JP3244281B2 - Manufacturing method of jig material for glass container manufacturing - Google Patents

Manufacturing method of jig material for glass container manufacturing

Info

Publication number
JP3244281B2
JP3244281B2 JP07224791A JP7224791A JP3244281B2 JP 3244281 B2 JP3244281 B2 JP 3244281B2 JP 07224791 A JP07224791 A JP 07224791A JP 7224791 A JP7224791 A JP 7224791A JP 3244281 B2 JP3244281 B2 JP 3244281B2
Authority
JP
Japan
Prior art keywords
manufacturing
carbon fiber
glass container
raw material
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07224791A
Other languages
Japanese (ja)
Other versions
JPH04285066A (en
Inventor
正治 竹原
順二 田村
祥司 葛城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP07224791A priority Critical patent/JP3244281B2/en
Publication of JPH04285066A publication Critical patent/JPH04285066A/en
Application granted granted Critical
Publication of JP3244281B2 publication Critical patent/JP3244281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/04Transporting of hot hollow or semi-hollow glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は炭素繊維強化炭素材料製
のガラス容器製造用治具材の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a jig material for manufacturing a glass container made of carbon fiber reinforced carbon material.

【0002】[0002]

【従来の技術】ガラスビンやガラスコップ等のガラス容
器は、ISマシンやプレスマシン等のガラス成形機によ
って製造されていることは良く知られている。これらの
成形機で成形されたガラス容器は、アニーリングレヤー
(徐冷炉)までの搬送過程において、通常350〜65
0℃の高温となっている。この過程でのガラス容器は、
搬送用の治具材表面との接触による摩擦や熱応力によ
り、ビリと呼ばれる表面割れがはいりやすく、そのため
従来はアスベストおよびその成形物がガラス容器製造用
治具材として多く使用されてきた。最近、アスベストの
発ガン性が注目されて以来、これに置き代わって黒鉛
材、耐熱プラスチック、炭素繊維強化炭素材料などが使
用されはじめている。しかし、黒鉛材は耐熱性が高い
が、耐衝撃性に劣り割れやすいという欠点があり、また
耐熱プラスチックとしてポリイミド樹脂、シリコン樹脂
などの成形体も使用されているが、耐熱性が低く、寿命
が短い。
2. Description of the Related Art It is well known that glass containers such as glass bottles and glass cups are manufactured by glass forming machines such as IS machines and press machines. The glass container molded by these molding machines is usually 350 to 65 in the transportation process to an annealing layer (annealing furnace).
The temperature is as high as 0 ° C. The glass container in this process,
Due to friction and thermal stress caused by contact with the surface of the jig material for transport, surface cracks called "billi" are apt to enter, and therefore, asbestos and its molded products have conventionally been often used as jig materials for manufacturing glass containers. Recently, since the carcinogenicity of asbestos has attracted attention, graphite materials, heat-resistant plastics, carbon fiber reinforced carbon materials, and the like have begun to be used instead. However, graphite material has high heat resistance, but has the disadvantage that it is inferior in impact resistance and is easily cracked.Also, molded products such as polyimide resin and silicon resin are used as heat-resistant plastics. short.

【0003】炭素繊維強化炭素材料(C/Cコンポジッ
トともいう)は炭素繊維を補強材とし、炭素をマトリッ
クスとした複合材料であり高温強度が高く、耐衝撃性、
耐熱性にすぐれているため、ガラス容器製造用治具材と
して広く用いられてきつつある(例えば、Glass
Technology Vol.26 No. 6Dec
ember 1985)。しかし、従来のC/Cコンポ
ジットは炭素繊維の織物を積層して製造しているため
に、層間剪断強度が低く、加工時に層間剥離が起こりや
すいという欠点があり、そのため多数の穴を設けたマシ
ンデッドプレートや精密な加工が必要なテークアウトト
ングにはあまり使用されなかった。更に、従来のC/C
コンポジットは、フェノール樹脂等の難黒鉛化性材料を
マトリックスとして用いているために耐酸化性が低く、
また耐酸化性を向上させるために2600℃以上の高温
で黒鉛化すると硬度が低下し、ガラス製造用治具材とし
て用いると耐摩耗性が悪化するという欠点があった。
A carbon fiber reinforced carbon material (also referred to as a C / C composite) is a composite material using carbon fiber as a reinforcing material and carbon as a matrix.
Due to its excellent heat resistance, it has been widely used as a jig material for producing glass containers (for example, Glass).
Technology Vol.26 No.6Dec
member 1985). However, since the conventional C / C composite is manufactured by laminating carbon fiber woven fabrics, there is a drawback that the interlayer shear strength is low and delamination is likely to occur during processing. Therefore, a machine having a large number of holes is provided. It was rarely used for dead plates and take-out tongs that required precise processing. Furthermore, conventional C / C
Composites have low oxidation resistance because they use a non-graphitizable material such as phenolic resin as the matrix.
In addition, when graphite is formed at a high temperature of 2600 ° C. or higher to improve oxidation resistance, the hardness decreases, and when used as a jig material for glass production, the abrasion resistance deteriorates.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、加工
性が良く、耐酸化性、耐摩耗性に優れたガラス容器製造
用治具材を製造することにある。
SUMMARY OF THE INVENTION An object of the present invention is to produce a jig material for producing a glass container which has good workability and excellent oxidation resistance and abrasion resistance.

【0005】[0005]

【課題を解決するための手段】本発明は、炭素繊維の短
繊維とピッチ粉末とを含有する原料の水分散スラリーを
濾過して所定の表面形状を有する濾材表面に原料の層を
形成させて予備成形体を作り、この予備成形体を圧縮成
形したのち、炭化処理して一次炭化品を得て、一次炭化
品を必要により一回以上の含浸処理、炭化処理し、次い
で1600〜3000℃で黒鉛化処理して炭素繊維強化
炭素材料とし、これを所定の形状に加工することを特徴
とする高温のガラス容器が直接接触するガラス容器製造
用冶具材の製造方法である。
SUMMARY OF THE INVENTION According to the present invention, an aqueous dispersion slurry of a raw material containing short fibers of carbon fiber and pitch powder is filtered to form a raw material layer on the surface of a filter medium having a predetermined surface shape. A pre-formed body is formed, and the pre-formed body is compression-molded, and then carbonized to obtain a primary carbonized product.
The product is subjected to one or more impregnation treatments and carbonization treatments as necessary,
Graphite treatment at 1600-3000 ° C for carbon fiber reinforcement
This is a method for manufacturing a jig material for manufacturing a glass container in which a high-temperature glass container comes into direct contact with a carbon material and is processed into a predetermined shape.

【0006】本発明で用いる補強用の炭素繊維の短繊維
は、連続紡糸によらない短繊維又は連続繊維のチョップ
をいい、ポリアクリロニトリル系、レーヨン系、ピッチ
系のいずれであってもよく、また炭素質、黒鉛質のいず
れであってもよい。
[0006] The short fibers of carbon fibers for reinforcement used in the present invention refer to chops of short fibers or continuous fibers not based on continuous spinning, and may be any of polyacrylonitrile, rayon, and pitch. It may be either carbonaceous or graphite.

【0007】マトリックスとなるピッチ粉末は、加熱す
ることにより溶融し、成形時に炭素繊維をつなぎとめて
賦形するバインダーとしての作用を有するものであり、
石油系、タール系のいずれのピッチであってもよいが、
焼成後の残炭率が高いものが望ましい。そのような意味
で高軟化点のピッチ、好ましくは軟化点150〜350
℃、より好ましくは200〜300℃のタ−ルピッチが
有利である。また、ピッチ粉末の粒径が大きすぎるとピ
ッチが炭素繊維間に充分に入らないので、高強度のC/
Cコンポジットを得るためには、粒径100μm以下と
することが望ましい。
The pitch powder serving as a matrix is melted by heating, and has a function as a binder for binding and shaping carbon fibers at the time of molding.
Oil or tar pitch may be used,
Those having a high residual carbon ratio after firing are desirable. In that sense, a pitch having a high softening point, preferably a softening point of 150 to 350
C., more preferably 200 to 300.degree. C. tar pitch is advantageous. On the other hand, if the particle size of the pitch powder is too large, the pitch does not sufficiently enter between the carbon fibers, so that a high strength C /
In order to obtain a C composite, the particle size is desirably 100 μm or less.

【0008】炭素繊維の短繊維とピッチ粉末の割合は、
C/Cコンポジットとしたとき、炭素繊維の含有率が5
〜60体積%、好ましくは10〜45体積%程度となる
ようにすることが望ましい。なお、残炭率を高める目的
で、コークスや黒鉛等の炭素質粉末を加えてもよいが、
この場合も炭素繊維の含有率を上記の範囲とすることが
よい。
[0008] The ratio of short fibers of carbon fiber and pitch powder is
When a C / C composite is used, the carbon fiber content is 5
It is desirably about 60% by volume, preferably about 10% to 45% by volume. For the purpose of increasing the residual carbon ratio, carbonaceous powder such as coke and graphite may be added.
Also in this case, the content of the carbon fiber is preferably set in the above range.

【0009】炭素繊維とピッチを含む原料はこれを水分
散スラリ−とするが、この方法としては、事前にプリプ
レグ等にしてから水中に投入してもよいし、両者を別々
に水中に投入して、分散させスラリー状としてもよい。
The raw material containing carbon fibers and pitch is used as a water-dispersed slurry. As a method for this, a prepreg or the like may be put in advance and then put into water, or both may be put into water separately. And may be dispersed to form a slurry.

【0010】この水分散スラリーを濾過して、濾材表面
に原料の層を形成させて予備成形体を作る。濾材として
は金網等が挙げられ、この表面形状はあらかじめ所望の
形状の予備成形体が得られるように設定される。例え
ば、平面形状のものを得るときには表面が平らな濾材
を、円筒形状のものを得るときには円筒状の濾材を使用
する。濾過は吸引濾過であっても、加圧濾過であっても
実施可能であるが、均一性と形状の精密性を高めるに
は、連続式加圧濾過法が優れている。この方法によれ
ば、スラリーの流れに応じて濾材表面には徐々に原料の
層が形成されるが、原料の層の厚みに差があるとスラリ
ーの流れに差が生じて、結果として均一な層の厚みとな
る。
[0010] The aqueous dispersion slurry is filtered to form a raw material layer on the surface of the filter medium to prepare a preform. A wire mesh or the like is used as the filter medium, and the surface shape is set in advance so that a preform having a desired shape is obtained. For example, when obtaining a planar shape, a filter medium having a flat surface is used, and when obtaining a cylindrical shape, a cylindrical filter medium is used. Filtration can be carried out by suction filtration or pressure filtration, but a continuous pressure filtration method is excellent for improving uniformity and precision of shape. According to this method, a layer of the raw material is gradually formed on the surface of the filter medium according to the flow of the slurry, but if there is a difference in the thickness of the layer of the raw material, a difference occurs in the flow of the slurry, and as a result, a uniform The thickness of the layer.

【0011】所定の厚みが得られたら濾過を止め、予備
成形体として取り出す。得られた予備成形体は必要によ
り、切断、折り曲げ等の処理をしたのち、圧縮成形す
る。圧縮成形の方法としては、加熱下に行うホットプレ
ス法、オートクレーブ成形法、ラバープレス法、真空成
形法等が挙げられる。
When a predetermined thickness is obtained, the filtration is stopped and the preform is taken out. The obtained preformed body is subjected to processing such as cutting and bending, if necessary, and then compression molded. Examples of the compression molding method include a hot press method performed under heating, an autoclave molding method, a rubber press method, and a vacuum molding method.

【0012】得られた成形体は、窒素、アルゴン等の非
酸化性雰囲気中で800℃以上、好ましくは1000℃
以上1500℃以下の温度で炭化焼成してC/Cコンポ
ジットの中間体を得る。この場合炭化時の昇温速度が速
すぎるとピッチの熱分解による収縮と、ガス発生が激し
くなり、大きな亀裂が発生しやすくなる。そのため昇温
速度は、通常100℃/hr以下、好ましくは20℃/
hr以下が望ましい。また、この時、ピッチの膨れを抑
制する目的で加圧下で炭化焼成するか、又は本発明者ら
の発明に係わる特開昭62−241871号公報に記載
されているように成形体を高温においても変形しない固
定材を用いて固定した状態で炭化焼成してもよい。この
ようにして得られたC/Cコンポジットの中間体につい
て、最終製品の耐酸化性、機械的強度を向上させるため
に、必要に応じてピッチ又は熱硬化性液状樹脂を含浸処
理して再焼成する操作および/又は化学蒸着処理(CV
D処理)をしてもよい。
[0012] The obtained compact is heated to 800 ° C or higher, preferably 1000 ° C in a non-oxidizing atmosphere such as nitrogen or argon.
Carbonization and calcination at a temperature of not less than 1500 ° C. to obtain a C / C composite intermediate. In this case, if the rate of temperature rise during carbonization is too fast, shrinkage due to thermal decomposition of the pitch and gas generation become severe, and large cracks are likely to occur. Therefore, the heating rate is usually 100 ° C./hr or less, preferably 20 ° C./hr.
hr or less is desirable. Further, at this time, carbonized and baked under pressure for the purpose of suppressing the swelling of the pitch, or as described in JP-A-62-241871 according to the present inventors, the molded body is heated at a high temperature. Alternatively, carbonization and firing may be performed in a state where the fixing is performed using a fixing material that does not deform. The C / C composite intermediate thus obtained is impregnated with a pitch or a thermosetting liquid resin, if necessary, in order to improve the oxidation resistance and mechanical strength of the final product, and is then fired again. Operation and / or chemical vapor deposition (CV)
D process).

【0013】含浸処理では、該C/Cコンポジット中間
体を密閉容器にいれ容器内を数十mmHg以下の減圧に
して、内部に残存している気体を追い出し、次に上記容
器内にピッチ又は炭素材原料となる熱硬化性液状樹脂を
流し込み、さらに上記容器内を5〜100Kgf/cm
2 の圧力にし、該C/Cコンポジット中間体に上記物質
を含浸する。通常、ここで用いられる含浸材料として
は、ピッチ又はフェノール樹脂、フラン樹脂などの液状
の熱硬化性樹脂が使用される。また、この場合粘度を調
節する意味で上記物質を加熱しておいてもよい。CVD
処理では、該C/Cコンポジット中間体を炉に入れて1
000〜1500℃に加熱し、そこへメタン、プロパン
などの炭化水素ガスを、窒素、アルゴンなどで希釈し減
圧下で導入して分解炭化させ、熱分解炭素を炭素繊維表
面に沈着せしめる。
In the impregnation treatment, the C / C composite intermediate is placed in a closed container, the pressure in the container is reduced to several tens of mmHg or less, and the gas remaining in the container is expelled. A thermosetting liquid resin as a raw material is poured, and the inside of the container is further filled with 5 to 100 kgf / cm.
At a pressure of 2, impregnate the C / C composite intermediate with the material. Usually, as the impregnating material used here, a liquid thermosetting resin such as a pitch or phenol resin or a furan resin is used. In this case, the substance may be heated in order to adjust the viscosity. CVD
In the treatment, the C / C composite intermediate is placed in a furnace and
The mixture is heated to 000 to 1500 ° C., and a hydrocarbon gas such as methane or propane is diluted with nitrogen, argon or the like, and introduced under reduced pressure to crack and carbonize, thereby depositing pyrolytic carbon on the carbon fiber surface.

【0014】更に、このC/Cコンポジットの中間体に
ついて、又はこれを含浸処理、再焼成する操作および/
又は化学蒸着処理したものについて、最終製品の耐酸化
性、熱伝導率を向上させるために、必要に応じて黒鉛化
処理をしてもよい。黒鉛化処理は、アルゴン等の非酸化
性雰囲気中で、通常1600〜3000℃、望ましくは
2000〜3000℃で行う。
Further, the intermediate of the C / C composite, or an operation of impregnating the intermediate and refiring, and / or
Alternatively, the material subjected to the chemical vapor deposition treatment may be subjected to a graphitization treatment as necessary in order to improve the oxidation resistance and thermal conductivity of the final product. The graphitization treatment is usually performed in a non-oxidizing atmosphere such as argon at 1600 to 3000C, preferably 2000 to 3000C.

【0015】このようにして得られたC/Cコンポジッ
トは、炭素繊維の配向等が少なく、均一性に優れるばか
りでなく、炭素繊維の短繊維が水中で完全に開繊され、
立体的に絡みあっているため、層間剪断強度が高く、加
工をするときに層間剥離を起こしにくい。また、易黒鉛
化性材料であるピッチをマトリックス原料として使用し
ているために、ガラス製造用治具材として用いた時に、
耐酸化性、耐摩耗性が高いという特徴がある。
The C / C composite thus obtained has not only a low carbon fiber orientation and the like, and excellent uniformity, but also short fibers of carbon fibers are completely opened in water,
Since they are three-dimensionally entangled, the interlayer shear strength is high and delamination hardly occurs during processing. In addition, since pitch, which is a graphitizable material, is used as a matrix material, when used as a jig material for glass production,
It is characterized by high oxidation resistance and abrasion resistance.

【0016】このC/Cコンポジットは、次いで所定の
形状に加工して、ガラス容器製造用治具材とする。本発
明でいうガラス容器製造用治具材は、マシンデッドプレ
ート等のデッドプレート類、テークアウトトング、プッ
シャーパッド、ウェアトランスファーパッド、スタッカ
ーバーのパッド等であり、高温のガラス容器が直接接触
する部材に適用することができる。そして、所定の形状
に加工するとは、デッドプレート類については、所定の
大きさに切断すること、ガラス容器の滑りをよくするた
めに搬送方向に平行に溝加工をすること、冷却用の空気
穴を多数設けることなどであり、トング類については、
ガラス容器の首部をはさみ把持するために、首部の輪郭
に適合するような半円状の湾曲部を持つように切削する
ことなどであり、パッド類については、所定の大きさに
切断することや、ネジ止め又はリベット止めするための
穴をあけること、ガラス容器と接する面を容器の形状に
あわせて三角形などに切削することなどである。特に、
精密な加工を必要とする部材であるデッドプレート類、
トング類に適用することが、この材料の特徴を充分に発
揮するうえで有利である。
The C / C composite is then processed into a predetermined shape to obtain a glass container manufacturing jig. The jig material for manufacturing a glass container referred to in the present invention is a dead plate such as a machine dead plate, a takeout tong, a pusher pad, a wear transfer pad, a pad of a stacker bar, and the like, and a member to which a high-temperature glass container directly contacts. Can be applied to Processing into a predetermined shape means that dead plates are cut to a predetermined size, grooves are formed parallel to the transport direction to improve the sliding of the glass container, and air holes for cooling are used. And for tongs,
In order to pinch and hold the neck of the glass container, cutting such as to have a semicircular curved portion that fits the contour of the neck, etc.For pads, cutting and cutting to a predetermined size Drilling holes for screwing or riveting, and cutting the surface in contact with the glass container into a triangle or the like according to the shape of the container. In particular,
Dead plates, which are members that require precise processing,
The application to tongs is advantageous in fully exhibiting the characteristics of this material.

【0017】[0017]

【実施例】実施例1 繊維長10mmのポリアクリロニトリル系炭素繊維のチ
ョップと、軟化点250℃のピッチ微粉とを1:2(重
量比)の割合で水中に分散し、30×30cmの平な濾
材をセットした予備成形槽にスラリーポンプで圧入し濾
過を行った。約5cmの厚みとなったところで濾過を止
め、予備成形体を得た。この板状の予備成形体を550
℃まで100℃/hrの条件で昇温させ、ホットプレス
したのち、1000℃で炭化処理してC/Cコンポジッ
トの中間体(一次炭化品)を得た。この一次炭化品の炭
素繊維含有率は55体積%であった。次に、このC/C
コンポジットの中間体に、温度200℃、圧力10kg
/cm2 の条件で含浸ピッチを含浸したのち、これを窒
素雰囲気中にて10℃/hrの昇温速度で1000℃ま
で昇温したのち、徐冷してC/Cコンポジットの中間体
(二次炭化品)を得た。更に、この中間体に前記と同様
のピッチ含浸、炭化処理3回繰り返し、その後、これを
アルゴン雰囲気中にて2000℃まで昇温し、1hr保
持して黒鉛化して炭素繊維強化炭素材料とした。
EXAMPLE 1 A chop of polyacrylonitrile-based carbon fiber having a fiber length of 10 mm and a pitch fine powder having a softening point of 250 ° C. were dispersed in water at a ratio of 1: 2 (weight ratio), and a 30 × 30 cm flat powder was dispersed. The slurry was pumped into a preforming tank in which a filter medium was set, and filtered. When the thickness became about 5 cm, the filtration was stopped to obtain a preform. This plate-shaped preform is 550
The temperature was raised to 100 ° C. at a rate of 100 ° C./hr, hot pressed, and then carbonized at 1000 ° C. to obtain a C / C composite intermediate (primary carbonized product). The carbon fiber content of this primary carbonized product was 55% by volume. Next, this C / C
200 ° C, 10kg pressure for composite intermediate
/ Cm 2 , impregnated with the impregnated pitch, heated to 1000 ° C. at a rate of 10 ° C./hr in a nitrogen atmosphere, and then gradually cooled to obtain a C / C composite intermediate (2). The following carbonized product was obtained. Further, this intermediate was repeatedly impregnated with the pitch and carbonized three times in the same manner as described above. Thereafter, the temperature was raised to 2000 ° C. in an argon atmosphere, maintained for 1 hour, and graphitized to obtain a carbon fiber reinforced carbon material.

【0018】この炭素繊維強化炭素材料から、幅3m
m、深さ2mm、長さ280mmの溝を中央部に6mm
間隔に11本設けた、幅195mm×長さ280mm×
厚み8mmのデッドプレートを切り出した。また、同様
に、幅70mm×長さ70mm×厚み6.35mmの平
板を切り出し、その中央部に、直径30mmの穴をあけ
たのち、開口部の中心線を通るように半分に切断してト
ングを得た。加工は超硬バイトを用いて行い、得られた
デッドプレートおよびトングは端部の欠け、傷もなく、
きれいにできていた。
From this carbon fiber reinforced carbon material, a width of 3 m
m, depth 2mm, length 280mm groove 6mm in the center
Eleven provided at intervals, width 195 mm x length 280 mm x
An 8 mm thick dead plate was cut out. Similarly, a flat plate having a width of 70 mm × length 70 mm × thickness 6.35 mm is cut out, a hole having a diameter of 30 mm is formed in the center, and cut in half so as to pass through the center line of the opening. I got Processing is performed using a carbide tool, and the resulting dead plate and tongs are free from chipping and scratches at the ends,
It was clean.

【0019】比較例1 8枚朱子織ポリアクリロニトリル系炭素繊維クロス(3
000フィラメント)にフェノール樹脂(AVライト
RM−3000A)の30重量%水溶液を含浸、乾燥
し、プリプレグとした。このプリプレグを金型に積層
し、温度150℃、圧力50kg/cm2 でプレス成形
し成形体を得た。次に、この成形体を窒素雰囲気中にて
10℃/hrの昇温速度で1000℃まで昇温したのち
徐冷してC/Cコンポジットの中間体(一次炭化品)を
得た。この一次炭化品の炭素繊維含有率は55体積%で
あった。次に、このC/Cコンポジットの中間体に実施
例1と同様にピッチ含浸、炭化処理を4回繰り返し、引
き続いてアルゴン雰囲気中にて2000℃まで昇温し、
1hr保持して黒鉛化し炭素繊維強化炭素材料とした。
この炭素繊維強化炭素材料から実施例1と同じ方法で、
トングを切り出した。
Comparative Example 1 Eight-sheet satin-woven polyacrylonitrile-based carbon fiber cloth (3
000 filament) to phenolic resin (AV light)
RM-3000A) was impregnated with a 30% by weight aqueous solution and dried to obtain a prepreg. The prepreg was laminated on a mold and press-molded at a temperature of 150 ° C. under a pressure of 50 kg / cm 2 to obtain a molded body. Next, the molded body was heated to 1000 ° C. at a rate of 10 ° C./hr in a nitrogen atmosphere, and then gradually cooled to obtain a C / C composite intermediate (primary carbonized product). The carbon fiber content of this primary carbonized product was 55% by volume. Next, pitch impregnation and carbonization treatment were repeated four times in the same manner as in Example 1 for the C / C composite intermediate, and subsequently the temperature was raised to 2000 ° C. in an argon atmosphere.
It was graphitized for 1 hour to obtain a carbon fiber reinforced carbon material.
From this carbon fiber reinforced carbon material, in the same manner as in Example 1,
Cut out tongs.

【0020】比較例2 現在、ガラス容器製造用に使用されている高密度黒鉛材
についても、比較のため、実施例1と同じ方法でトング
を切り出した。
Comparative Example 2 A tongue was cut out of a high-density graphite material currently used for manufacturing glass containers in the same manner as in Example 1 for comparison.

【0021】実施例および比較例の炭素繊維強化炭素材
料又は高密度黒鉛材について、空気流中(500cc/
min)、400℃で24hr保持して酸化試験を実施
すると共に、常温にて三点曲げ試験を行った。また、実
施例および比較例で得たトングについて、摩耗試験機を
用いて、下記条件による性能評価を行った。この時の摩
耗量は、トング表面をガラス丸棒によってこすり、削ら
れた溝の深さによって評価した。 [試験条件] 荷重:1.5kg 相手材:ガラス丸棒 摺動幅:20mm 摺動回数:1000
回 摺動速度:21mm/sec 試験結果を表1に示す。
The carbon fiber reinforced carbon materials or the high-density graphite materials of the examples and the comparative examples were air-flowed (500 cc /
min) at 400 ° C. for 24 hours to carry out an oxidation test and a three-point bending test at room temperature. The tongs obtained in the examples and comparative examples were evaluated for performance under the following conditions using a wear tester. The amount of wear at this time was evaluated by rubbing the surface of the tongue with a glass round bar and determining the depth of the cut groove. [Test conditions] Load: 1.5 kg Counterpart material: glass round bar Sliding width: 20 mm Number of sliding times: 1000
Rotation sliding speed: 21 mm / sec Table 1 shows the test results.

【0022】[0022]

【表1】 [Table 1]

【0023】以上のように、本方法で製造した炭素繊維
強化炭素材料は、ガラス容器製造用治具材として現在の
高密度黒鉛材より強度が高く、耐摩耗特性に優れてい
る。また、従来のクロスを積層した炭素繊維強化炭素材
料よりも耐酸化性が高く、耐摩耗特性に優れていること
がわかる。
As described above, the carbon fiber reinforced carbon material produced by the present method has a higher strength than a current high-density graphite material as a jig material for producing a glass container, and has excellent wear resistance. Further, it can be seen that the oxidation resistance is higher and the abrasion resistance is superior to that of the carbon fiber reinforced carbon material in which the conventional cloth is laminated.

【0024】[0024]

【発明の効果】本発明の方法によると加工性が良く、耐
酸化性、耐摩耗性に優れたガラス容器製造用治具材を製
造することができる。
According to the method of the present invention, it is possible to produce a jig material for producing a glass container having good workability, excellent oxidation resistance and abrasion resistance.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/52 C03B 35/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/52 C03B 35/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭素繊維の短繊維とピッチ粉末とを含有
する原料の水分散スラリーを濾過して所定の表面形状を
有する濾材表面に原料の層を形成させて予備成形体を作
り、この予備成形体を圧縮成形したのち、炭化処理、1
600〜3000℃で黒鉛化処理して炭素繊維強化炭素
材料とし、これを所定の形状に加工することを特徴とす
高温のガラス容器が直接接触するガラス容器製造用冶
具材の製造方法。
An aqueous slurry of a raw material containing short fibers of carbon fiber and pitch powder is filtered to form a layer of the raw material on a surface of a filter medium having a predetermined surface shape, thereby forming a preform. After compression molding of the compact, carbonization treatment, 1
Graphitized carbon fiber reinforced carbon at 600-3000 ° C
A method for manufacturing a jig material for manufacturing a glass container, wherein a high-temperature glass container is directly in contact with the material, the material being processed into a predetermined shape.
【請求項2】 炭素繊維の短繊維とピッチ粉末とを含有
する原料の水分散スラリーを濾過して所定の表面形状を
有する濾材表面に原料の層を形成させて予備成形体を作
り、この予備成形体を圧縮成形したのち、炭化処理して
一次炭化品を得て、一次炭化品を一回以上の含浸処理、
炭化処理し、次いで1600〜3000℃で黒鉛化処理
して炭素繊維強化炭素材料とし、これを所定の形状に加
工することを特徴とする高温のガラス容器が直接接触す
るガラス容器製造用冶具材の製造方法。
2. It contains short fibers of carbon fiber and pitch powder.
Filter the aqueous dispersion slurry of the raw material to
A layer of raw material is formed on the surface of the
After compression molding of this preform,
Obtain the primary carbonized product, impregnate the primary carbonized product one or more times,
Carbonized, then graphitized at 1600-3000 ° C
Into a carbon fiber reinforced carbon material
High temperature glass container is directly contacted
Of manufacturing jig materials for manufacturing glass containers.
JP07224791A 1991-03-12 1991-03-12 Manufacturing method of jig material for glass container manufacturing Expired - Fee Related JP3244281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07224791A JP3244281B2 (en) 1991-03-12 1991-03-12 Manufacturing method of jig material for glass container manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07224791A JP3244281B2 (en) 1991-03-12 1991-03-12 Manufacturing method of jig material for glass container manufacturing

Publications (2)

Publication Number Publication Date
JPH04285066A JPH04285066A (en) 1992-10-09
JP3244281B2 true JP3244281B2 (en) 2002-01-07

Family

ID=13483775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07224791A Expired - Fee Related JP3244281B2 (en) 1991-03-12 1991-03-12 Manufacturing method of jig material for glass container manufacturing

Country Status (1)

Country Link
JP (1) JP3244281B2 (en)

Also Published As

Publication number Publication date
JPH04285066A (en) 1992-10-09

Similar Documents

Publication Publication Date Title
US7374709B2 (en) Method of making carbon/ceramic matrix composites
CA1053445A (en) Method for producing heat-resistant composite materials reinforced with continuous silicon carbide fibers
US20060177663A1 (en) Carbon-carbon composite article manufactured with needled fibers
JPS605070A (en) Composite material and manufacture
CN108658613A (en) A kind of method that staple fiber molding prepares automobile brake disc
CN114702328B (en) SiC nanowire network reinforced layered porous SiC ceramic and preparation method thereof
EP0601808B1 (en) Process for producing carbon preform
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
US5476685A (en) Process for the manufacture of a fiber reinforced composite material having a ceramic matrix and preheated carbon fibers
JPH08226054A (en) Production of carbon primary molding and carbon/carbon composite material
CN108069726A (en) A kind of preparation method of C/C-TiC carbon ceramic composite material
CN116856171A (en) Preparation method of modified carbon fiber suitable for preparing carbon/ceramic brake disc by mould pressing process
CN109095929B (en) Preparation method of carbon-ceramic brake disc
JP3244281B2 (en) Manufacturing method of jig material for glass container manufacturing
CN115773321A (en) High strength charcoal/pottery brake disc with pottery functional layer
JP3244280B2 (en) Manufacturing method of jig material for glass container manufacturing
JP2002255664A (en) C/c composite material and production method therefor
JP3853035B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3244279B2 (en) Manufacturing method of jig material for glass container manufacturing
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
JP3220983B2 (en) Method for producing carbon fiber reinforced carbon material
JPS63151677A (en) Carbon fiber reinforced carbon composite material
JPH08169761A (en) Production of silicon carbide-based fiber composite material
CN118125862A (en) Carbon ceramic composite material and preparation method and application thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010918

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees