JP3259730B2 - X-ray mask - Google Patents

X-ray mask

Info

Publication number
JP3259730B2
JP3259730B2 JP2000255614A JP2000255614A JP3259730B2 JP 3259730 B2 JP3259730 B2 JP 3259730B2 JP 2000255614 A JP2000255614 A JP 2000255614A JP 2000255614 A JP2000255614 A JP 2000255614A JP 3259730 B2 JP3259730 B2 JP 3259730B2
Authority
JP
Japan
Prior art keywords
ray
absorber
tungsten
stress
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000255614A
Other languages
Japanese (ja)
Other versions
JP2001057338A (en
Inventor
秀毅 矢部
健二 丸本
信行 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000255614A priority Critical patent/JP3259730B2/en
Publication of JP2001057338A publication Critical patent/JP2001057338A/en
Application granted granted Critical
Publication of JP3259730B2 publication Critical patent/JP3259730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make internal stress low and to form a highly precise pattern by using an X-ray absorber containing tungsten, nitrogen and oxygen and having an amorphous structure. SOLUTION: An X-ray absorbing film is formed on a silicon substrate by using a target of tungsten to which 1 wt.% of titanium is added, and by discharging at pressure of 10.3 mTorr and with DC discharge power of 0.5 kW. The film is annealed at 390 deg.C for 1 hour. In such an X-ray absorber, the internal stress can be reduced because of the contained tungsten, nitrogen and oxygen. Pattern size precision can be improved because the structure is not a columnar crystal structure, but is an amorphous structure. As a result, an X-ray absorber having low internal stress and suitable for forming a highly precise pattern can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線リソグラフィ
ーに使用するX線マスクに関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to an X-ray mask used for X-ray lithography.

【0002】[0002]

【従来の技術】従来、X線マスク用吸収体としてはA
u、W、Ta等の重金属が用いられていた。しかしなが
らこれらをX線吸収体として用いる際、吸収体の低応力
化が難しかった。そこで本発明者らはこの問題点を解決
するため、先に特開昭63−232425号公報として
Ti−W合金を成膜する際にアルゴンガスに窒素を加え
てスパッタしたX線マスクを開発した。この方法は低応
力の吸収体を再現性良く成膜することができた。
2. Description of the Related Art Conventionally, as an absorber for an X-ray mask, A
Heavy metals such as u, W, and Ta have been used. However, when these are used as X-ray absorbers, it has been difficult to reduce the stress of the absorber. In order to solve this problem, the present inventors have previously developed an X-ray mask in which nitrogen was added to argon gas and sputtered when forming a Ti-W alloy film as disclosed in JP-A-63-232425. . This method was able to form a low stress absorber with good reproducibility.

【0003】[0003]

【発明が解決しようとする課題】ところで、先に提案し
たTi−W合金膜によるX線吸収体は、低応力ではある
が、結晶構造が柱状構造になりやすかった。結晶構造が
柱状になると、エッチング時に柱単位でエッチングが進
行しやすくなるため、パターンの寸法精度が低下すると
いった問題点があった。
By the way, the X-ray absorber using the Ti-W alloy film proposed above has a low stress, but the crystal structure tends to be a columnar structure. When the crystal structure has a columnar shape, etching tends to proceed in units of columns during etching, and thus there has been a problem that the dimensional accuracy of the pattern is reduced.

【0004】本発明は上記のような問題点を解消するた
めになされたもので、内部応力が低く、高精度なパター
ン形成に適したX線吸収体を提供することを目的として
いる。
The present invention has been made to solve the above problems, and has as its object to provide an X-ray absorber having a low internal stress and suitable for high-precision pattern formation.

【0005】[0005]

【課題を解決するための手段】本発明に係るX線マスク
は、X線吸収体として、タングステンと窒素と酸素を含
み、アモルファス状の構造を有するものである。
An X-ray mask according to the present invention contains tungsten, nitrogen and oxygen as an X-ray absorber and has an amorphous structure.

【0006】また、本発明に係る別のX線マスクは、X
線吸収体として、成膜後でもタングステンと窒素と酸素
を含み、アモルファス状の構造を有するものである。
[0006] Another X-ray mask according to the present invention is an X-ray mask.
The line absorber contains tungsten, nitrogen, and oxygen even after film formation and has an amorphous structure.

【0007】[0007]

【発明の実施の形態】実施の形態1.以下、本発明の実
施の形態について説明する。図1において、A点とB点
は、タングステンにチタンを1wt%添加したターゲッ
トを用い、ArガスにN2 ガスを7%添加し、圧力を1
0.3mTorr、DC放電時のパワーを0.5kWと
してシリコン基板上にX線吸収体を成膜し、390℃で
1時間アニールをする前後の応力を示す。なお、表1に
は、成膜条件、応力、密度、構造を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, embodiments of the present invention will be described. In FIG. 1, points A and B are set at a pressure of 1% by adding N 2 gas to Ar gas and using a target obtained by adding 1 wt% of titanium to tungsten.
The stress before and after annealing at 390 ° C. for 1 hour is shown by forming an X-ray absorber on a silicon substrate at 0.3 mTorr and a power of 0.5 kW during DC discharge. Table 1 shows film forming conditions, stress, density, and structure.

【0008】[0008]

【表1】 [Table 1]

【0009】これらによると、アニール後の吸収体の応
力はアニール前と比べ小さくなり、応力が1×108
a以下になっていることがわかる。また、図2中のI点
は、上記条件での密度を示す。16〜17g/cm3
度の高密度になっていることがわかる。
According to these, the stress of the absorber after annealing is smaller than that before annealing, and the stress is 1 × 10 8 P
It can be seen that it is less than a. Point I in FIG. 2 indicates the density under the above conditions. It can be seen that the density is as high as about 16 to 17 g / cm 3 .

【0010】また、図3は上記条件の試料のX線回折結
果である。縦軸は相対的なピーク強度を、横軸はCu
K−α 線を用いてX線回折を行ったときの回折角度を
示している。基板のシリコンのピーク以外にブロードな
山(図中、N)が観察される。このブロードな山の位置
にあう物質はないが、この位置に前後して、β−W
2N、W0.62(N,O)のピークとタングステンのピークが
あるため、この物質はタングステンと、タングステンの
窒化物、タングステンの窒化物酸化物等が混合したアモ
ルファス物質であると考えられる。走査型電子顕微鏡
(SEM)による断面構造の観察結果によると、柱状構
造が観察されずアモルファス状になっていた。このよう
に、本実施の形態におけるX線吸収体は、タングステン
に窒素と酸素が含有されることで内部応力が小さくでき
るとともに、構造が柱状の結晶構造ではなく、アモルフ
ァス状の構造となるため、パターン寸法精度が向上す
る。
FIG. 3 shows an X-ray diffraction result of the sample under the above conditions. The vertical axis represents relative peak intensity, and the horizontal axis represents Cu
It shows the diffraction angle when performing X-ray diffraction using K-α rays. A broad peak (N in the figure) is observed in addition to the silicon peak of the substrate. There is no material at this broad peak, but before and after this position, β-W
Since there are a peak of 2 N and W 0.62 (N, O) and a peak of tungsten, this substance is considered to be an amorphous substance in which tungsten, a nitride of tungsten, a nitride oxide of tungsten, and the like are mixed. According to the observation result of the cross-sectional structure by a scanning electron microscope (SEM), no columnar structure was observed and the columnar structure was amorphous. As described above, the X-ray absorber according to the present embodiment can reduce internal stress by containing nitrogen and oxygen in tungsten, and has an amorphous structure instead of a columnar crystal structure. Pattern dimensional accuracy is improved.

【0011】なお、SiC等の下地が0.1μm程度の
凹凸がある試料では、本発明の条件で低応力化は可能で
あるが、SEM観察の結果によると、部分的にアモルフ
ァス状になり、シリコンやSiN、SiO2 、クオー
ツ、SOG、ポリイミド等下地の凹凸が0.05μm以
下の場合においては、全面にアモルファスとなってい
た。
In a sample such as SiC having a base having irregularities of about 0.1 μm, the stress can be reduced under the conditions of the present invention. However, according to the result of SEM observation, it becomes partially amorphous, In the case where the irregularities of the base such as silicon, SiN, SiO 2 , quartz, SOG, and polyimide were 0.05 μm or less, the entire surface was amorphous.

【0012】実施の形態2.図1中のC点とD点は、実
施の形態1と同様なターゲットを用い、ArガスにN2
ガスを7%添加し、圧力を12.3mTorr、DC放
電時のパワーを0.6kWとしてシリコン基板上に吸収
体を成膜し、300℃で1時間アニールをする前後の応
力を示す。アニール後の吸収体の応力はアニール前と比
べ小さくなり、低応力膜が形成されていることがわか
る。また、図2中のJ点は、上記条件での密度を示す。
16〜17g/cm3 程度の高密度になっていることが
わかる。この試料の構造も実施の形態1と同様にアモル
ファスであった。
Embodiment 2 FIG. At points C and D in FIG. 1, the same target as in the first embodiment was used, and N 2 was used as the Ar gas.
The stress before and after annealing at 300 ° C. for 1 hour is shown by forming an absorber on a silicon substrate by adding gas at 7%, setting the pressure at 12.3 mTorr, and the power during DC discharge at 0.6 kW. The stress of the absorber after annealing is smaller than that before annealing, which indicates that a low stress film is formed. The point J in FIG. 2 indicates the density under the above conditions.
It can be seen that the density is as high as about 16 to 17 g / cm 3 . The structure of this sample was also amorphous as in the first embodiment.

【0013】実施の形態3.図1中のE点とF点は、実
施の形態1と同様なターゲットを用い、ArガスにN2
ガスを7%添加し、圧力を14.4mTorr、DC放
電時のパワーを0.8kWとしてシリコン基板上に吸収
体を成膜し、250℃で1時間アニールをする前後の応
力を示す。アニール後の吸収体の応力はアニール前と比
べ小さくなり、この条件でも低応力膜が形成されている
ことがわかる。また、図2中のK点は、上記条件での密
度を示す。16〜17g/cm3 程度の高密度を示して
いた。なお、この試料の構造も実施の形態1と同様にア
モルファスであった。
Embodiment 3 At points E and F in FIG. 1, the same target as in the first embodiment was used, and N 2 was used as the Ar gas.
The stress before and after annealing at 250 ° C. for 1 hour is shown by forming an absorber on a silicon substrate by adding gas at 7%, applying a pressure of 14.4 mTorr and a power of 0.8 kW during DC discharge. The stress of the absorber after annealing is smaller than that before annealing, which indicates that a low-stress film is formed even under these conditions. The point K in FIG. 2 indicates the density under the above conditions. It showed a high density of about 16 to 17 g / cm 3 . The structure of this sample was amorphous as in the first embodiment.

【0014】実施の形態4.図1中のG点は、実施の形
態1と同様なターゲットを用い、ArガスにN2 ガスを
5%添加し、圧力を15.4mTorr、DCパワーを
0.8kWとしてシリコン基板上に吸収体を成膜したと
きの応力を示す。アニールを行わなくても低応力膜が形
成されていることがわかる。また、図2中のL点は密度
を示す。高密度の吸収体が成膜されていることがわか
る。なお、この試料の構造も実施の形態1と同様にアモ
ルファスであった。
Embodiment 4 A point G in FIG. 1 uses the same target as that of the first embodiment, adds 5% of N 2 gas to Ar gas, sets the pressure to 15.4 mTorr, the DC power to 0.8 kW, and sets the absorber on the silicon substrate. Shows the stress when a film was formed. It can be seen that a low stress film is formed without performing annealing. The point L in FIG. 2 indicates the density. It can be seen that a high-density absorber is formed. The structure of this sample was amorphous as in the first embodiment.

【0015】実施の形態5.図1中のH点は、実施の形
態1と同様なターゲットを用い、ArガスにN2 ガスを
10%添加し、圧力を15.4mTorr、DCパワー
を0.8kWとしてシリコン基板上に吸収体を成膜した
ときの応力を示す。低応力膜が形成されていることがわ
かる。また、図2中のM点は密度を示す。高密度の吸収
体が成膜されていることがわかる。なお、この試料の構
造も実施の形態1と同様にアモルファスであった。
Embodiment 5 The point H in FIG. 1 uses the same target as in the first embodiment, adds an N 2 gas to Ar gas at 10%, sets the pressure to 15.4 mTorr and the DC power to 0.8 kW, and sets the absorber on the silicon substrate. Shows the stress when a film was formed. It can be seen that a low stress film is formed. The point M in FIG. 2 indicates the density. It can be seen that a high-density absorber is formed. The structure of this sample was amorphous as in the first embodiment.

【0016】なお、前記実施の形態においては、タング
ステンにチタンを1wt%添加したターゲットを用いた
り、アルゴンガスに窒素を5〜10%添加したり、アニ
ール温度を250〜390℃としているが、これらの条
件は、チタンの添加量を0〜10wt%、不活性ガスへ
の窒素の添加量を1%以上30%未満、アニール温度を
50〜500℃としても同様の効果が得られる。
In the above embodiment, a target in which titanium is added to tungsten at 1 wt% is used, nitrogen is added to argon gas at 5 to 10%, and an annealing temperature is 250 to 390 ° C. The same effect can be obtained when the addition amount of titanium is 0 to 10 wt%, the addition amount of nitrogen to the inert gas is 1% or more and less than 30%, and the annealing temperature is 50 to 500 ° C.

【0017】さらに、前記実施の形態ではDC放電とし
ているが、RFによる放電でも良く、また、ターゲット
はWやW−Tiであるが、あらかじめこれらのターゲッ
トの中に窒素が入っていても良い。
Further, in the above-described embodiment, DC discharge is used. However, RF discharge may be used, and the target is W or W-Ti. Nitrogen may be contained in these targets in advance.

【0018】ところで上記説明では、この発明をX線マ
スクの吸収体の成膜法に用いているが、この製造方法は
X線マスクを製作する際のみならず、その他の成膜にお
いて内部応力を小さくしたい場合や、構造をアモルファ
ス状にしたい場合に用いることができるのはいうまでも
ない。
In the above description, the present invention is used for a method of forming an absorber for an X-ray mask. However, this manufacturing method reduces internal stress not only when manufacturing an X-ray mask but also during other film formation. Needless to say, it can be used when it is desired to reduce the size or to make the structure amorphous.

【0019】[0019]

【発明の効果】以上のように、本発明によれば、X線マ
スクのX線吸収体を、タングステンと窒素と酸素を含
み、アモルファス状の構造を有するものとしたので、内
部応力が低く、高精度なパターン形成に適したX線吸収
体とすることができる。
As described above, according to the present invention, since the X-ray absorber of the X-ray mask has an amorphous structure containing tungsten, nitrogen and oxygen, the internal stress is low. An X-ray absorber suitable for high-precision pattern formation can be obtained.

【0020】また、X線マスクのX線吸収体を、成膜後
でもタングステンと窒素と酸素を含み、アモルファス状
の構造を有するものとしても、上記と同様の効果があ
る。
The same effect as described above can be obtained even if the X-ray absorber of the X-ray mask contains tungsten, nitrogen and oxygen and has an amorphous structure even after film formation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1ないし実施の形態5に
係わるX線吸収体の応力を示す特性図である。
FIG. 1 is a characteristic diagram showing stress of an X-ray absorber according to Embodiments 1 to 5 of the present invention.

【図2】 本発明の実施の形態1ないし実施の形態5に
係わるX線吸収体の密度を示す特性図である。
FIG. 2 is a characteristic diagram showing a density of an X-ray absorber according to Embodiments 1 to 5 of the present invention.

【図3】 本発明の実施の形態1に係わるX線吸収体の
X線回折結果を示す説明図である。
FIG. 3 is an explanatory diagram showing an X-ray diffraction result of the X-ray absorber according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

N アモルファス物質を示すブロードな山 N Broad peak showing amorphous material

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−16116(JP,A) 特開 昭63−76325(JP,A) 特開 昭63−252428(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 G03F 1/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-16116 (JP, A) JP-A-63-76325 (JP, A) JP-A-63-252428 (JP, A) (58) Investigation Field (Int.Cl. 7 , DB name) H01L 21/027 G03F 1/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 X線吸収体として、タングステンと窒素
と酸素を含み、アモルファス状の構造を有することを特
徴とするX線マスク。
1. An X-ray mask as an X-ray absorber, comprising tungsten, nitrogen and oxygen and having an amorphous structure.
【請求項2】 X線吸収体として、成膜後でもタングス
テンと窒素と酸素を含み、アモルファス状の構造を有す
ることを特徴とするX線マスク。
2. An X-ray mask as an X-ray absorber, comprising tungsten, nitrogen and oxygen even after film formation and having an amorphous structure.
JP2000255614A 2000-01-01 2000-08-25 X-ray mask Expired - Fee Related JP3259730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000255614A JP3259730B2 (en) 2000-01-01 2000-08-25 X-ray mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000255614A JP3259730B2 (en) 2000-01-01 2000-08-25 X-ray mask

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14708792A Division JPH05343299A (en) 1992-06-08 1992-06-08 X-ray mask and manufacture thereof

Publications (2)

Publication Number Publication Date
JP2001057338A JP2001057338A (en) 2001-02-27
JP3259730B2 true JP3259730B2 (en) 2002-02-25

Family

ID=18744362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000255614A Expired - Fee Related JP3259730B2 (en) 2000-01-01 2000-08-25 X-ray mask

Country Status (1)

Country Link
JP (1) JP3259730B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910828B2 (en) * 2007-03-28 2012-04-04 大日本印刷株式会社 Gradation mask
JP5403040B2 (en) * 2011-12-02 2014-01-29 大日本印刷株式会社 Gradation mask

Also Published As

Publication number Publication date
JP2001057338A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
US5374590A (en) Fabrication and laser deletion of microfuses
JPH0334312A (en) Manufacture of x-ray mask and internal stress controller for thin film
JPH08269701A (en) Sputtering titanium target and its production
JP2011523978A (en) Molybdenum-niobium alloy, sputtering target containing such alloy, method for producing such target, thin film produced therefrom, and use thereof
JPS5916978A (en) Method for selectively etching metal coating
US4468799A (en) Radiation lithography mask and method of manufacturing same
JP3259730B2 (en) X-ray mask
JPH05343299A (en) X-ray mask and manufacture thereof
JP2006032972A (en) Method of crystallizing amorphous silicon film
KR100654520B1 (en) Copper alloy for semiconductor interconnections, fabrication method thereof, semiconductor device having copper alloy interconnections fabricated by the method, and sputtering target for fabricating copper alloy interconnections for semiconductors
JP3119237B2 (en) X-ray mask, method of manufacturing the same, semiconductor device and method of manufacturing the same
JPH10229043A (en) X-ray mask blank, its manufacture and manufacture of x-ray mask
JP3226250B2 (en) Transfer mask
JPH0194347A (en) Manufacture of mask for radiation lithography
JPH02123730A (en) Mask for radiation exposure and manufacture thereof
JP3303858B2 (en) X-ray mask and manufacturing method thereof
JP3087032B2 (en) X-ray mask manufacturing method
JP3097646B2 (en) Alloy, method of manufacturing the same, X-ray mask, method of manufacturing the same, and method of manufacturing a semiconductor device
JPH10135130A (en) X-ray mask blank, its manufacture, and x-ray mask
EP1918428B1 (en) Crystalline tantalum film and method of forming it
JPH0790564A (en) High-purity titanium sputtering target
TW584914B (en) Metal taper etching structure and the manufacturing method thereof, producing source/drain and gate in thin film transistor array using the same, and the structure thereof
JP2003338465A (en) Mo-W TARGET FOR FORMING WIRING, Mo-W WIRING THIN FILM USING THE SAME, AND LIQUID-CRYSTAL DISPLAY DEVICE
JP3411413B2 (en) X-ray mask manufacturing method
US20040084407A1 (en) Method for surface preparation to enable uniform etching of polycrystalline materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees