raw material hydrofluoric acid, and the raw material aluminum hydroxide to be reacted with the hydrofluoric acid was produced by the Bayer method, and the water content was 8% by weight. Aluminum was used.
About raw material hydrofluoric acid, it adjusts to the hydrofluoric acid density | concentration (HF density | concentration) shown in Table 1 according to the liquid temperature, and shows in Table 1 according to the liquid temperature of raw material hydrofluoric acid in a reaction tank. Hydrofluoric acid adjusted to hydrofluoric acid concentration (HF concentration) was charged in the amount shown in Table 1.
The raw material charge was 2 tHF / day per batch, and was based on a reaction equivalent ratio of 1.00 and an aluminum hydroxide charge of 8% by weight of 2,826 kg.

Figure 2005047785
Figure 2005047785

次に、上記フッ化水素酸が仕込まれた反応槽内には、表2に示す補正式(1)又は(2)を用いて補正され、決定された表2に示す純反応当量比〔Al(OH)3/6HF〕に相当する量の上記水酸化アルミニウムを、表2に示す添加時間をかけて撹拌下に添加して中和発熱反応を生起せしめ、生成したフッ化アルミニウム水和物を含む反応液(スラリー)を、表2に示す温度になった時点で、この反応槽から抜き出し、次のろ過工程のろ過槽に移送した。 Next, the reaction tank charged with hydrofluoric acid was corrected using the correction formula (1) or (2) shown in Table 2, and the pure reaction equivalent ratio [Al (OH) 3 / 6HF] is added to the above aluminum hydroxide with stirring over the addition time shown in Table 2 to cause a neutralization exothermic reaction. The reaction liquid (slurry) contained was extracted from this reaction tank when it reached the temperature shown in Table 2, and transferred to the filtration tank of the next filtration step.

Figure 2005047785
Figure 2005047785

反応槽から抜き出されてろ過槽に移送された反応液(スラリー)は、遠心脱水により付着水が除去され、引き続いて250〜350℃、5〜10分の条件で乾燥され、次いで250〜400℃、2時間の条件で焼成され、無水フッ化アルミニウムとされた。
得られた各実施例1〜10の無水フッ化アルミニウムについて、下記の分析方法で測定された組成と収率とを表3に示す。
The reaction liquid (slurry) extracted from the reaction tank and transferred to the filtration tank is freed of adhering water by centrifugal dehydration, subsequently dried at 250 to 350 ° C. for 5 to 10 minutes, and then 250 to 400. It was calcined at 2 ° C. for 2 hours to obtain anhydrous aluminum fluoride.
About the obtained anhydrous aluminum fluoride of each Example 1-10, the composition and yield which were measured with the following analysis method are shown in Table 3.

(1) 「H2O+LOI」の分析:灼熱減量法
試料を500℃の電気炉内で1時間加熱し、減量分を算出して求める。
(2) 「SiO2」の分析:JIS R9301-3-5
(3) 「Fe2O3」の分析:JIS R9301-3-6
(4) 「F」の分析:EDTA滴定法
試料を水酸化カリウム溶液に溶解した後、珪酸カリウム溶液を加えてアルミニウムを珪酸アルミニウムとして沈殿させ、ろ過して得られたろ液に酢酸鉛溶液を加え、フッ素を塩フッ化鉛(PbClF)として沈殿させ、ろ過して得られたろ液中の過剰の鉛をEDTA2Na標準溶液で滴定し、Fの重量%とする。
(5) 「ALF3」の分析:
上記(3)で求められたFの分析値より算出する。
(1) Analysis of “H 2 O + LOI”: Burning loss method The sample is heated in an electric furnace at 500 ° C. for 1 hour, and the weight loss is calculated.
(2) Analysis of “SiO 2 ”: JIS R9301-3-5
(3) Analysis of “Fe 2 O 3 ”: JIS R9301-3-6
(4) Analysis of “F”: EDTA titration method After dissolving the sample in potassium hydroxide solution, add potassium silicate solution to precipitate aluminum as aluminum silicate, and add lead acetate solution to the filtrate obtained by filtration The excess lead in the filtrate obtained by precipitating fluorine as lead chlorofluoride (PbClF) and filtered is titrated with an EDTA2Na standard solution to obtain the weight% of F.
(5) Analysis of “ALF 3 ”:
Calculated from the analytical value of F obtained in (3) above.

Figure 2005047785
Figure 2005047785

〔比較例1〕
フッ化水素酸と水酸化アルミニウムとの反応を、本発明の純反応当量比〔Al(OH)3/6HF〕に代えて、フッ化水素酸水溶液中の全酸分(T-HF)を基準にして計算された反応当量比〔Al(OH)3/T-HF〕1.05とした以外は、上記実施例3と同様にして無水フッ化アルミニウムの製造を行った。
得られた比較例1の無水フッ化アルミニウムについて、その収率と組成とを表4に示す。
[Comparative Example 1]
The reaction between hydrofluoric acid and aluminum hydroxide was replaced with the pure reaction equivalent ratio [Al (OH) 3 / 6HF] of the present invention, and the total acid content (T-HF) in the hydrofluoric acid aqueous solution was used as a standard. Anhydrous aluminum fluoride was produced in the same manner as in Example 3 except that the reaction equivalent ratio [Al (OH) 3 / T-HF] calculated at 1.05 was used.
Table 4 shows the yield and composition of the anhydrous aluminum fluoride obtained in Comparative Example 1.

〔比較例2〕
フッ化水素酸と水酸化アルミニウムとの反応の際における純反応当量比〔Al(OH)3/6HF〕1.05とした以外は、上記実施例6と同様にして無水フッ化アルミニウムの製造を行った。
得られた比較例2の無水フッ化アルミニウムについて、その収率と組成とを表4に示す。
[Comparative Example 2]
Anhydrous aluminum fluoride was produced in the same manner as in Example 6 except that the pure reaction equivalent ratio [Al (OH) 3 / 6HF] 1.05 in the reaction between hydrofluoric acid and aluminum hydroxide was 1.05. went.
Table 4 shows the yield and composition of the anhydrous aluminum fluoride obtained in Comparative Example 2.

〔比較例3〕
フッ化水素酸と水酸化アルミニウムとの反応の際における純反応当量比〔Al(OH)3/6HF〕0.90とした以外は、上記実施例10と同様にして無水フッ化アルミニウムの製造を行った。
得られた比較例3の無水フッ化アルミニウムについて、その収率と組成とを表4に示す。
[Comparative Example 3]
Anhydrous aluminum fluoride was produced in the same manner as in Example 10 except that the pure reaction equivalent ratio [Al (OH) 3 / 6HF] was 0.90 in the reaction between hydrofluoric acid and aluminum hydroxide. went.
Table 4 shows the yield and composition of the anhydrous aluminum fluoride obtained in Comparative Example 3.

Figure 2005047785
Figure 2005047785

本発明の方法によれば、これまでの全酸分基準から純HF酸分に基づいて計算される純反応当量比〔Al(OH)3/6HF〕を0.90<Al(OH)3/6HF<1.05の範囲内に制御することにより、収率低下や機器腐食等の問題が無く、しかも、高純度のフッ化アルミニウムを工業的に有利に製造することができ、近年、アルミニウム電解精錬の融剤、溶接棒の被覆剤、陶磁器等の上薬、有機フッ化物の合成触媒等の多くの分野で要求される高純度フッ化アルミニウムを安価に提供することができる。 According to the method of the present invention, the pure reaction equivalent ratio [Al (OH) 3 / 6HF] calculated based on the pure HF acid content from the total acid content standard so far is set to 0.90 <Al (OH) 3 / By controlling within the range of 6HF <1.05, there are no problems such as yield reduction and equipment corrosion, and high-purity aluminum fluoride can be produced industrially advantageously. High-purity aluminum fluoride required in many fields such as refining fluxes, welding rod coatings, ceramics and other chemicals, and organic fluoride synthesis catalysts can be provided at low cost.

Claims (7)

フッ化水素酸水溶液中に水酸化アルミニウムを添加し溶解させてフッ化水素酸と水酸化アルミニウムとを反応せしめ、得られた反応溶液中からフッ化アルミニウムを水和物として析出させるフッ化アルミニウムの製造方法であり、原料フッ化水素酸について水酸化アルミニウムと反応する全酸分からフッ化水素酸以外の不純物酸分を除いた純フッ化水素酸分(純HF酸分)を求め、この純HF酸分に基づく純反応当量比〔Al(OH)3/6HF〕を算出し、フッ化水素酸と水酸化アルミニウムとの反応系の純反応当量比を0.90<Al(OH)3/6HF<1.05の範囲内に制御することを特徴とする高純度フッ化アルミニウムの製造方法。 Aluminum fluoride is added to and dissolved in an aqueous hydrofluoric acid solution to react hydrofluoric acid with aluminum hydroxide, and aluminum fluoride is precipitated from the resulting reaction solution as a hydrate. A pure hydrofluoric acid content (pure HF acid content) obtained by removing impurities other than hydrofluoric acid from the total acid content that reacts with aluminum hydroxide in the raw hydrofluoric acid. The pure reaction equivalent ratio [Al (OH) 3 / 6HF] based on the acid content was calculated, and the pure reaction equivalent ratio of the reaction system of hydrofluoric acid and aluminum hydroxide was 0.90 <Al (OH) 3 / 6HF. <The manufacturing method of the high purity aluminum fluoride characterized by controlling within the range of 1.05. 反応系内の反応当量比〔Al(OH)3/6HF〕は、原料フッ化水素酸中に含まれる不純物酸分の濃度が高いときには低くなるように、また、この不純物酸分の濃度が低いときには高くなるように補正される請求項1に記載の高純度フッ化アルミニウムの製造方法。 The reaction equivalent ratio [Al (OH) 3 / 6HF] in the reaction system is lowered when the concentration of the impurity acid contained in the raw hydrofluoric acid is high, and the concentration of the impurity acid is low. The method for producing high-purity aluminum fluoride according to claim 1, wherein the high-purity aluminum fluoride is corrected to be sometimes high. 反応系内の反応当量比〔Al(OH)3/6HF〕の補正は、原料フッ化水素酸中の不純物酸分における珪フッ酸分(H2SiF6分)と硫酸及び燐酸の合計の硫酸・燐酸分(T-H2SO4分)とを比較し、より高い不純物濃度の珪フッ酸分(H2SiF6分)又は硫酸・燐酸分(T-H2SO4分)に基づいて、珪フッ酸分(H2SiF6分)の場合には下記補正式(1)により、また、硫酸・燐酸分(T-H2SO4分)の場合には下記補正式(2)により行われる請求項2に記載の高純度フッ化アルミニウムの製造方法。
y=1.05−0.0075x (1)
y=1.05−0.0060x (2)
〔但し、補正式(1)及び(2)中、yは反応系内の反応当量比〔Al(OH)3/6HF〕を示し、xは原料フッ化水素酸中の珪フッ酸分(H2SiF6分)又は硫酸・燐酸分(T-H2SO4分)の濃度(HF200g/L換算のg/L)を示す。〕
The reaction equivalent ratio [Al (OH) 3 / 6HF] in the reaction system is corrected by adding the sulfuric acid content (H 2 SiF 6 minutes), sulfuric acid and phosphoric acid to the impurity acid content in the raw hydrofluoric acid. · comparing the phosphate content (TH 2 SO 4 minutes), based on the higher silicofluoride acid content of the impurity concentration (H 2 SiF 6 minutes) or sulfuric acid and phosphoric acid content (TH 2 SO 4 minutes), silicofluoride acid In the case of the minute (H 2 SiF 6 minutes), the following correction formula (1) is performed. In the case of the sulfuric acid / phosphoric acid content (TH 2 SO 4 minutes), the correction formula (2) is performed. The manufacturing method of high-purity aluminum fluoride of description.
y = 1.05-0.0075x (1)
y = 1.05-0.0060x (2)
[However, in correction formulas (1) and (2), y represents the reaction equivalent ratio [Al (OH) 3 / 6HF] in the reaction system, and x represents the content of silicon hydrofluoric acid (H 2 SiF 6 minutes) or sulfuric acid / phosphoric acid content (TH 2 SO 4 minutes) concentration (HF / 200g / L equivalent g / L). ]
水酸化アルミニウム溶解後の反応系のピーク温度を100±2℃に制御する請求項1〜3のいずれかに記載の高純度フッ化アルミニウムの製造方法。   The method for producing high-purity aluminum fluoride according to any one of claims 1 to 3, wherein the peak temperature of the reaction system after dissolution of aluminum hydroxide is controlled to 100 ± 2 ° C. 水酸化アルミニウム溶解後の反応系のピーク温度の制御は、水酸化アルミニウム溶解前のフッ化水素酸水溶液の液温に応じて、反応系のフッ化水素酸濃度(HF濃度)を170〜200g/Lの範囲で調整することにより行われる請求項4に記載の高純度フッ化アルミニウムの製造方法。   The reaction system peak temperature after dissolution of aluminum hydroxide is controlled by adjusting the hydrofluoric acid concentration (HF concentration) of the reaction system to 170 to 200 g / in accordance with the liquid temperature of the hydrofluoric acid aqueous solution before dissolution of aluminum hydroxide. The manufacturing method of the high purity aluminum fluoride of Claim 4 performed by adjusting in the range of L. フッ化水素酸水溶液中への水酸化アルミニウムの添加を50分以内に行う請求項1〜5のいずれかに記載の高純度フッ化アルミニウムの製造方法。   The method for producing high-purity aluminum fluoride according to any one of claims 1 to 5, wherein aluminum hydroxide is added to the hydrofluoric acid aqueous solution within 50 minutes. 水酸化アルミニウム溶解後の反応系のピーク温度からフッ化アルミニウムの水和物の析出ピーク温度までに要する時間を3〜4時間の範囲に制御する請求項1〜6のいずれかに記載の高純度フッ化アルミニウムの製造方法。   The high purity according to any one of claims 1 to 6, wherein the time required from the peak temperature of the reaction system after dissolution of aluminum hydroxide to the precipitation peak temperature of aluminum fluoride hydrate is controlled within a range of 3 to 4 hours. A method for producing aluminum fluoride.
JP2003284372A 2003-07-31 2003-07-31 Method for producing high purity aluminum fluoride Expired - Fee Related JP4241257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003284372A JP4241257B2 (en) 2003-07-31 2003-07-31 Method for producing high purity aluminum fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003284372A JP4241257B2 (en) 2003-07-31 2003-07-31 Method for producing high purity aluminum fluoride

Publications (2)

Publication Number Publication Date
JP2005047785A true JP2005047785A (en) 2005-02-24
JP4241257B2 JP4241257B2 (en) 2009-03-18

Family

ID=34268999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003284372A Expired - Fee Related JP4241257B2 (en) 2003-07-31 2003-07-31 Method for producing high purity aluminum fluoride

Country Status (1)

Country Link
JP (1) JP4241257B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111874932A (en) * 2020-08-12 2020-11-03 山东昭和新材料科技股份有限公司 Method for controlling phosphorus content in aluminum fluoride production
CN113546649A (en) * 2021-07-22 2021-10-26 浙江工业大学 Carbon confinement nano AlF3Catalyst, preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111874932A (en) * 2020-08-12 2020-11-03 山东昭和新材料科技股份有限公司 Method for controlling phosphorus content in aluminum fluoride production
CN113546649A (en) * 2021-07-22 2021-10-26 浙江工业大学 Carbon confinement nano AlF3Catalyst, preparation method and application thereof

Also Published As

Publication number Publication date
JP4241257B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
US5266289A (en) Process for producing high-purity silica by reacting crude silica with ammonium fluoride
CA1133681A (en) Process for purifying silicon, and the silicon so produced
WO2010004925A1 (en) Method of recovering silicon, titanium, and fluorine
JP5605780B2 (en) Method for producing high purity calcium hydroxide
JPH0481526B2 (en)
CN111777073A (en) Fluosilicic acid for lead electrolysis and preparation method thereof
JP7470242B2 (en) Annealing separator manufacturing method, annealing separator, and grain-oriented electrical steel sheet
TWI763694B (en) Purified potassium hexafluoromanganate and methods for purifying potassium hexafluoromanganate
JP4241257B2 (en) Method for producing high purity aluminum fluoride
JP5421088B2 (en) Method for producing valuable materials and hydrochloric acid from waste liquid
JP6079524B2 (en) Method for producing regenerated calcium fluoride
CN105002521B (en) A kind of method that impurity magnesium in electrolytic manganese system is removed using fluorine-containing mineral
JP5495392B2 (en) Method for producing valuable materials from waste liquid
CN104773749A (en) Method for preparing high-purity calcium fluoride in ethanol system
US2920938A (en) Method for manufacture of aluminum fluoride
JP5489766B2 (en) Method for producing alkali metal silicofluoride and nitric acid from waste liquid
JP3794462B2 (en) Method for producing barium titanate powder
JP2618429B2 (en) Method for producing aluminum orthophosphate crystal
JPH01313333A (en) Production of niobium hydroxide or tantalum hydroxide having high purity
WO2015150907A2 (en) High purity synthetic fluorite and process for preparing the same
JP7479780B1 (en) Method for producing lithium aluminum fluoride solution
JPH0812322A (en) Alpha-alumina powder and its production
JPH0692247B2 (en) Method for producing magnesium silicofluoride
JP7359059B2 (en) Method for producing cadmium hydroxide
JP2856636B2 (en) Production method of ammonium cryolite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4241257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees