JP3242970B2 - Zirconia powder composition for tumbling granulation - Google Patents

Zirconia powder composition for tumbling granulation

Info

Publication number
JP3242970B2
JP3242970B2 JP03298792A JP3298792A JP3242970B2 JP 3242970 B2 JP3242970 B2 JP 3242970B2 JP 03298792 A JP03298792 A JP 03298792A JP 3298792 A JP3298792 A JP 3298792A JP 3242970 B2 JP3242970 B2 JP 3242970B2
Authority
JP
Japan
Prior art keywords
powder
zirconia
sphere
spheres
zirconia powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03298792A
Other languages
Japanese (ja)
Other versions
JPH05193944A (en
Inventor
道行 相本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkato Corp
Tosoh Corp
Original Assignee
Nikkato Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkato Corp, Tosoh Corp filed Critical Nikkato Corp
Priority to JP03298792A priority Critical patent/JP3242970B2/en
Publication of JPH05193944A publication Critical patent/JPH05193944A/en
Application granted granted Critical
Publication of JP3242970B2 publication Critical patent/JP3242970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特に転動造粒法により
ジルコニア球体を製造する場合に適した原料ジルコニア
粉末組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw zirconia powder composition particularly suitable for producing zirconia spheres by a rolling granulation method.

【0002】[0002]

【従来の技術】近年、各種産業分野で原料粉体の微粉化
への傾向が高まりつつあり、高速攪拌ミル等の粉砕機に
粉砕媒体として使用されるセラミックス球体も粉砕効率
を良くするために小粒径化傾向にある。
2. Description of the Related Art In recent years, there has been an increasing tendency to pulverize raw material powders in various industrial fields, and ceramic spheres used as a pulverizing medium in pulverizers such as high-speed agitating mills have also been reduced to improve pulverization efficiency. There is a tendency to increase the particle size.

【0003】また、高速攪拌ミル等に使用されるセラミ
ックス球体には高真球度,高密度,高強度,高耐磨耗性
等が要求され、これらの特性を満足するセラミックス球
体としてジルコニア球体が注目されている。
[0003] Ceramic spheres used in high-speed stirring mills and the like are required to have high sphericity, high density, high strength, high wear resistance, etc. Zirconia spheres are ceramic spheres satisfying these characteristics. Attention has been paid.

【0004】従来よりジルコニア粉末を直径20mm以
下の小粒径球体に成形する方法としては、大量に比較的
低コストで成形できる転動造粒法が一般的に知られてい
る。また、使用される造粒機としては、皿型造粒機,ド
ラム型造粒機が代表的な転動造粒機として広く利用され
ている。
Conventionally, as a method of forming zirconia powder into small-diameter spheres having a diameter of 20 mm or less, a rolling granulation method capable of forming a large amount at a relatively low cost is generally known. As the granulator used, a dish granulator and a drum granulator are widely used as typical rolling granulators.

【0005】このような成形法で得られる球体を乾燥し
た後、焼成することによりジルコニアの小粒径球体が得
られる。
The sphere obtained by such a molding method is dried and then fired to obtain a zirconia small-diameter sphere.

【0006】粉砕媒体として使用されるジルコニア球体
には前記したような機械的特性が要求されるため、球体
の製造に使用される原料ジルコニア粉末は高純度でかつ
微粉末なものが主に用いられている。
Since the zirconia spheres used as the grinding media are required to have the above-mentioned mechanical properties, the zirconia raw material used for the production of the spheres is mainly of high purity and fine powder. ing.

【0007】このような高純度ジルコニア微粉末は、現
在種々の製法により製造されている。例えば、中和共沈
法,加水分解法,水熱酸化法,熱分解法等が一般的に知
られている。これらの製法により製造されるジルコニア
粉末はそれぞれに粉末特性,焼結特性が微妙に異なるこ
とから、一般的には用途や成形方法に適した粉末を選定
して使用されている。
[0007] Such high-purity zirconia fine powder is currently manufactured by various manufacturing methods. For example, a neutralization coprecipitation method, a hydrolysis method, a hydrothermal oxidation method, a thermal decomposition method and the like are generally known. Since zirconia powders produced by these production methods have slightly different powder characteristics and sintering characteristics, powders suitable for the intended use and molding method are generally selected and used.

【0008】[0008]

【発明が解決しようとする課題】ジルコニア粉末の転動
造粒においても、前記した製法による全てのジルコニア
粉末が使用できる訳ではなく、例えば、転動成形中に
球体同士の付着が起こり成形が困難である、真球度の
良い球体が得られない、高密度,高強度な焼結球体が
得られない等のさまざまな問題を生じる場合がある。し
かしながら、これらの諸問題の原因が明確化されていな
いのが現状である。
In rolling granulation of zirconia powder, not all zirconia powders produced by the above-mentioned manufacturing method can be used. For example, spheres adhere to each other during rolling molding and molding is difficult. There are cases where various problems occur, such as that a sphere having good sphericity cannot be obtained, and a sintered sphere having high density and high strength cannot be obtained. However, at present, the causes of these problems have not been clarified.

【0009】本発明の目的は、これらの諸問題の原因を
明確化し、転動造粒にて容易に真球度の良い均質かつ高
密度の成形体を得、これを焼結することにより機械的特
性に優れるジルコニア球体を得ることができる、ジルコ
ニア粉末組成物を提供することにある。
An object of the present invention is to clarify the causes of these problems and obtain a homogeneous and high-density compact having good sphericity easily by tumbling granulation and sintering the compact. To provide a zirconia powder composition from which zirconia spheres having excellent mechanical properties can be obtained.

【0010】[0010]

【課題を解決するための手段】本発明者は種々検討した
結果、転動造粒に適した原料ジルコニア粉末の粉末特性
を見出し、本発明に到達した。
As a result of various studies, the present inventors have found powder characteristics of raw zirconia powder suitable for tumbling granulation, and have reached the present invention.

【0011】すなわち、本発明は、ジルコニア粉末と安
定化剤とからなり、粉末の平均粒子径が0.5〜2.0
μmであり、BET比表面積が3〜12m/gであ
り、かつ、該粉末をスラリー化したときのpHが6〜8
となる、転動造粒用ジルコニア粉末組成物である。
That is, the present invention comprises a zirconia powder and a stabilizer, and the powder has an average particle size of 0.5 to 2.0.
μm, a BET specific surface area of 3 to 12 m 2 / g, and a pH of 6 to 8 when the powder is slurried.
Which is a zirconia powder composition for tumbling granulation.

【0012】以下本発明をさらに詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0013】転動造粒法によるジルコニア球体の製造方
法は、転動造粒法によりジルコニア粉末を水をバインダ
ーとして最初に微細な球体の核を生成させ、引き続き核
を転動成長させて目的とする大きさの球体に成形し、次
に得られた成形体を100〜200℃で乾燥させ、14
00〜1600℃で焼成するものである。
A method for producing zirconia spheres by the rolling granulation method is to first produce fine sphere nuclei by using zirconia powder with water as a binder by the rolling granulation method, and then to subject the nuclei to rolling growth to achieve the object. And then dried at 100 to 200 ° C.
It is fired at 00 to 1600 ° C.

【0014】このようにしてジルコニア球体を製造する
うえで、成形が容易であること、得られる成形体の
真球度が良く均質かつ高密度であること、成形球体の
焼結性が良いこと、得られる焼結球体が緻密で機械的
特性に優れること、等の条件を全て満足することが必要
である。
In producing the zirconia spheres in this way, the spheres are easy to form, the sphericity of the obtained spheres is good, uniform and high density, and the sinterability of the spheres is good. It is necessary that the obtained sintered spheres satisfy all conditions such as being dense and having excellent mechanical properties.

【0015】このような製造条件を全て満足するために
は、前記した範囲の限られた粉末特性を有するジルコニ
ア粉末を使用することが必要であることが判明した。
[0015] It has been found that in order to satisfy all of the above production conditions, it is necessary to use zirconia powder having powder characteristics limited in the above-mentioned range.

【0016】まず原料ジルコニア粉末の平均粒子径が
0.5〜2.0μmの範囲であることが必要である。
First, it is necessary that the average particle diameter of the raw zirconia powder is in the range of 0.5 to 2.0 μm.

【0017】成形球体の強度は粉末の粒子径に反比例す
るため、平均粒子径が2.0μmより大きい粉末の場
合、成形球体の機械的強度や保形性が低下し、後工程の
乾燥操作や焼結操作中の外的荷重に耐えられず成形球体
の崩壊等が起こるため製造上好ましくない。また、粉末
粒子径が大きくなると焼結性が低下し緻密な焼結体が得
られ難くなり、焼結体の機械的特性も低下する。
Since the strength of the molded sphere is inversely proportional to the particle diameter of the powder, when the average particle diameter is larger than 2.0 μm, the mechanical strength and the shape retention of the molded sphere are reduced, and the drying operation in the subsequent step is difficult. Since it cannot withstand an external load during the sintering operation and the molded spheres collapse, the production is not preferable. Further, when the particle diameter of the powder increases, the sinterability decreases, and it becomes difficult to obtain a dense sintered body, and the mechanical properties of the sintered body also deteriorate.

【0018】ジルコニア粉末を成形,焼結して焼結体を
得る場合、微粉末である程易焼結性で緻密な焼結体が得
られることから、一般的にはジルコニア微粉末が多用さ
れているが、転動造粒法の場合は粉末を転がして球体を
成形する方法であるため、平均粒子径が0.5μmより
小さい微粉末になると粉末の嵩密度が小さく球体の転動
圧密化が悪くなり高密度の成形球体が得られ難くなるた
め製造上好ましくない。
When a sintered body is obtained by molding and sintering a zirconia powder, a finer powder can be easily sintered and a dense sintered body can be obtained. However, in the case of the tumbling granulation method, the powder is rolled to form a sphere, so that when the average particle diameter becomes smaller than 0.5 μm, the powder has a small bulk density and a rolling compaction of the sphere. And it becomes difficult to obtain a high-density molded sphere, which is not preferable in production.

【0019】また、成形途中の球体表面に、粉末中に含
有する超微粒子の影響で非常に平滑な界面が生成する。
その結果、転動成長した球体の内部に成形,成長途中に
生成した界面が年輪状に欠陥として残存し、この欠陥が
焼結体の機械的特性の低下の原因となるため好ましくな
い。さらに、原料ジルコニア粉末中の超微粒子含有量が
多くなると球体表面の付着性が強くなり、転動造粒中に
球体同士の付着が起こり易く真球度の良い球体が得られ
難くなる。
In addition, a very smooth interface is formed on the surface of the sphere during molding due to the effect of the ultrafine particles contained in the powder.
As a result, the interface formed during the rolling and growth of the sphere and formed during the growth remains as an annual ring-shaped defect, and this defect is undesirable because it causes a decrease in the mechanical properties of the sintered body. Further, when the content of the ultrafine particles in the raw material zirconia powder is increased, the adhesion of the sphere surface becomes strong, and the spheres easily adhere to each other during rolling granulation, so that it is difficult to obtain a sphere having good sphericity.

【0020】以上のようなことから、ジルコニア粉末の
平均粒子径が0.5〜2.0μmの範囲であるものが好
適に使用できるが、該平均粒子径が0.5〜1.0μm
のもがさらに好ましい。粉末の粒度分布としては、微粒
子含有量が少なく、また、5μm以上の粗大粒を含有し
ないものがより好ましい。
From the above, zirconia powder having an average particle size in the range of 0.5 to 2.0 μm can be preferably used, but the average particle size of the zirconia powder is 0.5 to 1.0 μm.
Is more preferred. As the particle size distribution of the powder, those having a small content of fine particles and not containing coarse particles of 5 μm or more are more preferable.

【0021】次に、原料ジルコニア粉末のBET比表面
積が3〜12m/g、好ましくは5〜10m/gの
範囲であることも必要である。
Next, the BET specific surface area of the raw zirconia powder must be in the range of 3 to 12 m 2 / g, preferably 5 to 10 m 2 / g.

【0022】粉末のBET比表面積が12m/gより
大きくなると、成形に必要な水分量も当然多くなり、そ
の結果、水の表面張力の影響で球体同士の付着が強まり
真球度の良い球体が得られ難くなり好ましくない。ま
た、成形水分量が多くなると成形体の密度も低下するた
め緻密な焼結体が得られ難くなる。
When the BET specific surface area of the powder is larger than 12 m 2 / g, the amount of water required for molding naturally increases, and as a result, the adhesion between the spheres is increased due to the effect of the surface tension of water, and the spheres having good sphericity are obtained. Is difficult to obtain. Further, when the amount of molding water is increased, the density of the molded body is also reduced, so that it is difficult to obtain a dense sintered body.

【0023】粉末のBET比表面積が3m/gより小
さくなると成形性が向上する反面、特に焼結性が低下し
緻密な焼結体を得るために高温度が必要となるので製造
上好ましくない。
If the BET specific surface area of the powder is less than 3 m 2 / g, the moldability is improved, but in particular, the sinterability is reduced and a high temperature is required to obtain a dense sintered body, which is not preferable in production. .

【0024】さらに、ジルコニア粉末はそれをスラリー
化したときのpHが6〜8の範囲となるものであること
が必要である。
Further, it is necessary that the zirconia powder has a pH of 6 to 8 when it is slurried.

【0025】このpHが8より高くなる粉末は、粉末粒
子間の凝集が強くなり、転動造粒時の粉末供給が不均一
となり易く球体の均質な成長が妨げられる。その結果、
球体の真球度が悪くなったり球体内部の均質性が低下し
焼結体の機械的特性が低下するため好ましくない。
In the powder having a pH higher than 8, the agglomeration between the powder particles becomes stronger, and the powder supply during rolling granulation tends to be non-uniform, so that the uniform growth of spheres is prevented. as a result,
It is not preferable because the sphericity of the sphere deteriorates, the homogeneity inside the sphere decreases, and the mechanical properties of the sintered body decrease.

【0026】このpHが6より低くなる粉末は、水中で
の粉末粒子の分散性が良くなり、転動造粒時粉末と混合
した水分量が少し変動しただけで流動性が大きく変動す
るので、水分調整が困難である。また、転動造粒時水分
量がスラリー化を起こす直前になったときに、外部圧力
の有無により固化したりスラリー化したりするダイラタ
ンシー現象を呈する場合もあり、同様に転動造粒時の水
分調整が非常に困難となり、現実には造粒不可能とな
る。
In the powder having a pH lower than 6, the dispersibility of the powder particles in water is improved, and the fluidity of the powder greatly changes only by slightly changing the amount of water mixed with the powder during tumbling granulation. It is difficult to adjust moisture. In addition, when the water content at the time of tumbling granulation becomes just before slurrying, a dilatancy phenomenon of solidification or slurrying depending on the presence or absence of external pressure may be exhibited. Adjustment becomes very difficult and in practice granulation becomes impossible.

【0027】以上のように転動造粒法によりジルコニア
球体を製造する場合には、ジルコニア粉末の粉末特性の
それぞれが成形性,球体真球度,成形体密度,焼結性,
焼結体の機械的特性へ大きく影響を及ぼすため、原料ジ
ルコニア粉末の粉末特性が非常に重要となる。
As described above, when zirconia spheres are manufactured by the rolling granulation method, the powder characteristics of the zirconia powder include the formability, sphericity, compact density, sinterability, and the like.
Since the mechanical properties of the sintered body are greatly affected, the powder properties of the raw zirconia powder are very important.

【0028】次に、ジルコニア粉末中の安定化剤として
は、通常Y2O3,CaO,MgO等が一般的に使用さ
れ、例えば、Y2O3の場合には2.0〜5.0mol
%含有する粉末を使用すれば焼結時の単斜晶系や等軸晶
系ジルコニアの生成が適度に抑制されて、機械的特性に
優れた焼結体を得ることができる。
Next, as a stabilizer in the zirconia powder, Y2O3, CaO, MgO or the like is generally used. For example, in the case of Y2O3, 2.0 to 5.0 mol is used.
%, The production of monoclinic or equiaxed zirconia during sintering is appropriately suppressed, and a sintered body having excellent mechanical properties can be obtained.

【0029】また、安定化剤はジルコニア粉末の製造工
程中に添加する方法、あるいは、ジルコニア粉末と直接
機械的混合する方法とがあるが特に限定されるものでは
ない。
The stabilizer may be added during the production process of the zirconia powder, or may be directly mechanically mixed with the zirconia powder, but the method is not particularly limited.

【0030】その他、ジルコニアの焼結助剤としてAl
2O3などを添加した粉末も焼結性が向上し好適に使用
することができる。
In addition, Al is used as a sintering aid for zirconia.
Powders to which 2O3 or the like has been added have improved sinterability and can be suitably used.

【0031】[0031]

【発明の効果】本発明の粉末特性の範囲であるジルコニ
ア粉末を使用することにより、転動造粒操作が容易に実
施でき、真球度の良い均質かつ高密度の成形体が得ら
れ、これを焼結することにより機械的特性に優れたジル
コニア球体が得られる。
The use of zirconia powder within the range of the powder characteristics of the present invention makes it possible to easily perform the rolling granulation operation and obtain a homogeneous and high-density compact having good sphericity. By sintering, zirconia spheres having excellent mechanical properties can be obtained.

【0032】[0032]

【実施例】【Example】

実施例1〜7および比較例1〜6 Yを添加したオキシ塩化ジルコニウム水溶液を出
発原料として、加水分解によりYを3mol%含
有する、表1に示す粉末特性を有する種々のジルコニア
粉末を合成した。
Examples 1 to 7 and Comparative Examples 1 to 6 Starting from an aqueous solution of zirconium oxychloride to which Y 2 O 3 was added, various kinds of powders containing 3 mol% of Y 2 O 3 by hydrolysis and having the powder properties shown in Table 1 were used. Zirconia powder was synthesized.

【0033】これらの粉末を用いて通常の皿型転動造粒
機を使用し、水をバインダーとしてそれぞれの球体を成
形した。得られた成形球体を150℃で乾燥させた後、
1500℃で2時間焼結して直径2mmのジルコニア球
体を得た。
Using these powders, each sphere was formed using a conventional dish-type tumbling granulator using water as a binder. After drying the obtained molded sphere at 150 ° C.,
Sintering was performed at 1500 ° C. for 2 hours to obtain a zirconia sphere having a diameter of 2 mm.

【0034】次に得られたジルコニア球体の諸物性を測
定した。その結果を表−1に示す。
Next, various physical properties of the obtained zirconia sphere were measured. Table 1 shows the results.

【0035】表1の圧潰荷重値は一球式で球体一個を圧
潰するのに必要な荷重値である。表1に示す実施例1〜
7の粉末特性は本発明の範囲内のものであり、平均粒子
径,BET比表面積,スラリーpHがそれぞれ多少異な
るため、表1に示すジルコニア球体の物性に多少のバラ
ツキが認められるが、転動成形性は良く得られたジルコ
ニア球体は全ての物性を満足するものであった。
The crushing load value in Table 1 is a load value required to crush one sphere in a one-ball system. Examples 1 to 1 shown in Table 1
The powder characteristics of No. 7 are within the range of the present invention, and the average particle diameter, BET specific surface area, and slurry pH are slightly different from each other. The zirconia spheres obtained with good moldability satisfied all the physical properties.

【0036】比較例1の平均粒子径が0.3μmである
粉末を使用したものは、成形時の球体同士の付着性が強
く、真球度の良い球体が得られなかった。
When the powder of Comparative Example 1 using the powder having an average particle diameter of 0.3 μm was used, the adhesion between the spheres at the time of molding was strong, and a sphere with good sphericity was not obtained.

【0037】また、比較例2の平均粒子径が2.5μm
の粉末を使用した場合、成形性は良好であったがジルコ
ニア球体の密度が低く、圧潰荷重の低い低強度のもので
あった。
The average particle size of Comparative Example 2 was 2.5 μm
When the powder was used, the compactability was good, but the density of the zirconia sphere was low, and the zirconia sphere was low in strength and low in crushing load.

【0038】比較例3と4はジルコニア粉末のBET比
表面積が異なり、比較例3のBET比表面積が2m2
gのものはジルコニア球体の密度が低いものであった。
Comparative Examples 3 and 4 differ in the BET specific surface area of the zirconia powder, and the BET specific surface area of Comparative Example 3 is 2 m 2 /
In the case of g, the density of zirconia spheres was low.

【0039】比較例4のBET比表面積が16m2 /g
のものは比較例1と同様に球体同士の付着性が強く真球
度の良い球体が得られなかった。
The BET specific surface area of Comparative Example 4 was 16 m 2 / g
As for Comparative Example 1, as in Comparative Example 1, adhesion between spheres was strong and a sphere with good sphericity could not be obtained.

【0040】比較例5のスラリーpHが5.0のもの
は、成形時に水を添加するとダイラタンシー現象を呈し
球体の成形ができなかった。
When water was added during molding, the slurry of Comparative Example 5 having a pH of 5.0 exhibited a dilatancy phenomenon and could not be molded into a sphere.

【0041】比較例6のスラリーpHが9.0のもの
は、真球度が悪く焼結体の強度の低いものであった。
In Comparative Example 6, when the slurry pH was 9.0, the sphericity was poor and the strength of the sintered body was low.

【0042】 表−1 ジルコニア粉末特性およびジルコニア球体の物性 ジルコニア粉末特性 ジルコニア球体物性 平均粒子径 BET 10wt% ※真球度 密度 圧潰荷重 No 比表面積 スラリー μm /g g/cm3 Kg 実施例1 0.7 7 7 1.03 6.08 290 2 1.2 6 7 1.02 6.07 280 3 1.5 5 7 1.02 6.07 270 4 1.0 11 7 1.03 6.08 280 5 1.2 4 7 1.02 6.07 270 6 1.0 6 6.2 1.03 6.08 290 7 1.0 6 7.5 1.03 6.08 280 比較例1 0.3 12 7 1.07 6.08 220 2 2.5 4 7 1.02 5.80 180 3 1.5 2 7 1.02 5.87 190 4 1.0 16 7 1.08 6.06 230 5 1.0 8 5 成形不可能 6 1.0 8 9 1.08 6.00 190 ※真球度=同一球体の最大直径/最小直径 真球度の目標値は1.05以下Table 1 Properties of zirconia powder and physical properties of zirconia spheres Zirconia powder properties Zirconia sphere physical properties Average particle size BET 10 wt% * Sphericity Density Crush load No Specific surface area Slurry μm m 2 / g p H g / cm3 Kg Example 1 0.7 7.7 1.03 6.08 290 2 1.2 67 7 1.02 6.07 280 3 1.5 57 7 1.02 6.07 270 4 1.0 11 7 1.03 6.08 280 5 1.2 47 7 1.02 6.07 270 6 1.0 6 6.2 1.03 6.08 290 7 1.0 6 7.5 1.03 6.08 280 Comparative Example 1 0.3 12 7 1.07 6.08 220 2 2.5 47 7.02 5.80 180 3 1.5 27 1.02 5.87 190 4 1.0 16 7 1. 08 6.06 230 5 1.08 5 Unformable 6 1.0 8 9 1.08 6.00 190 * Sphericality = maximum diameter / minimum diameter of the same sphere The target value of the sphericity is 1.05 Less than

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01G 25/02 CA(STN)──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C01G 25/02 CA (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ジルコニア粉末と安定化剤とからなり、粉
末の平均粒子径が0.5〜2.0μmであり、BET比
表面積が3〜12m/gであり、かつ、該粉末をスラ
リー化したときのpHが6〜8となる、転動造粒用ジル
コニア粉末組成物。
1. A powder comprising a zirconia powder and a stabilizer, the powder having an average particle size of 0.5 to 2.0 μm, a BET specific surface area of 3 to 12 m 2 / g, and a slurry of the powder. A zirconia powder composition for tumbling granulation, which has a pH of 6 to 8 when formed.
JP03298792A 1992-01-24 1992-01-24 Zirconia powder composition for tumbling granulation Expired - Fee Related JP3242970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03298792A JP3242970B2 (en) 1992-01-24 1992-01-24 Zirconia powder composition for tumbling granulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03298792A JP3242970B2 (en) 1992-01-24 1992-01-24 Zirconia powder composition for tumbling granulation

Publications (2)

Publication Number Publication Date
JPH05193944A JPH05193944A (en) 1993-08-03
JP3242970B2 true JP3242970B2 (en) 2001-12-25

Family

ID=12374227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03298792A Expired - Fee Related JP3242970B2 (en) 1992-01-24 1992-01-24 Zirconia powder composition for tumbling granulation

Country Status (1)

Country Link
JP (1) JP3242970B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660905B2 (en) * 2000-09-28 2011-03-30 東ソー株式会社 Method for producing zirconia microspheres
JP4752098B2 (en) * 2000-09-28 2011-08-17 東ソー株式会社 Method for producing zirconia spherical sintered body

Also Published As

Publication number Publication date
JPH05193944A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
JP4984204B2 (en) Indium oxide powder and method for producing the same
TW401383B (en) Firing sol-gel alumina particles
US5009876A (en) Method of manufacturing barium titanate BaTiO3
JPH0588915B2 (en)
JP2000503294A (en) Spherical ceramic molded body, its production method and use
JP3368507B2 (en) Zirconia powder and method for producing the same
JP2003192452A (en) Zirconia powder and sintered compact thereof
JP3298206B2 (en) Zirconia powder composition for tumbling granulation
JP3242970B2 (en) Zirconia powder composition for tumbling granulation
JPH04325415A (en) Indium hydroxide and oxide
JP2003521431A (en) Manufacturing method of ferrite magnet
JPH0788391A (en) Production of superfine powder
JP3251972B2 (en) Zirconia powder agglomerates for tumbling granulation
JP3564576B2 (en) Method for producing zirconia powder
JP2977214B2 (en) Mixing and grinding method of barium titanate-based ceramic raw materials
JP4514894B2 (en) Aluminum oxide powder with excellent fillability and process for producing the same
JP3665083B2 (en) Method for producing ceramic powder slurry and ceramic granule
JPH03112862A (en) Preparation of raw material fine powder for zirconia ceramic and zirconia ceramic
JPH10265260A (en) Production of calcined ferrite powder and production of ferite magnet using the powder
JP2003063873A (en) Method for manufacturing ceramic spherical body
JPH05306121A (en) Production of powdery starting material for barium titanate-based porcelain
JPH06126204A (en) Method of pulverizing ceramic powder
JP2003246623A (en) Method of producing zirconia powder
JPS6090870A (en) Manufacture of high strength zirconia ceramic
JPH0825798B2 (en) Abrasion resistant zirconia sintered body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees