JPH06273342A - Defect detector for liquid crystal display - Google Patents

Defect detector for liquid crystal display

Info

Publication number
JPH06273342A
JPH06273342A JP5902193A JP5902193A JPH06273342A JP H06273342 A JPH06273342 A JP H06273342A JP 5902193 A JP5902193 A JP 5902193A JP 5902193 A JP5902193 A JP 5902193A JP H06273342 A JPH06273342 A JP H06273342A
Authority
JP
Japan
Prior art keywords
light
liquid crystal
wavelength
crystal display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5902193A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Matsumoto
芳幸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glory Ltd
Original Assignee
Glory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glory Ltd filed Critical Glory Ltd
Priority to JP5902193A priority Critical patent/JPH06273342A/en
Publication of JPH06273342A publication Critical patent/JPH06273342A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an uneven color detector for liquid crystal display with which an inconspicuous unevenness of fading of color can be detected. CONSTITUTION:The defect detector for liquid crystal display 5 comprises a light source 1, means 3 for subjecting the light from the light source 1 to linear polarization such that the light of any wavelength directs in the same direction, and an optical rotation means 7 for directing the light from the means 3 toward an object to be inspected, i.e., the liquid crystal display 5, and imparting phase difference to the light transmitted through or reflected on the display 5 for every wavelength thereof thus making the angle of the plane of polarization different from each other. Output from the means 7 is detected and decided on whether it is shifted from normal state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶表示装置の色むら
欠陥検出装置に係り、特に液晶表示パネルの色あせ、
傷、打痕、ピンホールなどの欠陥検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a color nonuniformity defect detection device for a liquid crystal display device, and more particularly to a color fading of a liquid crystal display panel,
The present invention relates to a defect detection device such as a scratch, a dent, and a pinhole.

【0002】[0002]

【従来の技術】液晶表示装置(LCD)は、薄型化やマ
ルチカラー化が容易であることから、ノート型パソコン
や液晶テレビなどへの利用が拡大されている。液晶表示
装置は表面に電極(図示せず)の形成された2枚のガラ
ス板の間に液晶を封入して形成されている。この電極間
に電圧を印加することにより、液晶分子の配向性を変化
せしめ、バックライト(図示せず)からの光の透過をオ
ンオフし、表示を行うようにしたものである。このよう
な液晶表示装置では、ガラス板の間隔のむら、電極の厚
みのばらつき、ガラス板の外側を覆う拡散板(図示せ
ず)などの樹脂コーティングの厚みのばらつきに起因し
て、液晶分子の配向を一定方向に保つことができなくな
り、色むらや色あせが生じることがある。さらにガラス
板の傷、電極のピンホールなどによっても、表示むらが
生じてしまうことになる。
2. Description of the Related Art Liquid crystal display devices (LCDs) have been widely used for notebook type personal computers, liquid crystal televisions and the like because they can be easily made thin and multi-colored. The liquid crystal display device is formed by enclosing a liquid crystal between two glass plates having electrodes (not shown) formed on the surface. By applying a voltage between the electrodes, the orientation of the liquid crystal molecules is changed, the transmission of light from a backlight (not shown) is turned on / off, and display is performed. In such a liquid crystal display device, alignment of liquid crystal molecules is caused by unevenness in the intervals between glass plates, variations in the thickness of electrodes, and variations in the thickness of resin coating such as a diffusion plate (not shown) covering the outside of the glass plates. Can not be maintained in a certain direction, and uneven color or fading may occur. Furthermore, display unevenness will occur due to scratches on the glass plate, pinholes in the electrodes, and the like.

【0003】液晶表示装置の色あせ、傷、打痕、ピンホ
ールなどの欠陥の検出は、従来目視によって行われてお
り、かなりの習熟者にしか検出は困難であり、自動化が
望まれている。欠陥の有無を検出し得るように構成した
検査装置は提案されているが、色むらと色あせとの識別
は不可能であるなど、いずれも実用化にはほど遠いもの
であった。
Defects such as fading, scratches, dents, and pinholes in liquid crystal display devices have been conventionally detected by visual inspection, and it is difficult for a considerable amount of skill to detect such defects, and automation is desired. Although an inspection device configured to detect the presence or absence of a defect has been proposed, it is far from practical use because it is impossible to distinguish between color unevenness and fading.

【0004】例えば、液晶パネル検査装置として、LC
Dの透過光をRGBフィルタを介してカラーカメラで検
出することにより、R(赤)G(緑)B(青)波長を検
出し、位置による光強度比較により、不良検出を行うよ
うにしたものがある(特開平2−156290号)。し
かしながらこの装置では、フィルタの透過波長帯域が広
く、LCDの弱い色むら、色あせの欠陥は検出できない
という問題があった。
For example, as a liquid crystal panel inspection device, LC
R (red) G (green) B (blue) wavelengths are detected by detecting the transmitted light of D through an RGB filter with a color camera, and defect detection is performed by comparing the light intensity depending on the position. (Japanese Patent Laid-Open No. 2-156290). However, this device has a problem that the filter has a wide transmission wavelength band, and weak color unevenness and fading defects of the LCD cannot be detected.

【0005】ところでまた、液晶や水晶は、屈折率異方
性をもち、複屈折をおこす。これは、光の進行方向とそ
れに垂直な方向で屈折率が異なり、入射光が直線偏光の
場合、液晶あるいは水晶を通過する際に円偏光に近い状
態に変化し、この光ベクトルの回転は波長に依存して異
なるため、液晶や水晶をでると出口における偏光面の角
度がそれぞれの波長によって異なり、分散した状態にな
る。
By the way, the liquid crystal and the crystal have anisotropy of refractive index and cause birefringence. This is because the refractive index differs in the light traveling direction and the direction perpendicular to it, and when the incident light is linearly polarized light, it changes to a state close to circularly polarized light when passing through the liquid crystal or crystal, and the rotation of this light vector is Therefore, when exiting a liquid crystal or a crystal, the angle of the plane of polarization at the exit differs depending on each wavelength and becomes a dispersed state.

【0006】そこでこの現象を利用し、複屈折制御型液
晶エレメントをアレイ状に配列した液晶セルを用いて被
検査物からの反射光を多色分解して被検査物の色を識別
する方法も提案されている(特開平2−21227,特
開昭63−249029)。しかしこの方法は、前述し
た一般的な特性である、光の進行方向に垂直な方向に屈
折する複屈折異方性、入射光が直線偏光の場合液晶を通
過中に楕円偏光状態になる旋光という性質を利用して、
正常か否かを検出しているに過ぎず、色むら、色あせま
での欠陥検出は不可能であるという問題があった。
Therefore, by utilizing this phenomenon, there is also a method of distinguishing the color of an object to be inspected by multi-color decomposing the reflected light from the object to be inspected by using a liquid crystal cell in which birefringence control type liquid crystal elements are arranged in an array. It has been proposed (JP-A-2-21227, JP-A-63-249029). However, this method has the general characteristics described above: birefringence anisotropy that refracts in the direction perpendicular to the traveling direction of light, and optical rotation in which the incident light is linearly polarized light and becomes elliptically polarized while passing through the liquid crystal. Taking advantage of the nature
There is a problem in that it is impossible to detect defects such as color unevenness and fading, since only normality is detected.

【0007】また、この方式は、印加電圧によって液晶
部での光のねじれ角が変化するように構成されたECB
型液晶にしか適用できず、例えば、電圧無印加のSTN
型(普通のTN型液晶に比べ液晶部での光のねじれ角が
大きい)液晶では、偏光板と液晶分子が直交し、光がで
てこなくなるため、適用できない。さらにこの方式は、
被検査物体の1点からの光の分光においてグラスファイ
バーなどの光導電体からなるライトガイド数しか選択で
きず、波長分解能をあげようとすると、液晶エレメント
およびライトガイドの装置が大型化するという問題もあ
る。一方液晶配向電圧分解能も同調させる必要があるこ
とから、制御および製作が困難になり、さらに2次元走
査に時間がかかるという問題がある。
Further, this system is an ECB constructed so that the twist angle of light in the liquid crystal part changes depending on the applied voltage.
Applicable only to liquid crystal, for example, STN with no voltage applied
Type liquid crystal (where the twist angle of light in the liquid crystal part is larger than that of a normal TN type liquid crystal) is not applicable because the polarizing plate and the liquid crystal molecules are orthogonal to each other and light is not emitted. Furthermore, this method
In the spectroscopy of light from one point of the object to be inspected, only the number of light guides made of a photoconductor such as glass fiber can be selected, and if the wavelength resolution is increased, the device of the liquid crystal element and the light guide becomes large. There is also. On the other hand, since it is necessary to tune the liquid crystal alignment voltage resolution, it is difficult to control and manufacture, and there is a problem that two-dimensional scanning takes time.

【0008】[0008]

【発明が解決しようとする課題】このように、従来の方
式ではLCDの色むら欠陥検出は不十分であり、高分解
能を得ることができないため、目視できない程度のわず
かな配向むらによる色むらあるいは色あせを検出するこ
とができないという問題があった。
As described above, in the conventional method, the detection of the color unevenness defect of the LCD is insufficient, and the high resolution cannot be obtained. There is a problem that fading cannot be detected.

【0009】本発明は、前記実情に鑑みてなされたもの
で、わずかな色むらや色あせを検出することのできる液
晶表示装置の色むら検査装置を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a color unevenness inspection apparatus for a liquid crystal display device capable of detecting slight color unevenness and fading.

【0010】[0010]

【課題を解決するための手段】そこで本発明の第1で
は、光源と、前記光源からの光をすべての波長の光が同
じ方向を向くように直線偏光を行う第1の直線偏光手段
と、前記第1の直線偏光手段の出力光を被検査対象とし
ての液晶表示装置にあて、前記液晶表示装置の透過光ま
たは反射光に対し、波長毎に位相差を与え、波長毎に偏
光面の角度が異なるようにする旋光手段と、前記旋光手
段の出力を検出し、正常状態からずれているか否かを検
知する液晶表示装置の欠陥検出装置を構成している。
Therefore, in the first aspect of the present invention, a light source, and a first linear polarization means for linearly polarizing the light from the light source so that light of all wavelengths are directed in the same direction, The output light of the first linear polarization means is applied to a liquid crystal display device as an object to be inspected, and a phase difference is given to each of the transmitted light and the reflected light of the liquid crystal display device for each wavelength, and the angle of the polarization plane is set for each wavelength. And a defect detection device of a liquid crystal display device for detecting whether or not there is a deviation from a normal state by detecting an output of the optical rotation device.

【0011】本発明の第2では、光源と、前記光源から
の光をすべての波長の光が同じ方向を向くように直線偏
光を行う第1の直線偏光手段と、前記第1の直線偏光手
段の出力光を被検査対象としての液晶表示装置にあて、
前記液晶表示装置の透過光または反射光に対し、波長毎
に位相差を与え、波長毎に偏光面の角度が異なるように
する旋光手段と、前記旋光手段の出力を特定波長のみを
直線偏光化させて透過せしめる1/4波長板と、同じ方
向に振動面をもつ光のみを透過させる第2の偏光手段と
を具備し、この出力の強度を検出することにより正常状
態からずれているか否かを検知する液晶表示装置の欠陥
検出装置を構成している。
In the second aspect of the present invention, the light source, the first linear polarization means for linearly polarizing the light from the light source so that the light of all wavelengths are directed in the same direction, and the first linear polarization means. Apply the output light of the above to the liquid crystal display device to be inspected,
Optical rotation means for giving a phase difference for each wavelength to transmitted light or reflected light of the liquid crystal display device so that the angle of the polarization plane is different for each wavelength, and the output of the optical rotation means is linearly polarized only for a specific wavelength. It is equipped with a quarter-wave plate that allows the light to pass therethrough, and a second polarizing means that allows only light having an oscillating surface in the same direction to pass therethrough. Whether or not it deviates from the normal state by detecting the intensity of this output. A defect detecting device of a liquid crystal display device for detecting

【0012】本発明の第3では、光源と、前記光源から
の光を被検査対象としての液晶表示装置にあて、前記液
晶表示装置の透過光または反射光に対し、波長毎に位相
差を与え、波長毎に偏光面の角度が異なるようにする旋
光手段と前記旋光手段の出力を、同じ方向に振動面をも
つ光のみを透過させる第2の偏光手段とを交互に複数組
配設して順次検出し、正常状態からずれているか否かを
検知する液晶表示装置の欠陥検出装置を構成している。
In a third aspect of the present invention, a light source and a liquid crystal display device as an inspection target are provided with light from the light source, and a phase difference is given to each of transmitted light and reflected light of the liquid crystal display device for each wavelength. A plurality of sets of optical rotation means for making the angle of the polarization plane different for each wavelength and second polarization means for transmitting only the light having an oscillation plane in the same direction are alternately arranged. A defect detection device of a liquid crystal display device is configured that sequentially detects and detects whether or not there is a deviation from a normal state.

【0013】本発明の第4では、光源と、前記光源から
の光を被検査対象としての液晶表示装置にあて、前記液
晶表示装置の透過光または反射光に対し、波長毎に位相
差を与え、波長毎に偏光面の角度が異なるようにする旋
光手段と、前記旋光手段の出力を特定波長のみを直線偏
光化させて透過せしめる1/4波長板と、前記1/4波
長板の出力に接続され、これと同じ方向に振動面をもつ
光のみを透過させる第2の偏光手段とを1組としてこれ
を複数組順次配設し、この出力の強度を順次検出するこ
とにより正常状態からずれているか否かを検知する液晶
表示装置の欠陥検出装置を構成している。
According to a fourth aspect of the present invention, a light source and a liquid crystal display device as an object to be inspected by the light from the light source are provided with a phase difference for each wavelength with respect to transmitted light or reflected light of the liquid crystal display device. , An optical rotation means for making the angle of the polarization plane different for each wavelength, a quarter wavelength plate for linearly polarizing the output of the optical rotation means and transmitting it, and an output of the quarter wavelength plate. A second polarizing means that is connected and transmits only light having an oscillating surface in the same direction as one pair is sequentially arranged, and a plurality of sets are sequentially arranged. A defect detection device for a liquid crystal display device is configured to detect whether or not the liquid crystal display device is present.

【0014】本発明の第5では、光源と、前記光源から
の光をすべての波長の光が同じ方向を向くように直線偏
光を行う第1の直線偏光手段と、前記第1の直線偏光手
段の出力光を被検査対象としての液晶表示装置にあて、
前記液晶表示装置の透過光または反射光に対し、波長毎
に位相差を与え、波長毎に偏光面の角度が異なるように
する旋光手段と、前記旋光手段の出力を特定波長のみを
直線偏光化させて透過せしめる1/4波長板と、前記1
/4波長板の出力光のブリュスタ角に法線方向がくるよ
うに配置され、これと同じ方向に振動面をもつ光のみを
透過させる第2の偏光手段とを具備し、この出力の強度
を検出することにより正常状態からずれているか否かを
検知する液晶表示装置の欠陥検出装置を構成している。
In a fifth aspect of the present invention, a light source, a first linear polarization means for linearly polarizing the light from the light source so that lights of all wavelengths are directed in the same direction, and the first linear polarization means. Apply the output light of the above to the liquid crystal display device to be inspected,
Optical rotation means for giving a phase difference for each wavelength to transmitted light or reflected light of the liquid crystal display device so that the angle of the polarization plane is different for each wavelength, and the output of the optical rotation means is linearly polarized only for a specific wavelength. 1/4 wavelength plate that allows the light to pass through
The second polarization means is arranged so that the normal direction is located at the Brewster angle of the output light of the / 4 wavelength plate, and only the light having the vibrating surface in the same direction is transmitted, and the intensity of this output is A defect detection device of a liquid crystal display device is configured to detect whether or not it is deviated from a normal state by detecting.

【0015】[0015]

【作用】本発明の第1によれば、液晶表示装置に対し、
白色直線偏光照射を行い、透過光あるいは反射光を旋光
後、偏光することにより、任意のピーク波長を高分解能
で検出することができる。
According to the first aspect of the present invention, the liquid crystal display device is provided with
By irradiating white linearly polarized light, rotating the transmitted light or the reflected light, and then polarizing the light, any peak wavelength can be detected with high resolution.

【0016】また、光強度の検出により、液晶表示装置
全面の微弱な色むら、色あせ、傷などの各種欠陥を検出
することができる。また旋光手段により楕円偏光あるい
は直線偏光された旋光を、さらに偏光板により特定波長
を選択することにより、特定波長における光強度分布を
測定し、色むら、色あせ、傷などの検出を行うことがで
きる。
Further, by detecting the light intensity, various defects such as faint color unevenness, fading, and scratches on the entire surface of the liquid crystal display device can be detected. Further, by elliptically polarized light or linearly polarized light by the optical rotation means, and further by selecting a specific wavelength by the polarizing plate, it is possible to measure the light intensity distribution at the specific wavelength and detect unevenness of color, fading, scratches, etc. .

【0017】なお、正常光の楕円の長軸方向に偏光板の
光学軸(光の透過する方向)を合わせ、この状態を維持
しながら第2の偏光板の法線ベクトルと入射光のなす角
がブリュスタ角になるようにすれば、第2の偏光板で反
射した光は正常光波長の光強度が弱いS偏光となる。そ
こでこの第2の偏光板の反射光を集光し、その光強度の
増減を測定することによってLCD透過光の色むら光の
増減を検出することができる。
The optical axis of the polarizing plate (the direction in which light passes) is aligned with the major axis of the ellipse of normal light, and the angle between the normal vector of the second polarizing plate and the incident light is maintained while maintaining this state. Is set to be Brewster's angle, the light reflected by the second polarizing plate becomes S-polarized light having a weak light intensity at the normal light wavelength. Therefore, it is possible to detect the increase / decrease in uneven color light of the LCD transmitted light by collecting the reflected light of the second polarizing plate and measuring the increase / decrease in the light intensity.

【0018】本発明の第2によれば、液晶表示装置に対
し、白色直線偏光照射を行い、透過光あるいは反射光を
旋光後、直線偏光することにより、測定波長を高分解能
で検出することができる。なお必要に応じて旋光後位相
増幅を行いこの後直線偏光を行うようにしてもよい。ま
た、必要とする透過波長範囲をもつ光学フィルターを通
すことによって測定対象波長を高分解能で検出すること
ができる。
According to the second aspect of the present invention, the liquid crystal display device is irradiated with white linearly polarized light, the transmitted light or the reflected light is rotated, and then linearly polarized, whereby the measurement wavelength can be detected with high resolution. it can. If necessary, after the rotation, phase amplification may be performed and then linearly polarized light may be performed. Further, the wavelength to be measured can be detected with high resolution by passing it through an optical filter having a required transmission wavelength range.

【0019】なお、正常光の楕円の長軸または短軸方向
にλ/4板の光学軸(光の透過する方向)があった波長
は直線偏光化する。そこでLCD正常光をこの状態にす
ることで色むら光は楕円偏光、正常光は直線偏光にな
る。この正常光の偏光面がp偏光になるように第2の偏
光板をおき、ブリュスタ角だけ傾ける。かかる構成によ
り、旋光材からの出射光が直線偏光に近い場合は、正常
光を異常光から分離することができる。さらにはここで
第2の偏光板を使用することなく裏面反射防止コーティ
ングガラスを使用して正常光とLCD色むら原因光を分
離するようにしてもよい。
It should be noted that wavelengths having the optical axis of the λ / 4 plate (direction in which light passes) in the major axis or minor axis direction of the ellipse of normal light are linearly polarized. Therefore, by setting the LCD normal light in this state, the uneven color light becomes elliptically polarized light and the normal light becomes linearly polarized light. The second polarizing plate is placed so that the plane of polarization of this normal light becomes p-polarized light, and tilted by the Brewster angle. With this configuration, when the light emitted from the optical rotatory material is close to linearly polarized light, normal light can be separated from abnormal light. Further, here, without using the second polarizing plate, the back surface antireflection coating glass may be used to separate the normal light and the light causing LCD color unevenness.

【0020】また分離した色むら全体には正常光を含ま
ないため色むら光全体の光強度が大きくなると、LCD
透過光は、正常光以外の光が透過しやすくなったことを
示す。そして全波長の光強度和をLCD全体にわたって
測定することにより色むらを検出することができる。
Further, since the entire separated color unevenness does not include normal light, when the light intensity of the entire color unevenness becomes large, the LCD
The transmitted light indicates that light other than the normal light is easily transmitted. Color unevenness can be detected by measuring the light intensity sum of all wavelengths over the entire LCD.

【0021】正常光の楕円偏光状態の楕円の長軸方向に
第2の偏光板の光学軸を合わせ、この状態を維持しなが
ら第2の偏光板の法線ベクトルと入射光のなす角がブリ
ュスタ角になるようにすれば、第2の偏光板で反射した
光は正常光波長の光強度が弱いS偏光となる。そこで、
この第2の偏光板の反射光を集光し、その光強度の増減
を測定することによってLCD透過光の色むら光の増減
を検出することができる。
The optical axis of the second polarizing plate is aligned with the major axis of the ellipse of the elliptically polarized state of normal light, and the angle between the normal vector of the second polarizing plate and the incident light is maintained while maintaining this state. With the angle, the light reflected by the second polarizing plate becomes S-polarized light having a weak light intensity at the normal light wavelength. Therefore,
By collecting the reflected light of the second polarizing plate and measuring the increase / decrease in the light intensity thereof, the increase / decrease in the uneven color light of the LCD transmitted light can be detected.

【0022】本発明の第3によれば、第1の構成におい
て第1の偏光板をなくし、旋光手段と第2の偏光板の対
を複数個順次配列し、旋光手段と第2の偏光板とによっ
て正常光と欠陥による光とを分離して検出することがで
き検出が容易である。
According to a third aspect of the present invention, the first polarizing plate is eliminated in the first configuration, and a plurality of pairs of the optical rotatory means and the second polarizing plate are sequentially arranged to form the optical rotatory means and the second polarizing plate. The normal light and the light due to the defect can be separated and detected by and, and the detection is easy.

【0023】本発明の第4によれば、第2の構成におい
て第1の偏光板をなくし、旋光手段と1/4波長板と第
2の偏光板との組み合わせを複数配設しこれによって順
次正常光と欠陥による光とを分離して検出することがで
き検出が容易である。
According to a fourth aspect of the present invention, the first polarizing plate is eliminated in the second configuration, and a plurality of combinations of the optical rotation means, the quarter-wave plate and the second polarizing plate are provided, whereby the sequential arrangement is performed. The normal light and the light due to the defect can be separately detected, and the detection is easy.

【0024】本発明の第5によれば旋光手段をでた楕円
偏光の光を正常光の楕円の長軸方向に第2の偏光板の光
学軸すなわち光の透過する方向を合わせ、この状態を維
持しながら第2の偏光板の法線ベクトルとこれに入射す
る光のなす角がブリュスタ角になるようにしているた
め、正常光を除去し、異常光のみを取り出すことができ
According to the fifth aspect of the present invention, the elliptically polarized light emitted from the optical rotation means is aligned with the optical axis of the second polarizing plate, that is, the light transmitting direction, in the major axis direction of the ellipse of normal light. Since the angle between the normal vector of the second polarizing plate and the light incident on it is kept at the Brewster angle while maintaining it, normal light can be removed and only abnormal light can be extracted.

【0025】る。[0025]

【実施例】以下、本発明の実施例について、図面を参照
しつつ、詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0026】図1は、本発明実施例の液晶検査装置の概
要説明図、図2は各部分での光学素子状態、光学素子透
過光ベクトル、各波長の強度分布の状態説明図である。
FIG. 1 is a schematic explanatory view of a liquid crystal inspecting apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory view of a state of an optical element in each part, an optical element transmitted light vector, and an intensity distribution of each wavelength.

【0027】この装置は、平行光束型高輝度光源である
キセノンランプ1の光を、310〜700nmの光を選択
的に透過せしめるフィルター2と、第1の偏光板3と、
間隔10mmのスリット4とを介して、被検査対象である
透過型液晶表示装置5に照射し、この透過光を間隔3mm
のスリットSを介して回転式のλ/2板6に入射し、水
晶からなる旋光材7を回転させることにより、分子方向
と被検査透過型液晶表示装置5からの直線偏光方向が等
しくなるように、各波長の偏光面を分散させる、つまり
波長毎に偏光面の角度が異なるようにし、これをアクロ
マートレンズ8を介して第2の偏光板9に導き、直線偏
光状態で取り出し、これをハーフミラー10によって部
分的に取り出してレンズ11、12を介してホトダイオ
ード13で検出する。また残りの光線はさらにアクロマ
ートレンズ14を介して目視用スクリーン15に導くよ
うになっている。
This device comprises a filter 2 for selectively transmitting light of a xenon lamp 1 which is a parallel light flux type high brightness light source and light of 310 to 700 nm, and a first polarizing plate 3.
The transmission type liquid crystal display device 5, which is an object to be inspected, is irradiated through the slits 4 having an interval of 10 mm, and the transmitted light has an interval of 3 mm.
The light is incident on the rotary λ / 2 plate 6 through the slit S and the optical rotatory material 7 made of quartz is rotated so that the molecular direction and the linear polarization direction from the transmissive liquid crystal display device 5 to be inspected become equal. In addition, the polarization plane of each wavelength is dispersed, that is, the angle of the polarization plane is made different for each wavelength, and this is guided to the second polarizing plate 9 through the achromat lens 8 and taken out in a linearly polarized state. It is partially taken out by the mirror 10 and detected by the photodiode 13 via the lenses 11 and 12. The remaining light rays are further guided to the visual screen 15 via the achromat lens 14.

【0028】なお、ここでフィルター2は被検査液晶表
示装置に熱を与えないために、紫外線および赤外線を除
去し可視光のみを通過させるように構成されている。ま
た、第1の偏光板は図2に示すように、透過した偏光面
の角度θの直線偏光を被検査液晶表示装置に照射する。
またスリット4は被検査面の空間分解能を決定するもの
で、スリットは被検査液晶表示装置との間隔を小さくし
た方が回折の影響が小さく、エッジがはっきりする。ま
たλ/2板は被検査液晶表示装置の透過光が旋光材の分
子方向に直線偏光状態で入射するように回転させる。こ
のとき正常品の被検査液晶表示装置でこの角度を設定し
固定して用いる。
The filter 2 is constructed so as to remove ultraviolet rays and infrared rays and allow only visible light to pass therethrough so as not to apply heat to the liquid crystal display device to be inspected. Further, as shown in FIG. 2, the first polarizing plate irradiates the liquid crystal display device to be inspected with linearly polarized light having an angle θ of the transmitted polarization plane.
The slit 4 determines the spatial resolution of the surface to be inspected, and the smaller the distance from the liquid crystal display device to be inspected, the smaller the influence of diffraction and the clearer the edge. The λ / 2 plate is rotated so that the transmitted light of the liquid crystal display device to be inspected is incident in the molecular direction of the optical rotatory material in a linearly polarized state. At this time, this angle is set and fixed and used for a normal liquid crystal display device to be inspected.

【0029】この色むら検出方法において、図2に示し
た各部分での光学素子透過光ベクトルを説明する。
In this color unevenness detecting method, the optical element transmitted light vector at each portion shown in FIG. 2 will be described.

【0030】光源1からでた光の波長λの平面波ベクト
ルE0 (E0x,E0y,0)は次式(1)(2)に示すと
おりであり、φx とφy はランダムな無偏光である。
The plane wave vector E 0 (E 0x , E 0y , 0) of the wavelength λ of the light emitted from the light source 1 is as shown in the following equations (1) and (2), and φ x and φ y are random unpolarized light. Is.

【0031】ベクトルE0 のx,y方向のスカラー波
は、 しかしながら第1の偏光板3透過後のベクトルE1 は直
線偏光であり、 φx −φy =2πm,m=0,±1,±2…… となり、原点からの位相差をη,第1の偏光板の角度を
θ1 とおくと で第1の偏光板3を通過する。ここでωは角周波数、λ
は波長、cは光束、kは波数である。
The scalar wave of the vector E0 in the x and y directions is However, the vector E1 after passing through the first polarizing plate 3 is linearly polarized light, and φx−φy = 2πm, m = 0, ± 1, ± 2 .. .., and the phase difference from the origin is η, the first polarizing plate. Let θ1 be the angle of And passes through the first polarizing plate 3. Where ω is the angular frequency and λ
Is the wavelength, c is the luminous flux, and k is the wave number.

【0032】ベクトルE1 の光が被検査液晶表示装置
(LCD)のバックライト側偏光板(傾きδ1 )を通過
すると(図2(a1)(b3)参照) となる。光は液晶中を通過するとき、各波長毎に楕円偏
光状態で旋光するが、楕円性の弱い場合ほぼ直線偏光に
近いと仮定すると、表示側偏光板直前で(図2(a2)(b
4)参照) ここでαλは波長によって異なる液晶表示装置部旋光角
であり、x軸から測った大きさである。一例としてST
N液晶の場合、青は0°、紫は−30°、緑は60°で
ある。
When the light of the vector E1 passes through the backlight side polarizing plate (inclination δ1) of the liquid crystal display device (LCD) to be inspected (see FIGS. 2 (a1) (b3)). Becomes When light passes through the liquid crystal, it rotates in an elliptically polarized state for each wavelength, but if the ellipticity is weak, assuming that it is almost linearly polarized, it will be in front of the display-side polarizing plate (Fig. 2 (a2) (b
4)) Here, α λ is an optical rotation angle of the liquid crystal display device unit which varies depending on the wavelength, and is a size measured from the x axis. ST as an example
In the case of N liquid crystal, blue is 0 °, purple is −30 °, and green is 60 °.

【0033】さらに液晶表示装置の表示側偏光板を通過
すると、偏光板の傾きをδ2 として ベクトルE2 の光がE2 と同一方向の光学軸をもつ旋光
材7に入射し、ここから出射する光は、 となる。ξλは波長によって異なる旋光材の旋光角であ
り、αλと同様x軸から測った大きさである。
Further, when passing through the display side polarizing plate of the liquid crystal display device, the inclination of the polarizing plate is set to δ 2. The light of vector E2 is incident on the optical rotator 7 having the optical axis in the same direction as E2, and the light emitted from this is Becomes ξ λ is the optical rotation angle of the optical rotatory material that differs depending on the wavelength, and is the size measured from the x-axis as is the case with α λ .

【0034】この光は偏光板9の直前まで変化せずに進
むが、傾き角δ3 の偏光板9を通過すると、光は の状態となり、この光がスクリーンに投影される。
This light travels without change until immediately before the polarizing plate 9, but when it passes through the polarizing plate 9 with an inclination angle δ 3 , the light is Then, this light is projected on the screen.

【0035】スクリーンに投影される光は、青、緑、紫
なので異常光紫を検出するためには正常光青と補助異常
光緑を除去すれば良い。
Since the light projected on the screen is blue, green and purple, the normal light blue and the auxiliary abnormal light green should be removed in order to detect the abnormal light purple.

【0036】このためにはSに含まれている項のcos
(θ1 −δ1 )cosαλとcos(θ1 −δ1 )si
nαλの項で緑波長が減衰するようにθ1 を調節する。
ここでδ1 は固定とする。
To this end, the cos of the terms contained in S
(Θ1 −δ1) cos α λ and cos (θ1 −δ1) si
Adjust θ 1 so that the green wavelength is attenuated by the term of nα λ .
Here, δ1 is fixed.

【0037】 δ1 〜0としたとき、上記2式が最小値をとるθ1 とα
λの組み合わせは θ1 =90°,αG =任意 (αG はαλの緑の旋
光角) であり、この角度θ1 のとき緑色ベクトルE4Gは減衰す
る。
[0037] When δ1 to 0, the above two equations take the minimum value θ1 and α
The combination of λ is θ 1 = 90 °, α G = arbitrary (α G is the angle of rotation of green of α λ ), and at this angle θ 1, the green vector E 4G is attenuated.

【0038】一方青色を除去するためには、ベクトルE
4 に含まれるδ3 とξλに注目すればよい。ベクトルE
4 のうちcos(ξλ−δ3 )を最小にすればよいから δ3 =ξB +π/2 となるように、偏光板8を回転させれば青色ベクトルE
4B=0となる。
On the other hand, in order to remove the blue color, the vector E
Pay attention to δ 3 and ξ λ included in 4. Vector E
It is only necessary to minimize cos (ξ λ −δ 3 ) out of 4, so that if the polarizing plate 8 is rotated so that δ 3 = ξ B + π / 2, the blue vector E is obtained.
4B = 0.

【0039】従って異常光ベクトルE4Pを減衰させるこ
となくベクトルE4Gを減衰させベクトルE4Bを除去する
ことが可能となる。
Therefore, it becomes possible to attenuate the vector E 4G and remove the vector E 4B without attenuating the extraordinary light vector E 4P .

【0040】なお、ここで正常部光波長をIλ、異常部
光波長をIλ−Δ,Iλ+Δとすると第2の偏光板によ
り異常部光波長をIλ+Δを弱め、正常部光波長λを取
り除くことができるため、第2の偏光板を透過した光は
異常部光波長Iλ−Δ付近の波長群となる。異常部光、
正常部光の選び方は任意であり、検査対象により可変で
ある。また、被検査液晶表示装置に傷が存在する場合、
その部分で偏光状態が変化し、光強度の急峻な変化が現
れる。
If the normal portion light wavelength is Iλ and the abnormal portion light wavelength is Iλ−Δ, Iλ + Δ, the abnormal portion light wavelength Iλ + Δ can be weakened by the second polarizing plate to remove the normal portion light wavelength λ. Therefore, the light transmitted through the second polarizing plate becomes a wavelength group near the abnormal portion light wavelength Iλ−Δ. Abnormal light,
The method of selecting the normal light is arbitrary and can be changed depending on the inspection target. In addition, when there is a scratch on the liquid crystal display device to be inspected,
The polarization state changes at that portion, and a sharp change in light intensity appears.

【0041】これらの光強度分布を第2の偏光板の透過
波長について測定する。この測定を被検査液晶表示装置
の全面にわたって行い、欠陥部分位置検出、欠陥種の特
定および欠陥品選別を行う。
These light intensity distributions are measured for the transmission wavelength of the second polarizing plate. This measurement is performed over the entire surface of the liquid crystal display device to be inspected to detect the position of the defective portion, specify the defect type, and select the defective product.

【0042】この方式ではECB型液晶、STN型、
(普通のTN型液晶などいかなる型の液晶表示装置につ
いても、色むら、色あせ等の検出が可能であり、また被
検査液晶表示装置の傷も自動検出することができる。
In this system, ECB type liquid crystal, STN type liquid crystal,
(For any type of liquid crystal display device such as an ordinary TN type liquid crystal, it is possible to detect color unevenness, fading, and the like, and it is also possible to automatically detect a scratch on the liquid crystal display device to be inspected.

【0043】次に本発明の第2の実施例について説明す
る。
Next, a second embodiment of the present invention will be described.

【0044】第1の実施例と同様にして被検査用液晶表
示装置の表示側偏光板を通過してきたベクトルE2 の光
がベクトルE2 と同一方向の光学軸をもつ旋光材27に
入射し、ここから出射する光は楕円偏光状態にあるとき
その偏光状態は、旋光材27による旋光角をξλとする
となる。旋光した波長により位相差が異なる場合がある
が、この場合上式のζ3のみが変化し、ロスがなければ
他の係数に変化はない。
In the same manner as in the first embodiment, the light of the vector E2 that has passed through the display side polarizing plate of the liquid crystal display device to be inspected is incident on the optical rotatory member 27 having the optical axis in the same direction as the vector E2. its polarization state when the light emitted is in elliptical polarization states, the optical rotation angle by optical rotation member 27 and xi] lambda from Becomes The phase difference may differ depending on the wavelength of the optical rotation, but in this case, only ζ 3 in the above equation changes, and if there is no loss, the other coefficients do not change.

【0045】旋光材の設計時には透過させる波長の偏光
状態がなるべく太い楕円(長軸と短軸の比が1に近い値
をとる)になるようにζ3 を与えておく。ζ3 は旋光材
27によって生じる位相差である。
At the time of designing the optical rotatory material, ζ 3 is given so that the polarization state of the wavelength to be transmitted becomes a thick ellipse (the ratio of the major axis and the minor axis is a value close to 1). ζ 3 is a phase difference generated by the optical rotatory material 27.

【0046】次にこの楕円偏光がλ/4板に入射する
が、λ/4板を回して、λ/4板の光学軸方向かあるい
はそれに垂直な方向に楕円の長軸あるいは短軸を合わせ
ると、この楕円は直線偏光となり、 となる。
Next, this elliptically polarized light is incident on the λ / 4 plate, and the λ / 4 plate is rotated to align the major axis or the minor axis of the ellipse with the optical axis direction of the λ / 4 plate or the direction perpendicular thereto. And this ellipse becomes linearly polarized light, Becomes

【0047】この状態になる波長は図4(a) に示すよう
に2本存在する。
There are two wavelengths in this state, as shown in FIG. 4 (a).

【0048】しかし、43(b) に示すようにλ/4板の
上述の軸に楕円の長軸あるいは短軸が合わない楕円偏光
は出射時も楕円偏光のままであり、直線化しない。楕円
偏光の変化としてはλ/4板透過中に位相変化を受ける
ことがあり、この影響が楕円の太さに表れ、細くならな
い状態すなわち位相差が0に近づかない太い状態にして
おけば後述する測定時の半値全幅を小さくすることがで
きる。
However, as shown in 43 (b), the elliptically polarized light in which the major axis or the minor axis of the ellipse does not coincide with the above-mentioned axis of the λ / 4 plate is still elliptically polarized light at the time of emission and is not linearized. As the change of elliptically polarized light, a phase change may occur during transmission through a λ / 4 plate, and this effect appears in the thickness of the ellipse, and will be described later if the state is not thin, that is, the phase difference is not close to 0. The full width at half maximum at the time of measurement can be reduced.

【0049】ところでこのようにλ/4板で直線偏光と
なった光と楕円偏光の光は、第2の偏光板9を通過する
が、E4 直の方向に第2の偏光板を合わせると、E4 直
は減衰しない。すなわち、とりだした波長λp は、E
4 直のベクトルをもつものである。
By the way, the light thus linearly polarized by the λ / 4 plate and the elliptically polarized light pass through the second polarizing plate 9, but when the second polarizing plate is aligned in the direction directly E 4. , E 4 straight
Does not decay. That is, the extracted wavelength λ p is E
It has four direct vectors.

【0050】一方、楕円偏光の波長は楕円の長軸時のベ
クトルをE4 楕円l、このベクトルと第2の偏光板との
なす角をδ´とすると透過する最大振幅はもなりたち、
第2の偏光板を通過した波長の中では直線偏光状態であ
るE4 直の振幅すなわち光量が最大となる。
On the other hand, the wavelength of the elliptically polarized light is E 4 ellipse 1 where the vector of the ellipse along the long axis is E 4 and the angle between this vector and the second polarizing plate is δ ′, the maximum amplitude of transmission is quite large.
Among the wavelengths that have passed through the second polarizing plate, the amplitude of E 4 , which is a linearly polarized state, that is, the amount of light becomes maximum.

【0051】この効果はδ´がπ/2と3π/2で最も
大きく、また |aE3X |=|aE3Y | の状態のときすなわち長軸と短軸とが等しいとき最もよ
い。
This effect is greatest when δ'is π / 2 and 3π / 2, and is best when │a E3X │ = │a E3Y │, that is, when the major axis and the minor axis are equal.

【0052】一方直線偏光化した2本目は第2の偏光板
の光学方向と直交するため透過しない。
On the other hand, the second linearly polarized light is orthogonal to the optical direction of the second polarizing plate and therefore does not pass through.

【0053】このように取り出したい波長λp を直線偏
光状態E4 直にすれば多くの波長郡のなかからλp の波
長成分のみを取り出すことができる。
[0053] can be taken out only the wavelength components of λp from among many wavelengths gun if the wavelength λp to be extracted in this way into a linear polarization state E 4 straight.

【0054】以上の考察から、まずとりだしたい波長λ
p を直線化するためにはλ/4板を波長λp の旋光角に
合わせ、第2の偏光板を旋光角ξλに合わせ、第1の偏
光板を制御して偏光面の角度θpを変え、 |Scosδ2 cosξλ|=|Ssinδ2 sinξ
λ| (δ2 =一定、ξλ=一定) にできるだけ近付けるようにする。
From the above consideration, first, the wavelength λ desired to be extracted
In order to linearize p, the λ / 4 plate is adjusted to the optical rotation angle of the wavelength λp, the second polarizing plate is adjusted to the optical rotation angle ξ λ , and the first polarizing plate is controlled to change the angle θp of the polarization plane. , | Scos δ2 cos ξ λ | = | S sin δ2 sin ξ
Try to get as close as possible to λ | (δ 2 = constant, ξ λ = constant).

【0055】そしてさらに特定波長λp のみを除去した
い場合はさらに第2の偏光板を旋光角±π/2の状態に
する。
Further, when it is desired to remove only the specific wavelength λp, the second polarizing plate is further set to the state of the optical rotation angle ± π / 2.

【0056】さらにまた半値全幅を図4に示すように小
さくするためには、3つの方法がある。
Furthermore, there are three methods for reducing the full width at half maximum as shown in FIG.

【0057】(1)楕円をできるだけ円に近い状態にし
てδ´を大きくする。このためには旋光材での透過波長
に対し位相差δ´を 最適値π/2または3π/2を与えるようにする。
(1) δ ′ is increased so that the ellipse is as close to a circle as possible. To this end, the phase difference δ'with respect to the transmission wavelength of the optical rotator is The optimum value π / 2 or 3π / 2 is given.

【0058】(2)|aE3X |=|aE3Y |に近付くよ
うに第1の偏光板を制御する。
(2) The first polarizing plate is controlled so as to approach | a E3X | = | a E3Y |.

【0059】(3)光学フィルタを用いる。フィルタの
中心波長は、とりだしたい波長λpに合わせる。
(3) Use an optical filter. The center wavelength of the filter is adjusted to the desired wavelength λp.

【0060】このようにして、とりだしたい波長λpの
みを取り出すことができ、これをホトダイオード13で
検知し、が正常であるか否かを検知することにより、色
むらの有無を検出することができる。
In this way, it is possible to extract only the wavelength λp to be extracted, and by detecting this with the photodiode 13, it is possible to detect the presence or absence of color unevenness by detecting whether or not is normal. .

【0061】この例では図5および図6に示すように、
第1の実施例におけるλ/2板6と旋光材7に代えて、
回転式の旋光材27とλ/4板26とで構成したことを
特徴とする。そして第2の偏光板9の出力をハーフミラ
ー10で部分的に取り出しアクロマートレンズ11およ
び補助光学フィルタ22を介してCCD23で検出す
る。
In this example, as shown in FIGS.
Instead of the λ / 2 plate 6 and the optical rotatory material 7 in the first embodiment,
It is characterized in that it is composed of a rotary optical rotator 27 and a λ / 4 plate 26. The output of the second polarizing plate 9 is partially taken out by the half mirror 10 and detected by the CCD 23 via the achromat lens 11 and the auxiliary optical filter 22.

【0062】すなわちこの装置では、白色照射光を第1
の偏光板3で直線偏光にし、これを被検査液晶表示装置
5に照射すると、この透過光あるいは反射光が、正常部
光Iλ、異常部光Iλ−Δ,Iλ+Δの混在した直線偏
光としてとりだされ、各波長の光強度はわずかに異なっ
ている状態となる。
That is, in this device, the white irradiation light is first emitted.
When the liquid crystal display device 5 to be inspected is irradiated with the linearly polarized light by the polarizing plate 3 of the above, the transmitted light or the reflected light is taken out as the linearly polarized light in which the normal part light Iλ, the abnormal part light Iλ−Δ, and Iλ + Δ are mixed. Then, the light intensity of each wavelength is slightly different.

【0063】この直線偏光を、旋光材27を回転させ旋
光材の分子方向と被検査液晶表示装置5からの直線偏光
が等しくなるようにする。ここで実施例1と同様に旋光
材27の前に1/2波長板を加えることによって旋光材
の分子方向に直線偏光を入射させるようにしてもよい。
This linearly polarized light is rotated by rotating the optical rotatory material 27 so that the molecular direction of the optical rotatory material and the linearly polarized light from the liquid crystal display device 5 to be inspected become equal. Here, similarly to the first embodiment, a ½ wavelength plate may be added in front of the optical rotatory material 27 so that linearly polarized light is incident in the molecular direction of the optical rotatory material.

【0064】このようにして旋光材に入射した光は旋光
材およびλ/4板にて内部で位相増幅を受け、出射後各
波長は楕円偏光状態となる。この楕円偏光の長軸はX軸
との成す角が波長によって異なり、CCD23などの光
センサによる波長検出分解能を高めるために旋光材とし
ては入射各波長が360度にわたってほどよく分布する
ように考慮する。
The light thus incident on the optical rotatory material is internally phase-amplified by the optical rotatory material and the λ / 4 plate, and each wavelength after emission becomes an elliptically polarized state. The major axis of the elliptically polarized light has an angle formed with the X axis depending on the wavelength, and in order to enhance the wavelength detection resolution by the optical sensor such as the CCD 23, the rotatory material is considered so that the incident wavelengths are well distributed over 360 degrees. .

【0065】そしてこの出力をλ/4板26に入射せし
めるが、楕円の長軸または短軸が光学軸方向にくるよう
な波長の光は直線偏光となる。ここでXY方向のベクト
ルの位相差はないが振幅が異なる。λ/4板の光学軸に
ずれた状態で入射した波長はλ/4板出射後も楕円偏光
状態である。従って楕円偏光が直線偏光となる波長は2
つ存在する。このため、検出したい波長の楕円偏光の長
軸あるいは短軸をλ/4板の光学軸に合わせて直線偏光
としたものを、回転可能な第2の偏光板9に入射させ、
偏光板の回転角を検出波長λの直線偏光の方向に合わせ
ることにより、波長λを減衰させることなく、λ以外の
波長を減衰させることができる。
Then, this output is made incident on the λ / 4 plate 26, but light having a wavelength such that the major axis or the minor axis of the ellipse lies in the optical axis direction becomes linearly polarized light. Here, there is no phase difference between the vectors in the XY directions, but the amplitudes are different. The wavelength incident on the λ / 4 plate with the optical axis deviated is still in the elliptically polarized state even after the λ / 4 plate exits. Therefore, the wavelength at which elliptically polarized light becomes linearly polarized light is 2
Exist. Therefore, the long or short axis of the elliptically polarized light of the wavelength to be detected is linearly polarized by aligning it with the optical axis of the λ / 4 plate, and is incident on the rotatable second polarizing plate 9.
By adjusting the rotation angle of the polarizing plate to the direction of the linearly polarized light of the detection wavelength λ, wavelengths other than λ can be attenuated without attenuating the wavelength λ.

【0066】一方、波長分布f(λ)の各波長が直線偏
光をなしている場合、λ/4板を透過後の波長の内、円
偏光になるものが2つ存在するがその他の波長は楕円偏
光となり第2の偏光板に入射する。第2の偏光板を透過
する波長の内減衰を受けないものは入射時に円偏光であ
った2つの波長であるが、その他の波長は減衰する。第
2の偏光板を出射した光はどの波長も直線偏光状態であ
るが、最大ピークが波長λをもつ波長帯広がりが存在す
る。そこで偏光材の選択および設計とλ/4板の材質、
厚み、入射波長等を考慮して選ぶ。
On the other hand, when each wavelength of the wavelength distribution f (λ) is linearly polarized, two of the wavelengths after passing through the λ / 4 plate are circularly polarized, but the other wavelengths are It becomes elliptically polarized light and enters the second polarizing plate. Of the wavelengths that pass through the second polarizing plate, those that are not attenuated are the two wavelengths that were circularly polarized at the time of incidence, but the other wavelengths are attenuated. The light emitted from the second polarizing plate is in a linearly polarized state at all wavelengths, but there is a wavelength band spread having a maximum peak of wavelength λ. Therefore, the selection and design of the polarizing material and the material of the λ / 4 plate,
Select by considering the thickness, incident wavelength, etc.

【0067】この装置においても、異常部光、正常部光
の選び方は任意であり、検査対象により可変である。ま
た、被検査液晶表示装置に傷が存在する場合、その部分
で偏光状態が変化し、光強度の急峻な変化が現れる。
Also in this apparatus, the method of selecting the abnormal light and the normal light is arbitrary and can be changed depending on the inspection object. When the liquid crystal display device to be inspected has a flaw, the polarization state changes at that portion, and a sharp change in the light intensity appears.

【0068】この測定を被検査液晶表示装置の全面にわ
たって行い、欠陥部分位置検出、欠陥種の特定および欠
陥品選別を行う。
This measurement is performed over the entire surface of the liquid crystal display device to be inspected, and the position of the defective portion is detected, the defect type is specified, and the defective product is selected.

【0069】この方式では実施例1と同様、ECB型液
晶、STN型、(普通のTN型液晶などいかなる型の液
晶表示装置についても、色むら、色あせ等の検出が可能
であり、また被検査液晶表示装置の傷も自動検出するこ
とができる。
Similar to the first embodiment, this method can detect color unevenness, fading, etc. in any type of liquid crystal display device such as ECB type liquid crystal, STN type liquid crystal (ordinary TN type liquid crystal), and can be inspected. A flaw in the liquid crystal display device can also be automatically detected.

【0070】 図7は、本発明の第3の実施例の液晶検査装置の構成説
明図である。
[0070] FIG. 7 is a configuration explanatory diagram of a liquid crystal inspection device according to a third embodiment of the present invention.

【0071】この装置は実施例1における第1の偏光板
3をとり、旋光材27と偏光板29との組み合わせをn
組並べ、それぞれの偏光板の出力をセンサで検出しよう
とするものである。これによりn本の波長ピークを得る
ことができる。
This apparatus has the first polarizing plate 3 in the first embodiment, and the combination of the optical rotatory material 27 and the polarizing plate 29 is n.
They are arranged side by side and the output of each polarizing plate is detected by a sensor. This makes it possible to obtain n wavelength peaks.

【0072】この方式ではn組目になるに従い、偏光板
の数が増えるため光量が小さくなっていくが、n本のピ
ークを得ることができるため、光学系を設定した後、液
晶表示装置の全面を走査すれば、各波長に光強度変化が
現れ色むら波長を特定することができる。
In this method, the number of polarizing plates increases and the amount of light decreases as the number of n-th set increases. However, since n peaks can be obtained, after setting the optical system, the liquid crystal display device If the entire surface is scanned, a change in light intensity will appear at each wavelength and the wavelength of color unevenness can be specified.

【0073】図8は、本発明の第4の実施例の液晶検査
装置の構成説明図である。
FIG. 8 is a structural explanatory view of a liquid crystal inspection device according to the fourth embodiment of the present invention.

【0074】この装置は実施例3における第1の偏光板
3をとり、旋光材27およびλ/4板26と偏光板29
との組み合わせをn組並べ、それぞれの偏光板の出力を
センサで検出しようとするものである。これによりn本
の波長ピークを得ることができる。
This apparatus uses the first polarizing plate 3 of the third embodiment, and has an optical rotatory material 27, a λ / 4 plate 26 and a polarizing plate 29.
In this case, n sets of combinations of and are arranged and the output of each polarizing plate is detected by a sensor. This makes it possible to obtain n wavelength peaks.

【0075】この方式でもn組目になるに従い、偏光板
の数が増えるため光量が小さくなっていくが、n本のピ
ークを得ることができるため、光学系を設定した後、液
晶表示装置の全面を走査すれば、各波長に光強度変化が
現れ色むら波長を特定することができる。
Even in this method, the number of polarizing plates increases and the amount of light decreases as the number of n-th set increases. However, since n peaks can be obtained, after setting the optical system, the liquid crystal display device If the entire surface is scanned, a change in light intensity will appear at each wavelength and the wavelength of color unevenness can be specified.

【0076】次に本発明の第5の実施例について説明す
る。
Next explained is the fifth embodiment of the invention.

【0077】この例では図9に示すように、実施例1に
おいて第2の偏光板9の光学軸を取り出したい波長例え
ば正常光の楕円偏光の長軸方向に合わせ、この状態を維
持しながら第2の偏光板の法線ベクトルと入射光のなす
角がブリュスタ角になるようにし、この第2の偏光板の
反射光を集光し、その光強度の増減を測定し、LCD透
過光の色むら光の増減を検出するようにしたものであ
る。
In this example, as shown in FIG. 9, in Example 1, the optical axis of the second polarizing plate 9 is aligned with the wavelength to be extracted, for example, the major axis direction of elliptically polarized light of normal light, and while maintaining this state, The angle between the normal vector of the second polarizer and the incident light should be the Brewster's angle, the reflected light from this second polarizer is condensed, and the increase or decrease in the light intensity is measured to determine the color of the LCD transmitted light. The variation of uneven light is detected.

【0078】一方この第2の偏光板からの反射光は図1
0に示すようになり、透過光は図11に示すように正常
光がピーク波長となる。
On the other hand, the reflected light from the second polarizing plate is shown in FIG.
As shown in FIG. 11, normal light has a peak wavelength as shown in FIG.

【0079】このように第2の偏光板の反射光を測定す
ることによって、色むらの増減を高精度にかつ容易に検
出することができる。
By measuring the reflected light from the second polarizing plate in this way, it is possible to detect the increase or decrease in color unevenness with high accuracy and easily.

【0080】次に本発明の第6の実施例について説明す
る。
Next, a sixth embodiment of the present invention will be described.

【0081】この例では図12に示すように、実施例2
において第2の偏光板9の光学軸をλ/4板によって直
線偏光した波長の偏光面に合わせ、この状態を維持しな
がら第2の偏光板の法線ベクトルと入射光のなす角がブ
リュスタ角になるようにし、この第2の偏光板の反射光
を集光し、その光強度の増減を測定し、LCD透過光の
色むら光の増減を検出するようにしたものである。
In this example, as shown in FIG.
In, the optical axis of the second polarizing plate 9 is aligned with the plane of polarization of the wavelength linearly polarized by the λ / 4 plate, and while maintaining this state, the angle between the normal vector of the second polarizing plate and the incident light is the Brewster angle. Then, the reflected light from the second polarizing plate is condensed, the increase / decrease in the light intensity thereof is measured, and the increase / decrease in the uneven color light of the LCD transmitted light is detected.

【0082】ここでλ/4板に入射し、λ/4板の光学
軸方向かあるいはそれに垂直な方向に楕円の長軸あるい
は短軸があった波長の楕円偏光は直線偏光となる。そこ
で正常光をP偏光状態にすると、正常光は直線偏光(P
偏光)、色むら光は楕円偏光となり、第2の偏光板の偏
光面をS偏光のみ反射する方向に合わせると反射光は正
常光を含まず、図13に示すように、正常光波長の光強
度が0となる。一方この第2の偏光板の透過光は図14
に示すように正常光がピーク波長となる。
Here, the elliptically polarized light having a wavelength incident on the λ / 4 plate and having the major axis or the minor axis of the ellipse in the optical axis direction of the λ / 4 plate or in the direction perpendicular thereto becomes linearly polarized light. Therefore, if the normal light is changed to the P polarization state, the normal light is linearly polarized (P
Polarized light) and uneven color light become elliptically polarized light, and when the polarization plane of the second polarizing plate is aligned with the direction in which only S-polarized light is reflected, the reflected light does not include normal light, and as shown in FIG. The strength becomes 0. On the other hand, the transmitted light of this second polarizing plate is shown in FIG.
As shown in, normal light has a peak wavelength.

【0083】このように第2の偏光板の反射光を測定す
ることによって、正常光と異常光とを分離することがで
き色むらを高精度にかつ容易に検出することができる。
By measuring the reflected light of the second polarizing plate as described above, the normal light and the abnormal light can be separated and the color unevenness can be detected with high accuracy and easily.

【0084】また、液晶表示装置全体にわたって波長毎
に光強度和を測定することにより、色むらのないところ
では図15(a) に示すように正常光波長部で光強度が顕
著に低下し、色むらの弱いところでは図15(b) に示す
ようにややなだらかになり、色むらの強いところでは図
15(c) に示すように正常光波長部以外のところで光強
度が高くなる。このことを利用して、色むらの程度も検
出することができる。なお、第2の偏光板9に代えて、
図16に示すようにコーティングしたガラス板49を用
いることによっても前記実施例と同様の効果を得ること
ができる。ここでも正常光波長が直線偏光になるように
λ/4板を操作し、この偏光面がガラス板に対してP偏
光になるようにガラス板を設置する。さらにガラス板面
の法線ベクトルが入射光の方向とブリュスタ角になるよ
うにガラス板49を傾ける。このときガラス板で反射さ
れた光にはP偏光は含まれずS偏光成分のみになるが、
正常光にはP偏光成分のみでS偏光成分は含まれないた
め、図17に示すように反射光のうち正常光波長の光強
度は0になる。一方このガラス板49の透過光は図18
に示すように正常光がピーク波長となる。
Further, by measuring the sum of the light intensities for each wavelength over the entire liquid crystal display device, the light intensity is remarkably reduced in the normal light wavelength portion as shown in FIG. Where the color unevenness is weak, it becomes slightly smooth as shown in FIG. 15 (b), and in the area where the color unevenness is strong, the light intensity becomes high in areas other than the normal light wavelength portion as shown in FIG. 15 (c). By utilizing this, the degree of color unevenness can also be detected. Instead of the second polarizing plate 9,
By using a glass plate 49 coated as shown in FIG. 16, it is possible to obtain the same effect as that of the above embodiment. Here again, the λ / 4 plate is operated so that the normal light wavelength becomes linearly polarized, and the glass plate is installed so that the plane of polarization becomes P-polarized with respect to the glass plate. Further, the glass plate 49 is tilted so that the normal vector of the glass plate surface becomes the Brewster angle with the direction of the incident light. At this time, the light reflected by the glass plate does not include P-polarized light but only S-polarized light component.
Since the normal light includes only the P-polarized light component and does not include the S-polarized light component, the light intensity of the normal light wavelength in the reflected light becomes 0 as shown in FIG. On the other hand, the transmitted light of the glass plate 49 is shown in FIG.
As shown in, normal light has a peak wavelength.

【0085】また、反射光または透過光の光強度の積分
値を正常値と比較することによっても、より高精度の色
むら検出を行うことができる。この関係を図19に示
す。この図では(a) および(A) は正常状態のときであ
り、(b) および(B) は正常光の透過性が強い場合で、こ
のときの反射光の積分値ξ2 は正常状態の反射光の積分
値ξ1 よりも小さく、一方このときの透過光の積分値δ
2 は正常状態の透過光の積分値δ1 よりも大きい。さら
に正常光が弱くなり異常光が強くなった場合、(c)およ
び(C) に示すように、このときの反射光の積分値ξ3 は
正常状態の反射光の積分値ξ1 よりも大きく、一方この
ときの透過光の積分値δ3 は正常状態の透過光の積分値
δ1 よりも小さい。また正常光に光強度変化がなく、そ
の他の波長間で光強度変化が存在する場合(d) および
(D) に示すように、このときの反射光の積分値ξ4 は正
常状態の反射光の積分値ξ1 と等しくならず、一方この
ときの透過光の積分値δ4 も正常状態の透過光の積分値
δ1 と等しくならない。
Further, by comparing the integrated value of the light intensity of the reflected light or the transmitted light with the normal value, it is possible to detect the color unevenness with higher accuracy. This relationship is shown in FIG. In this figure, (a) and (A) are for the normal state, (b) and (B) are for the case where the transmission of the normal light is strong, and the integral value ξ2 of the reflected light at this time is the reflection for the normal state. It is smaller than the integrated value of light ξ1, while the integrated value of transmitted light at this time δ
2 is larger than the integral value δ1 of transmitted light in the normal state. When the normal light becomes weaker and the extraordinary light becomes stronger, the integrated value ξ3 of the reflected light at this time is larger than the integrated value ξ1 of the reflected light in the normal state, as shown in (c) and (C). The integral value Δ3 of the transmitted light at this time is smaller than the integral value Δ1 of the transmitted light in the normal state. In addition, if there is no change in light intensity for normal light and there is a change in light intensity between other wavelengths (d) and
As shown in (D), the integral value ξ4 of the reflected light at this time is not equal to the integral value ξ1 of the reflected light in the normal state, while the integral value δ4 of the transmitted light at this time is also the integral value of the transmitted light in the normal state. Not equal to the value δ 1.

【0086】そこで誤差の所定のしきい値をあらかじめ
決めておき、この値よりも誤差が大きくなったとき異常
であると判定するようにすればよい。
Therefore, a predetermined threshold value of the error may be determined in advance, and when the error becomes larger than this value, it may be determined that there is an abnormality.

【0087】さらに本発明の第7の実施例として、図2
0に示すように、実施例6において第2の偏光板9の光
学軸を直線偏光化した正常光と垂直な方向に合わせ、こ
の状態を維持しながら第2の偏光板の法線ベクトルと入
射光のなす角がブリュスタ角になるようにし、この第2
の偏光板の偏光面をS偏光にしてP偏光を完全に遮光す
ることにより、透過光はS偏光成分のみとなり、P偏光
である正常光は完全に0となり、異常光のみを透過成分
として取り出すことができる。この装置では異常光のS
偏光成分のみを取り出すことができ、透過光と反射光の
両方を検出し、和をとることにより図21(a) および
(b) に示すように色むらの存在を検出することができ
る。
Further, as a seventh embodiment of the present invention, FIG.
As shown in 0, in Example 6, the optical axis of the second polarizing plate 9 is aligned with the direction perpendicular to the linearly polarized normal light, and while maintaining this state, the normal vector of the second polarizing plate is incident. Make the angle of light the Brewster's angle
By making the polarization plane of the polarizing plate of S to be S-polarized and completely shielding P-polarized light, transmitted light becomes only S-polarized component, normal light which is P-polarized becomes completely 0, and abnormal light is taken out as transmitted component. be able to. In this device, S of abnormal light
It is possible to take out only the polarized component, detect both transmitted light and reflected light, and take the sum to obtain the result of Fig. 21 (a) and
The presence of color unevenness can be detected as shown in (b).

【0088】[0088]

【発明の効果】以上説明してきたように、本発明によれ
ば、液晶表示装置全面の微弱な色むら、色あせ、傷など
の各種欠陥を容易に高精度で検出することができる。
As described above, according to the present invention, various defects such as faint color unevenness, fading, and scratches on the entire surface of the liquid crystal display device can be easily detected with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の液晶表示装置の検査装
置を示す図
FIG. 1 is a diagram showing an inspection device for a liquid crystal display device according to a first embodiment of the present invention.

【図2】同説明図FIG. 2 is an explanatory diagram of the same.

【図3】本発明の第2の実施例の液晶表示装置の検査装
置を示す図
FIG. 3 is a diagram showing an inspection device for a liquid crystal display device according to a second embodiment of the present invention.

【図4】同説明図FIG. 4 is an explanatory diagram of the same.

【図5】同説明図FIG. 5 is an explanatory diagram of the same.

【図6】同説明図FIG. 6 is an explanatory diagram of the same.

【図7】本発明の第3の実施例の液晶表示装置の検査装
置を示す図
FIG. 7 is a diagram showing an inspection device for a liquid crystal display device according to a third embodiment of the present invention.

【図8】本発明の第4の実施例の液晶表示装置の検査装
置を示す図
FIG. 8 is a diagram showing an inspection device for a liquid crystal display device according to a fourth embodiment of the present invention.

【図9】本発明の第5の実施例の液晶表示装置の検査装
置を示す図
FIG. 9 is a diagram showing an inspection device for a liquid crystal display device according to a fifth embodiment of the present invention.

【図10】同装置の出力を示す図FIG. 10 is a diagram showing an output of the device.

【図11】同装置の出力を示す図FIG. 11 is a diagram showing an output of the device.

【図12】本発明の第6の実施例の液晶表示装置の検査
装置を示す図
FIG. 12 is a diagram showing an inspection device for a liquid crystal display device according to a sixth embodiment of the present invention.

【図13】同装置の出力を示す図FIG. 13 is a diagram showing an output of the device.

【図14】同装置の出力を示す図FIG. 14 is a diagram showing an output of the device.

【図15】同装置の出力を示す図FIG. 15 is a diagram showing an output of the device.

【図16】本発明実施例の変形例を示す図FIG. 16 is a diagram showing a modification of the embodiment of the present invention.

【図17】同装置の出力を示す図FIG. 17 is a diagram showing an output of the device.

【図18】同装置の出力を示す図FIG. 18 is a diagram showing an output of the device.

【図19】他の判定方法を示す図FIG. 19 is a diagram showing another determination method.

【図20】本発明の第7の実施例の液晶表示装置の検査
装置を示す図
FIG. 20 is a diagram showing an inspection device for a liquid crystal display device according to a seventh embodiment of the present invention.

【図21】同装置の出力を示す図FIG. 21 is a diagram showing an output of the device.

【符号の説明】[Explanation of symbols]

1 光源 2 フィルター 3 偏光板 4 スリット 5 被検査液晶表示装置 6 λ/2板 7 旋光材 8 アクロマートレンズ 9 第2の偏光板 10 ハーフミラー 11 レンズ 12 レンズ 13 ホトダイオード 14 アクロマートレンズ 15 スクリーン 22 補助光学フィルタ 23 CCD 26 λ/4板 27 旋光材 29 偏光板 47 旋光材 49 ガラス板 1 Light Source 2 Filter 3 Polarizing Plate 4 Slit 5 Liquid Crystal Display Device 6 λ / 2 Plate 7 Optical Rotating Material 8 Achromatic Lens 9 Second Polarizing Plate 10 Half Mirror 11 Lens 12 Lens 13 Photodiode 14 Achromat Lens 15 Screen 22 Auxiliary Optical Filter 23 CCD 26 λ / 4 Plate 27 Optical Rotating Material 29 Polarizing Plate 47 Optical Rotating Material 49 Glass Plate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光源とすべての波長の光が同じ方向を向
くように前記光源からの光に対し直線偏光を行う第1の
直線偏光手段と前記第1の直線偏光手段の出力光を被検
査対象としての液晶表示装置にあて、 前記液晶表示装置の透過光または反射光に対し、波長毎
に位相差を与え、波長毎に偏光面の角度が異なるように
分散させる旋光手段と、 前記旋光手段の出力から、特定波長を取り出す偏光板と
を具備し、正常状態からずれているか否かを検知する液
晶表示装置の欠陥検出装置。
1. A first linear polarization means for linearly polarizing the light from the light source so that the light of all wavelengths and the light of all wavelengths are directed in the same direction, and the output light of the first linear polarization means is inspected. In the liquid crystal display device as a target, optical rotation means for imparting a phase difference for each wavelength to transmitted light or reflected light of the liquid crystal display device and for dispersing so that the angle of the polarization plane is different for each wavelength, and the optical rotation means. A defect detection device for a liquid crystal display device, comprising: a polarizing plate for extracting a specific wavelength from the output of 1.
【請求項2】 光源と前記光源からの光をすべての波長
の光が同じ方向を向くように直線偏光を行う第1の直線
偏光手段と前記第1の直線偏光手段の出力光を被検査対
象としての液晶表示装置にあて、 前記液晶表示装置の透過光または反射光に対し、波長毎
に位相差を与え、波長毎に偏光面の角度が異なるように
する旋光手段と、 前記旋光手段の出力を特定波長のみを直線偏光化させて
透過せしめる1/4波長板と、同じ方向に振動面をもつ
光のみを透過させる第2の偏光手段とを具備し、該特定
波長の出力の強度を検出することにより正常状態からず
れているか否かを検知する液晶表示装置の欠陥検出装
置。
2. A light source and a first linearly polarizing means for linearly polarizing light from the light source so that all wavelengths of light are directed in the same direction, and output light from the first linearly polarizing means is an object to be inspected. In the liquid crystal display device as described above, optical transmission means for giving a phase difference for each wavelength to transmitted light or reflected light of the liquid crystal display device so that the angle of the polarization plane is different for each wavelength, and the output of the optical rotation means. Is equipped with a quarter-wave plate that linearly polarizes and transmits only a specific wavelength, and a second polarizing means that transmits only light having a vibrating surface in the same direction, and detects the intensity of the output of the specific wavelength. A defect detection device for a liquid crystal display device, which detects whether or not it is deviated from a normal state by performing.
【請求項3】 光源と前記光源からの光を被検査対象と
しての液晶表示装置にあて、 前記液晶表示装置の透過光または反射光に対し、波長毎
に位相差を与え、波長毎に偏光面の角度が異なるように
する旋光手段と、前記旋光手段の出力を、同じ方向に振
動面をもつ光のみを透過させる第2の偏光手段とが交互
に複数組配設され、所定波長の光強度を順次検出し、正
常状態からずれているか否かを検知する液晶表示装置の
欠陥検出装置。
3. A light source and a liquid crystal display device as an object to be inspected, the light from the light source being provided with a phase difference for each wavelength with respect to transmitted light or reflected light of the liquid crystal display device, and a polarization plane for each wavelength. A plurality of sets of optical rotation means for changing the angle of the optical axis and a second polarization means for transmitting only the light having an oscillating surface in the same direction as the output of the optical rotation means are alternately arranged. A defect detection device for a liquid crystal display device, which sequentially detects the defects and detects whether or not the condition is deviated from a normal state.
【請求項4】 光源と前記光源からの光を被検査対象と
しての液晶表示装置にあて、 前記液晶表示装置の透過光または反射光に対し、波長毎
に位相差を与え、波長毎に偏光面の角度が異なるように
する旋光手段と、前記旋光手段の出力から特定波長のみ
を直線偏光化させて透過せしめる1/4波長板と、前記
1/4波長板の出力にそれぞれ接続され、これと同じ方
向に振動面をもつ光のみを透過させる第3の偏光手段と
を1組として、複数組順次配設し、この出力の強度を検
出することにより正常状態からずれているか否かを検知
する液晶表示装置の欠陥検出装置。
4. A light source and a liquid crystal display device as an object to be inspected, the light from the light source being provided with a phase difference for each wavelength with respect to transmitted light or reflected light of the liquid crystal display device, and a polarization plane for each wavelength. Are connected to the output of the optical rotation means, the quarter wavelength plate that linearly polarizes and transmits only the specific wavelength from the output of the optical rotation means, and the output of the quarter wavelength plate. A plurality of sets are sequentially arranged with one set of a third polarizing means that transmits only light having a vibrating surface in the same direction, and by detecting the intensity of this output, it is detected whether or not there is a deviation from the normal state. Defect detection device for liquid crystal display device.
【請求項5】 光源と前記光源からの光をすべての波長
の光が同じ方向を向くように直線偏光を行う第1の直線
偏光手段と前記第1の直線偏光手段の出力光を被検査対
象としての液晶表示装置にあて、 前記液晶表示装置の透過光または反射光に対し、波長毎
に位相差を与え、波長毎に偏光面の角度が異なるように
する旋光手段と、 前記旋光手段の出力を特定波長のみを直線偏光化させて
透過せしめる1/4波長板と、 前記1/4波長板の出力光のブリュスタ角に法線方向が
くるように配置され、これと同じ方向に振動面をもつ光
のみを透過させる第2の偏光手段とを具備し、この出力
の強度を検出することにより正常状態からずれているか
否かを検知する液晶表示装置の欠陥検出装置。
5. A light source and first linear polarization means for linearly polarizing light from the light source so that light of all wavelengths are directed in the same direction, and output light of the first linear polarization means is an object to be inspected. In the liquid crystal display device as described above, optical transmission means for giving a phase difference for each wavelength to transmitted light or reflected light of the liquid crystal display device so that the angle of the polarization plane is different for each wavelength, and the output of the optical rotation means. Is arranged so that the normal direction comes to the Brewster angle of the output light of the 1/4 wavelength plate and the 1/4 wavelength plate that linearly polarizes and transmits only the specific wavelength, and the vibrating surface is arranged in the same direction as this. A defect detecting device for a liquid crystal display device, comprising: a second polarizing means for transmitting only the light that the device has, and detecting whether or not there is a deviation from a normal state by detecting the intensity of the output.
JP5902193A 1993-03-18 1993-03-18 Defect detector for liquid crystal display Pending JPH06273342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5902193A JPH06273342A (en) 1993-03-18 1993-03-18 Defect detector for liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5902193A JPH06273342A (en) 1993-03-18 1993-03-18 Defect detector for liquid crystal display

Publications (1)

Publication Number Publication Date
JPH06273342A true JPH06273342A (en) 1994-09-30

Family

ID=13101225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5902193A Pending JPH06273342A (en) 1993-03-18 1993-03-18 Defect detector for liquid crystal display

Country Status (1)

Country Link
JP (1) JPH06273342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076984A (en) * 2006-09-25 2008-04-03 Seiko Epson Corp Optical characteristic evaluation device and manufacturing method of liquid crystal device
JP2009527018A (en) * 2006-02-15 2009-07-23 ドウジン セミケム カンパニー リミテッド Inspection system and inspection method for flat panel display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527018A (en) * 2006-02-15 2009-07-23 ドウジン セミケム カンパニー リミテッド Inspection system and inspection method for flat panel display device
JP2008076984A (en) * 2006-09-25 2008-04-03 Seiko Epson Corp Optical characteristic evaluation device and manufacturing method of liquid crystal device

Similar Documents

Publication Publication Date Title
US6724215B2 (en) Method of evaluating liquid crystal panel and evaluating device
KR101441876B1 (en) Method for measuring optical anisotropy parameter and measurement apparatus
JP2007327915A (en) Apparatus and method for inspecting defect of film
KR100399206B1 (en) Method of evaluating an anisotropic thin film and an evaluating apparatus
KR20100027951A (en) Method and apparatus for measuring optical anisotropy parameter
JP4663529B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
US5532488A (en) Apparatus and method for evaluating orientation film
US5903352A (en) Apparatus and method for measuring optical anisotropy
US6757062B2 (en) Method and device for measuring thickness of liquid crystal layer
EP0603863B1 (en) Birefringent member cell gap measurement method and instrument
US9019497B2 (en) Measurement of linear and circular diattenuation in optical elements
KR20100048907A (en) Method and apparatus for measuring tilt angle of liquid crystal cell
JPH06273342A (en) Defect detector for liquid crystal display
US6088115A (en) Apparatus and method for measuring optical anisotropy
US20040233432A1 (en) Method for measuring gap of liquid crystal cell
JPH1068673A (en) Optical anisotropy measuring apparatus and method using the same
JP3021338B2 (en) Extinction ratio measurement method and extinction ratio measurement device
JP4728830B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
TWI437220B (en) System and method for measuring pre-tilt angle of liquid crystal
JP3338157B2 (en) Alignment film evaluation system
JP3411433B2 (en) Liquid crystal cell pretilt angle measuring device
JP3944641B2 (en) Gap thickness measuring device, gap thickness measuring method, and liquid crystal device manufacturing method
JP3441180B2 (en) Alignment film evaluation system
JP2002311406A (en) Apparatus for detecting parameter of liquid crystal panel
KR20080093236A (en) Method and apparatus for inspecting substrate with high efficiency reflection and transmission and phase shift of transmission light