JP3196231B2 - Hydrogen plasma processing apparatus and hydrogen plasma processing method - Google Patents

Hydrogen plasma processing apparatus and hydrogen plasma processing method

Info

Publication number
JP3196231B2
JP3196231B2 JP11138191A JP11138191A JP3196231B2 JP 3196231 B2 JP3196231 B2 JP 3196231B2 JP 11138191 A JP11138191 A JP 11138191A JP 11138191 A JP11138191 A JP 11138191A JP 3196231 B2 JP3196231 B2 JP 3196231B2
Authority
JP
Japan
Prior art keywords
substrate
plasma processing
hydrogen plasma
hydrogen
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11138191A
Other languages
Japanese (ja)
Other versions
JPH04338194A (en
Inventor
義明 森
幸弘 遠藤
秀明 岡
一夫 大池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP11138191A priority Critical patent/JP3196231B2/en
Publication of JPH04338194A publication Critical patent/JPH04338194A/en
Application granted granted Critical
Publication of JP3196231B2 publication Critical patent/JP3196231B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、絶縁性透明基板のよう
な絶縁膜上にあらかじめ形成された非単結晶半導体で形
成されるTFT等の水素プラズマ処理装置、水素プラズ
マ処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen plasma processing apparatus and method for a TFT or the like formed of a non-single-crystal semiconductor previously formed on an insulating film such as an insulating transparent substrate.

【0002】[0002]

【従来の技術】非晶質シリコン薄膜あるいは多結晶シリ
コン薄膜等の非単結晶半導体薄膜には、ダングリングボ
ンドが多数存在する。たとえば、多結晶シリコン薄膜に
関しては、結晶粒界に存在するダングリングボンド等の
欠陥が、キャリアに対するトラップ準位となりキャリア
の伝導における障壁として働く。(J.Y.W.Set
o,J.Appl.Phys.,p5247(197
5))。従って、多結晶シリコン薄膜トランジスタの性
能を向上させる為には、前記欠陥を低減させる必要があ
る。(J.Appl.Phys.,53(2),P11
93(1982))。その方法としては水素プラズマ処
理方法が最もよく知られている。そして、それを行うべ
き装置は以下図で説明する。図3に従来の装置の模式図
を示す。真空容器1内に基板2を支持する基板ホルダ3
と、それと平行して高周波電極11がア−スとの間に絶
縁物12を介して取り付けてある。前記高周波電極11
には高周波電源5が高周波マッチング回路6を介して接
続してある。真空排気口7より真空排気した後、基板2
をヒ−タ9で所定の温度まで加熱し、少なくとも水素を
含むプロセスガスをガス導入口8より真空容器1内に導
入して、前記高周波電極11に高周波を印加してプラズ
マを発生させ処理を行うという通常のPCVD装置等で
みられるようなシステムであり、かつ処理方法である。
2. Description of the Related Art There are many dangling bonds in a non-single-crystal semiconductor thin film such as an amorphous silicon thin film or a polycrystalline silicon thin film. For example, in the case of a polycrystalline silicon thin film, defects such as dangling bonds existing at crystal grain boundaries become trap levels for carriers and function as barriers for carrier conduction. (JYW Set
o, J. et al. Appl. Phys. , P5247 (197)
5)). Therefore, in order to improve the performance of the polycrystalline silicon thin film transistor, it is necessary to reduce the defects. (J. Appl. Phys., 53 (2), P11.
93 (1982)). As the method, a hydrogen plasma processing method is best known. The apparatus for performing this is described below with reference to the drawings. FIG. 3 shows a schematic diagram of a conventional apparatus. Substrate holder 3 supporting substrate 2 in vacuum vessel 1
A high-frequency electrode 11 is mounted in parallel with the earth via an insulator 12. The high-frequency electrode 11
Is connected to a high-frequency power supply 5 via a high-frequency matching circuit 6. After evacuating from the evacuation port 7, the substrate 2
Is heated to a predetermined temperature by a heater 9, a process gas containing at least hydrogen is introduced into the vacuum vessel 1 from a gas inlet 8, and a high frequency is applied to the high-frequency electrode 11 to generate a plasma to perform processing. This is a system that can be performed in a normal PCVD apparatus or the like, and is a processing method.

【0003】[0003]

【発明が解決しようとする課題】しかし前述の従来技術
ではプラズマを発生させる対電極と基板とが離れている
ため、水素プラズマ処理の速度向上に最も寄与すであろ
う基板近傍でのプラズマ密度、及び基板に付着した水素
分子の解離等を促進するための電子、イオンの衝撃エネ
ルギ−をコントロ−ルしずらく、そのため処理速度が遅
いという問題を有する。
However, in the above-mentioned prior art, since the counter electrode for generating plasma is separated from the substrate, the plasma density near the substrate, which will most contribute to the improvement of the speed of hydrogen plasma processing, In addition, it is difficult to control the impact energy of electrons and ions for accelerating the dissociation of hydrogen molecules attached to the substrate, so that the processing speed is low.

【0004】そこで本発明はこのような問題点を解決す
るもので、その目的とするところは処理速度の速い水素
プラズマ処理装置、及び水素プラズマ処理方法を提供す
るところにある。
Accordingly, the present invention is to solve such a problem, and an object of the present invention is to provide a hydrogen plasma processing apparatus and a hydrogen plasma processing method having a high processing speed.

【0005】[0005]

【課題を解決するための手段】本発明の水素プラズマ処
理装置は、基板上にあらかじめ形成されている多結晶シ
リコンTFT層を水素化させる水素化処理を行う水素プ
ラズマ処理装置であって、少なくとも水素ガスを封入し
た真空容器内において、前記基板を支持する基板ホルダ
が高周波電極を兼ねていて、前記高周波電極に高周波電
力を印加しプラズマを発生させて水素化処理を行うこと
を特徴とする。
A hydrogen plasma processing apparatus according to the present invention is a hydrogen plasma processing apparatus for performing a hydrogenation process for hydrogenating a polycrystalline silicon TFT layer formed in advance on a substrate. A substrate holder for supporting the substrate also serves as a high-frequency electrode in a vacuum vessel filled with gas, and a high-frequency power is applied to the high-frequency electrode to generate plasma, thereby performing a hydrogenation process.

【0006】また本発明の水素プラズマ処理方法は、少
なくとも水素ガスを封入した真空容器内において、基板
を支持する基板ホルダが高周波電極を兼ねていて、前記
高周波電極に高周波電力を印加しプラズマを発生させ
て、前記基板上にあらかじめ形成されている多結晶シリ
コンTFT層を水素化させる水素処理を行なうことを特
徴とする。
Further, in the hydrogen plasma processing method of the present invention, a substrate holder supporting a substrate also serves as a high-frequency electrode in a vacuum vessel filled with at least hydrogen gas, and a high-frequency power is applied to the high-frequency electrode to generate plasma. Then, a hydrogen treatment for hydrogenating a polycrystalline silicon TFT layer formed in advance on the substrate is performed.

【0007】[0007]

【作用】本発明の上記の構成によれば、基板を支持する
基板ホルダに直接高周波電力を印加することにより、基
板近傍の荷電粒子(電子、イオン)の密度及び基板に突
入する前記荷電粒子のエネルギ−等をコントロ−ル出来
ることから、プラズマ密度を増大出来、また基板表面で
の反応のためのエネルギ−を高めることが可能となる。
その結果、基板上の多結晶シリコンTFT層の水素プラ
ズマ処理の処理速度の高速化が図れる。
According to the above configuration of the present invention, by applying high-frequency power directly to the substrate holder supporting the substrate, the density of charged particles (electrons and ions) near the substrate and the density of the charged particles entering the substrate are reduced. Since the energy and the like can be controlled, the plasma density can be increased and the energy for the reaction on the substrate surface can be increased.
As a result, the processing speed of the hydrogen plasma processing of the polycrystalline silicon TFT layer on the substrate can be increased.

【0008】[0008]

【実施例】以下、本発明について図面に基づいて詳細に
説明する。図1は本発明のプラズマ処理装置の実施例の
模式図である。真空容器1内に、基板2を支持する基板
ホルダ3が絶縁物4を介して取り付けてある。前記基板
ホルダ3には高周波電源5が高周波マッチング回路6を
介して接続してある。このようなシンプルな構成が本発
明のプラズマ処理装置の大きな利点でもある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view of an embodiment of the plasma processing apparatus of the present invention. A substrate holder 3 for supporting a substrate 2 is mounted in a vacuum vessel 1 via an insulator 4. A high frequency power supply 5 is connected to the substrate holder 3 via a high frequency matching circuit 6. Such a simple configuration is also a great advantage of the plasma processing apparatus of the present invention.

【0009】処理方法は、まずヒ−タ9で基板を加熱す
る。ヒ−タ9の電流供給ラインには高周波カットフィル
タ−が挿入されており高周波の影響を受けないようにな
っている。所定の温度に達したら、真空排気口7より前
記真空容器1を真空排気して、ガス導入口8より少なく
とも水素を含むプロセスガスを導入する。所定の圧力な
るように図示しないフロ−コントロ−ルや排気速度制御
を行う。この状態を保ちつつ高周波電源5より高周波マ
ッチング回路6を介して高周波電力を基板ホルダ3に印
加する。プラズマの発生後はプラズマパラメ−タ(電子
密度、イオン密度ラジカル密度、電子温度、プラズマポ
テンシャル、フロ−ティングポテンシャル、基板あるい
は基板ホルダ表面に発生するセルフバイアス等)を一
定、あるいはそれらの組合せにおけるパラメ−タ(たと
えばプラズマポテンシャルとセルフバイアスとの差)を
一定にするために、前記基板ホルダに印加する高周波電
力を制御する。または、高周波電力そのものを一定にす
る。
In the processing method, the substrate is first heated by the heater 9. A high frequency cut filter is inserted in the current supply line of the heater 9 so as not to be affected by high frequency. When the temperature reaches a predetermined temperature, the vacuum vessel 1 is evacuated from the evacuation port 7 and a process gas containing at least hydrogen is introduced from the gas introduction port 8. A flow control and an exhaust speed control (not shown) are performed so that a predetermined pressure is obtained. While maintaining this state, high-frequency power is applied to the substrate holder 3 from the high-frequency power supply 5 via the high-frequency matching circuit 6. After the plasma is generated, the plasma parameters (electron density, ion density, radical density, electron temperature, plasma potential, floating potential, self-bias generated on the surface of the substrate or the substrate holder, etc.) are constant, or the parameters in a combination thereof. The RF power applied to the substrate holder is controlled in order to make the data (for example, the difference between the plasma potential and the self-bias) constant. Alternatively, the high frequency power itself is made constant.

【0010】上記の装置を使用し、かつ前述した処理方
法を用いて石英基板上に形成されたpoly−SiTF
Tの水素処理を行った。処理条件としては、基板温度を
250℃、ガスは水素100%、ガス圧は100Paと
した。基板ホルダには単位平方センチメ−タ当り0.0
1Wの一定高周波電力を印加した。従来の方法で高周波
電極11(3図)に同様の電力を印加して処理したもの
と比べて処理速度が2倍に向上した。従来例でも印加す
る高周波電力を大幅に増大させれば2倍の処理速度は得
られるが、同時にスパッタの発生、プラズマダメ−ジに
よるTFT特性のシフト等悪影響をおよぼすため、出来
得れば高周波電力は小さい方が望ましい。
A poly-SiTF formed on a quartz substrate by using the above-described apparatus and by using the above-described processing method.
T was hydrogenated. As processing conditions, the substrate temperature was 250 ° C., the gas was 100% hydrogen, and the gas pressure was 100 Pa. 0.0 per square centimeter for substrate holder
A constant high-frequency power of 1 W was applied. The processing speed was doubled as compared with the conventional method in which the same power was applied to the high-frequency electrode 11 (FIG. 3) for processing. Even in the conventional example, if the applied high frequency power is greatly increased, a double processing speed can be obtained, but at the same time, adverse effects such as generation of sputtering and shift of TFT characteristics due to plasma damage are exerted. Is preferably smaller.

【0011】別の実施例を説明する。図2に本発明の別
の実施例の模式図を示す。真空容器1及び基板ホルダ3
を上から眺めた図である。基板ホルダ3には基板2が取
り付けられ、円筒形の真空容器1との同心軸を回転軸と
して回転するいわゆるカル−セルタイプの大量処理を目
的とした装置構造である。従来の水素プラズマ処理装置
では、さらに円筒形の真空容器1の一部に高周波電極を
設け、それに高周波電力を印加して水素プラズマ処理を
行っていた。しかしそれだと基板2が図示していない高
周波電極の前を通過する時だけプラズマに晒されるた
め、基板2一枚当りのプラズマに晒されている合計時間
は短く、従って長時間の処理時間を要する。本発明の水
素プラズマ処理装置だと、基板2を支持した基板ホルダ
3に高周波電力を印加するため前記の実施例と同様の理
由ばかりでなく、多角形の基板ホルダ3全周にプラズマ
が発生することから基板2は常時プラズマに晒されるた
め処理時間を大幅に短縮できる。また、装置構造も従来
に比べシンプルである。
Another embodiment will be described. FIG. 2 shows a schematic diagram of another embodiment of the present invention. Vacuum container 1 and substrate holder 3
It is the figure which looked at from above. The substrate holder 3 has a substrate 2 mounted thereon, and has a so-called car-cell type apparatus structure for mass processing in which the substrate 2 rotates about a concentric axis with the cylindrical vacuum vessel 1 as a rotation axis. In the conventional hydrogen plasma processing apparatus, a high-frequency electrode is further provided in a part of the cylindrical vacuum vessel 1, and high-frequency power is applied thereto to perform the hydrogen plasma processing. However, in that case, since the substrate 2 is exposed to the plasma only when passing in front of the high-frequency electrode (not shown), the total time of exposure to the plasma per one substrate 2 is short, so that a long processing time is reduced. It costs. According to the hydrogen plasma processing apparatus of the present invention, a high-frequency power is applied to the substrate holder 3 supporting the substrate 2, not only for the same reason as in the above-described embodiment, but also a plasma is generated around the polygonal substrate holder 3. Because the substrate 2 is constantly exposed to the plasma, the processing time can be greatly reduced. Further, the device structure is simpler than the conventional one.

【0012】[0012]

【発明の効果】以上述べたように本発明によれば、基板
を支持する基板ホルダに直接高周波電力を印加すること
により、基板近傍の荷電粒子(電子、イオン)の密度及
び基板に突入する前記荷電粒子のエネルギ−等をコント
ロ−ル出来ることから、プラズマ密度を増大出来、また
基板表面での反応のためのエネルギ−を高めることが可
能となる。
As described above, according to the present invention, the density of charged particles (electrons and ions) near the substrate and the density of charged particles entering the substrate can be improved by applying high-frequency power directly to the substrate holder supporting the substrate. Since the energy and the like of the charged particles can be controlled, the plasma density can be increased, and the energy for the reaction on the substrate surface can be increased.

【0013】その結果、水素プラズマ処理の処理速度の
高速化が図れるという効果を有する。
As a result, there is an effect that the processing speed of the hydrogen plasma processing can be increased.

【0014】また、装置自体もシンプルになるという効
果も重ねて得られる。
Further, the effect of simplifying the apparatus itself is also obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の水素プラズマ処理装置の一実施例の
模式図。
FIG. 1 is a schematic view of an embodiment of a hydrogen plasma processing apparatus according to the present invention.

【図2】 本発明の水素プラズマ処理装置の他の実施例
の模式図。
FIG. 2 is a schematic view of another embodiment of the hydrogen plasma processing apparatus of the present invention.

【図3】 従来の水素プラズマ処理装置の模式図。FIG. 3 is a schematic view of a conventional hydrogen plasma processing apparatus.

【符号の説明】[Explanation of symbols]

1:真空容器 2:基板 3:基板ホルダ 4、12:絶縁物 5:高周波電源 6:高周波マッチング回路 7:排気口 8:ガス導入口 9:ヒ−タ 11:高周波電極 1: Vacuum container 2: Substrate 3: Substrate holder 4, 12: Insulator 5: High frequency power supply 6: High frequency matching circuit 7: Exhaust port 8: Gas inlet 9: Heater 11: High frequency electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大池 一夫 長野県諏訪市大和3丁目3番5号セイコ ーエプソン株式会社内 (56)参考文献 特開 昭59−35016(JP,A) 特開 昭63−66970(JP,A) 特開 平4−313271(JP,A) 特公 平1−27570(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C30B 25/02 H01L 21/336 H01L 29/786 H01L 21/205 H01L 31/04 - 31/06 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuo Oike 3-5-5 Yamato, Suwa-shi, Nagano Seiko Epson Corporation (56) References JP-A-59-35016 (JP, A) JP-A-63 -66970 (JP, A) JP-A-4-313271 (JP, A) JP-B-1-27570 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 25/02 H01L 21/336 H01L 29/786 H01L 21/205 H01L 31/04-31/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上にあらかじめ形成されている多結
晶シリコンTFT層を水素化させる水素化処理を行う水
素プラズマ処理装置であって、少なくとも水素ガスを封
入した真空容器内において、前記基板を支持する基板ホ
ルダが高周波電極を兼ねていて、前記高周波電極に高周
波電力を印加しプラズマを発生させて水素化処理を行う
ことを特徴とする水素プラズマ処理装置。
1. A hydrogen plasma processing apparatus for performing a hydrogenation process for hydrogenating a polycrystalline silicon TFT layer formed in advance on a substrate, wherein the substrate is supported at least in a vacuum vessel filled with hydrogen gas. A hydrogen plasma processing apparatus, wherein a substrate holder to be used also serves as a high-frequency electrode, and performs a hydrogenation process by applying high-frequency power to the high-frequency electrode to generate plasma.
【請求項2】 少なくとも水素ガスを封入した真空容器
内において、基板を支持する基板ホルダが高周波電極を
兼ねていて、前記高周波電極に高周波電力を印加しプラ
ズマを発生させて、前記基板上にあらかじめ形成されて
いる多結晶シリコンTFT層を水素化させる水素処理を
行なうことを特徴とする水素プラズマ処理方法。
In a vacuum vessel filled with at least hydrogen gas, a substrate holder for supporting a substrate also serves as a high-frequency electrode, and applies high-frequency power to the high-frequency electrode to generate plasma, and a plasma is formed on the substrate in advance. A hydrogen plasma processing method comprising performing hydrogen processing for hydrogenating a formed polycrystalline silicon TFT layer.
JP11138191A 1991-05-16 1991-05-16 Hydrogen plasma processing apparatus and hydrogen plasma processing method Expired - Fee Related JP3196231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11138191A JP3196231B2 (en) 1991-05-16 1991-05-16 Hydrogen plasma processing apparatus and hydrogen plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11138191A JP3196231B2 (en) 1991-05-16 1991-05-16 Hydrogen plasma processing apparatus and hydrogen plasma processing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001078648A Division JP2001319932A (en) 2001-03-19 2001-03-19 Hydrogen plasma processor and hydrogen plasma processing method

Publications (2)

Publication Number Publication Date
JPH04338194A JPH04338194A (en) 1992-11-25
JP3196231B2 true JP3196231B2 (en) 2001-08-06

Family

ID=14559743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11138191A Expired - Fee Related JP3196231B2 (en) 1991-05-16 1991-05-16 Hydrogen plasma processing apparatus and hydrogen plasma processing method

Country Status (1)

Country Link
JP (1) JP3196231B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9193390B1 (en) 2014-08-21 2015-11-24 Kobe Steel, Ltd. Front cowl member for vehicle

Also Published As

Publication number Publication date
JPH04338194A (en) 1992-11-25

Similar Documents

Publication Publication Date Title
JP3339200B2 (en) Plasma generator, plasma processing method, and thin film transistor manufacturing method
JP2001313262A (en) Semiconductor thin film, semiconductor device using the same, manufacturing method for both the same and apparatus for manufacturing semiconductor thin film
JPS63194326A (en) Manufacture of semiconductor device
JP3196231B2 (en) Hydrogen plasma processing apparatus and hydrogen plasma processing method
JP2001319932A (en) Hydrogen plasma processor and hydrogen plasma processing method
JP3055782B2 (en) How to manufacture thin film transistors
JPH0335825B2 (en)
JP3478561B2 (en) Sputter deposition method
JPS6147645A (en) Formation of thin film
JP4443819B2 (en) Plasma doping method
JP2719690B2 (en) Doping equipment
JP2743514B2 (en) Method for producing polycrystalline diamond thin film
JP3244501B2 (en) Hydrogen plasma processing method
JPH02115379A (en) Device for forming thin film
JP3615919B2 (en) Plasma CVD equipment
JP3224312B2 (en) Method for forming microcrystalline silicon
JP2591351B2 (en) Method for manufacturing thin film transistor
Yoshinouchi et al. Crystallization phenomenon induced by proton beam irradiation using large area ion implantation for polycrystalline silicon thin film transistors
JPH0645254A (en) Method and apparatus for manufacturing amorphous silicon film
JPH08293279A (en) Non-mass separation type ion injector
JP3149041B2 (en) Method for manufacturing staggered thin film transistor
JPH11145062A (en) Crystalline silicon prestage film, its forming method, crystalline silicon film and its forming method
JP2003264148A (en) Thin-film manufacturing method, semiconductor device manufacturing method, thin film of amorphous semiconductor, thin film of insulator, and semiconductor device
JPH01283919A (en) Plasma doping method
JPH0855818A (en) Manufacturing device of semiconductor element and method of manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees