JP3246104B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JP3246104B2
JP3246104B2 JP20462593A JP20462593A JP3246104B2 JP 3246104 B2 JP3246104 B2 JP 3246104B2 JP 20462593 A JP20462593 A JP 20462593A JP 20462593 A JP20462593 A JP 20462593A JP 3246104 B2 JP3246104 B2 JP 3246104B2
Authority
JP
Japan
Prior art keywords
composition
dielectric
temperature
subcomponent
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20462593A
Other languages
Japanese (ja)
Other versions
JPH0737427A (en
Inventor
田 将 充 柴
地 幸 生 浜
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP20462593A priority Critical patent/JP3246104B2/en
Priority claimed from EP19940111243 external-priority patent/EP0637041B1/en
Publication of JPH0737427A publication Critical patent/JPH0737427A/en
Application granted granted Critical
Publication of JP3246104B2 publication Critical patent/JP3246104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は誘電体磁器組成物に関
し、特に磁器積層コンデンサなどの材料として用いられ
る誘電体磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric porcelain composition, and more particularly to a dielectric porcelain composition used as a material for a laminated ceramic capacitor.

【0002】[0002]

【従来の技術】従来より、電圧依存性が小さく、磁器の
強度が高く、平坦な誘電率温度特性を有する誘電体磁器
組成物としては、たとえば、BaTiO3 を主成分と
し、これにBi2 3 −TiO2 ,Bi2 3 −SnO
2 ,Bi2 3 −ZrO2 などのビスマス化合物と希土
類元素とを副成分として添加したものが広く知られてい
る。
2. Description of the Related Art Conventionally, as a dielectric ceramic composition having a small voltage dependency, a high strength of a ceramic, and a flat dielectric temperature characteristic, for example, BaTiO 3 as a main component and Bi 2 O 3 -TiO 2, Bi 2 O 3 -SnO
2, Bi 2 O 3 that is added bismuth compounds such -ZrO 2 and a rare earth element as an auxiliary component is widely known.

【0003】一方、上記の組成の誘電体磁器組成物とは
別に、BaTiO3 を主成分とし、これにNb2 5
希土類酸化物およびCr,Mn,Fe,Co,Niなど
の遷移金属酸化物を副成分として添加したものも、30
00以上の高誘電率でありながら、平坦な誘電率温度特
性が得られることが報告されている。
On the other hand, apart from the dielectric ceramic composition having the above composition, BaTiO 3 is mainly used, and Nb 2 O 5 ,
In some cases, rare earth oxides and transition metal oxides such as Cr, Mn, Fe, Co, and Ni are added as subcomponents.
It has been reported that a flat dielectric-temperature characteristic can be obtained while having a high dielectric constant of 00 or more.

【0004】これらの誘電体磁器組成物の温度特性は、
EIA規格のX7R特性、すなわち−55℃〜+125
℃の温度域で、+25℃における静電容量を基準とした
ときの容量変化率が±15%以内であることを満足する
ものであった。
The temperature characteristics of these dielectric ceramic compositions are as follows:
X7R characteristics of EIA standard, that is, -55 ° C to +125
In the temperature range of ° C., the capacitance change rate based on the capacitance at + 25 ° C. was within ± 15%.

【0005】[0005]

【発明が解決しようとする課題】近年、自動車のエンジ
ンルーム内に搭載するECCモジュール(エンジンの電
子制御装置)に、磁器積層コンデンサが用いられるよう
になった。この装置はエンジン制御を安定に行うための
ものなので、回路の温度安定性という面からみて、使用
するコンデンサの温度特性としては、R特性(容量変化
率±15%以内)を満足することが望ましい。
In recent years, a porcelain multilayer capacitor has been used for an ECC module (electronic control unit for an engine) mounted in an engine room of an automobile. Since this device is used to stably control the engine, it is desirable that the temperature characteristics of the capacitor used satisfy the R characteristic (capacity change rate within ± 15%) from the viewpoint of the temperature stability of the circuit. .

【0006】一方、自動車のエンジンルーム内は、寒冷
地の冬期には、−20℃程度まで温度が下がり、また、
エンジンを始動すると、夏期では+130℃程度にまで
温度が上がることが予測される。特に、エンジンのオー
バーヒートなどが起こった場合には、+150℃程度に
まで温度が上がることは十分考えられる。したがって、
従来のX7R特性の誘電体磁器組成物は、エンジンルー
ム内が高温になった場合に対応しきれない。
On the other hand, the temperature in the engine room of a car drops to about -20 ° C. in winter in a cold region.
When the engine is started, it is expected that the temperature will rise to about + 130 ° C. in summer. In particular, when the engine is overheated, it can be considered that the temperature rises to about + 150 ° C. Therefore,
The conventional dielectric ceramic composition having the X7R characteristic cannot cope with the case where the temperature in the engine room becomes high.

【0007】また、この積層コンデンサは自動車搭載用
であるため、基板実装時に破壊すると、ECCモジュー
ルを十分機能させることができず、最悪の場合、事故に
つながる恐れがあり、そういうことがあってはならな
い。さらに、自動車の走行中に常に振動や応力が加わる
ことも考えられ、これらの振動や応力によって破壊しな
いためにも、磁器強度は十分高くなければならない。
[0007] Further, since this multilayer capacitor is mounted on an automobile, if it is broken during mounting on a board, the ECC module cannot be functioned sufficiently, and in the worst case, it may lead to an accident. No. Further, it is conceivable that vibrations and stresses are constantly applied while the automobile is running, and the strength of the porcelain must be sufficiently high so as not to be destroyed by these vibrations and stresses.

【0008】また、誘電体磁器組成物の電圧依存性が大
きいと、誘電体の薄膜化に対応できず、小型大容量の磁
器積層コンデンサを作製することができず、また、回路
の安定性の面から見ても好ましくない。
Further, if the dielectric ceramic composition has a large voltage dependency, it cannot cope with the thinning of the dielectric material, making it impossible to manufacture a small-sized and large-capacity ceramic multilayer capacitor. It is not preferable from the viewpoint.

【0009】ところで、BaTiO3 を主成分とし、こ
れにNb2 5 ,希土類酸化物およびCr,Mn,F
e,Co,Niなどの遷移金属酸化物を副成分として添
加した誘電体磁器組成物は、磁器強度が低いため基板実
装時に破壊することがあり、問題になる場合があった。
By the way, BaTiO 3 is used as a main component, and Nb 2 O 5 , a rare earth oxide and Cr, Mn, F
A dielectric porcelain composition to which a transition metal oxide such as e, Co, Ni or the like is added as a sub-component has a low porcelain strength, so that it may be broken at the time of mounting on a substrate, which may be a problem.

【0010】また、これらの大きな誘電率を有する誘電
体磁器組成物は、電圧依存性が大きいため、最近の薄膜
化に対応できず、小型大容量の磁器積層コンデンサを作
製することができなかった。
In addition, these dielectric ceramic compositions having a large dielectric constant have a large voltage dependency, so that they cannot cope with recent thinning, and it is not possible to produce a small and large-capacity ceramic multilayer capacitor. .

【0011】一方、BaTiO3 を主成分とし、これに
ビスマス化合物を添加した誘電体磁器組成物は、上述し
たように、電圧依存性が小さく、磁器強度が高いが、誘
電率を高くすると、誘電率の温度変化率が大きくなる。
また、焼成温度を1160℃以上と高くすると、磁器積
層コンデンサとした場合、内部電極に30重量%以上の
Pdを含有させなければならない。そのため、内部電極
中のPbとBi2 3との反応が起こりやすくなる上
に、内部電極にかかるコストも高くなってしまう。
On the other hand, a dielectric ceramic composition containing BaTiO 3 as a main component and a bismuth compound added thereto has a small voltage dependency and a high ceramic strength as described above. The rate of temperature change of the rate increases.
Further, when the firing temperature is increased to 1160 ° C. or more, in the case of a porcelain multilayer capacitor, 30% by weight or more of Pd must be contained in the internal electrodes. Therefore, the reaction between Pb and Bi 2 O 3 in the internal electrode is likely to occur, and the cost for the internal electrode increases.

【0012】それゆえに、この発明の主たる目的は、1
160℃以下で焼成でき、1000以上の高誘電率であ
りながら、X8R特性を満足し、すなわち+25℃にお
ける静電容量を基準としたとき、−55℃〜+150℃
の広い温度範囲にわたって静電容量の温度変化率(以
下、「TC」という。)が±15%以内と平坦であり、
また、磁器の機械的強度が高く、さらに誘電体磁器層の
厚みを10μm〜15μmと薄膜化したときに、JIS
C6429のRB特性の規格に準じて、25V(定格
電圧50Vの50%)の直流電圧を印加したときの静電
容量の温度変化率(以下、「バイアスTC」という。)
が+15%〜−40%以内と小さい、誘電体磁器組成物
を提供することである。
[0012] Therefore, the main object of the present invention is to provide:
It can be fired at 160 ° C. or less, and satisfies the X8R characteristic while having a high dielectric constant of 1000 or more, that is, −55 ° C. to + 150 ° C. based on the capacitance at + 25 ° C.
The temperature change rate of the capacitance (hereinafter, referred to as “TC”) is flat within ± 15% over a wide temperature range of
When the mechanical strength of the porcelain is high and the thickness of the dielectric porcelain layer is reduced to 10 μm to 15 μm, the JIS
According to the RB characteristic standard of C6429, the temperature change rate of the capacitance when a DC voltage of 25 V (50% of the rated voltage of 50 V) is applied (hereinafter, referred to as “bias TC”).
Is as small as + 15% to -40% or less.

【0013】[0013]

【課題を解決するための手段】この発明は、一般式、
{100−(a+b+c+d)}(Ba100-x Pbx
TiO3 +aZnO+bBi2 3 +cNb2 5 +d
Re2 3 (ただし、ReはLa、Pr、Nd、Sm、
Dy、Erの中から選ばれる少なくとも一種類、a、
b、c、dおよびxはモル%)で表される主成分が9
7.5〜99.95重量%、ただし、前記一般式のa、
b、c、dおよびxがそれぞれ次の範囲にある 0.5≦a≦4.5 0.5≦b≦4.5 0.5≦c≦4.5 0.5≦d≦5.5 0<x≦6.0 SiO2 を主成分とするガラスからなる第1副成分が
0.05〜2.5重量%、からなる誘電体磁器組成物で
ある。また、この発明は、{100−(a+b+c+
d)}(Ba100-x Pbx )TiO3 +aZnO+bB
2 3 +cNb2 5 +dRe2 3 (ただし、Re
はLa、Pr、Nd、Sm、Dy、Erの中から選ばれ
る少なくとも一種類、a、b、c、dおよびxはモル
%)で表される主成分が97.0〜99.94重量%、
ただし、前記一般式のa、b、c、dおよびxがそれぞ
れ次の範囲にある 0.5≦a≦4.5 0.5≦b≦4.5 0.5≦c≦4.5 0.5≦d≦5.5 0<x≦6.0 SiO2 を主成分とするガラスからなる第1副成分が
0.05〜2.5重量%、Cr、Mn、Fe、Co、お
よびNiの酸化物の中から選ばれる少なくとも一種類か
らなる第2副成分が0.01〜0.5重量%、からなる
誘電体磁器組成物である。
Means for Solving the Problems The present invention has a general formula:
{100- (a + b + c + d)} (Ba 100-x Pb x)
TiO 3 + aZnO + bBi 2 O 3 + cNb 2 O 5 + d
Re 2 O 3 (where Re is La, Pr, Nd, Sm,
At least one selected from Dy and Er, a,
where b, c, d and x are mol%)
7.5 to 99.95% by weight, provided that a,
b, c, d and x are respectively in the following ranges: 0.5 ≦ a ≦ 4.5 0.5 ≦ b ≦ 4.5 0.5 ≦ c ≦ 4.5 0.5 ≦ d ≦ 5.5 0 <x ≦ 6.0 first auxiliary component composed of an SiO 2 glass whose main component is 0.05 to 2.5 wt%, a dielectric ceramic composition comprising a. Further, the present invention provides a method of $ 100- (a + b + c +
d)} (Ba 100-x Pb x ) TiO 3 + aZnO + bB
i 2 O 3 + cNb 2 O 5 + dRe 2 O 3 (However, Re
Is at least one selected from La, Pr, Nd, Sm, Dy, and Er, and a, b, c, d, and x are mol%.) The main component represented by 97.0 to 99.94% by weight. ,
However, a, b, c, d and x in the above general formula are respectively in the following ranges: 0.5 ≦ a ≦ 4.5 0.5 ≦ b ≦ 4.5 0.5 ≦ c ≦ 4.50 0.5 ≦ d ≦ 5.50 <x ≦ 6.0 0.05 to 2.5% by weight of a first subcomponent composed of glass mainly composed of SiO 2 , Cr, Mn, Fe, Co, and Ni Is a dielectric porcelain composition comprising 0.01 to 0.5% by weight of at least one second subcomponent selected from oxides of the following.

【0014】ここで、副成分であるSiO2 を主成分と
するガラスとしては、たとえば、BaO−SrO−Ca
O−Li2 O−SiO2 がある。このガラスは焼成温度
を1160℃以下にする焼結助剤であり、これに限られ
るものでなく、たとえば、BaO−Li2 O−B2 3
−SiO2 系などの硼素を含む酸化物ガラスを用いても
よい。また、SiO2 −B4 C系などの非酸化物を含む
系を用いてもよい。なお、SiO2 −B4 C系のガラス
は、セラミック原料の成形用バインダーが水系バインダ
ーのときに特に有用である。
Here, as the glass mainly containing SiO 2 as a sub-component, for example, BaO—SrO—Ca
There is an O-Li 2 O-SiO 2 . This glass is a sintering aid for lowering the sintering temperature to 1160 ° C. or lower, and is not limited thereto. For example, BaO—Li 2 O—B 2 O 3
Oxide glass containing boron such as SiO 2 may be used. Further, a system containing a non-oxide such as a SiO 2 -B 4 C system may be used. The SiO 2 —B 4 C-based glass is particularly useful when the forming binder of the ceramic raw material is an aqueous binder.

【0015】[0015]

【発明の効果】この発明にかかる誘電体磁器組成物は、
1160℃以下の低温で焼成でき、−55℃から+15
0℃までの広い温度範囲にわたって、TCがR特性を満
足し、平坦な温度特性をもつ。したがって、この誘電体
磁器組成物を用いた磁器積層コンデンサは、種々の条件
下で温度変化の大きな場所にある、あらゆる電装機器に
使用することができる。
Industrial Applicability The dielectric porcelain composition according to the present invention comprises:
Can be fired at a low temperature of 1160 ° C or less, from -55 ° C to +15
TC satisfies the R characteristic over a wide temperature range up to 0 ° C. and has a flat temperature characteristic. Therefore, the ceramic laminated capacitor using the dielectric ceramic composition can be used for various electric devices in a place where the temperature changes greatly under various conditions.

【0016】また、磁器の機械的強度が高いため、磁器
積層コンデンサとして用いる場合に、基板実装時におけ
る割れ,欠けなどの破壊が起こらない。そのため、ショ
ート不良や発熱による焼損などの事故を防ぐことができ
る。
Further, since the mechanical strength of the porcelain is high, when the porcelain is used as a porcelain multilayer capacitor, breakage such as cracking or chipping does not occur at the time of mounting on a substrate. Therefore, accidents such as short-circuit failure and burning due to heat generation can be prevented.

【0017】さらに、バイアスTCが小さいため、誘電
体磁器層の厚みを10μm〜15μmと薄膜化すること
が可能であり、磁器積層コンデンサの小型化かつ大容量
化を進めることができる。
Further, since the bias TC is small, the thickness of the dielectric ceramic layer can be reduced to 10 μm to 15 μm, and the size and the capacitance of the multilayer ceramic capacitor can be reduced.

【0018】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments.

【0019】[0019]

【実施例】まず、誘電体磁器組成物の主成分の調整法に
ついて述べる。出発原料として、工業用原料であるBa
TiO3 ,PbO,TiO2 ,ZnO,Bi2 3 ,N
2 5 ,Re2 3 (ReはLa,Pr,Nd,S
m,Dy,Er)を準備した。これらの出発原料を表1
に示す組成比となるように秤量し、ボールミルで16時
間湿式混合粉砕したのち、蒸発乾燥して、混合粉末を得
た。得られた混合粉末をジルコニア質の匣に入れて、自
然雰囲気中において1000℃で2時間仮焼したのち、
200メッシュの篩を通過するように粗粉砕して、誘電
体磁器組成物の主成分の原料粉末とした。
EXAMPLES First, a method for adjusting the main components of the dielectric ceramic composition will be described. As a starting material, an industrial raw material Ba
TiO 3 , PbO, TiO 2 , ZnO, Bi 2 O 3 , N
b 2 O 5 , Re 2 O 3 (Re is La, Pr, Nd, S
m, Dy, Er) were prepared. Table 1 shows these starting materials.
Was weighed so as to have the composition ratio shown in Table 1, and wet-mixed and pulverized by a ball mill for 16 hours, and then evaporated to dryness to obtain a mixed powder. The obtained mixed powder was put in a zirconia box and calcined at 1000 ° C. for 2 hours in a natural atmosphere.
The mixture was roughly pulverized so as to pass through a 200-mesh sieve to obtain a raw material powder as a main component of the dielectric ceramic composition.

【0020】[0020]

【表1】 [Table 1]

【0021】次に誘電体磁器組成物の第1副成分の調製
法について述べる。この実施例では、焼成温度を116
0℃以下にする第1副成分として、組成が8BaO−6
SrO−6CaO−30Li2 O−50SiO2 (モル
%)で表される酸化物ガラスを用いた。出発原料として
工業用原料であるBaCO3 、SrCO3 、CaC
3 、Li2 O、及びSiO2 を準備した。これらの出
発原料を上記の組成となるように秤量し、ボ−ルミルで
16時間湿式混合粉砕した後、蒸発乾燥して混合粉末を
得た。得られた混合粉末をアルミナ製のるつぼに入れて
1300℃の温度で1時間放置し、その後急冷してガラ
ス化した。これを200メッシュの篩を通過するように
粉砕して、磁器組成物の第1副成分の原料粉末とした。
Next, a method for preparing the first subcomponent of the dielectric ceramic composition will be described. In this embodiment, the firing temperature is set to 116.
As a first subcomponent to be 0 ° C. or lower, the composition is 8BaO-6.
An oxide glass represented by SrO-6CaO-30Li 2 O- 50SiO 2 ( mol%). BaCO 3 , SrCO 3 , CaC which are industrial raw materials as starting materials
O 3 , Li 2 O, and SiO 2 were prepared. These starting materials were weighed so as to have the above composition, wet-mixed and pulverized for 16 hours with a ball mill, and then evaporated to dryness to obtain a mixed powder. The obtained mixed powder was placed in an alumina crucible, left at a temperature of 1300 ° C. for 1 hour, and then rapidly cooled to vitrify. This was pulverized so as to pass through a 200-mesh sieve to obtain a raw material powder of the first subcomponent of the porcelain composition.

【0022】以上のようにして得られた誘電体磁器組成
物の第1副成分の原料粉末を、誘電体磁器組成物の主成
分の原料粉末に対して、表1に示す重量比になるように
添加した。
The raw material powder of the first subcomponent of the dielectric ceramic composition obtained as described above is adjusted to have the weight ratio shown in Table 1 with respect to the raw material powder of the main component of the dielectric ceramic composition. Was added.

【0023】また、第2副成分について工業用原料であ
るCr2 3 、MnO2 、Fe2 3 、Co2 3 、N
iOを準備した。主成分の組成が93.0(Ba97Pb
3 )TiO3 −1.5ZnO−1.5Bi2 3 −2.
0Nb2 5 −2.0Nd23 (モル%)で、上記の
第1副成分を1.0重量%添加したものに対して、表2
に示す組成比となるように第2副成分を添加した。
The second subcomponents are Cr 2 O 3 , MnO 2 , Fe 2 O 3 , Co 2 O 3 , N 2
iO was prepared. The composition of the main component is 93.0 (Ba 97 Pb
3 ) TiO 3 -1.5ZnO-1.5Bi 2 O 3 -2.
0 Nb 2 O 5 -2.0 Nd 2 O 3 (mol%) and 1.0 wt% of the first subcomponent were added to Table 2
The second subcomponent was added so as to have the composition ratio shown in FIG.

【0024】[0024]

【表2】 [Table 2]

【0025】これらの添加物にポリビニルブチラール系
のバインダおよびトルエン,エチルアルコールなどの有
機溶剤を加えて、ボールミルで16時間湿式混合したの
ち、ドクターブレード法によってシート成型を行って、
グリーンシートを得た。このグリーンシートの厚みは1
9μmであった。このグリーンシートに内部電極パター
ンをAg/Pd=70/30(重量%)のペーストを用
いて印刷したのち、グリーンシートを6層積み重ねて、
ダミーのシートとともに熱圧着し、圧着体を得た。この
圧着体から長さ5.5mm,幅4.5mm,厚さ1mm
の成形体を切り出した。そののち、この成形体を、それ
ぞれ表3および表4に示す焼成温度で2時間焼成し、焼
結体を得た。焼結後の誘電体厚みは13μmであった。
To these additives, a polyvinyl butyral-based binder and an organic solvent such as toluene and ethyl alcohol were added, and the mixture was wet-mixed by a ball mill for 16 hours, and then formed into a sheet by a doctor blade method.
I got a green sheet. The thickness of this green sheet is 1
It was 9 μm. After printing an internal electrode pattern on this green sheet using a paste of Ag / Pd = 70/30 (% by weight), six green sheets were stacked,
Thermocompression bonding was performed together with the dummy sheet to obtain a compression-bonded body. 5.5 mm long, 4.5 mm wide, 1 mm thick from this crimped body
Was cut out. Thereafter, the molded body was fired at the firing temperatures shown in Tables 3 and 4 for 2 hours to obtain a sintered body. The dielectric thickness after sintering was 13 μm.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】そして、得られた焼結体の端面に銀電極を
焼き付けて測定試料(積層コンデンサ)として、その室
温での誘電率(ε),誘電損失(tanδ),TCおよ
びバイアスTCを測定した。
Then, a silver electrode was baked on the end face of the obtained sintered body, and the dielectric constant (ε), dielectric loss (tan δ), TC and bias TC at room temperature were measured as a measurement sample (multilayer capacitor). .

【0029】この場合、誘電率(ε)および誘電損失
(tanδ)は、温度25℃,1kHz,1Vrmsの
条件下で測定した。TCは25℃での静電容量を基準と
して、−55℃〜+150℃の間における温度変化率が
最大である値、すなわち最大変化率(ΔCmax )を求め
た。また、バイアスTCについては、上記の温度範囲で
直流電圧25Vを測定試料に重畳しながら、その静電容
量を測定して、温度25℃,印加電圧0Vのときの静電
容量を基準として、TCと同様に最大変化率(Δ
maxB)を求めた。
In this case, the dielectric constant (ε) and the dielectric loss (tan δ) were measured under the conditions of a temperature of 25 ° C., 1 kHz, and 1 Vrms. As for TC, the value at which the rate of temperature change between -55 ° C. and + 150 ° C. is the maximum, that is, the maximum rate of change (ΔC max ) was determined based on the capacitance at 25 ° C. As for the bias TC, the capacitance is measured while superimposing a DC voltage of 25 V on the measurement sample in the above temperature range, and the TC at a temperature of 25 ° C. and an applied voltage of 0 V is used as a reference. The maximum change rate (Δ
C maxB ) was determined.

【0030】また、磁器の抗折強度を3点曲げによって
測定した。まず、表1および表2に示したそれぞれの組
成の原料をシート成型したものを圧着成型し、この圧着
体から長さ35mm、幅7mm、厚さ1.2mmの成形
体を切り出した。そののち、これらの成形体をそれぞれ
表3および表4に示す焼成温度で2時間焼成し、短冊状
の磁器を得た。このようにして、それぞれの組成で20
本の試料について抗折強度を測定し、その平均をもって
各組成の磁器の抗折強度とした。
The flexural strength of the porcelain was measured by three-point bending. First, sheet-shaped materials of the respective compositions shown in Tables 1 and 2 were compression-molded, and a molded body having a length of 35 mm, a width of 7 mm, and a thickness of 1.2 mm was cut out from the compressed body. Thereafter, these compacts were fired at the firing temperatures shown in Tables 3 and 4 for 2 hours to obtain strip-shaped porcelain. Thus, for each composition, 20
The transverse rupture strength of this sample was measured, and the average was taken as the transverse rupture strength of the porcelain of each composition.

【0031】以上の各試験の結果を、表1の組成物にお
ける結果を表3、表2の組成物における結果を表4にそ
れぞれ合わせて示す。
The results of the above tests are shown in Table 3 for the composition of Table 1, and Table 4 for the composition of Table 2.

【0032】この発明において主成分量、第1副成分量
および第2副成分量の範囲を限定した理由を説明する。
The reason why the ranges of the main component amount, the first subcomponent amount and the second subcomponent amount are limited in the present invention will be described.

【0033】まず、主成分組成を限定した理由について
説明する。
First, the reason for limiting the main component composition will be described.

【0034】aの値すなわちZnOについて、その範囲
を0.5〜4.5モル%としたのは、試料番号9のよう
に、0.5モル%未満では、TCが最大変化率(ΔC
max )で−15%を超え、抗折強度も1500kg/c
2 以下の低い値となり好ましくない。また、試料番号
10のように、4.5モル%を超えると、TCが最大変
化率(ΔCmax )で−15%を超え、バイアスTCも−
40%を超える変化となり好ましくない。
With respect to the value of a, that is, ZnO, the range is set to 0.5 to 4.5 mol%.
max ) exceeds -15%, and the bending strength is 1500 kg / c.
The value is as low as m 2 or less, which is not preferable. Further, as in Sample No. 10, when the content exceeds 4.5 mol%, the TC exceeds the maximum change rate (ΔC max ) of −15%, and the bias TC also becomes −
The change exceeds 40%, which is not preferable.

【0035】また、bの値すなわちBi2 3 につい
て、その範囲を0.5〜4.5モル%としたのは、試料
番号11のように、0.5モル%未満では、TCが最大
変化率(ΔCmax )で−15%を超え、また抗折強度も
1500kg/cm2 以下の低い値となり好ましくな
い。また、試料番号12のように、4.5モル%を超え
ると、誘電率(ε)が1000未満となり好ましくな
い。
The reason why the value of b, that is, Bi 2 O 3 , is set to 0.5 to 4.5 mol% is that TC is less than 0.5 mol% as in Sample No. 11. The rate of change (ΔC max ) exceeds -15%, and the transverse rupture strength is undesirably a low value of 1500 kg / cm 2 or less. Also, as in Sample No. 12, when the content exceeds 4.5 mol%, the dielectric constant (ε) is less than 1000, which is not preferable.

【0036】cの値すなわちNb2 5 について、その
範囲を0.5〜4.5モル%としたのは、試料番号13
のように、0.5モル%未満では、また試料番号14の
ように、4.5モル%を超えると、TCが最大変化率
(ΔCmax )で−15%を超え、またバイアスTCも−
40%を超える変化となり好ましくない。
With respect to the value of c, that is, the range of 0.5 to 4.5 mol% for Nb 2 O 5 , sample number 13
When TC is less than 0.5 mol% and when it exceeds 4.5 mol% as in sample No. 14, TC exceeds -15% at the maximum rate of change (ΔC max ), and bias TC also becomes −
The change exceeds 40%, which is not preferable.

【0037】また、dの値すなわちRe2 3 につい
て、その範囲を0.5〜5.5モル%としたのは、試料
番号15のように、0.5モル%未満では、TCが最大
変化率(ΔCmax )で−15%を超え、またバイアスT
Cも−40%を超える変化となり好ましくない。また、
試料番号16のように、5.5モル%を超えると、TC
が最大変化率(ΔCmax )で−15%を超え好ましくな
い。
The reason why the value of d, that is, Re 2 O 3 , is set to 0.5 to 5.5 mol% is that TC is less than 0.5 mol% as in Sample No. 15. The rate of change (ΔC max ) exceeds -15%, and the bias T
C also changes more than -40%, which is not preferable. Also,
As in Sample No. 16, when the content exceeds 5.5 mol%, TC
Exceeds the maximum change rate (ΔC max ) of −15%, which is not preferable.

【0038】xの値すなわちPbTiO3 については、
試料番号17のように、6.0モル%を超えると、TC
が最大変化率(ΔCmax )で−15%を超え、またバイ
アスTCも−40%を超える変化となり好ましくない。
For the value of x, ie PbTiO 3 ,
As shown in Sample No. 17, when it exceeds 6.0 mol%, TC
In the maximum change rate (ΔC max ) exceeds −15%, and the bias TC also changes more than −40%, which is not preferable.

【0039】次に、第1副成分量を限定した理由につい
て説明する。
Next, the reason why the amount of the first subcomponent is limited will be described.

【0040】第1副成分量について、その範囲を0.0
5〜2.5重量%としたのは、試料番号18のように、
0.05重量%未満では、焼成温度が1160℃を超え
好ましくない。また、試料番号21のように、2.5重
量%を超えると、誘電率(ε)が1000未満となり好
ましくない。
The range of the first subcomponent amount is set to 0.0
The reason for setting the content to 5 to 2.5% by weight is as shown in Sample No. 18,
If it is less than 0.05% by weight, the firing temperature exceeds 1160 ° C., which is not preferable. If the content exceeds 2.5% by weight as in Sample No. 21, the dielectric constant (ε) is less than 1000, which is not preferable.

【0041】次に、第2副成分量を限定した理由につい
て説明する。
Next, the reason why the amount of the second subcomponent is limited will be described.

【0042】この第2副成分は誘電体磁器の還元を防止
するためのものであり、第2副成分量について、その範
囲を0.01〜0.5重量%としたのは、第2副成分量
が0.01重量%未満であると還元防止の効果がなく、
試料番号31のように、0.5重量%を超えると、誘電
損失(tanδ)が2.5%を超える大きな値となり好
ましくない。
The second subcomponent is for preventing the reduction of the dielectric porcelain. The reason why the range of the second subcomponent is set to 0.01 to 0.5% by weight is that the second subcomponent is used. If the component amount is less than 0.01% by weight, there is no effect of preventing reduction,
When the content exceeds 0.5% by weight as in sample No. 31, the dielectric loss (tan δ) becomes a large value exceeding 2.5%, which is not preferable.

【0043】上述の実施例においては、予め所定の組成
比に調合し、高温に熱処理して溶融した後に粉砕してガ
ラス化した副成分を、磁器組成物の主成分に添加配合し
た。しかし、第1副成分の添加方法としては、この他、
予め所定の割合に調合して溶融しない程度に加熱し、出
発原料を改質したものを添加するか、あるいは第1副成
分の各構成元素を、例えば金属アルコキシドといった任
意の状態で主成分に対して個々に添加し、焼成中に溶融
反応してガラス化するようにしても良い。
In the above-described embodiment, the auxiliary component prepared in advance at a predetermined composition ratio, heat-treated at a high temperature, melted, pulverized and vitrified was added to the main component of the porcelain composition. However, as a method of adding the first auxiliary component,
Heated to the extent that it is not melted by mixing it in a predetermined ratio in advance and adding a modified starting material or adding each constituent element of the first subcomponent to the main component in an arbitrary state such as a metal alkoxide, for example. May be added individually, and may be vitrified by a melting reaction during firing.

【0044】また、第2副成分においても、上述の実施
例では、最初から酸化物の形で添加したが、原料作製時
の出発原料としては、各元素の炭酸物など、仮焼、焼成
の段階で酸化物になるものを用いてもよい。
In the above-mentioned embodiment, the second subcomponent was also added in the form of an oxide from the beginning. An oxide that becomes an oxide at the stage may be used.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−89353(JP,A) 特開 平5−36308(JP,A) 特開 平5−109319(JP,A) 特開 平7−37428(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 3/12 303 C04B 35/46 H01G 4/12 358 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-4-89353 (JP, A) JP-A-5-36308 (JP, A) JP-A-5-109319 (JP, A) JP-A-7- 37428 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01B 3/12 303 C04B 35/46 H01G 4/12 358

Claims (2)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】 次の一般式、 {100−(a+b+c+d)}(Ba100-x Pbx
    TiO3 +aZnO+bBi2 3 +cNb2 5 +d
    Re2 3 (ただし、ReはLa、Pr、Nd、Sm、
    Dy、Erの中から選ばれる少なくとも一種類、a、
    b、c、dおよびxはモル%)で表される主成分が9
    7.5〜99.95重量%、 ただし、前記一般式のa、b、c、dおよびxがそれぞ
    れ次の範囲にある 0.5≦a≦4.5 0.5≦b≦4.5 0.5≦c≦4.5 0.5≦d≦5.5 0<x≦6.0 SiO2 を主成分とするガラスからなる第1副成分が
    0.05〜2.5重量%、からなる誘電体磁器組成物。
    1. The following general formula: {100− (a + b + c + d)} (Ba 100−x Pb x )
    TiO 3 + aZnO + bBi 2 O 3 + cNb 2 O 5 + d
    Re 2 O 3 (where Re is La, Pr, Nd, Sm,
    At least one selected from Dy and Er, a,
    where b, c, d and x are mol%)
    7.5 to 99.95% by weight, provided that a, b, c, d and x in the above general formula are in the following ranges: 0.5 ≦ a ≦ 4.5 0.5 ≦ b ≦ 4.5 0.5 ≦ c ≦ 4.5 0.5 ≦ d ≦ 5.50 <x ≦ 6.0 0.05 to 2.5% by weight of a first subcomponent composed of glass containing SiO 2 as a main component; A dielectric ceramic composition comprising:
  2. 【請求項2】 次の一般式、 {100−(a+b+c+d)}(Ba100-x Pbx
    TiO3 +aZnO+bBi2 3 +cNb2 5 +d
    Re2 3 (ただし、ReはLa、Pr、Nd、Sm、
    Dy、Erの中から選ばれる少なくとも一種類、a、
    b、c、dおよびxはモル%)で表される主成分が9
    7.0〜99.94重量%、 ただし、前記一般式のa、b、c、dおよびxがそれぞ
    れ次の範囲にある 0.5≦a≦4.5 0.5≦b≦4.5 0.5≦c≦4.5 0.5≦d≦5.5 0<x≦6.0 SiO2 を主成分とするガラスからなる第1副成分が
    0.05〜2.5重量%、Cr、Mn、Fe、Co、お
    よびNiの酸化物の中から選ばれる少なくとも一種類か
    らなる第2副成分が0.01〜0.5重量%、からなる
    誘電体磁器組成物。
    2. The following general formula: {100− (a + b + c + d)} (Ba 100−x Pb x )
    TiO 3 + aZnO + bBi 2 O 3 + cNb 2 O 5 + d
    Re 2 O 3 (where Re is La, Pr, Nd, Sm,
    At least one selected from Dy and Er, a,
    where b, c, d and x are mol%)
    7.0 to 99.94% by weight, provided that a, b, c, d and x in the above general formula are in the following ranges: 0.5 ≦ a ≦ 4.5 0.5 ≦ b ≦ 4.5 0.5 ≦ c ≦ 4.5 0.5 ≦ d ≦ 5.50 <x ≦ 6.0 0.05 to 2.5% by weight of a first subcomponent composed of glass containing SiO 2 as a main component; A dielectric ceramic composition comprising 0.01 to 0.5% by weight of at least one second subcomponent selected from oxides of Cr, Mn, Fe, Co, and Ni.
JP20462593A 1993-07-26 1993-07-26 Dielectric porcelain composition Expired - Lifetime JP3246104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20462593A JP3246104B2 (en) 1993-07-26 1993-07-26 Dielectric porcelain composition

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP20462593A JP3246104B2 (en) 1993-07-26 1993-07-26 Dielectric porcelain composition
EP19940111243 EP0637041B1 (en) 1993-07-26 1994-07-19 Dielectric ceramic compositions
SG1996006730A SG43268A1 (en) 1993-07-26 1994-07-19 Dielectric ceramic compositions
DE1994609881 DE69409881T2 (en) 1993-07-26 1994-07-19 Dielectric ceramic composition
US08/278,620 US5432136A (en) 1993-07-26 1994-07-21 Dielectric ceramic compositions

Publications (2)

Publication Number Publication Date
JPH0737427A JPH0737427A (en) 1995-02-07
JP3246104B2 true JP3246104B2 (en) 2002-01-15

Family

ID=16493575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20462593A Expired - Lifetime JP3246104B2 (en) 1993-07-26 1993-07-26 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3246104B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6409632B2 (en) 2015-03-13 2018-10-24 Tdk株式会社 Dielectric ceramic composition and ceramic electronic component
JP6387871B2 (en) 2015-03-13 2018-09-12 Tdk株式会社 Dielectric ceramic composition and ceramic electronic component

Also Published As

Publication number Publication date
JPH0737427A (en) 1995-02-07

Similar Documents

Publication Publication Date Title
KR100651065B1 (en) Multilayer ceramic condenser
JP3746763B2 (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using the same, and manufacturing method thereof
EP1327616B9 (en) Dielectric ceramic composition and electronic device
US5877934A (en) Ceramic composition and multilayer ceramic capacitor made therefrom
KR100683545B1 (en) Dielectric ceramic composition and method of production and electronic device of the same
KR100841506B1 (en) Dielectric ceramic composition and manufacturing method thereof
JP3760364B2 (en) Dielectric porcelain composition and electronic component
KR100326951B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor
KR100352245B1 (en) Dielectric Ceramic Composition and Electronic Device
KR100313232B1 (en) Dielectric Ceramic Composition and Laminated Ceramic Capacitor
JP4111006B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
US6730624B2 (en) Non-reducing dielectric ceramic, monolithic ceramic capacitor using the same, and method for making non-reducing dielectric ceramic
JP4434142B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
KR100631995B1 (en) Dielectric ceramic compositions for low temperature sintering and multilayer ceramic condenser using the same
JP3391268B2 (en) Dielectric ceramic and its manufacturing method, and multilayer ceramic electronic component and its manufacturing method
JP3091192B2 (en) Dielectric porcelain composition and electronic component
EP1043739B1 (en) Multilayer ceramic chip capacitor wiht high reliability compatible with nickel electrodes
US6301092B1 (en) Ceramic capacitor and method for making the same
KR100438517B1 (en) Reduction-Resistant Dielectric Ceramic Compact and Laminated Ceramic Capacitor
EP1767507B1 (en) Dielectric ceramic composition and laminated ceramic capacitor
US6485701B2 (en) Oxide having perovskite structure, barium titanate, and manufacturing method therefor, dielectric ceramic, and ceramic electronic component
KR100341442B1 (en) Monolithic ceramic capacitors
EP0814486B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor using same
KR100380579B1 (en) multilayer ceramic chip capacitor and method for producing same
EP0824261B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 12

EXPY Cancellation because of completion of term