JP3244501B2 - Hydrogen plasma processing method - Google Patents

Hydrogen plasma processing method

Info

Publication number
JP3244501B2
JP3244501B2 JP08799890A JP8799890A JP3244501B2 JP 3244501 B2 JP3244501 B2 JP 3244501B2 JP 08799890 A JP08799890 A JP 08799890A JP 8799890 A JP8799890 A JP 8799890A JP 3244501 B2 JP3244501 B2 JP 3244501B2
Authority
JP
Japan
Prior art keywords
frequency
electrode
holder
plasma
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08799890A
Other languages
Japanese (ja)
Other versions
JPH03286535A (en
Inventor
義明 森
幸弘 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP08799890A priority Critical patent/JP3244501B2/en
Publication of JPH03286535A publication Critical patent/JPH03286535A/en
Application granted granted Critical
Publication of JP3244501B2 publication Critical patent/JP3244501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、絶縁性透明基板等のような絶縁膜上にあら
かじめ形成された非単結晶半導体で形成されるTFT等の
処理方法に関する。
The present invention relates to a method for processing a TFT or the like formed of a non-single-crystal semiconductor formed in advance on an insulating film such as an insulating transparent substrate.

〔従来の技術〕[Conventional technology]

非晶質シリコン薄膜あるいは多結晶シリコン薄膜等の
非単結晶半導体薄膜には、ダングリングボンドが多数存
在する。たとえば、多結晶シリコン薄膜に関しては、結
晶粒界に存在するダングリングボンド等の欠陥が、キャ
リアに対するトラップ準位となりキャリアの伝導に対し
て障壁として働く。(J.Y.W.Set,J.Appl.Phys.,46,p5
247(1975))。従って、多結晶シリコン薄膜トランジ
スタの性能を向上させる為には、前記欠陥を低減させる
必要がある。(J.Appl.Phys.,53(2),p1193(198
2))。その方法としては水素プラズマ処理法が最も良
く知られている。そして、それを行うべき装置としては
PCVD装置等でみられる様な、基板に対して平行に配置さ
れた対電極に高周波を印加しプラズマを発生させるシス
テムが一般的である。
A non-single-crystal semiconductor thin film such as an amorphous silicon thin film or a polycrystalline silicon thin film has many dangling bonds. For example, in the case of a polycrystalline silicon thin film, defects such as dangling bonds existing at crystal grain boundaries become trap levels for carriers and function as barriers for carrier conduction. (JYWSet, J. Appl. Phys., 46, p5
247 (1975)). Therefore, in order to improve the performance of the polycrystalline silicon thin film transistor, it is necessary to reduce the defects. (J. Appl. Phys., 53 (2), p1193 (198
2)). As the method, a hydrogen plasma processing method is best known. And as a device to do that
2. Description of the Related Art Generally, a system for generating a plasma by applying a high frequency to a counter electrode arranged in parallel with a substrate, such as a PCVD apparatus.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、従来の水素ガスによるプラズマ処理では、TF
TのVth(しきい値電圧)のシフト、ゲート耐圧不良等の
プラズマダメージによる不良が多発し、実用化を困難に
していた。
However, in the conventional plasma treatment using hydrogen gas, TF
Failures due to plasma damage, such as a shift in the Vth (threshold voltage) of T and a failure in gate withstand voltage, occurred frequently, making practical use difficult.

このプラズマダメージの原因は未だ明らかではない
が、基板表面の電位が直接、間接的に影響していること
が本発明者らの実験で示された。通常のPCVD装置の場
合、基板表面電位は対電極に印加される高周波電力、あ
るいはガス圧等の処理条件、及び装置構造で一義的に決
まってしまう。
Although the cause of this plasma damage is not yet clear, experiments by the present inventors have shown that the potential on the substrate surface is directly and indirectly affected. In the case of a normal PCVD apparatus, the substrate surface potential is uniquely determined by the processing conditions such as the high-frequency power applied to the counter electrode or the gas pressure and the structure of the apparatus.

そこで、本発明はTFT特性向上の効果を確保しつつ、
前述のプラズマダメージを受けない処理方法を提供する
ことを目的とする。
Therefore, the present invention secures the effect of improving the TFT characteristics,
An object of the present invention is to provide a processing method which does not receive the above-mentioned plasma damage.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の水素プラズマ処理方法は、真空容器内におい
てプラズマを発生させる電極と、絶縁性被処理材を保持
するためのホルダと、前記電極と前記ホルダとにそれぞ
れ別々の高周波電力を印加する高周波印加システムを有
する水素プラズマ処理装置を用いて、前記高周波印加シ
ステムによって前記ホルダに高周波電力を印加する際
に、前記絶縁性被処理材に生ずるフローティングポテン
シャルを計測し、計測された前記フローティングポテン
シャルが正の値で低く、あるいは若干の負の値とするた
めに前記高周波電力の増減を制御することを特徴とす
る。
According to the hydrogen plasma processing method of the present invention, an electrode for generating plasma in a vacuum vessel, a holder for holding an insulating material to be processed, and a high-frequency application for applying different high-frequency power to the electrode and the holder, respectively. When a high-frequency power is applied to the holder by the high-frequency application system using a hydrogen plasma processing apparatus having a system, a floating potential generated in the insulating workpiece is measured, and the measured floating potential is positive. It is characterized in that the increase / decrease of the high frequency power is controlled so as to make the value low or a slightly negative value.

〔実 施 例〕〔Example〕

本発明の水素プラズマ処理方法の1実施例を第1図に
示す。
One embodiment of the hydrogen plasma processing method of the present invention is shown in FIG.

真空容器1に、高周波を印加しプラズマを発生させる
電極2を絶縁物3を介して設置する。本実施例では高周
波放電を利用したが、プラズマを発生させる手段として
はECRを用いてもかまわない。該電極2に対向させて絶
縁性被処理材4をセットした基板ホルダ5を絶縁物6を
介して設置する。真空容器1内にはマスフローコントロ
ーラ7を通して電極2のガスノズル8より水素ガスが導
入される。電極2に高周波電力を印加することによりプ
ラズマが発生する。この時絶縁性被処理材4の表面には
フローティングポテンシャルなる電位が誘起される。基
板ホルダ5がアースされている時と、そうでない時とで
はこの値は異なるが、処理の条件あるいは装置構造など
で一義的に決まってしまうことは前述した。このフロー
ティングポテンシャルは理論上は負の値を示すべきであ
るが、発明者らの測定したところ正の値を示す装置が多
かった。それは、処理条件にもよるが、電気的に浮いて
いる基板ホルダ5の面積が大きく理論的に取り扱う理想
的なプラズマとは異なるからではないかと考える。この
フローティングポテンシャルの正の値が大きければ大き
い程、TFT特性に及ぼすプラズマダメージも大きくなる
ことは確認された事実である。従って、正のフローティ
ングポテンシャルを低くするか、あるいはある程度負電
位とすることによってプラズマダメージは低減できる。
その手段としては、基板ホルダ5とアースとの間にコイ
ルとコンデンサを直列につなぎ、たとえばコンデンサの
容量を変えることも考えられる。本実施例では、基板ホ
ルダ5に高周波を印加することで可能とした。印加する
高周波の電力によりフローティングポテンシャル(正確
には絶縁性被処理材の表面電位)を正電位から負電位ま
で任意にコントロールできるようにした。
An electrode 2 for applying a high frequency to generate a plasma is placed in a vacuum vessel 1 via an insulator 3. In this embodiment, high-frequency discharge is used, but ECR may be used as a means for generating plasma. A substrate holder 5 on which an insulative material 4 is set facing the electrode 2 is placed via an insulator 6. Hydrogen gas is introduced into the vacuum vessel 1 from the gas nozzle 8 of the electrode 2 through the mass flow controller 7. Plasma is generated by applying high frequency power to the electrode 2. At this time, a potential, which is a floating potential, is induced on the surface of the insulating material 4. This value differs between when the substrate holder 5 is grounded and when it is not, but as described above, it is uniquely determined by the processing conditions or the device structure. This floating potential should theoretically show a negative value, but many devices showed a positive value as measured by the inventors. Although it depends on the processing conditions, it is considered that the area of the electrically floating substrate holder 5 is large and is different from an ideal plasma to be theoretically handled. It has been confirmed that the greater the positive value of the floating potential, the greater the plasma damage to the TFT characteristics. Therefore, plasma damage can be reduced by lowering the positive floating potential or setting it to a somewhat negative potential.
As such means, it is conceivable to connect a coil and a capacitor in series between the substrate holder 5 and the ground, for example, to change the capacitance of the capacitor. In the present embodiment, this is made possible by applying a high frequency to the substrate holder 5. The floating potential (more precisely, the surface potential of the insulated material) can be arbitrarily controlled from a positive potential to a negative potential by the applied high-frequency power.

高周波の印加システムの模式図を第2図に示す。1個
の水晶振動子11から位相制御器12を介して一方は高周波
アンプ13、マッチング回路14を通して電極2へ電力を印
加される。他方も同様に高周波アンプ15、マッチング回
路16を通して、基板ホルダ5へ電力が印加される。
FIG. 2 is a schematic diagram of a high-frequency application system. On the other hand, power is applied to the electrode 2 from one crystal resonator 11 via the phase controller 12 through the high frequency amplifier 13 and the matching circuit 14. Similarly, power is applied to the substrate holder 5 through the high-frequency amplifier 15 and the matching circuit 16.

まず、電極2の方だけに高周波電力を印加し、次にフ
ローティングポテンシャルを計測しつつ、基板ホルダ5
にも高周波電力を印加する。すると、絶縁性被処理材4
には負のセルフバイアスが発生する。この負のセルフバ
イアスは高周波電力が多きければ大きいほど負側へ大き
くなる。絶縁性被処理材4の表面電位はフローティング
ポテンシャル+セルフバイアスとなり、基板ホルダ5に
印加する高周波電力により任意にコントロールできるの
である。
First, high-frequency power is applied only to the electrode 2, and then the floating potential is measured while the substrate holder 5 is applied.
Also applies high frequency power. Then, the insulating material 4
Generates a negative self-bias. The negative self-bias increases toward the negative side as the high-frequency power increases. The surface potential of the insulative workpiece 4 becomes a floating potential + a self-bias, and can be arbitrarily controlled by high-frequency power applied to the substrate holder 5.

本発明の水素プラズマ処理方法を使用し、絶縁性被処
理材4の表面電位を正の値で低く、あるいは若干の負と
しつつ水素プラズマ処理した絶縁性被処理材4のTFT特
性は良好で、プラズマダメージが絶無のものであった。
Using the hydrogen plasma processing method of the present invention, the surface potential of the insulating material 4 is positively low or slightly negative, and the TFT characteristics of the hydrogen plasma-treated insulating material 4 are good. The plasma damage was endless.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、TFT等のチャン
ネル領域の少なくとも一部が非単結晶半導体よりなる絶
縁ゲイト型電界効果トランジスタの高性能化を、プラズ
マダメージによる不良もなく実現できる。また本発明
は、半導体プロセス全般に広く応用でき、その効果はき
わめて大きい。
As described above, according to the present invention, high performance of an insulated gate field effect transistor in which at least a part of a channel region of a TFT or the like is made of a non-single-crystal semiconductor can be realized without failure due to plasma damage. Further, the present invention can be widely applied to semiconductor processes in general, and the effect thereof is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の装置構造図。 第2図は実施例の高周波システム図。 1……真空容器 2……電極 3,6……絶縁物 4……絶縁性被処理材 5……基板ホルダ 7……マスフローコントローラ 8……ガスノズル 11……水晶振動子 12……位相制御器 13,15……高周波アンプ 14,16……マッチング回路 FIG. 1 is a structural view of an apparatus according to an embodiment of the present invention. FIG. 2 is a high-frequency system diagram of the embodiment. DESCRIPTION OF SYMBOLS 1 ... Vacuum container 2 ... Electrode 3, 6 ... Insulator 4 ... Insulated workpiece 5 ... Substrate holder 7 ... Mass flow controller 8 ... Gas nozzle 11 ... Crystal oscillator 12 ... Phase controller 13,15 High frequency amplifier 14,16 Matching circuit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−152619(JP,A) 特開 平1−214123(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-15219 (JP, A) JP-A-1-214123 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空容器内においてプラズマを発生させる
電極と、絶縁性被処理材を保持するためのホルダと、前
記電極と前記ホルダとにそれぞれ別々の高周波電力を印
加する高周波印加システムを有する水素プラズマ処理装
置を用いて、前記高周波印加システムによって前記ホル
ダに高周波電力を印加する際に、前記絶縁性被処理材に
生ずるフローティングポテンシャルを計測し、計測され
た前記フローティングポテンシャルが正の値で低く、あ
るいは若干の負の値とするために前記高周波電力の増減
を制御することを特徴とする水素プラズマ処理方法。
1. Hydrogen having an electrode for generating plasma in a vacuum vessel, a holder for holding an insulating material to be processed, and a high-frequency application system for applying different high-frequency powers to the electrode and the holder, respectively. Using a plasma processing apparatus, when applying high-frequency power to the holder by the high-frequency application system, measure the floating potential generated in the insulating material to be processed, the measured floating potential is low at a positive value, Alternatively, an increase or decrease in the high-frequency power is controlled so as to have a slightly negative value.
JP08799890A 1990-04-02 1990-04-02 Hydrogen plasma processing method Expired - Fee Related JP3244501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08799890A JP3244501B2 (en) 1990-04-02 1990-04-02 Hydrogen plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08799890A JP3244501B2 (en) 1990-04-02 1990-04-02 Hydrogen plasma processing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001124890A Division JP3257558B2 (en) 2001-04-23 2001-04-23 Hydrogen plasma processing method

Publications (2)

Publication Number Publication Date
JPH03286535A JPH03286535A (en) 1991-12-17
JP3244501B2 true JP3244501B2 (en) 2002-01-07

Family

ID=13930462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08799890A Expired - Fee Related JP3244501B2 (en) 1990-04-02 1990-04-02 Hydrogen plasma processing method

Country Status (1)

Country Link
JP (1) JP3244501B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003056622A1 (en) * 2001-12-26 2005-05-12 東京エレクトロン株式会社 Substrate processing method and semiconductor device manufacturing method

Also Published As

Publication number Publication date
JPH03286535A (en) 1991-12-17

Similar Documents

Publication Publication Date Title
US6037017A (en) Method for formation of multilayer film
KR20020032586A (en) Thin film transistors and their manufacture
US5397718A (en) Method of manufacturing thin film transistor
US6395652B2 (en) Method of manufacturing thin film transistor
KR950014076B1 (en) Dry etching apparatus
JP3244501B2 (en) Hydrogen plasma processing method
JP3257558B2 (en) Hydrogen plasma processing method
JP3452679B2 (en) Method of manufacturing thin film transistor, thin film transistor and liquid crystal display
JP3055782B2 (en) How to manufacture thin film transistors
JPH05335335A (en) Manufacture of amorphous hydride silicon thin-film transistor
JPH0945672A (en) Method and apparatus for etching
JP3196231B2 (en) Hydrogen plasma processing apparatus and hydrogen plasma processing method
JP2974512B2 (en) Etching method and apparatus
JP2904984B2 (en) Display device manufacturing method
JP3489217B2 (en) Method for manufacturing thin film transistor
JP2000031081A (en) Fabrication of semiconductor device
JPH0556648B2 (en)
JP2874175B2 (en) Method for manufacturing semiconductor device
JPH09266201A (en) Plasma cvd apparatus
JPH10317150A (en) Formation of coating and coating forming device
JPH07273336A (en) Manufacture of thin film transistor
JPH02196470A (en) Thin film transistor and manufacture thereof
KR940016914A (en) Method of manufacturing thin film transistor
JP3073675B2 (en) Tray for semiconductor thin film manufacturing equipment
JP2000101086A (en) Fabrication of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees