JPH04285066A - Production of jig material for producing glass vessel - Google Patents

Production of jig material for producing glass vessel

Info

Publication number
JPH04285066A
JPH04285066A JP3072247A JP7224791A JPH04285066A JP H04285066 A JPH04285066 A JP H04285066A JP 3072247 A JP3072247 A JP 3072247A JP 7224791 A JP7224791 A JP 7224791A JP H04285066 A JPH04285066 A JP H04285066A
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
jig
pitch
glass vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3072247A
Other languages
Japanese (ja)
Other versions
JP3244281B2 (en
Inventor
Masaharu Takehara
正治 竹原
Junji Tamura
田村 順二
Shoji Katsuragi
葛城 祥司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP07224791A priority Critical patent/JP3244281B2/en
Publication of JPH04285066A publication Critical patent/JPH04285066A/en
Application granted granted Critical
Publication of JP3244281B2 publication Critical patent/JP3244281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/04Transporting of hot hollow or semi-hollow glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce a jig material for producing a glass vessel having superior workability, oxidation and wear resistances. CONSTITUTION:An aq. slurry of starting material prepd. by adding short fibers and pitch powder to carbon fibers is filtered to form a layer of the starting material on the surface of a filter medium having a prescribed surface shape. The resulting preform is compression-molded and carbonized or graphitized to obtain a carbon fiber reinforced carbon material. This carbon material is worked into a prescribed shape and a jig material for producing a glass vessel is produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は炭素繊維強化炭素材料製
のガラス容器製造用治具材の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a jig material for manufacturing glass containers made of carbon fiber-reinforced carbon material.

【0002】0002

【従来の技術】ガラスビンやガラスコップ等のガラス容
器は、ISマシンやプレスマシン等のガラス成形機によ
って製造されていることは良く知られている。これらの
成形機で成形されたガラス容器は、アニーリングレヤー
(徐冷炉)までの搬送過程において、通常350〜65
0℃の高温となっている。この過程でのガラス容器は、
搬送用の治具材表面との接触による摩擦や熱応力により
、ビリと呼ばれる表面割れがはいりやすく、そのため従
来はアスベストおよびその成形物がガラス容器製造用治
具材として多く使用されてきた。最近、アスベストの発
ガン性が注目されて以来、これに置き代わって黒鉛材、
耐熱プラスチック、炭素繊維強化炭素材料などが使用さ
れはじめている。しかし、黒鉛材は耐熱性が高いが、耐
衝撃性に劣り割れやすいという欠点があり、また耐熱プ
ラスチックとしてポリイミド樹脂、シリコン樹脂などの
成形体も使用されているが、耐熱性が低く、寿命が短い
2. Description of the Related Art It is well known that glass containers such as glass bottles and glasses are manufactured using glass forming machines such as IS machines and press machines. Glass containers formed by these molding machines usually have a temperature of 350 to 65
The temperature is 0℃. The glass container in this process is
Friction and thermal stress caused by contact with the surface of transportation jigs tend to cause surface cracks called burrs, which is why asbestos and its molded products have traditionally been used as jigs for manufacturing glass containers. Recently, since the carcinogenicity of asbestos has attracted attention, graphite materials,
Heat-resistant plastics and carbon fiber-reinforced carbon materials are beginning to be used. However, although graphite materials have high heat resistance, they have the disadvantage of poor impact resistance and breakage easily.Furthermore, molded bodies of polyimide resin, silicone resin, etc. are also used as heat-resistant plastics, but they have low heat resistance and have a short lifespan. short.

【0003】炭素繊維強化炭素材料(C/Cコンポジッ
トともいう)は炭素繊維を補強材とし、炭素をマトリッ
クスとした複合材料であり高温強度が高く、耐衝撃性、
耐熱性にすぐれているため、ガラス容器製造用治具材と
して広く用いられてきつつある(例えば、Glass 
 Technology  Vol.26  No. 
6December  1985)。しかし、従来のC
/Cコンポジットは炭素繊維の織物を積層して製造して
いるために、層間剪断強度が低く、加工時に層間剥離が
起こりやすいという欠点があり、そのため多数の穴を設
けたマシンデッドプレートや精密な加工が必要なテーク
アウトトングにはあまり使用されなかった。更に、従来
のC/Cコンポジットは、フェノール樹脂等の難黒鉛化
性材料をマトリックスとして用いているために耐酸化性
が低く、また耐酸化性を向上させるために2600℃以
上の高温で黒鉛化すると硬度が低下し、ガラス製造用治
具材として用いると耐摩耗性が悪化するという欠点があ
った。
[0003] Carbon fiber reinforced carbon material (also called C/C composite) is a composite material with carbon fiber as a reinforcing material and carbon as a matrix, and has high high temperature strength, impact resistance,
Due to its excellent heat resistance, it is becoming widely used as a jig material for manufacturing glass containers (for example, Glass
Technology Vol. 26 No.
6December 1985). However, traditional C
/C composites are manufactured by laminating carbon fiber fabrics, so they have low interlaminar shear strength and are prone to delamination during processing. It was not often used for takeout tongs that required processing. Furthermore, conventional C/C composites have low oxidation resistance because they use non-graphitizable materials such as phenolic resin as a matrix, and in order to improve oxidation resistance, graphitization at high temperatures of 2600°C or higher is required. As a result, the hardness decreases, and when used as a jig material for glass manufacturing, the abrasion resistance deteriorates.

【0004】0004

【発明が解決しようとする課題】本発明の目的は、加工
性が良く、耐酸化性、耐摩耗性に優れたガラス容器製造
用治具材を製造することにある。
SUMMARY OF THE INVENTION An object of the present invention is to produce a jig material for manufacturing glass containers that has good workability, excellent oxidation resistance, and abrasion resistance.

【0005】[0005]

【課題を解決するための手段】本発明は、炭素繊維の短
繊維とピッチ粉末とを含有する原料の水分散スラリーを
濾過して、所定の表面形状を有する濾材表面に原料の層
を形成させて予備成形体を作り、この予備成形体を圧縮
成形したのち、炭化ないしは黒鉛化処理した炭素繊維強
化炭素材料を所定の形状に加工することを特徴とするガ
ラス容器製造用治具材の製造方法である。
[Means for Solving the Problems] The present invention involves filtering an aqueous dispersion slurry of a raw material containing short carbon fibers and pitch powder to form a layer of the raw material on the surface of a filter medium having a predetermined surface shape. A method for producing a jig material for manufacturing glass containers, which comprises: producing a preform, compression molding the preform, and then processing carbonized or graphitized carbon fiber-reinforced carbon material into a predetermined shape. It is.

【0006】本発明で用いる補強用の炭素繊維の短繊維
は、連続紡糸によらない短繊維又は連続繊維のチョップ
をいい、ポリアクリロニトリル系、レーヨン系、ピッチ
系のいずれであってもよく、また炭素質、黒鉛質のいず
れであってもよい。
[0006] The reinforcing carbon fiber short fibers used in the present invention refer to short fibers not produced by continuous spinning or chopped continuous fibers, and may be polyacrylonitrile-based, rayon-based, or pitch-based. It may be either carbonaceous or graphite.

【0007】マトリックスとなるピッチ粉末は、加熱す
ることにより溶融し、成形時に炭素繊維をつなぎとめて
賦形するバインダーとしての作用を有するものであり、
石油系、タール系のいずれのピッチであってもよいが、
焼成後の残炭率が高いものが望ましい。そのような意味
で高軟化点のピッチ、好ましくは軟化点150〜350
℃、より好ましくは200〜300℃のタ−ルピッチが
有利である。また、ピッチ粉末の粒径が大きすぎるとピ
ッチが炭素繊維間に充分に入らないので、高強度のC/
Cコンポジットを得るためには、粒径100μm以下と
することが望ましい。
[0007] The pitch powder that serves as the matrix melts when heated and has the function of a binder that binds and shapes the carbon fibers during molding.
The pitch may be either petroleum-based or tar-based, but
It is desirable that the residual carbon content after firing is high. In this sense, a pitch with a high softening point, preferably a softening point of 150 to 350
A tar pitch of 200 DEG to 300 DEG C. is advantageous. In addition, if the particle size of the pitch powder is too large, the pitch will not be able to enter between the carbon fibers, so high strength C/
In order to obtain a C composite, it is desirable that the particle size be 100 μm or less.

【0008】炭素繊維の短繊維とピッチ粉末の割合は、
C/Cコンポジットとしたとき、炭素繊維の含有率が5
〜60体積%、好ましくは10〜45体積%程度となる
ようにすることが望ましい。なお、残炭率を高める目的
で、コークスや黒鉛等の炭素質粉末を加えてもよいが、
この場合も炭素繊維の含有率を上記の範囲とすることが
よい。
[0008] The ratio of carbon fiber short fibers and pitch powder is
When made into a C/C composite, the carbon fiber content is 5
It is desirable that the content be about 60% by volume, preferably about 10-45% by volume. In addition, carbonaceous powder such as coke or graphite may be added for the purpose of increasing the residual carbon ratio, but
In this case as well, the carbon fiber content is preferably within the above range.

【0009】炭素繊維とピッチを含む原料はこれを水分
散スラリ−とするが、この方法としては、事前にプリプ
レグ等にしてから水中に投入してもよいし、両者を別々
に水中に投入して、分散させスラリー状としてもよい。
[0009] The raw materials containing carbon fibers and pitch are made into a water-dispersed slurry, but this method can be made into prepreg etc. in advance and then put into water, or the two can be put into water separately. It may also be dispersed to form a slurry.

【0010】この水分散スラリーを濾過して、濾材表面
に原料の層を形成させて予備成形体を作る。濾材として
は金網等が挙げられ、この表面形状はあらかじめ所望の
形状の予備成形体が得られるように設定される。例えば
、平面形状のものを得るときには表面が平らな濾材を、
円筒形状のものを得るときには円筒状の濾材を使用する
。濾過は吸引濾過であっても、加圧濾過であっても実施
可能であるが、均一性と形状の精密性を高めるには、連
続式加圧濾過法が優れている。この方法によれば、スラ
リーの流れに応じて濾材表面には徐々に原料の層が形成
されるが、原料の層の厚みに差があるとスラリーの流れ
に差が生じて、結果として均一な層の厚みとなる。
[0010] This water-dispersed slurry is filtered to form a layer of the raw material on the surface of the filter medium to produce a preform. Examples of the filter medium include a wire mesh, and the surface shape of the filter medium is set in advance so as to obtain a preform of a desired shape. For example, when obtaining a planar filter medium, use a filter medium with a flat surface.
When obtaining a cylindrical filter, a cylindrical filter medium is used. Although filtration can be carried out by suction filtration or pressure filtration, continuous pressure filtration is superior in order to improve uniformity and shape precision. According to this method, a layer of raw material is gradually formed on the surface of the filter medium according to the flow of the slurry, but if there is a difference in the thickness of the raw material layer, a difference will occur in the flow of the slurry, resulting in a uniform layer. The thickness of the layer.

【0011】所定の厚みが得られたら濾過を止め、予備
成形体として取り出す。得られた予備成形体は必要によ
り、切断、折り曲げ等の処理をしたのち、圧縮成形する
。圧縮成形の方法としては、加熱下に行うホットプレス
法、オートクレーブ成形法、ラバープレス法、真空成形
法等が挙げられる。
[0011] When a predetermined thickness is obtained, filtration is stopped and the preform is taken out. The obtained preform is subjected to cutting, bending, etc., if necessary, and then compression molded. Examples of the compression molding method include a hot press method performed under heating, an autoclave molding method, a rubber press method, a vacuum molding method, and the like.

【0012】得られた成形体は、窒素、アルゴン等の非
酸化性雰囲気中で800℃以上、好ましくは1000℃
以上1500℃以下の温度で炭化焼成してC/Cコンポ
ジットの中間体を得る。この場合炭化時の昇温速度が速
すぎるとピッチの熱分解による収縮と、ガス発生が激し
くなり、大きな亀裂が発生しやすくなる。そのため昇温
速度は、通常100℃/hr以下、好ましくは20℃/
hr以下が望ましい。また、この時、ピッチの膨れを抑
制する目的で加圧下で炭化焼成するか、又は本発明者ら
の発明に係わる特開昭62−241871号公報に記載
されているように成形体を高温においても変形しない固
定材を用いて固定した状態で炭化焼成してもよい。この
ようにして得られたC/Cコンポジットの中間体につい
て、最終製品の耐酸化性、機械的強度を向上させるため
に、必要に応じてピッチ又は熱硬化性液状樹脂を含浸処
理して再焼成する操作および/又は化学蒸着処理(CV
D処理)をしてもよい。
[0012] The obtained molded body is heated at 800°C or higher, preferably at 1000°C in a non-oxidizing atmosphere such as nitrogen or argon.
Carbonization is performed at a temperature of 1500° C. or lower to obtain a C/C composite intermediate. In this case, if the temperature increase rate during carbonization is too fast, the pitch will shrink due to thermal decomposition and gas generation will be intense, making it easy for large cracks to occur. Therefore, the temperature increase rate is usually 100°C/hr or less, preferably 20°C/hr.
Desirably less than hr. In addition, at this time, in order to suppress pitch swelling, carbonization firing is performed under pressure, or the molded body is heated at a high temperature as described in Japanese Patent Application Laid-Open No. 62-241871, which is an invention of the present inventors. Carbonization firing may be performed in a fixed state using a fixing material that does not deform. In order to improve the oxidation resistance and mechanical strength of the final product, the C/C composite intermediate obtained in this way is impregnated with pitch or thermosetting liquid resin as necessary and then re-fired. operations and/or chemical vapor deposition (CV)
D processing) may be performed.

【0013】含浸処理では、該C/Cコンポジット中間
体を密閉容器にいれ容器内を数十mmHg以下の減圧に
して、内部に残存している気体を追い出し、次に上記容
器内にピッチ又は炭素材原料となる熱硬化性液状樹脂を
流し込み、さらに上記容器内を5〜100Kgf/cm
2 の圧力にし、該C/Cコンポジット中間体に上記物
質を含浸する。通常、ここで用いられる含浸材料として
は、ピッチ又はフェノール樹脂、フラン樹脂などの液状
の熱硬化性樹脂が使用される。また、この場合粘度を調
節する意味で上記物質を加熱しておいてもよい。CVD
処理では、該C/Cコンポジット中間体を炉に入れて1
000〜1500℃に加熱し、そこへメタン、プロパン
などの炭化水素ガスを、窒素、アルゴンなどで希釈し減
圧下で導入して分解炭化させ、熱分解炭素を炭素繊維表
面に沈着せしめる。
In the impregnation process, the C/C composite intermediate is placed in a sealed container, the pressure inside the container is reduced to several tens of mmHg or less, and the gas remaining inside is expelled, and then pitch or charcoal is added to the container. Pour the thermosetting liquid resin that will be the material raw material, and then heat the inside of the container at a rate of 5 to 100 kgf/cm.
The C/C composite intermediate is impregnated with the above material at a pressure of 2. Usually, the impregnating material used here is pitch or a liquid thermosetting resin such as phenol resin or furan resin. Further, in this case, the above substance may be heated in order to adjust the viscosity. CVD
In processing, the C/C composite intermediate is placed in a furnace and
The carbon fiber is heated to 000 to 1500°C, and a hydrocarbon gas such as methane or propane diluted with nitrogen or argon is introduced under reduced pressure to cause decomposition and carbonization, and pyrolyzed carbon is deposited on the surface of the carbon fiber.

【0014】更に、このC/Cコンポジットの中間体に
ついて、又はこれを含浸処理、再焼成する操作および/
又は化学蒸着処理したものについて、最終製品の耐酸化
性、熱伝導率を向上させるために、必要に応じて黒鉛化
処理をしてもよい。黒鉛化処理は、アルゴン等の非酸化
性雰囲気中で、通常1600〜3000℃、望ましくは
2000〜3000℃で行う。
[0014] Furthermore, the intermediate of this C/C composite, or the operation of impregnating it, re-firing it, and/or
Alternatively, for those subjected to chemical vapor deposition treatment, graphitization treatment may be performed as necessary in order to improve the oxidation resistance and thermal conductivity of the final product. The graphitization treatment is carried out in a non-oxidizing atmosphere such as argon at a temperature of usually 1600 to 3000°C, preferably 2000 to 3000°C.

【0015】このようにして得られたC/Cコンポジッ
トは、炭素繊維の配向等が少なく、均一性に優れるばか
りでなく、炭素繊維の短繊維が水中で完全に開繊され、
立体的に絡みあっているため、層間剪断強度が高く、加
工をするときに層間剥離を起こしにくい。また、易黒鉛
化性材料であるピッチをマトリックス原料として使用し
ているために、ガラス製造用治具材として用いた時に、
耐酸化性、耐摩耗性が高いという特徴がある。
The C/C composite thus obtained not only has excellent uniformity with less orientation of carbon fibers, but also has short carbon fibers that are completely opened in water.
Because they are intertwined three-dimensionally, the interlayer shear strength is high and delamination is less likely to occur during processing. In addition, since pitch, which is an easily graphitizable material, is used as a matrix raw material, when used as a jig material for glass manufacturing,
It is characterized by high oxidation resistance and wear resistance.

【0016】このC/Cコンポジットは、次いで所定の
形状に加工して、ガラス容器製造用治具材とする。本発
明でいうガラス容器製造用治具材は、マシンデッドプレ
ート等のデッドプレート類、テークアウトトング、プッ
シャーパッド、ウェアトランスファーパッド、スタッカ
ーバーのパッド等であり、高温のガラス容器が直接接触
する部材に適用することができる。そして、所定の形状
に加工するとは、デッドプレート類については、所定の
大きさに切断すること、ガラス容器の滑りをよくするた
めに搬送方向に平行に溝加工をすること、冷却用の空気
穴を多数設けることなどであり、トング類については、
ガラス容器の首部をはさみ把持するために、首部の輪郭
に適合するような半円状の湾曲部を持つように切削する
ことなどであり、パッド類については、所定の大きさに
切断することや、ネジ止め又はリベット止めするための
穴をあけること、ガラス容器と接する面を容器の形状に
あわせて三角形などに切削することなどである。特に、
精密な加工を必要とする部材であるデッドプレート類、
トング類に適用することが、この材料の特徴を充分に発
揮するうえで有利である。
[0016] This C/C composite is then processed into a predetermined shape and used as a jig material for manufacturing glass containers. The glass container manufacturing jig materials referred to in the present invention include dead plates such as machine dead plates, take-out tongs, pusher pads, wear transfer pads, stacker bar pads, etc., and members that come into direct contact with high-temperature glass containers. It can be applied to Machining into a predetermined shape means cutting dead plates to a predetermined size, cutting grooves parallel to the transport direction to improve the sliding of glass containers, and creating air holes for cooling. As for tongs,
In order to grip the neck of a glass container with scissors, it is cut to have a semicircular curved part that fits the contour of the neck, and pads are cut to a predetermined size or cut to a specified size. , drilling holes for screws or rivets, and cutting the surface that contacts the glass container into a triangular shape or the like to match the shape of the container. especially,
Dead plates, which are parts that require precision processing,
Application to tongs is advantageous in fully demonstrating the characteristics of this material.

【0017】[0017]

【実施例】実施例1 繊維長10mmのポリアクリロニトリル系炭素繊維のチ
ョップと、軟化点250℃のピッチ微粉とを1:2(重
量比)の割合で水中に分散し、30×30cmの平な濾
材をセットした予備成形槽にスラリーポンプで圧入し濾
過を行った。約5cmの厚みとなったところで濾過を止
め、予備成形体を得た。この板状の予備成形体を550
℃まで100℃/hrの条件で昇温させ、ホットプレス
したのち、1000℃で炭化処理してC/Cコンポジッ
トの中間体(一次炭化品)を得た。この一次炭化品の炭
素繊維含有率は55体積%であった。次に、このC/C
コンポジットの中間体に、温度200℃、圧力10kg
/cm2 の条件で含浸ピッチを含浸したのち、これを
窒素雰囲気中にて10℃/hrの昇温速度で1000℃
まで昇温したのち、徐冷してC/Cコンポジットの中間
体(二次炭化品)を得た。更に、この中間体に前記と同
様のピッチ含浸、炭化処理3回繰り返し、その後、これ
をアルゴン雰囲気中にて2000℃まで昇温し、1hr
保持して黒鉛化して炭素繊維強化炭素材料とした。
[Example] Example 1 Chopped polyacrylonitrile carbon fiber with a fiber length of 10 mm and fine pitch powder with a softening point of 250°C were dispersed in water at a ratio of 1:2 (weight ratio). The slurry was press-fitted with a slurry pump into a preforming tank in which a filter medium had been set, and filtration was performed. Filtration was stopped when the thickness reached about 5 cm, and a preform was obtained. This plate-shaped preformed body was
℃ at a rate of 100° C./hr, hot-pressed, and then carbonized at 1000° C. to obtain a C/C composite intermediate (primary carbonized product). The carbon fiber content of this primary carbonized product was 55% by volume. Next, this C/C
Temperature 200℃, pressure 10kg for composite intermediate
/cm2, and then heated to 1000°C at a heating rate of 10°C/hr in a nitrogen atmosphere.
After the temperature was raised to 1, the mixture was slowly cooled to obtain a C/C composite intermediate (secondary carbonized product). Furthermore, the same pitch impregnation and carbonization treatment as above was repeated three times on this intermediate, and then the temperature was raised to 2000°C in an argon atmosphere for 1 hour.
It was retained and graphitized to produce a carbon fiber-reinforced carbon material.

【0018】この炭素繊維強化炭素材料から、幅3mm
、深さ2mm、長さ280mmの溝を中央部に6mm間
隔に11本設けた、幅195mm×長さ280mm×厚
み8mmのデッドプレートを切り出した。また、同様に
、幅70mm×長さ70mm×厚み6.35mmの平板
を切り出し、その中央部に、直径30mmの穴をあけた
のち、開口部の中心線を通るように半分に切断してトン
グを得た。加工は超硬バイトを用いて行い、得られたデ
ッドプレートおよびトングは端部の欠け、傷もなく、き
れいにできていた。
[0018] From this carbon fiber reinforced carbon material, a width of 3 mm
A dead plate measuring 195 mm wide x 280 mm long x 8 mm thick was cut out, with 11 grooves 2 mm deep and 280 mm long arranged at 6 mm intervals in the center. Similarly, cut out a flat plate 70 mm wide x 70 mm long x 6.35 mm thick, make a hole 30 mm in diameter in the center, cut it in half along the center line of the opening, and use tongs. I got it. The processing was carried out using a carbide cutting tool, and the dead plate and tongs obtained were clean and had no chips or scratches on the edges.

【0019】比較例1 8枚朱子織ポリアクリロニトリル系炭素繊維クロス(3
000フィラメント)にフェノール樹脂(AVライト 
 RM−3000A)の30重量%水溶液を含浸、乾燥
し、プリプレグとした。このプリプレグを金型に積層し
、温度150℃、圧力50kg/cm2 でプレス成形
し成形体を得た。次に、この成形体を窒素雰囲気中にて
10℃/hrの昇温速度で1000℃まで昇温したのち
徐冷してC/Cコンポジットの中間体(一次炭化品)を
得た。この一次炭化品の炭素繊維含有率は55体積%で
あった。次に、このC/Cコンポジットの中間体に実施
例1と同様にピッチ含浸、炭化処理を4回繰り返し、引
き続いてアルゴン雰囲気中にて2000℃まで昇温し、
1hr保持して黒鉛化し炭素繊維強化炭素材料とした。 この炭素繊維強化炭素材料から実施例1と同じ方法で、
トングを切り出した。
Comparative Example 1 8-ply satin weave polyacrylonitrile carbon fiber cloth (3
000 filament) and phenolic resin (AV Light
RM-3000A) was impregnated with a 30% by weight aqueous solution and dried to obtain a prepreg. This prepreg was laminated in a mold and press-molded at a temperature of 150° C. and a pressure of 50 kg/cm 2 to obtain a molded article. Next, this molded body was heated to 1000° C. at a heating rate of 10° C./hr in a nitrogen atmosphere, and then slowly cooled to obtain a C/C composite intermediate (primary carbonized product). The carbon fiber content of this primary carbonized product was 55% by volume. Next, this C/C composite intermediate was subjected to pitch impregnation and carbonization four times in the same manner as in Example 1, and then the temperature was raised to 2000°C in an argon atmosphere.
The mixture was maintained for 1 hour and graphitized to obtain a carbon fiber-reinforced carbon material. From this carbon fiber reinforced carbon material, in the same manner as in Example 1,
I cut out the tongs.

【0020】比較例2 現在、ガラス容器製造用に使用されている高密度黒鉛材
についても、比較のため、実施例1と同じ方法でトング
を切り出した。
Comparative Example 2 For comparison, tongs were cut out of high-density graphite material currently used for manufacturing glass containers in the same manner as in Example 1.

【0021】実施例および比較例の炭素繊維強化炭素材
料又は高密度黒鉛材について、空気流中(500cc/
min)、400℃で24hr保持して酸化試験を実施
すると共に、常温にて三点曲げ試験を行った。また、実
施例および比較例で得たトングについて、摩耗試験機を
用いて、下記条件による性能評価を行った。この時の摩
耗量は、トング表面をガラス丸棒によってこすり、削ら
れた溝の深さによって評価した。 [試験条件] 荷重:1.5kg                相
手材:ガラス丸棒摺動幅:20mm         
       摺動回数:1000回 摺動速度:21mm/sec 試験結果を表1に示す。
The carbon fiber-reinforced carbon materials or high-density graphite materials of Examples and Comparative Examples were tested in air flow (500 cc/
An oxidation test was conducted by holding the sample at 400° C. for 24 hours, and a three-point bending test was conducted at room temperature. Further, the performance of the tongs obtained in Examples and Comparative Examples was evaluated using an abrasion tester under the following conditions. The amount of wear at this time was evaluated by rubbing the surface of the tongs with a glass round rod and determining the depth of the grooves cut. [Test conditions] Load: 1.5 kg Mating material: Glass round bar Sliding width: 20 mm
Number of sliding movements: 1000 times Sliding speed: 21 mm/sec The test results are shown in Table 1.

【0022】[0022]

【表1】[Table 1]

【0023】以上のように、本方法で製造した炭素繊維
強化炭素材料は、ガラス容器製造用治具材として現在の
高密度黒鉛材より強度が高く、耐摩耗特性に優れている
。また、従来のクロスを積層した炭素繊維強化炭素材料
よりも耐酸化性が高く、耐摩耗特性に優れていることが
わかる。
As described above, the carbon fiber-reinforced carbon material produced by the present method has higher strength and excellent wear resistance than the current high-density graphite material used as a jig material for manufacturing glass containers. It is also found that the material has higher oxidation resistance and superior wear resistance than conventional carbon fiber-reinforced carbon materials laminated with cloth.

【0024】[0024]

【発明の効果】本発明の方法によると加工性が良く、耐
酸化性、耐摩耗性に優れたガラス容器製造用治具材を製
造することができる。
[Effects of the Invention] According to the method of the present invention, it is possible to produce a jig material for manufacturing glass containers that has good workability, excellent oxidation resistance, and abrasion resistance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  炭素繊維の短繊維とピッチ粉末とを含
有する原料の水分散スラリーを濾過して所定の表面形状
を有する濾材表面に原料の層を形成させて予備成形体を
作り、この予備成形体を圧縮成形したのち、炭化ないし
は黒鉛化処理した炭素繊維強化炭素材料を所定の形状に
加工することを特徴とするガラス容器製造用治具材の製
造方法。
Claim 1: A preform is produced by filtering an aqueous dispersion slurry of a raw material containing short carbon fibers and pitch powder to form a layer of the raw material on the surface of a filter medium having a predetermined surface shape. A method for manufacturing a jig material for manufacturing glass containers, which comprises compression molding a molded body and then processing a carbonized or graphitized carbon fiber-reinforced carbon material into a predetermined shape.
JP07224791A 1991-03-12 1991-03-12 Manufacturing method of jig material for glass container manufacturing Expired - Fee Related JP3244281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07224791A JP3244281B2 (en) 1991-03-12 1991-03-12 Manufacturing method of jig material for glass container manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07224791A JP3244281B2 (en) 1991-03-12 1991-03-12 Manufacturing method of jig material for glass container manufacturing

Publications (2)

Publication Number Publication Date
JPH04285066A true JPH04285066A (en) 1992-10-09
JP3244281B2 JP3244281B2 (en) 2002-01-07

Family

ID=13483775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07224791A Expired - Fee Related JP3244281B2 (en) 1991-03-12 1991-03-12 Manufacturing method of jig material for glass container manufacturing

Country Status (1)

Country Link
JP (1) JP3244281B2 (en)

Also Published As

Publication number Publication date
JP3244281B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
US4240835A (en) Method of making a shaped silicon carbide-silicon matrix composite and articles made thereby
US4294788A (en) Method of making a shaped silicon carbide-silicon matrix composite and articles made thereby
US5665464A (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
CN108658613A (en) A kind of method that staple fiber molding prepares automobile brake disc
CN104926347A (en) Pantograph pan composite material for high-speed electric multiple units and preparation method of pantograph pan composite material
CN115028456B (en) Preparation method of silicon carbide fiber waste silk reinforced silicon carbide ceramic matrix composite material
EP0601808B1 (en) Process for producing carbon preform
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
CN114920574A (en) Method for preparing large-size carbon-carbon crucible by three-dimensional weaving of carbon fibers
Aleshkevich et al. High performance carbon–carbon composites obtained by a two-step process from phthalonitrile matrix composites
CN109095929B (en) Preparation method of carbon-ceramic brake disc
CN116856171A (en) Preparation method of modified carbon fiber suitable for preparing carbon/ceramic brake disc by mould pressing process
JPH04285066A (en) Production of jig material for producing glass vessel
JP3244280B2 (en) Manufacturing method of jig material for glass container manufacturing
JP2002255664A (en) C/c composite material and production method therefor
JPH0848509A (en) Production of carbonaceous porous body
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP3244279B2 (en) Manufacturing method of jig material for glass container manufacturing
Nagao et al. Manufacture of Unidirectional Carbon Fiber Reinforced Carbon Composites by Preformed-Yarn Method
CN117362063A (en) Short fiber carbon fiber reinforced carbon-carbon sagger and preparation method thereof
JPS62252371A (en) Manufacture of carbon fiber reinforced carbon composite material
JPS63151677A (en) Carbon fiber reinforced carbon composite material
JP3599791B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
CN118125862A (en) Carbon ceramic composite material and preparation method and application thereof
JPH0561223B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010918

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees