JP3260565B2 - Alignment film evaluation apparatus and alignment film evaluation method - Google Patents
Alignment film evaluation apparatus and alignment film evaluation methodInfo
- Publication number
- JP3260565B2 JP3260565B2 JP25777994A JP25777994A JP3260565B2 JP 3260565 B2 JP3260565 B2 JP 3260565B2 JP 25777994 A JP25777994 A JP 25777994A JP 25777994 A JP25777994 A JP 25777994A JP 3260565 B2 JP3260565 B2 JP 3260565B2
- Authority
- JP
- Japan
- Prior art keywords
- infrared light
- alignment film
- alignment
- chopper
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はLCDに広範に使用され
ている配向膜の配向性を、光吸収の異方性を測定するこ
とにより高精度に判定するための配向膜評価装置および
配向膜評価方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alignment film evaluation apparatus and an alignment film for judging the alignment of an alignment film widely used in LCDs with high accuracy by measuring anisotropy of light absorption. Regarding the evaluation method.
【0002】[0002]
【従来の技術】LCDに使用されている配向膜は、液晶
分子を均一に配向させるための最も重要な構成材料であ
るが、その配向膜は、数十nm程度のポリイミド等の高分
子膜を基板上に成膜後に、ローラに巻き付けられた布で
膜表面を擦ること(ラビング工程)により、膜表面の高
分子鎖を分子配向させることにより作製されている。こ
のような布で擦るという原始的工程であるラビング工程
では配向膜の配向性を制御するこは非常に困難であるた
め、その制御は作業者の経験に大きく依存しており、ラ
ビング処理の善し悪しはLCDパネルとなった最終製品
となるまで判定できず、LCD製造工程での歩留り低下
の一因となっている。2. Description of the Related Art Alignment films used in LCDs are the most important constituent materials for uniformly aligning liquid crystal molecules, and the alignment films are made of polymer films such as polyimide of several tens nm. After the film is formed on the substrate, the film surface is rubbed with a cloth wound around a roller (rubbing step), whereby the polymer chains on the film surface are molecularly oriented. In the rubbing process, which is a primitive process of rubbing with such a cloth, it is very difficult to control the orientation of the alignment film, and the control largely depends on the experience of the operator, and the quality of the rubbing process is good or bad. Cannot be determined until the final product has become an LCD panel, which is one of the causes of a decrease in the yield in the LCD manufacturing process.
【0003】この問題を解決するために、ラビング処理
直後に配向膜の配向性を判定できる高感度な配向性測定
法が切望されており、配向膜を成膜された基板に対して
分子配向方向に平行または垂直な方向からS偏光(配向
膜に対して入射光及び反射光によって形成される面と垂
直方向に振動する偏光)に偏光したし赤外光を配向膜中
を透過させ、透過赤外吸収を測定した後、基板を面内で
90度回転させ再度測定するか、または光の入射角が0
度に近い場合には偏光方向を90度回転させP偏光とし
て再度測定することにより、回転前後での吸収強度の差
をとることにより2色差を測定し、その2色差の強さか
ら配向性を評価する手法が幾つか提案されている。In order to solve this problem, a highly sensitive orientation measurement method capable of judging the orientation of the alignment film immediately after the rubbing process has been desired. Polarized in a direction parallel or perpendicular to the surface into S-polarized light (polarized light oscillating in a direction perpendicular to the plane formed by incident light and reflected light with respect to the alignment film), and transmits infrared light through the alignment film to transmit red light. After measuring the external absorption, the substrate is rotated by 90 degrees in the plane and the measurement is performed again, or the angle of incidence of the light is zero.
If it is close to the degree, the polarization direction is rotated by 90 degrees and measured again as P-polarized light, and the difference in absorption intensity before and after rotation is measured to determine the two-color difference, and the orientation is determined from the intensity of the two-color difference. Several evaluation methods have been proposed.
【0004】しかしLCDの大きさが大型化しかつ生産
性向上のため2枚や4枚のLCDパネルが取れる大きな
基板がラビング処理されるため、基板を回転させるとい
うことは事実上不可能に近いことになる。また偏光を回
転させる場合は、入射角が0度に近い必要があり、入射
光と反射光が空間的に近付くため光学系の設計が非常に
困難で、光学系も大きな空間を必要とすることになり、
光路長が長くなり感度低下の一因となっている。However, since the size of the LCD is increased and a large substrate from which two or four LCD panels can be obtained is subjected to rubbing processing to improve productivity, it is practically impossible to rotate the substrate. become. In the case of rotating polarized light, the incident angle must be close to 0 degrees, and the incident light and the reflected light are spatially close to each other. Therefore, it is very difficult to design an optical system, and the optical system requires a large space. become,
The optical path length becomes longer, which is one of the causes of a decrease in sensitivity.
【0005】[0005]
【発明が解決しようとする課題】前述したように、従来
の配向膜評価装置においては、基板の大型化に伴いその
感度が低下するという問題があった。本発明は、このよ
うな問題に鑑みて成されたもので、基板も偏光状態をも
回転せず、自由な入射角で、配向膜の2色差を高感度に
測定することにより、配向膜の配向性を高精度に評価す
ることができる配向膜測定装置および配向膜透過赤外光
の検出方法を提供することを目的とする。As described above, the conventional alignment film evaluation apparatus has a problem that the sensitivity is reduced as the size of the substrate is increased. The present invention has been made in view of such a problem, and measures the two-color difference of an alignment film with high sensitivity at a free incident angle without rotating the substrate or the polarization state. It is an object of the present invention to provide an alignment film measuring apparatus and a method for detecting infrared light transmitted through an alignment film, which can evaluate the alignment with high accuracy.
【0006】[0006]
【課題を解決するための手段】本発明の配向膜評価装置
は、赤外光を放出する放出手段と、前記放出手段から放
出された前記赤外光を偏光させる偏光手段と、偏光され
た前記赤外光を2光路に分割する分割手段と、前記2光
路に分割されたそれぞれの赤外光を配向膜に照射する照
射手段と、前記配向膜を透過した前記それぞれの赤外光
を検出する検出手段とを有することを特徴とする。According to the present invention, there is provided an alignment film evaluation apparatus, comprising: emission means for emitting infrared light; polarizing means for polarizing the infrared light emitted from the emission means; Splitting means for splitting the infrared light into two light paths, irradiating means for irradiating the alignment film with each of the infrared light split into the two light paths, and detecting the respective infrared light transmitted through the alignment film And a detecting means.
【0007】前記分割手段は、ミラーチョッパーを使用
することが可能である。前記配向膜が所定の基板上に形
成されている場合、前記検出手段は、前記基板で反射し
た前記それぞれの赤外光を検出することもできる。本発
明の配向膜評価方法は、赤外光を放出し、前記赤外光を
偏光させ、偏光された前記赤外光を2光路に分割し、前
記2光路に分割されたそれぞれの赤外光を配向膜に照射
し、前記配向膜を透過した前記それぞれの赤外光を検出
し、検出された前記それぞれの赤外光の吸光度の差を求
め前記配向膜の配向能を評価することを特徴とする。The dividing means can use a mirror chopper. When the alignment film is formed on a predetermined substrate, the detection unit can detect the respective infrared lights reflected by the substrate. The alignment film evaluation method of the present invention emits infrared light, polarizes the infrared light, divides the polarized infrared light into two optical paths, and separates each of the infrared light divided into the two optical paths. Irradiating the alignment film, detecting each of the infrared light transmitted through the alignment film, determining the difference in absorbance of the detected infrared light to evaluate the alignment ability of the alignment film. And
【0008】本願第四の発明は、前記配向膜を所定の基
板上に形成し、この基板で反射した偏光を検出すること
を特徴とする前記本願第二の発明に記載の配向膜評価方
法である。A fourth invention of the present application is the method for evaluating an alignment film according to the second invention of the present application, wherein the alignment film is formed on a predetermined substrate, and the polarized light reflected on the substrate is detected. is there.
【0009】以下、図1、図2および図3に基づいて本
発明の構成をより詳細に説明する。まず、本発明に用い
られる配向膜15は、通常基板17上に形成された透明
電極16表面に成膜され、ガラス基板17、透明電極1
6および配向膜15からなるLCD基板8表面で評価さ
れる。このような場合、後述する照射手段によって照射
される赤外光は電極上で反射されることになる。またシ
リコン基板などの評価用の基板上に形成された配向膜を
評価することも可能であり、この場合、前記赤外線は基
板を透過することになる。Hereinafter, the configuration of the present invention will be described in more detail with reference to FIGS. 1, 2 and 3. First, the alignment film 15 used in the present invention is usually formed on the surface of the transparent electrode 16 formed on the substrate 17, and the glass substrate 17 and the transparent electrode 1 are formed.
The evaluation is performed on the surface of the LCD substrate 8 including the alignment film 6 and the alignment film 15. In such a case, the infrared light irradiated by the irradiation means described later is reflected on the electrode. It is also possible to evaluate an alignment film formed on a substrate for evaluation such as a silicon substrate, and in this case, the infrared light passes through the substrate.
【0010】このLCD基板8はXYZ方向への平行移
動およびXY方向の傾き角を調整可能な光学ステージ8
上に設置することで後述する放出手段からの赤外光の角
度を調整できる。The LCD substrate 8 has an optical stage 8 which can be translated in XYZ directions and adjusted in tilt angle in XY directions.
By setting it up, the angle of the infrared light from the emission means described later can be adjusted.
【0011】本発明の放出手段としては、配向膜の吸収
波長を有する赤外光を放出できるものであれば特に限定
されずに用いることができる。本発明の偏向手段として
は、前記放出手段によって放出された赤外光をs偏向状
態に偏光させるものであり、例えば赤外光を分光するた
めの干渉計3と、赤外光を直線偏向とする偏光子4を組
合せることで得られる。The emission means of the present invention can be used without particular limitation as long as it can emit infrared light having the absorption wavelength of the alignment film. The deflecting means of the present invention polarizes the infrared light emitted by the emitting means into an s-polarized state. For example, an interferometer 3 for dispersing the infrared light, It is obtained by combining the polarizers 4 to be used.
【0012】また本発明の分割手段は、前記赤外光を少
なくとも2分割するものであり、例えばミラーチョッパ
ー5を回転させた場合には、羽部に前記偏光された赤外
光を照射し反射した赤外光と、羽に照射されずにミラー
チョッパーを通過した赤外光の2つに分割することが可
能となる。The dividing means of the present invention divides the infrared light into at least two parts. For example, when the mirror chopper 5 is rotated, the wings are irradiated with the polarized infrared light and reflected. It is possible to divide the infrared light into two, that is, the infrared light that has passed through the mirror chopper without being irradiated on the wing.
【0013】本発明の検出手段は、配向膜を透過した赤
外光の強度を検出するための手段であり、赤外光検出器
などが用いられる。また、前記照射手段により複数の方
向から照射された赤外光を、鏡などを用いて光路を調整
することで、図示するように1台の前記赤外光検出器で
赤外光の検出を行うことができる。The detecting means of the present invention is a means for detecting the intensity of infrared light transmitted through the alignment film, and uses an infrared light detector or the like. Further, by adjusting the optical path of the infrared light irradiated from a plurality of directions by the irradiation means using a mirror or the like, the infrared light can be detected by one infrared light detector as shown in the figure. It can be carried out.
【0014】本発明における配向膜の評価方法として
は、前記検出手段により検出された、前記複数の方向か
ら照射された赤外光の強度(あるいは吸光度)の差を求
めればよく、例えばコンピューターなどの演算処理の行
えるものを用いればよい。In order to evaluate the orientation film in the present invention, the difference in the intensity (or absorbance) of the infrared light irradiated from the plurality of directions detected by the detection means may be obtained. What can perform arithmetic processing may be used.
【0015】[0015]
【作用】本発明の配向膜評価装置および配向膜評価方法
によれば、基板も偏光状態も回転させることなく配向膜
の2色差を測定することが可能になり、大型基板でも基
板の平行移動のみで面内測定が可能になる。According to the alignment film evaluation apparatus and the alignment film evaluation method of the present invention, it is possible to measure the two-color difference of the alignment film without rotating both the substrate and the polarization state. Enables in-plane measurement.
【0016】[0016]
【実施例】以下、図面に基づいて実施例を説明すること
にする。図1(a)は、本発明の配向膜測定装置の一例
を示す概略図である。図1(b)は、図1(a)のA−
A´における断面図である。図2は、本発明に係る分割
手段であるミラーチョッパーの概略平面図である。図3
は、本発明の配向膜測定装置の一例を示す概略構成図で
ある。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described below with reference to the drawings. FIG. 1A is a schematic view showing an example of the alignment film measuring device of the present invention. FIG. 1B is a sectional view taken along line A- in FIG.
It is sectional drawing in A '. FIG. 2 is a schematic plan view of a mirror chopper that is a dividing unit according to the present invention. FIG.
FIG. 1 is a schematic configuration diagram showing an example of an alignment film measuring device of the present invention.
【0017】本発明を実施する場合に必要となる装置の
基本構造は、まずガラス基板17上に透明電極16と配
向膜15を成膜されたLCD基板8と、LCD基板を設
置できXYZ方向それぞれへの平行移動が可能であり、
XY方向傾き角を調整可能な光学ステージ8と、赤外光
2を発する光源1と、赤外光を分光するための干渉計3
と、赤外光を直線偏光とする偏光子4と、赤外光を透過
または反射し光路を分別するためのミラー面からなる回
転チョッパー5と、チョッパーで分別された赤外光を基
板面に入射するためのミラー6、7と、基板からの反射
光をミラー面からなる回転チョッパー13に導くミラー
11、12と、赤外光を検出する赤外光検出器14と、
前記2つのチョッパーの回転を制御するためのコントロ
ーラー20と、赤外光検出器からの電気信号の高周波成
分のみを透過するハイパスフィルター18と、低周波成
分のみを透過するローパスフィルター19と、チョッパ
ーの回転による変調周波数と同期する成分のみを電気信
号から分別選択し増幅(位相敏感検波)することができ
るロックインアンプ21と、干渉計と光学ステージを制
御しロックインアンプとローパスフィルターから得られ
る電気信号を赤外スペクトルに変換し表示するコンピュ
ーター22とからなる。The basic structure of the device required for carrying out the present invention is as follows. First, an LCD substrate 8 having a transparent electrode 16 and an alignment film 15 formed on a glass substrate 17 and an LCD substrate can be installed in the XYZ directions. Can be translated to
An optical stage 8 capable of adjusting the tilt angle in the XY directions, a light source 1 for emitting infrared light 2, and an interferometer 3 for dispersing infrared light
A polarizer 4 for converting infrared light into linearly polarized light, a rotating chopper 5 having a mirror surface for transmitting or reflecting infrared light and separating an optical path, and applying the infrared light separated by the chopper to a substrate surface. Mirrors 6 and 7 for incidence, mirrors 11 and 12 for guiding reflected light from the substrate to a rotating chopper 13 formed of a mirror surface, and an infrared light detector 14 for detecting infrared light;
A controller 20 for controlling the rotation of the two choppers, a high-pass filter 18 for transmitting only high-frequency components of the electric signal from the infrared light detector, a low-pass filter 19 for transmitting only low-frequency components, A lock-in amplifier 21 that can selectively select and amplify (phase-sensitive detection) only electrical components synchronized with a modulation frequency due to rotation and an interferometer and an optical stage that control an interferometer and an optical stage to obtain electricity obtained from a lock-in amplifier and a low-pass filter. And a computer 22 for converting the signal into an infrared spectrum and displaying it.
【0018】測定手順は本配向膜測定装置により次の手
順で行う。光源1を発した赤外光2は、コンピューター
22で制御された分光用の干渉計3と偏光子4を透過し
た後、ミラー面の羽を持ち回転するチョッパー5に照射
される。赤外光2がの光路にチョッパー5の羽が来た場
合には、赤外光2は垂直方向に反射されミラー7に導か
れ、さらにLCD基板9にラビング方向10に平行な方
位から入射されることになる。また赤外光2がの光路に
チョッパーの羽がない場合には、赤外光は直進しミラー
6で反射され、LCD基板9にラビング方向10に垂直
な方位から入射されることになる。つまりチョッパー5
の回転により、赤外光2はラビング方向10と平行と垂
直の2方位から交互に照射されることになる。基板に入
射する赤外光の偏光状態は基板面内に平行なs偏光状態
に偏光子4で設定されている。The measurement procedure is performed by the following procedure using the present alignment film measuring apparatus. The infrared light 2 emitted from the light source 1 is transmitted through a spectroscopic interferometer 3 and a polarizer 4 controlled by a computer 22, and then applied to a rotating chopper 5 having wings on a mirror surface. When the wings of the chopper 5 come to the optical path of the infrared light 2, the infrared light 2 is reflected in the vertical direction, is guided to the mirror 7, and is incident on the LCD substrate 9 in a direction parallel to the rubbing direction 10. Will be. If there is no chopper wing in the optical path of the infrared light 2, the infrared light goes straight, is reflected by the mirror 6, and enters the LCD substrate 9 from the direction perpendicular to the rubbing direction 10. That is, chopper 5
, The infrared light 2 is irradiated alternately from two directions parallel and perpendicular to the rubbing direction 10. The polarization state of the infrared light incident on the substrate is set by the polarizer 4 to an s-polarization state parallel to the substrate plane.
【0019】それぞれ基板に照射された赤外光2は、L
CD基板9の配向膜15による吸収を受けながら透明電
極面16で反射され、ミラー11とミラー12によりチ
ョッパー13に導かれる。チョッパー13の構造はまっ
たくチョッパー5と同じであり、ミラー11で反射され
た赤外光はチョッパーの羽がその光路上に無い時に赤外
光検出器14に入射する。またミラー12で反射された
赤外光2はチョッパー13の羽がその光路上にある時に
反射され赤外光検出器に入射する。チョッパー5とチョ
ッパー13の羽の回転の位相関係は、チョッパー5で赤
外光が直進する場合は、チョッパー13では赤外光2が
反射されるように、また逆にチョッパー5で赤外光2が
反射される場合は、チョッパー13では赤外光2が直進
するように、チョッパー制御系20で回転速度と位相関
係を制御されている。このようなチョッパー5とチョッ
パー13の回転による赤外光路の制御のため、赤外光検
出器14には、ラビング方向と平行な偏光状態で入射し
た赤外光2と、ラビング方向と垂直な偏光状態で入射し
た赤外光2とが交互に入射し検出される事になる。つま
りラビングにより配向膜15に生じた分子配向により偏
光赤外光の吸収に異方性(赤外2色性)が発生した場
合、赤外光検出器14に入射する光量に変化を生じ、赤
外光検出器14からの電気信号は、チョッパー5、13
による赤外光2の変調周波数fと同周波数成分をもつ交
流電場となる。この電気信号をf以上を通すハイパスフ
ィルター18で濾過後、チョッパー制御系20から発信
される変調周波数fをリファレンスとしたロックインア
ンプ21で復調しすることにより、ラビング方向10と
平行と垂直との偏光赤外光による赤外吸収の変化分に対
応する電気信号Sを検出・増幅することができる。また
f未満の周波数を通しローパスフィルター19を通した
電気信号からは、装置の静的な光学的特性を表す信号R
が得られる。ここれらのアナログ信号を、それぞれコン
ピューター22中でAD変換後、フーリェ変換してスペ
クトル化した後、前者のスペクトル(S)を後者のスペ
クトル(R)で割ることにより、2色差スペクトル(A
=(S/R))が得られる。The infrared light 2 radiated to each substrate is L
The light is reflected by the transparent electrode surface 16 while being absorbed by the alignment film 15 of the CD substrate 9, and is guided to the chopper 13 by the mirrors 11 and 12. The structure of the chopper 13 is exactly the same as that of the chopper 5, and the infrared light reflected by the mirror 11 enters the infrared light detector 14 when the chopper wing is not on its optical path. The infrared light 2 reflected by the mirror 12 is reflected when the wings of the chopper 13 are on the optical path and enters the infrared light detector. The phase relationship between the rotation of the wings of the chopper 5 and the chopper 13 is such that when the infrared light travels straight through the chopper 5, the infrared light 2 is reflected by the chopper 13, and conversely, the infrared light 2 is reflected by the chopper 5. Is reflected by the chopper 13, the rotation speed and the phase relationship are controlled by the chopper control system 20 so that the infrared light 2 goes straight. In order to control the infrared light path by the rotation of the chopper 5 and the chopper 13, the infrared light 2 is incident on the infrared light detector 14 in a polarization state parallel to the rubbing direction, and the infrared light 2 is polarized perpendicular to the rubbing direction. The infrared light 2 incident in this state is alternately incident and detected. In other words, when anisotropy (infrared dichroism) occurs in the absorption of polarized infrared light due to the molecular orientation generated in the alignment film 15 by the rubbing, the amount of light incident on the infrared light detector 14 changes, and The electric signal from the external light detector 14 is supplied to the choppers 5 and 13
Is an AC electric field having the same frequency component as the modulation frequency f of the infrared light 2 due to the above. This electric signal is filtered by a high-pass filter 18 that passes f or more, and then demodulated by a lock-in amplifier 21 that uses the modulation frequency f transmitted from the chopper control system 20 as a reference, so that the electric signal is parallel and perpendicular to the rubbing direction 10. An electric signal S corresponding to a change in infrared absorption due to polarized infrared light can be detected and amplified. Further, from an electric signal passing through a low-pass filter 19 through a frequency lower than f, a signal R representing a static optical characteristic of the device is obtained.
Is obtained. These analog signals are AD-converted and Fourier-transformed into spectra in the computer 22, and the former spectrum (S) is divided by the latter spectrum (R) to obtain a two-color difference spectrum (A).
= (S / R)).
【0020】またコンピューター22の制御によりXY
Zの平行移動が可能でXY方向の傾き角も可変な光学ス
テージ8により、LCD基板9面内の任意の位置の配向
膜15の評価が可能であり、かつ自動で光学調整可能で
ある。XY under the control of the computer 22
The optical stage 8 capable of moving Z in parallel and having a variable tilt angle in the X and Y directions enables evaluation of the alignment film 15 at an arbitrary position within the LCD substrate 9 and automatic optical adjustment.
【0021】[0021]
【発明の効果】上述したように、本発明の配向膜評価装
置および配向膜透過赤外光の検出方法によれば、大型基
板でも基板の平行移動のみの簡単な操作で配向膜評価を
行え、さらに装置の小型化が可能になる。As described above, according to the alignment film evaluation apparatus and the method for detecting the infrared light transmitted through the alignment film of the present invention, the alignment film can be evaluated by a simple operation of only parallel movement of the substrate even for a large substrate. Further, the size of the device can be reduced.
【図1】 (a)は、本発明の配向膜測定装置の一例を
示す概略図である。(b)は、図1(a)のA−A´に
おける断面図である。FIG. 1A is a schematic view illustrating an example of an alignment film measuring apparatus according to the present invention. FIG. 2B is a cross-sectional view taken along line AA ′ of FIG.
【図2】 本発明に係る分割手段であるミラーチョッパ
ーの概略平面図である。FIG. 2 is a schematic plan view of a mirror chopper which is a dividing unit according to the present invention.
【図3】 本発明の配向膜測定装置の一例を示す概略構
成図である。FIG. 3 is a schematic configuration diagram illustrating an example of an alignment film measuring apparatus according to the present invention.
1…光源 2…赤外光 3…干渉計 4…偏光子 5…チョッパー 6…ミラー 7…ミラー 8…光学ステージ 9…LCD基板 10…ラビング方向 11…ミラー 12…ミラー 13…チョッパー 14…赤外光検出器 15…配向膜 16…透明電極 17…ガラス基板 18…ハイパスフィルタ
ー 19…ローパスフィルター 20…チョッパー制御系 21…ロックインアンプ 22…コンピューターDESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Infrared light 3 ... Interferometer 4 ... Polarizer 5 ... Chopper 6 ... Mirror 7 ... Mirror 8 ... Optical stage 9 ... LCD substrate 10 ... Rubbing direction 11 ... Mirror 12 ... Mirror 13 ... Chopper 14 ... Infrared Photodetector 15 ... Orientation film 16 ... Transparent electrode 17 ... Glass substrate 18 ... High pass filter 19 ... Low pass filter 20 ... Chopper control system 21 ... Lock-in amplifier 22 ... Computer
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−214232(JP,A) 特開 平5−173173(JP,A) 特開 平6−110027(JP,A) 特開 平4−95845(JP,A) 特開 平7−151640(JP,A) 特開 平7−198592(JP,A) 特開 昭64−35419(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1337 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-214232 (JP, A) JP-A-5-173173 (JP, A) JP-A-6-110027 (JP, A) JP-A-4-1992 95845 (JP, A) JP-A-7-151640 (JP, A) JP-A-7-198592 (JP, A) JP-A-64-35419 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/1337
Claims (4)
手段から放出された前記赤外光を偏光させる偏光手段
と、偏光された前記赤外光を2光路に分割する分割手段
と、前記2光路に分割されたそれぞれの赤外光を配向膜
に照射する照射手段と、前記配向膜を透過した前記それ
ぞれの赤外光を検出する検出手段とを有することを特徴
とする配向膜評価装置。[1 claim: a release means for releasing the infrared light, a polarizing means for polarizing the infrared light emitted from said emitting means, dividing means for dividing said infrared light polarized in the second optical path, alignment films evaluated, characterized in that it comprises irradiating means for irradiating a respective infrared light divided into the two light paths to the alignment layer, and detection means for detecting the infrared light of each of said transmitted through the alignment layer apparatus.
ることを特徴とする請求項1記載の配向膜評価装置。2. The alignment film evaluation apparatus according to claim 1, wherein said dividing means is a mirror chopper.
おり、前記検出手段は、前記基板で反射した前記それぞAnd the detecting means comprises:
れの赤外光を検出することを特徴とする請求項1記載の2. The method according to claim 1, wherein the infrared light is detected.
配向膜評価装置。Alignment film evaluation device.
せ、偏光された前記赤外光を2光路に分割し、前記2光And splits the polarized infrared light into two optical paths,
路に分割されたそれぞれの赤外光を配向膜に照射し、前Irradiate the alignment film with each infrared light split into
記配向膜を透過した前記それぞれの赤外光を検出し、検Each of the infrared light transmitted through the alignment film is detected and detected.
出された前記それぞれの赤外光の吸光度の差を求め前記Determined the difference in the absorbance of each of the emitted infrared light,
配向膜の配向能を評価することを特徴とする配向膜評価Alignment film evaluation characterized by evaluating the alignment ability of the alignment film
方法。Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25777994A JP3260565B2 (en) | 1994-10-24 | 1994-10-24 | Alignment film evaluation apparatus and alignment film evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25777994A JP3260565B2 (en) | 1994-10-24 | 1994-10-24 | Alignment film evaluation apparatus and alignment film evaluation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08122785A JPH08122785A (en) | 1996-05-17 |
JP3260565B2 true JP3260565B2 (en) | 2002-02-25 |
Family
ID=17310990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25777994A Expired - Fee Related JP3260565B2 (en) | 1994-10-24 | 1994-10-24 | Alignment film evaluation apparatus and alignment film evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3260565B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4967639B2 (en) * | 2006-12-15 | 2012-07-04 | 横河電機株式会社 | Infrared thickness / orientation meter and infrared thickness / orientation measuring method |
CN106855662B (en) * | 2017-03-13 | 2019-09-17 | 深圳市华星光电技术有限公司 | Repair the undesirable method of liquid crystal display panel orientation |
CN114199807B (en) * | 2021-12-10 | 2023-09-22 | 南京大学 | Method for detecting polyimide surface molecular chain orientation structure by AFM-IR |
-
1994
- 1994-10-24 JP JP25777994A patent/JP3260565B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08122785A (en) | 1996-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4921090B2 (en) | Optical anisotropy parameter measuring method and measuring apparatus | |
JP3910352B2 (en) | Pretilt angle detection method and detection apparatus | |
EP0176827B1 (en) | Method and apparatus for simultaneously determining gauge and orientation of polymer films | |
KR20100027951A (en) | Method and apparatus for measuring optical anisotropy parameter | |
KR0171637B1 (en) | Apparatus for evaluating orientation film | |
JP4663529B2 (en) | Optical anisotropy parameter measuring method and measuring apparatus | |
KR20010090592A (en) | Evaluation of optically anisotropic structure | |
JP3260565B2 (en) | Alignment film evaluation apparatus and alignment film evaluation method | |
KR960011412A (en) | Method and device for retardation of composite layers | |
US5315421A (en) | Rubbing apparatus including double refraction phase difference measuring means and manufacturing method for liquid crystal display device | |
JP3338157B2 (en) | Alignment film evaluation system | |
KR20080061196A (en) | Measuring apparatus and method for rubbing angle of liquid crystal alignment film | |
JP3021338B2 (en) | Extinction ratio measurement method and extinction ratio measurement device | |
US4003663A (en) | Device for calibrating instrument that measures circular dichroism or circularly polarized luminescence | |
JP3441180B2 (en) | Alignment film evaluation system | |
JP4728830B2 (en) | Optical anisotropy parameter measuring method and measuring apparatus | |
JP3539006B2 (en) | Method and apparatus for measuring retardation of composite layer | |
JP2924938B2 (en) | Method for measuring retardation of composite film | |
JP2005283552A (en) | Birefringence measurement device and birefringence measurement method | |
JP3246040B2 (en) | Birefringence measurement device | |
JP3203043B2 (en) | Device for removing residual strain of photoelastic modulator | |
JP2988146B2 (en) | Liquid crystal display element alignment evaluation apparatus and liquid crystal display element manufacturing method | |
JP2002162344A (en) | Evaluation method of anisotropic thin film and its equipment | |
JP2001337035A (en) | Measuring instrument | |
JPH06273342A (en) | Defect detector for liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |