JP3249650B2 - Copper alloy melting method - Google Patents

Copper alloy melting method

Info

Publication number
JP3249650B2
JP3249650B2 JP19360493A JP19360493A JP3249650B2 JP 3249650 B2 JP3249650 B2 JP 3249650B2 JP 19360493 A JP19360493 A JP 19360493A JP 19360493 A JP19360493 A JP 19360493A JP 3249650 B2 JP3249650 B2 JP 3249650B2
Authority
JP
Japan
Prior art keywords
copper
melting
alloy
active metal
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19360493A
Other languages
Japanese (ja)
Other versions
JPH0748638A (en
Inventor
与志男 八木
正憲 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP19360493A priority Critical patent/JP3249650B2/en
Publication of JPH0748638A publication Critical patent/JPH0748638A/en
Application granted granted Critical
Publication of JP3249650B2 publication Critical patent/JP3249650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は銅合金の溶解方法に関
し、特に電子, 電気機器用材料として用いられる、Cu−
Zr, Cu−Cr, Cu−Tiなどの銅合金を有利に製造するため
の銅合金の溶解方法について提案するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting a copper alloy, and more particularly to a method for melting a copper alloy used as a material for electronic and electric equipment.
The present invention proposes a method of melting a copper alloy to advantageously produce a copper alloy such as Zr, Cu-Cr, or Cu-Ti.

【0002】[0002]

【従来の技術】一般に、Zrなどの活性金属を含有する銅
合金は、高導電性耐熱性合金としてよく知られている
が、このような活性金属入り銅合金は、5N電解銅に、
例えばCu−Zr母合金, Cu−Cr母合金あるいはCu−Ti母合
金などの活性金属の母合金および、その他の必要な添加
材を加え、高周波溶解炉や電気炉を用い、真空雰囲気
中、不活性ガス雰囲気中もしくは還元性ガス雰囲気中、
あるいは木炭被覆下で溶解し、その後、多くの場合、同
じ調整雰囲気中にて鋳造することによって製造してい
る。(特開平1−306534号公報, 特開平2−118057号公
報, 特開平2−173248号公報参照)
2. Description of the Related Art Generally, a copper alloy containing an active metal such as Zr is well known as a high-conductivity heat-resistant alloy.
For example, a master alloy of an active metal such as a Cu-Zr master alloy, a Cu-Cr master alloy or a Cu-Ti master alloy, and other necessary additives are added, and a high-frequency melting furnace or an electric furnace is used. In an active gas atmosphere or a reducing gas atmosphere,
Alternatively, it is produced by melting under a charcoal coating and then casting in most cases in the same conditioned atmosphere. (See JP-A-1-306534, JP-A-2-118057, and JP-A-2-173248)

【0003】上記の従来銅合金製造方法において、炉内
のCu溶湯中への上記活性金属の添加は、これらの金属も
しくはそれらの母合金, 例えばCu−50%Zr, Cu−30%Zr
の母合金をCu溶湯中に直接投入する方法によって行って
いる。
In the conventional copper alloy production method described above, the addition of the active metal to the molten Cu in the furnace is performed by adding these metals or their mother alloys, for example, Cu-50% Zr, Cu-30% Zr.
Is directly injected into the molten Cu.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記各従来
技術においてCu−Zr母合金を添加する場合、例えば特開
平2−118057号公報に開示のような、“端子・コネクタ
ー用銅合金の製造方法”を例にとると、添加すべき活性
金属は、Zr:0.05〜1.0 wt%、Cr:0.1 〜1.5 wt%であ
り、極めて少量である。従って、これらを母合金の形で
添加しようとする場合、単にCu溶湯中に投入しただけで
は短時間のうちに該Cu溶湯中に均一に拡散させることは
難しく、不均一な合金組成のものを溶製することになり
かねないという問題があった。
Incidentally, when a Cu-Zr mother alloy is added in each of the above-mentioned prior arts, for example, a method for producing a copper alloy for terminals and connectors as disclosed in Japanese Patent Application Laid-Open No. 2-118057 is disclosed. ", The active metals to be added are Zr: 0.05-1.0 wt% and Cr: 0.1-1.5 wt%, which are very small amounts. Therefore, when these are to be added in the form of a master alloy, it is difficult to uniformly diffuse them into the Cu molten metal in a short time simply by throwing them into the Cu molten metal. There was a problem that it could be melted.

【0005】一方で、こうした問題を避けるために、前
記母合金の有効成分(Zr, Cr, Ti,etc.) を希釈した、
例えばCu−3%Zr母合金などを使う方法も開発された
が、添加する該活性金属が微量であることから、短時間
のうちに均一な組成の銅合金を溶製することは、なお不
十分であった。それ故に含有量のコントロールも困難で
あった。さらに、微量の第3, 第4合金成分を添加して
高性能の銅合金を製造しようとする場合には、均一溶解
は一層困難なものとなり、その有利な解決法の確立が求
められていた。
On the other hand, in order to avoid such a problem, an effective component (Zr, Cr, Ti, etc.) of the master alloy is diluted.
For example, a method using a Cu-3% Zr master alloy has been developed, but it is still impossible to melt a copper alloy having a uniform composition in a short time because the amount of the active metal to be added is very small. Was enough. Therefore, it was difficult to control the content. Furthermore, when attempting to produce a high-performance copper alloy by adding trace amounts of the third and fourth alloy components, uniform melting becomes more difficult, and establishment of an advantageous solution has been required. .

【0006】また、従来技術が抱えている他の問題点
は、銅の溶解、活性金属の投入、鋳造(連続鋳造)の全
作業期間について、これらを確かな非酸化性雰囲気中で
行うことによって、酸化されていない健全な銅合金イン
ゴットが得られないということにあった。
Another problem of the prior art is that during the entire working period of melting copper, charging active metal, and casting (continuous casting), these are performed in a reliable non-oxidizing atmosphere. Another problem is that a healthy copper alloy ingot that has not been oxidized cannot be obtained.

【0007】そこで、本発明の目的は、微量の活性金属
元素を含む希薄銅合金を製造する際の、従来技術が抱え
ている上述した問題点、即ち、偏析が少なく均一な組成
の銅合金を製造することができないばかりでなく、含有
量のコントロールが困難で、酸化しにくい雰囲気中で健
全なインゴットを連続鋳造するのが困難であるという問
題点を克服できる銅合金の溶解方法を提案することにあ
る。
Accordingly, an object of the present invention is to provide a copper alloy having a uniform composition with a small amount of segregation as described above, which is a problem in the prior art when producing a diluted copper alloy containing a trace amount of an active metal element. To propose a copper alloy melting method that not only cannot be manufactured, but also can control the content, and can overcome the problem that it is difficult to continuously cast a sound ingot in an atmosphere that is difficult to oxidize. It is in.

【0008】[0008]

【課題を解決するための手段】上記の目的を実現するた
めに鋭意研究した結果、発明者らは、微量添加成分の均
一溶解によって、偏析の少ない均一な成分組成の銅合金
を, とくに希薄銅合金を歩留りよく製造するためには、
微量添加成分である前記活性金属の添加方法および溶解
方法の改善が必要であるとの知見を得て、以下に述べる
ような本発明に想到した。即ち、本発明は、溶解炉内の
調整雰囲気下にある溶銅中に、活性金属等を添加して銅
合金を溶製するに当たり、まず、真空雰囲気下の溶解炉
で溶解し、銅の溶落後、この溶解炉内をArガス雰囲気に
調整して30〜120 分間保持し、その後、銅管内に封入し
た活性金属またはその母合金を炉内溶銅中に投入して成
分調整することを特徴とする銅合金の溶解方法である。
上記の溶解方法において、溶落後の溶銅の過熱度は 150
〜250 ℃の範囲内の温度に維持して溶解することが好ま
しい。また、上記の溶解方法において、活性金属または
その母合金の添加に当たっては、まず脱酸効果を有する
成分を添加し、次いで20〜30分経過してから該活性金属
またはその母合金を添加し、その後5〜10分経過後に必
要な他の添加材を添加して溶解することが好ましい。さ
らに、上記の各溶解方法は、活性金属の含有量が 0.2wt
%未満で、その他の添加材を含めた総量においても 0.5
wt%未満の添加成分を含有する希薄銅合金の溶製に対し
て適用されることが好ましい。
Means for Solving the Problems As a result of diligent research to achieve the above object, the inventors have found that a homogeneous dissolution of a trace amount of added components allows a copper alloy having a uniform component composition with little segregation, especially dilute copper. In order to produce alloys with good yield,
The present inventors have found that it is necessary to improve the method of adding and dissolving the active metal, which is a trace addition component, and have reached the present invention as described below. That is, according to the present invention, when adding an active metal or the like to molten copper under a controlled atmosphere in a melting furnace to melt a copper alloy, first, the molten copper is melted in a melting furnace under a vacuum atmosphere to melt copper. After dropping, the inside of the melting furnace was adjusted to an Ar gas atmosphere and maintained for 30 to 120 minutes.After that, the active metal or its mother alloy sealed in the copper tube was charged into the molten copper in the furnace to adjust the components. This is a method for melting copper alloys.
In the above melting method, the superheat of the molten copper after dropping is 150
It is preferable to dissolve while maintaining the temperature within the range of ~ 250 ° C. In addition, in the above melting method, when adding the active metal or its mother alloy, first add a component having a deoxidizing effect, then after 20 to 30 minutes, add the active metal or its mother alloy, After 5 to 10 minutes have elapsed, it is preferable to add and dissolve other necessary additives. In addition, each of the above dissolving methods has an active metal content of 0.2 wt.
%, And 0.5 in the total amount including other additives
It is preferably applied to the production of dilute copper alloys containing less than wt% of additional components.

【0009】[0009]

【作用】本発明において活性金属とは、Zr, Cr, Ti, A
l, Si, Mg, Be, Ca, Hf等の元素を指し、所謂活性化エ
ネルギーが高いために反応性が高く、従って、これらを
Cu溶湯中に添加するときには酸化され易いことに加え、
これらを少量添加する場合には、Cu溶湯中に速やかに拡
散して均一な合金溶湯をつくることが困難な金属であ
る。 それ故に、低含有量の希薄な銅合金の溶製時に、
上記活性金属を添加するに当たっては、第1に、添加か
ら鋳造に至るまでの雰囲気調整と処理時間の検討が必要
であり、第2に、Cu溶湯中に確実に均一拡散させること
により均質な合金溶湯を高い歩留りにて溶解するため
に、添加の順序ならびに溶銅の温度(過熱度)について
の検討が必要であることが判ってきた。
In the present invention, the active metal is Zr, Cr, Ti, A
l, Si, Mg, Be, Ca, Hf, and other elements, which have high reactivity due to high activation energy.
In addition to being easily oxidized when added to the molten Cu,
When these are added in small amounts, it is a metal that is difficult to diffuse quickly into the molten Cu to form a uniform molten alloy. Therefore, when smelting low content dilute copper alloy,
When adding the active metal, first, it is necessary to adjust the atmosphere from the addition to the casting and consider the processing time. Second, it is necessary to uniformly diffuse the molten metal into the molten Cu to obtain a homogeneous alloy. It has been found that it is necessary to study the order of addition and the temperature (superheat) of the molten copper in order to melt the molten metal at a high yield.

【0010】このために、本発明では、上記の第1の課
題について、以下に述べるような課題解決手段が有効で
あるとの結論を得た。それは、昇温溶解時の雰囲気は真
空雰囲気とし、その後の銅溶落時の溶湯の保持中はArガ
ス雰囲気に維持することが効果的である。そして、出湯
から連続鋳造完了までもArガス雰囲気とすることが効果
的である。このように、操業雰囲気を、昇温時には真空
雰囲気とし、その後はArガス雰囲気に調整する理由は、
前者の場合、溶銅中のガス成分を除去するためであり、
後者の場合は活性元素を添加する際に浴表面の酸素を排
除して銅の酸化を防ぐためである。
For this reason, in the present invention, it has been concluded that the following means for solving the first problem is effective. It is effective that the atmosphere at the time of heating and melting is a vacuum atmosphere, and the atmosphere is maintained at an Ar gas atmosphere during the subsequent holding of the molten metal at the time of copper melting. It is effective to keep the Ar gas atmosphere from the tapping to the completion of continuous casting. As described above, the reason why the operating atmosphere is adjusted to the vacuum atmosphere when the temperature is raised and then to the Ar gas atmosphere is as follows.
In the former case, it is to remove gas components in the molten copper,
In the latter case, when the active element is added, oxygen on the bath surface is eliminated to prevent oxidation of copper.

【0011】また、純銅の溶落後、上記溶解炉内はArガ
ス雰囲気に保持するが、その保持時間は30〜120 分とす
る。このように、溶銅を30〜120 分にわたってArガス雰
囲気中に保持する理由は、Zrの歩留りが80%以上になる
ようにするためである。
After the pure copper is melted down, the inside of the melting furnace is maintained in an Ar gas atmosphere, and the holding time is 30 to 120 minutes. The reason why the molten copper is kept in the Ar gas atmosphere for 30 to 120 minutes is to increase the yield of Zr to 80% or more.

【0012】次に、上記の第2の課題に関連して、発明
者らは、活性金属母合金等の添加材の投入方法について
も工夫した。この工夫は、添加すべき所要量の活性金属
を、できれば母合金の形にて、これを銅管内に充填封入
し、そしてこの銅管ごと溶解炉内の銅の溶湯中に投入し
て添加する方法である。このように、活性金属・その母
合金を銅製チューブを介して銅の溶湯中に投入すると、
たとえ活性金属の添加であっても、酸化することなくま
た溶湯中の深いところに投入することができるから、従
来のように銅溶湯の一部にだけこの活性金属が溶けて偏
析を起こすようなことがなくなり、均一な合金溶湯を溶
製する上で効果がある。このことは、添加する活性金属
の量が銅溶湯量に対して相対的に少ない場合ほどより効
果的である。なお、上記の銅製チューブには、上・下の
開口端にロッド状のプラグを嵌着して、内部に充填封入
する活性金属が所定のタイミング(銅管の溶解時)まで
に飛散し、添加効果(均一分散)を減ずることがないよ
うにする。そして、このプラグは、投入時に上側となる
上部開口端部に嵌着するものよりも、下側に位置する下
部開口端部のプラグの長さ(軸長)の方を、2〜3倍長
いものを使うことが望ましい。
Next, in connection with the second problem, the inventors have devised a method of introducing an additive such as an active metal master alloy. The idea is to fill the required amount of active metal to be added, preferably in the form of a mother alloy, into a copper tube, and then add it to the copper melt in the melting furnace with the copper tube. How to In this way, when the active metal and its mother alloy are poured into the molten copper through the copper tube,
Even if an active metal is added, it can be introduced into the melt without oxidizing it, so that the active metal dissolves only in a part of the copper melt and causes segregation as in the past. This is effective in producing a uniform molten alloy. This is more effective when the amount of the active metal to be added is relatively smaller than the amount of the molten copper. In addition, rod-shaped plugs are fitted to the upper and lower opening ends of the above-mentioned copper tube, and the active metal to be filled and sealed therein is scattered by a predetermined timing (when the copper tube is melted), and added. The effect (uniform dispersion) should not be reduced. This plug has a lower (lower) axial length of the plug at the lower open end that is two to three times longer than the plug that fits into the upper open end at the time of insertion. It is desirable to use something.

【0013】また、本発明において、添加する活性金属
の形態は、該活性金属の単体でもよいが、母合金の形態
で用いることが望ましい。例えば、Cu−30%Zr程度が最
も効果的な組成と言える。このような母合金にすると、
従来のように極端な希薄母合金( Cu−3%Zr)を準備し
なければならないという不利も解消されるし、この組成
は、活性金属量が多すぎてもまた少なすぎても好ましく
ない。大体、Cu−( 20〜40%) Zr母合金の使用が好まし
いと言える。
In the present invention, the form of the active metal to be added may be a simple form of the active metal, but is preferably used in the form of a master alloy. For example, it can be said that about Cu-30% Zr is the most effective composition. With such a master alloy,
The disadvantage of having to prepare an extremely dilute mother alloy (Cu-3% Zr) as in the prior art is also eliminated, and this composition is not preferable if the amount of active metal is too large or too small. In general, it can be said that the use of a Cu- (20-40%) Zr master alloy is preferable.

【0014】本発明において次に重要なことは、添加材
の添加順序である。即ち、本発明においては、 a.まず、脱酸作用のある成分元素, 例えば、P,Si,
Mn, Al, Mg, Zn等を添加して一定時間, 好ましくは20〜
40分間保持する。 b.次に、活性金属元素Zr, Ti, Crなどを好ましくは母
合金の形態のものを添加して、やはり一定時間、好まし
くは3〜10分間保持する。 c.最後に、その他の元素, 例えばFe, Ni, Sn等を必要
に応じて添加して一定時間、好ましくは10〜20分間保持
する。この添加の順序は、第2, 3添加元素を含む場合
に特に有効であり、活性金属以外のものは、所定量を銅
箔等で包んで投入する。
The next important factor in the present invention is the order of adding the additives. That is, in the present invention, a. First, the deoxidizing component elements, for example, P, Si,
Add Mn, Al, Mg, Zn etc. for a certain time, preferably 20 ~
Hold for 40 minutes. b. Next, an active metal element such as Zr, Ti, Cr or the like, preferably in the form of a master alloy, is added and maintained for a certain time, preferably 3 to 10 minutes. c. Finally, other elements, for example, Fe, Ni, Sn and the like are added as necessary, and the mixture is kept for a certain time, preferably for 10 to 20 minutes. This order of addition is particularly effective when the second and third additional elements are included, and a substance other than the active metal is introduced by wrapping a predetermined amount in a copper foil or the like.

【0015】また、本発明において活性金属を投入する
際に重要な他のことは、Arガス雰囲気中に保持する銅溶
湯の温度を、その融点よりも 150〜250 ℃高い温度(過
熱度)を有するものが好ましい。溶銅の過熱度をこのよ
うに高くするのは、Zrの歩留りが90%以上となるように
するためである。
Another important factor when the active metal is charged in the present invention is that the temperature (superheat) of the molten copper kept in the Ar gas atmosphere is higher by 150 to 250 ° C. than its melting point. Are preferred. The reason why the superheat degree of the molten copper is increased in this way is to make the yield of Zr 90% or more.

【0016】以上説明した本発明溶解方法について、5
N銅にZr, Fe, Pを添加した銅合金を溶解する例につ
き、その工程と操業条件の一例を表1にまとめて示す。
Regarding the dissolution method of the present invention described above,
Table 1 shows an example of the steps and operating conditions of an example of dissolving a copper alloy obtained by adding Zr, Fe, and P to N copper.

【表1】 [Table 1]

【0017】[0017]

【実施例】この実施例は、高周波真空溶解炉(15KW, Cu
−2kg) を用い、約1kgの5N−Cuを溶解した例であ
る。そして、Cuが完全に溶け落ちた後、炉内のCu溶湯
(約1300℃に保持) 中に、1000ppm のZrを、Cu−Zr母合
金の形にて、これを銅管(10mmφ, 肉厚:1mmt)の中
に封入して添加した。なお、添加Cu−Zr母合金は、銅管
内に封入し、純Zrは銅箔で包み添加した。
[Example] In this example, a high-frequency vacuum melting furnace (15 KW, Cu
This is an example in which about 1 kg of 5N-Cu was dissolved by using 2 kg). Then, after the Cu has completely melted off, 1000 ppm of Zr in the form of a Cu-Zr mother alloy is put into a copper tube (10 mmφ, wall thickness) in the molten Cu (maintained at about 1300 ° C) in the furnace. : 1 mmt). The added Cu-Zr mother alloy was sealed in a copper tube, and pure Zr was added by wrapping in a copper foil.

【0018】(1) 溶解条件に関する実施例 図1は、活性金属含有量(Zr:50%, 30%, 100 %) を
変え、昇温−溶湯保持, 添加後の、それぞれの雰囲気
(V:真空, A:Arガス)を変化させたときの各溶解条
件に応じたZrの歩留りを調べたものである。この図1に
示す結果から判るように、種々の溶解条件を変化させた
とき、とくに昇温時の雰囲気を真空とし、その後の溶湯
保持および添加後をいずれもArガス雰囲気としたケース
が最もよく、そしてCu−30%Zr母合金を用いた場合が最
も良い結果を示していた。即ち、この場合の歩留りは約
80%上と良好であったが、Cu−50%Zr母合金, 純Zrを用
いた場合には、それぞれ68〜87%, 75〜86%に止まっ
た。一方、溶解雰囲気については、図2に示すように、
母体となる銅が溶解するまでは真空雰囲気( 約10-2Tor
r) とし、その後の溶湯保持, 合金元素投入後の保持はA
rガス雰囲気(−30cmHg) の場合が、歩留り86%以上を
示したのに対し、真空のみ、あるいは真空−Arガス−真
空の場合では、それぞれ68〜84%, 75〜80%に止まっ
た。なお、この溶解実験において、溶湯温度は1300℃と
し、溶湯保持時間は45minが良好であった( 歩留り99
%) 。これに対し、溶湯温度が低い場合 (1200℃以下)
、または溶湯保持時間が短い場合(30min以下) では歩
留り97%未満となった。
(1) Example relating to dissolving conditions FIG. 1 shows that the active metal content (Zr: 50%, 30%, 100%) was changed, and the respective atmospheres (V: It is a result of examining the yield of Zr according to each melting condition when vacuum (A: Ar gas) is changed. As can be seen from the results shown in FIG. 1, when the various melting conditions were changed, the case where the atmosphere at the time of raising the temperature was set to vacuum, and the subsequent holding and addition of the molten metal were all set to the Ar gas atmosphere was the best. And the use of a Cu-30% Zr master alloy showed the best results. That is, the yield in this case is about
It was as good as 80%, but when using Cu-50% Zr master alloy and pure Zr, it was 68-87% and 75-86%, respectively. On the other hand, as for the melting atmosphere, as shown in FIG.
Vacuum atmosphere (about 10 -2 Tor) until the base copper is dissolved
r), and the subsequent holding of the molten metal and after the
r The gas atmosphere (-30 cmHg) showed a yield of 86% or more, whereas the vacuum only or vacuum-Ar gas-vacuum only kept 68-84% and 75-80%, respectively. In this melting experiment, the temperature of the molten metal was 1300 ° C., and the holding time of the molten metal was preferably 45 min (yield 99
%). On the other hand, when the molten metal temperature is low (1200 ° C or less)
When the holding time of the molten metal was short (30 min or less), the yield was less than 97%.

【0019】 (2) Zrの他に第2, 第3元素を含む場合の実施例 それぞれの添加材の量は、 Zr(活性金属) 300 ppm ( Cu−30%Zr) Fe(その他) 2000 ppm ( Cu−50%Fe) P(脱酸効果あり) 555 ppm ( Cu−15%P) とした。この実験における各添加材の添加順序および保
持時間を比較例とともに表2に示す。その他の溶解条件
は、前記(1) の良好なときと同じ条件に設定して行っ
た。即ち、昇温時は真空とし、その後はArガス雰囲気と
し、そしてCu−30%・Zr母合金を添加した。この実験に
おいて、本発明法の場合、添加材はP→Zr→Feの順で添
加し、添加後の保持時間をPについては30min, Zrにつ
いては5min とした。このときの結果は、表2に示すと
おり、、Zrの歩留りがいずれも95%以上と良好であっ
た。つまり、このような多元系の場合には、脱酸効果の
ある元素→活性金属元素→その他の順序が良いことが判
った。一方、比較例として、その他の順序で添加した
が、Zrの歩留りはすべて90%以下であった。なお、Zrの
バラツキは、歩留り良好なものについて調査したとこ
ろ、R(最大値−最小値)はすべて20ppm 以下であり、
均一性も十分に確保できていることが判った。
(2) Example in which the second and third elements are contained in addition to Zr The amount of each additive is 300 ppm Zr (active metal) (Cu-30% Zr) 2000 ppm Fe (others) (Cu-50% Fe) P (with deoxidizing effect) 555 ppm (Cu-15% P). The order of addition and the holding time of each additive in this experiment are shown in Table 2 together with Comparative Examples. The other dissolution conditions were set under the same conditions as in the above-mentioned good condition (1). That is, a vacuum was set at the time of raising the temperature, an Ar gas atmosphere was set thereafter, and a Cu-30% · Zr mother alloy was added. In this experiment, in the case of the method of the present invention, the additive was added in the order of P → Zr → Fe, and the retention time after the addition was 30 min for P and 5 min for Zr. As a result, as shown in Table 2, the yield of Zr was 95% or more in all cases. That is, in the case of such a multi-component system, it was found that the order of the element having a deoxidizing effect → the active metal element → the other order was good. On the other hand, as comparative examples, Zr was added in other orders, but the yield of Zr was all 90% or less. In addition, when the variation of Zr was investigated for a sample having a good yield, R (maximum value-minimum value) was all 20 ppm or less,
It was found that the uniformity was sufficiently ensured.

【0020】[0020]

【表2】 [Table 2]

【0021】(3) 本発明法に基づき、以下の合金( 36種
類) を製造した。 Zr: 300, 500, 700 ppm Fe:1000, 2000, 3000 ppm P: 85 〜 1130 ppm その結果を表3, 4に示す。Zrの歩留りはほとんどが90
%以上であった。従って、本発明法は、活性金属を含む
銅合金の優れた溶解法と言える。
(3) The following alloys (36 types) were produced based on the method of the present invention. Zr: 300, 500, 700 ppm Fe: 1000, 2000, 3000 ppm P: 85-1130 ppm The results are shown in Tables 3 and 4. Zr yield is mostly 90
% Or more. Therefore, the method of the present invention can be said to be an excellent method for melting a copper alloy containing an active metal.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【発明の効果】以上説明したように本発明によれば、活
性金属を含む均質かつ希薄な銅合金の製造が可能になる
と共に、活性金属の添加歩留りが高く、第2, 3添加元
素をも高い歩留りで添加することができると共に、均一
組成の銅合金を得ることができる。とくに、本発明によ
れば、偏析の少ない多元系銅合金を安価に製造する上で
有効な方法を提供することができる。
As described above, according to the present invention, a homogeneous and dilute copper alloy containing an active metal can be produced, and the addition yield of the active metal is high. It can be added at a high yield and a copper alloy having a uniform composition can be obtained. In particular, according to the present invention, it is possible to provide an effective method for inexpensively producing a multi-component copper alloy with less segregation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】母合金中のZr含有量の違いが歩留りに与える影
響を示す比較グラフ。
FIG. 1 is a comparative graph showing the effect of a difference in Zr content in a master alloy on yield.

【図2】操業雰囲気の違いが歩留りに与える影響を示す
比較グラフ。
FIG. 2 is a comparative graph showing the effect of differences in operating atmosphere on yield.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−61055(JP,A) 特開 昭61−87831(JP,A) 特開 昭57−190763(JP,A) 特開 平7−48639(JP,A) 特開 昭52−136826(JP,A) 特開 昭54−15416(JP,A) 特開 昭54−121226(JP,A) 特公 昭49−17934(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22C 1/02 C22B 1/00 - 61/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-61055 (JP, A) JP-A-61-187831 (JP, A) JP-A-57-190763 (JP, A) JP-A-7-87 48639 (JP, A) JP-A-52-136826 (JP, A) JP-A-54-15416 (JP, A) JP-A-54-121226 (JP, A) JP-B-49-17934 (JP, B1) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 1/02 C22B 1/00-61/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 溶解炉内の調整雰囲気下にある溶銅中
に、活性金属等を添加して銅合金を溶製するに当たり、 真空雰囲気下の溶解炉でまず純銅を溶解し、銅の溶落
後、この溶解炉内をArガス雰囲気に調整して30〜120 分
間保持し、その後、銅管内に封入した活性金属またはそ
の母合金を炉内溶銅中に投入して成分調整することを特
徴とする銅合金の溶解方法。
1. To melt a copper alloy by adding an active metal or the like to molten copper in a controlled atmosphere in a melting furnace, pure copper is first melted in a melting furnace in a vacuum atmosphere. After dropping, the inside of the melting furnace was adjusted to an Ar gas atmosphere and maintained for 30 to 120 minutes.After that, the active metal or its mother alloy sealed in the copper tube was charged into the molten copper in the furnace to adjust the components. Characteristic copper alloy melting method.
【請求項2】 溶落後の溶銅の過熱度を 150〜250 ℃の
範囲内の温度に維持することを特徴とする請求項1に記
載の銅合金の溶解方法。
2. The method for melting a copper alloy according to claim 1, wherein the superheat degree of the molten copper after the melting is maintained at a temperature within a range of 150 to 250 ° C.
【請求項3】 請求項1または2に記載の溶解方法にお
いて、活性金属またはその母合金の添加に際し、まず、
脱酸効果を有する成分を添加し、次いで20〜30分経過し
てから該活性金属またはその母合金を添加し、その後5
〜10分経過してから必要な他の添加材を添加することを
特徴とする銅合金の溶解方法。
3. The melting method according to claim 1, wherein, when adding the active metal or its mother alloy, first,
A component having a deoxidizing effect is added, and after 20 to 30 minutes, the active metal or its mother alloy is added.
A method for melting a copper alloy, which comprises adding another necessary additive after a lapse of about 10 minutes.
【請求項4】 請求項1, 2または3のいずれかに記載
の方法は、活性金属の含有量が 0.2wt%未満で、その他
の添加材を含めた総量においても 0.5wt%未満の添加成
分を含有する希薄銅合金の溶製に対して適用されること
を特徴とする銅合金の溶解方法。
4. The method according to claim 1, wherein the content of the active metal is less than 0.2 wt%, and the total amount of the additional components including other additives is less than 0.5 wt%. A method for melting a copper alloy, which is applied to the melting of a dilute copper alloy containing:
JP19360493A 1993-08-04 1993-08-04 Copper alloy melting method Expired - Fee Related JP3249650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19360493A JP3249650B2 (en) 1993-08-04 1993-08-04 Copper alloy melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19360493A JP3249650B2 (en) 1993-08-04 1993-08-04 Copper alloy melting method

Publications (2)

Publication Number Publication Date
JPH0748638A JPH0748638A (en) 1995-02-21
JP3249650B2 true JP3249650B2 (en) 2002-01-21

Family

ID=16310714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19360493A Expired - Fee Related JP3249650B2 (en) 1993-08-04 1993-08-04 Copper alloy melting method

Country Status (1)

Country Link
JP (1) JP3249650B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5666156B2 (en) * 2010-03-25 2015-02-12 株式会社徳力本店 Trace element-added Ag alloy and method for producing the same
CN102994789B (en) * 2012-12-05 2014-09-10 云南铜业股份有限公司 Copper-magnesium intermediate alloy adding device and method
CN107904432B (en) * 2017-11-07 2019-08-30 江西理工大学 A kind of method of stability contorting continuously casting copper chromium titanium-zirconium alloy bar ingredient under atmospheric environment
JP7158434B2 (en) * 2020-05-14 2022-10-21 Jx金属株式会社 Copper alloy ingot, copper alloy foil, and method for producing copper alloy ingot
CN114507792A (en) * 2022-01-05 2022-05-17 广东中发摩丹科技有限公司 Preparation method of copper-titanium alloy large-coil heavy-weight ingot

Also Published As

Publication number Publication date
JPH0748638A (en) 1995-02-21

Similar Documents

Publication Publication Date Title
JP4674483B2 (en) Copper material manufacturing method and copper material
CN110872657B (en) High-performance copper alloy prepared by fusion casting method
JP2008255417A (en) Method for producing copper material, and copper material
CN102666888B (en) Copper alloy with high strength and high electrical conductivity
JP2006274383A (en) Method for manufacturing copper material, and copper material
JPWO2007046378A1 (en) High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same
JP2020117806A (en) Copper alloy sputtering target
JPS6411702B2 (en)
JP3249650B2 (en) Copper alloy melting method
CN103394826B (en) A kind of process reducing extruded rod defect
JP2009167450A (en) Copper alloy and producing method therefor
JPH0718354A (en) Copper alloy for electronic appliance and its production
JP2008255416A (en) Method for manufacturing copper material, and copper material
US4451430A (en) Method of producing copper alloy by melting technique
JP3235237B2 (en) Production method of P-containing low oxygen copper using shaft furnace
JP3269708B2 (en) Active metal addition method during copper alloy smelting
JP2002317232A (en) Tin based alloy containing tin-titanium based compound, production method therefor and precursory body of triniobium stannide superconducting wire rod using the alloy
CN114540664A (en) Copper alloy and preparation method and application thereof
JP2783925B2 (en) Production method of iron-containing copper alloy
JP3306585B2 (en) Cu alloy rolled sheet with fine crystals and precipitates and low distribution ratio
JPS5947016B2 (en) Manufacturing method for metal oxide dispersion strengthened copper alloy
JP2646430B2 (en) High conductivity and high heat resistant copper alloy and method for producing the same
US1752474A (en) Method of treating metals
JPH06336632A (en) High strength copper alloy for electric conduction
JP3111792B2 (en) Manufacturing method of high purity copper ingot

Legal Events

Date Code Title Description
R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees