JP2003192452A - Zirconia powder and sintered compact thereof - Google Patents

Zirconia powder and sintered compact thereof

Info

Publication number
JP2003192452A
JP2003192452A JP2002267902A JP2002267902A JP2003192452A JP 2003192452 A JP2003192452 A JP 2003192452A JP 2002267902 A JP2002267902 A JP 2002267902A JP 2002267902 A JP2002267902 A JP 2002267902A JP 2003192452 A JP2003192452 A JP 2003192452A
Authority
JP
Japan
Prior art keywords
sintered body
less
powder
zirconia
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002267902A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nakano
康博 中野
Tomohiko Ogata
知彦 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002267902A priority Critical patent/JP2003192452A/en
Publication of JP2003192452A publication Critical patent/JP2003192452A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide powder which has satisfactory compactibility, and gives a sintered compact having excellent sinterability and properties as those of a sintered compact, and to provide a sintered compact thereof. <P>SOLUTION: The zirconia powder contains Y<SB>2</SB>O<SB>3</SB>in the range of 0.1 to 6 wt.%, and Al<SB>2</SB>O<SB>3</SB>in the range of 0.1 to 1 wt.%, and has a sodium content of ≤0.01 wt.% expressed in terms of Na<SB>2</SB>O, an iron content of ≤0.001 wt.% expressed in terms of Fe<SB>2</SB>O<SB>3</SB>, and a titanium content of ≤0.05 wt.% expressed in terms of TiO<SB>2</SB>. The electrical conductivity of the zirconia powder when slurried in 30 wt.% with pure water is ≤300 μS/cm, and its pH lies within the range of 5 to 7. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、精密加工部品、粉
砕機用部材、粉砕メディア、光部材用部品等の構造用材
料に使用される成形性、焼結性、機械的特性に優れたジ
ルコニア粉末およびその焼結体に関するものである。
TECHNICAL FIELD The present invention relates to zirconia having excellent formability, sinterability, and mechanical properties used for structural materials such as precision machined parts, crusher members, crushing media, and optical member parts. The present invention relates to powder and its sintered body.

【0002】[0002]

【従来の技術】高強度ジルコニアは、その高強度、高靭
性の特性を生かして、精密加工部品、光部材用部品、粉
砕用ボールや粉砕機の摺動部品、刃物類の構成材料とし
て幅広く使用されている。従来、それらの用途に使用さ
れるジルコニア粉末及びその製造方法として、熱分解
法、共沈法、加水分解法という方法が知られている(例
えば、特許文献1)。
2. Description of the Related Art High-strength zirconia is widely used as a constituent material for precision machined parts, parts for optical members, sliding parts of crushing balls and crushers, and blades by taking advantage of its high strength and high toughness. Has been done. Conventionally, as a zirconia powder used for these purposes and a method for producing the same, there are known methods such as a thermal decomposition method, a coprecipitation method, and a hydrolysis method (for example, Patent Document 1).

【0003】しかし、高性能化の要求は高まり、特許文
献1記載のような方法では、特性が不十分なケースが生
じてきた。すなわち、近年、光ファイバーコネクター部
品等の非常に小さな製品や高い機械的特性を必要とする
製品への需要が多くなり、それらの製品の製造におい
て、上記記載の粉末の成形性や焼結体特性では必ずしも
十分ではない場合が発生してきた。より高い焼結体特
性、品質耐候性が必要とされ、またそのような焼結体を
得ることができる粉末が必要とされている。
However, there is an increasing demand for higher performance, and in some cases, the method described in Patent Document 1 has insufficient characteristics. That is, in recent years, there has been an increasing demand for very small products such as optical fiber connector parts and products requiring high mechanical properties, and in the production of those products, the powder formability and sintered body properties described above are not sufficient. There have been cases where this is not always enough. There is a need for higher sinter properties, quality weatherability, and for powders from which such sinters can be obtained.

【0004】[0004]

【特許文献1】特開2001−089145号公報[Patent Document 1] Japanese Patent Laid-Open No. 2001-089145

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明では成
形性が良く、焼結性および機械的特性、品質耐候性に優
れた焼結体を与えるジルコニア粉末およびその焼結体を
提供することを課題とする。
Therefore, the present invention provides a zirconia powder and a zirconia powder which have good formability, excellent sinterability, mechanical properties, and excellent weather resistance. It is an issue.

【0006】[0006]

【課題を解決するための手段】本発明者らは、成形性、
焼結性が良く、優れた機械的特性、品質耐候性を有する
焼結体が得られるジルコニア粉末およびその焼結体につ
いて鋭意検討した結果、本発明を達成した。すなわち本
発明は次の構成を有する。 (1)ジルコニア粉末がY2 3 を0.1〜6重量
%、Al2 3 を0.1〜1重量%の範囲で含み、ナ
トリウム元素の含有量がNa2O換算で0.01重量%
以下、鉄元素の含有量がFe2 3換算で0.001重
量%以下、チタン元素の含有量がTiO2換算で0.0
5重量%以下であり、かつ該ジルコニア粉末を純水で3
0重量%スラリー化したときの電気伝導度が300μS
/cm以下、pHが5〜7の範囲であることを特徴とす
るジルコニア粉末。 (2)BET比表面積が8〜17m2 /g、1次粒子の
平均粒径が0.04〜0.08μm及び二次凝集粒子の
平均粒径が0.3〜1.0μmであり、かつ単斜晶率が
20〜40%であることを特徴とする請求項1に記載の
ジルコニア粉末。 (3)ジルコニアを主成分とする粉末であって、該粉末
を98MPa(1ton/cm2)の条件で成形後に1
350℃3時間焼結して得られる焼結体の相対密度が9
8%以上であり、1350℃3時間と1450℃3時間
の焼結体の平均結晶粒子径の変化率が50%以下および
焼結体の相対密度の変化率が2%以下であり、かつ13
75℃2時間と1375℃9時間の焼結体の平均結晶粒
子径の変化率が10%以下および焼結体の相対密度の変
化率が1%以下であることを特徴とするジルコニア粉
末。 (4)(1)〜(3)のいずれかに記載のジルコニア粉
末を焼結してなる焼結体。 (5)ジルコニアを主成分とする粉末を焼結してなる焼
結体であって、該焼結体の相対密度が98%以上、平均
結晶粒子径が0.4μm以下であり、かつ結晶粒子径の
標準偏差が0.15以下であることを特徴とする焼結
体。 (6)ジルコニアを主成分とする粉末を焼結してなる焼
結体であって、該焼結体の相対密度が98%以上、平均
結晶粒子径が0.4μm以下であり、かつ結晶粒子径の
変動係数が60%以下である焼結体。 (7)色度が、Yが50〜70、かつδxとδyが共に
0.0000を越え0.0150以下であることを特徴
とする(4)から(6)のいずれかに記載の焼結体。で
ある。
The present inventors have found that the moldability,
The present invention has been achieved as a result of extensive studies on zirconia powder and a sinter having good sinterability, which can provide a sinter having excellent mechanical properties and quality weather resistance. That is, the present invention has the following configuration. (1) The zirconia powder contains Y 2 O 3 in the range of 0.1 to 6% by weight and Al 2 O 3 in the range of 0.1 to 1% by weight, and the content of sodium element is 0.01 in terms of Na 2 O. weight%
Hereinafter, the content of the iron element is 0.001% by weight or less in terms of Fe 2 O 3 , and the content of the titanium element is 0.0 in terms of TiO 2.
5 wt% or less, and the zirconia powder with pure water 3
Electric conductivity of 300 μS when slurried into 0 wt%
/ Cm or less, pH is the range of 5-7, The zirconia powder characterized by the above-mentioned. (2) BET specific surface area is 8 to 17 m 2 / g, average particle diameter of primary particles is 0.04 to 0.08 μm, and average particle diameter of secondary agglomerated particles is 0.3 to 1.0 μm, and The zirconia powder according to claim 1, which has a monoclinic crystal ratio of 20 to 40%. (3) A powder containing zirconia as a main component, the powder being molded under the condition of 98 MPa (1 ton / cm 2 ) to give 1
The relative density of the sintered body obtained by sintering at 350 ° C. for 3 hours is 9
8% or more, the change rate of the average crystal grain size of the sintered body at 1350 ° C. for 3 hours and 1450 ° C. for 3 hours is 50% or less, and the change rate of the relative density of the sintered body is 2% or less, and 13
A zirconia powder characterized in that the rate of change of the average crystal grain size of the sintered body at 75 ° C. for 2 hours and 1375 ° C. for 9 hours is 10% or less and the rate of change of the relative density of the sintered body is 1% or less. (4) A sintered body obtained by sintering the zirconia powder according to any one of (1) to (3). (5) A sintered body obtained by sintering a powder containing zirconia as a main component, wherein the relative density of the sintered body is 98% or more, the average crystal grain size is 0.4 μm or less, and the crystal grain is A sintered body having a standard deviation of diameter of 0.15 or less. (6) A sintered body obtained by sintering a powder containing zirconia as a main component, wherein the relative density of the sintered body is 98% or more, the average crystal grain size is 0.4 μm or less, and the crystal grain is A sintered body having a diameter variation coefficient of 60% or less. (7) Sintering according to any one of (4) to (6), wherein the chromaticity is such that Y is 50 to 70, and both δx and δy are more than 0.0000 and 0.0150 or less. body. Is.

【0007】[0007]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below.

【0008】本発明のジルコニア粉末は原料中にY2
3 を0.1〜6重量%の範囲で含むことが必要である。
ジルコニアが高強度、高靭性の特性を発揮するためには
23 等の安定化剤を適量添加することにより、通
常、常温で単斜晶であるジルコニアの結晶構造を正方晶
が多数を占める結晶構造にすることが出来る。Y23
含有量が0.1重量%未満では、ジルコニア中の正方晶
が安定化せず、室温において単斜晶で存在する割合が多
くなり高強度とならない傾向があるため好ましくない。
また、含有量が6重量%を越えると、逆に正方晶が完全
に安定化される方向になり、室温における応力誘起変態
が起こりにくく、高強度とならない傾向があるため好ま
しくない。Y23 の含有量は2.5〜5.5重量%の
範囲であるとさらに好ましい。
The zirconia powder of the present invention contains Y 2 O in the raw material.
It is necessary to include 3 in the range of 0.1 to 6% by weight.
In order for zirconia to exhibit the characteristics of high strength and toughness, by adding an appropriate amount of a stabilizer such as Y 2 O 3 , the crystal structure of zirconia, which is usually a monoclinic crystal at room temperature, has a large number of tetragonal crystals. The crystal structure can be occupied. When the content of Y 2 O 3 is less than 0.1% by weight, the tetragonal crystal in zirconia is not stabilized, and the proportion of monoclinic crystal present at room temperature tends to increase, so that high strength tends not to be obtained, which is not preferable.
On the other hand, if the content exceeds 6% by weight, on the contrary, the tetragonal crystal tends to be completely stabilized, stress-induced transformation does not easily occur at room temperature, and high strength tends not to be obtained, which is not preferable. The content of Y 2 O 3 is more preferably in the range of 2.5 to 5.5% by weight.

【0009】本発明のジルコニア粉末は、原料中にAl
23 を0.1〜1重量%の範囲で含む必要がある。ジ
ルコニアが高強度であることは正方晶の単斜晶への応力
誘起変態に起因する。Al23 を少量添加することに
より、ジルコニアには圧縮応力がかかる。また、Al2
3 には粒界を強化する作用があり、引張りに対し、強
い応力まで耐えられるため、より高強度となる。また、
Al23 を少量添加することにより、低温焼結性にも
優れた粉末となる。また、ジルコニアとアルミナは僅か
しか反応しないため、高温焼結時には結晶粒子が大きく
なることを抑える働きがある。Al23の含有量が0.
1重量%未満では、少量すぎて効果が少なく、逆に1重
量%を越えると靭性が低下する傾向にあるため好ましく
ない。Al2 3 の含有量が0.2〜0.5重量%の範
囲であるとさらに好ましい。
The zirconia powder of the present invention contains Al in the raw material.
It is necessary to include 2 O 3 in the range of 0.1 to 1% by weight. The high strength of zirconia is due to the stress-induced transformation of tetragonal to monoclinic. By adding a small amount of Al 2 O 3 , compressive stress is applied to zirconia. In addition, Al 2
O 3 has a function of strengthening the grain boundary and can withstand even a strong stress against pulling, so that the strength becomes higher. Also,
By adding a small amount of Al 2 O 3 , it becomes a powder having excellent low-temperature sinterability. Further, since zirconia and alumina react only slightly, they have a function of suppressing the growth of crystal grains during high temperature sintering. The content of Al 2 O 3 is 0.
If it is less than 1% by weight, it is too small and the effect is small. On the contrary, if it exceeds 1% by weight, the toughness tends to decrease, which is not preferable. It is more preferable that the content of Al 2 O 3 is in the range of 0.2 to 0.5% by weight.

【0010】本発明のジルコニア粉末は、ナトリウム元
素の含有量がNa2O換算で0.01重量%以下、鉄元
素の含有量がFe23換算で0.001重量%以下、チ
タン元素の含有量がTiO2換算で0.05重量%以下
である必要がある。ナトリウム元素の存在による焼結体
の強度向上効果が知られている。しかし、粉末の製造工
程でナトリウム元素が存在すると、粉末焼成時に粉末粒
子同士が強く結合し、固い凝集体が出来てしまう。固い
凝集体は粉砕工程で完全にほぐれず、異形状や粗大粒子
ができる。このような異形状や粗大粒子を含む粉末は、
例えば、射出成形の際、流動性が悪くなる、また、焼結
性についても低い焼結密度しか得られないなどの問題が
あり、ナトリウム元素量の制御が必要である。焼結を安
定的に行うには、ナトリウム元素含有量がNa2O換算
で0.005重量%以下にすることが望ましい。
The zirconia powder of the present invention has a sodium element content of 0.01 wt% or less in terms of Na 2 O, an iron element content of 0.001 wt% or less in terms of Fe 2 O 3 , and titanium element content. The content must be 0.05% by weight or less in terms of TiO 2 . It is known that the presence of sodium element improves the strength of the sintered body. However, when sodium element is present in the powder manufacturing process, the powder particles are strongly bound to each other during the powder firing, and a hard aggregate is formed. Hard agglomerates do not completely unravel during the crushing process and form irregular shapes and coarse particles. Powder containing such irregular shape and coarse particles,
For example, during injection molding, there are problems such as poor fluidity and low sinterability with respect to sinterability. Therefore, it is necessary to control the amount of sodium element. In order to stably perform the sintering, it is desirable that the sodium element content is 0.005% by weight or less in terms of Na 2 O.

【0011】ジルコニア粉末中に鉄元素が大量に存在す
ると、相図に狂いが生じ、ジルコニアの安定性が変化
し、結晶粒子の成長が早くなる。そして、巨大粒子を発
生させ、結果的に必要な焼結体特性が得られなくなるた
め好ましくない。好ましくはFe2 3換算で0.00
05重量%以下が良い。また、鉄の量が多くなると、焼
結体の色調が黄色を呈するようになったり、光の反射率
が低下する傾向がある。
When a large amount of iron element is present in the zirconia powder, the phase diagram is distorted, the stability of zirconia is changed, and the growth of crystal grains is accelerated. Then, giant particles are generated, and as a result, necessary characteristics of the sintered body cannot be obtained, which is not preferable. Preferably 0.002 in terms of Fe 2 O 3
It is preferably less than 05% by weight. Further, when the amount of iron increases, the color tone of the sintered body tends to be yellow, and the light reflectance tends to decrease.

【0012】ジルコニア粉末中にチタン元素を含むと、
チタン元素は活性が高く光や熱等が加わるとさらに活性
が上がるため、ジルコニアを劣化させる可能性がある。
またアルミナと反応しアルミナチタネートという針状結
晶を形成するため、必要な焼結体特性が得られなくなる
ことがある。チタン元素の含有量は、TiO2換算で
0.005重量%以下がより好ましい。
When the titanium element is contained in the zirconia powder,
Titanium element has high activity, and further increases in activity when light, heat, etc. are applied, which may deteriorate zirconia.
Also, since it reacts with alumina to form needle-like crystals called alumina titanate, the desired sintered body properties may not be obtained. The content of titanium element is more preferably 0.005% by weight or less in terms of TiO 2 .

【0013】本発明のジルコニア粉末は、該粉末を純水
で30重量%スラリー化したときの電気伝導度が300
μS/cm以下であることが必要である。一般に、粉末
には、粉末を合成する時に添加した物質や合成の際に発
生した複製成分が残存し、粉末をスラリー化したとき、
それらの残存成分がスラリー中に溶出し、イオンとな
る。スラリー化した粉末に、さらに合成樹脂などを添加
する場合、余分なイオンが存在すると、バインダーや潤
滑剤として添加する合成樹脂の粉末への吸着が妨げられ
たり、過剰な吸着が起こったりし、その効果を十分発揮
することができなくなることがある。そこで、これらの
現象が生じないような純度の高い原料の選定が重要であ
る。電気伝導度は、好ましくは100μS/cmにする
ことが望ましい。
The zirconia powder of the present invention has an electric conductivity of 300 when the powder is slurried with pure water in an amount of 30% by weight.
It is necessary to be less than μS / cm. Generally, in powder, substances added at the time of synthesizing the powder and replication components generated at the time of synthesis remain, and when the powder is slurried,
Those residual components are eluted into the slurry and become ions. In the case of adding a synthetic resin or the like to the powder made into a slurry, the presence of extra ions may prevent adsorption of the synthetic resin added as a binder or a lubricant to the powder, or may cause excessive adsorption. The effect may not be fully exerted. Therefore, it is important to select a highly pure raw material that does not cause these phenomena. The electrical conductivity is preferably 100 μS / cm.

【0014】また該スラリーのpHが、5〜7の範囲で
あることが必要である。pH値が上記の範囲のスラリー
は、分散しつつも弱く凝集しており、噴霧乾燥された造
粒粉末は、粒子どうしの凝集が弱い粉末となる。例えば
射出用コンパウンドを作製する場合、バインダーとの混
練が容易で、均一なコンパウンドを作製することができ
る。スラリーのpHが5未満の場合および7を超える場
合、噴霧乾燥された粉末は強く凝集した固い粉末となる
ため好ましくない。強く凝集した粉末は、例えば射出成
形用コンパウンドを作製する際、凝集がほぐれず均一に
ならないことがある。また、流動性が悪く、成形出来な
いことがある。
The pH of the slurry must be in the range of 5-7. The slurry having a pH value in the above range is weakly agglomerated while being dispersed, and the spray-dried granulated powder is a powder in which agglomeration of particles is weak. For example, when producing an injection compound, it is easy to knead with a binder and a uniform compound can be produced. If the pH of the slurry is less than 5 or more than 7, the spray-dried powder becomes a strongly agglomerated hard powder, which is not preferable. The strongly agglomerated powder may not be uniform because the agglomeration is not loosened when producing a compound for injection molding, for example. In addition, the fluidity may be poor and molding may not be possible.

【0015】本発明のジルコニア粉末は、BET比表面
積が8〜17m2 /gであることが好ましい。本発明に
おけるBET比表面積とは、JIS−R1626「ファ
インセラミックス粉体の気体吸着BET法」による比表
面積の測定方法に則り、BET1点法で測定した値をい
う。BET比表面積が8m2 /g未満の場合は、焼結性
が低下し、緻密で均一な焼結体が得られない傾向にあ
る。また、BET比表面積が17m2 /gを超える場合
は粒子が細かく、成形性が低下傾向となる。さらに、焼
結途中で結晶粒子の成長が早すぎて凝集が起こり、不均
一な焼結体となる可能性がある。BET比表面積は、1
2〜17m2 /gであるとさらに好ましい。
The zirconia powder of the present invention preferably has a BET specific surface area of 8 to 17 m 2 / g. The BET specific surface area in the present invention refers to a value measured by the BET one-point method according to the method for measuring the specific surface area according to JIS-R1626 "Fine ceramic powder gas adsorption BET method". If the BET specific surface area is less than 8 m 2 / g, the sinterability tends to be low, and a dense and uniform sintered body tends not to be obtained. When the BET specific surface area exceeds 17 m 2 / g, the particles are fine and the moldability tends to decrease. Furthermore, the crystal grains may grow too fast during sintering to cause aggregation, resulting in a non-uniform sintered body. BET specific surface area is 1
It is more preferably 2 to 17 m 2 / g.

【0016】本発明のジルコニア粉末は、一次粒子の平
均粒径が0.04〜0.08μmであることが望まし
い。一次粒子の平均粒径が0.04〜0.08μmの範
囲は、成形性、焼結性に優れた領域である。平均粒径が
0.08μmを越えると焼結性が低下傾向となり、0.
04μm未満では成形性が低下傾向となりかつ焼結性の
制御が難しくなる。ここで、一次粒子の平均粒径は、電
子顕微鏡で測定された値を用いる。具体的には、画像処
理装置を用いて、撮影した写真の一次粒子の平均円相当
径を求め、平均円相当径を一次粒子の平均粒径とする。
The zirconia powder of the present invention preferably has an average primary particle size of 0.04 to 0.08 μm. The range where the average particle size of the primary particles is 0.04 to 0.08 μm is a region excellent in moldability and sinterability. If the average particle size exceeds 0.08 μm, the sinterability tends to decrease, and
If it is less than 04 μm, the moldability tends to be low and it becomes difficult to control the sinterability. Here, as the average particle diameter of the primary particles, a value measured by an electron microscope is used. Specifically, the average equivalent circle diameter of the primary particles of the photographed image is obtained using an image processing device, and the average equivalent circle diameter is taken as the average particle diameter of the primary particles.

【0017】本発明のジルコニア粉末は二次凝集粒子の
平均粒径が0.3〜1.0μmであることが好ましい。
ここで、二次凝集粒子径とは、粒度分布測定装置等を用
いて測定される体積基準分布の粒径をいい、平均粒径と
は累積分布が50%に相当するいわゆるメジアン径のこ
とをいう。平均粒径が0.3μm未満の場合、粒子が小
さすぎるため、成形性は低下し、また焼結の制御が難し
くなる。一方、平均粒径が1.0μmを超える場合は、
焼結性が低下する傾向があり、緻密で均一な焼結体を得
ることが困難となってくる。
The zirconia powder of the present invention preferably has an average particle size of secondary agglomerated particles of 0.3 to 1.0 μm.
Here, the secondary agglomerated particle size refers to the particle size of the volume-based distribution measured using a particle size distribution measuring device, and the average particle size refers to the so-called median size whose cumulative distribution corresponds to 50%. Say. If the average particle size is less than 0.3 μm, the particles are too small, resulting in poor moldability and difficulty in controlling sintering. On the other hand, when the average particle size exceeds 1.0 μm,
Sinterability tends to decrease, and it becomes difficult to obtain a dense and uniform sintered body.

【0018】本発明のジルコニア粉末は、単斜晶率が2
0〜40%であることが好ましい。本発明における単斜
晶率とは、X線回折法により求めた値である。単斜晶率
が20〜40%の範囲の粉末は成形性が良く、またその
焼結体は曲げ強度が高い。単斜晶率が40%を越える
と、曲げ強度が低下する可能性があり、20%未満では
粉末の嵩密度が低く、収縮率が大きくなって歪みの原因
になる可能性がある。
The zirconia powder of the present invention has a monoclinic crystal ratio of 2
It is preferably 0 to 40%. The monoclinic crystal ratio in the present invention is a value obtained by an X-ray diffraction method. The powder having a monoclinic crystal ratio in the range of 20 to 40% has good moldability, and the sintered body has high bending strength. If the monoclinic crystal ratio exceeds 40%, the bending strength may decrease, and if it is less than 20%, the bulk density of the powder is low, and the shrinkage ratio may increase, possibly causing distortion.

【0019】次に、本発明の別のジルコニア粉末は、ジ
ルコニアを主成分とする粉末であって、該粉末を98M
Pa(1ton/cm2)の条件で成形後に1350℃
3時間焼結して得られる焼結体の相対密度が98%以上
であり、1350℃3時間と1450℃3時間の焼結体
の平均結晶粒子径の変化率が50%以下および焼結体の
相対密度の変化率が2%以下であり、かつ1375℃2
時間と1375℃9時間の焼結体の平均結晶粒子径の変
化率が10%以下および焼結体の相対密度の変化率が1
%以下であることを特徴とする。光部材等に用いられる
焼結体は、機械的特性、品質耐候性が優れている必要が
ある。これらの要求を満たすジルコニア粉末は、ここに
記したように、その焼結性が高度に制御されたものであ
る必要がある。
Next, another zirconia powder of the present invention is a powder containing zirconia as a main component, and the powder is 98M.
1350 ° C after molding under the condition of Pa (1 ton / cm 2 ).
The relative density of the sintered body obtained by sintering for 3 hours is 98% or more, the rate of change of the average crystal grain size of the sintered body at 1350 ° C. for 3 hours and 1450 ° C. for 3 hours is 50% or less, and Of the relative density of 2% or less, and 1375 ℃ 2
And the change rate of the average crystal grain size of the sintered body at 1375 ° C. for 9 hours is 10% or less, and the change rate of the relative density of the sintered body is 1 or less.
% Or less. A sintered body used for an optical member or the like needs to have excellent mechanical properties and quality weather resistance. A zirconia powder satisfying these requirements needs to have a highly controlled sinterability, as described herein.

【0020】ここで、ジルコニア以外の成分は、特に限
定されないが、不純物は少なければ少ないほど良く、好
ましくはジルコニア成分が90重量%以上である。
Here, the components other than zirconia are not particularly limited, but the smaller the impurities, the better, and preferably the zirconia component is 90% by weight or more.

【0021】本発明の焼結体は、上記したジルコニア粉
末を焼結したものである。好ましくは焼結体の相対密度
が98%以上、平均結晶粒子径が0.4μm以下であ
り、かつ結晶粒子径の標準偏差が0.15以下である。
また、本発明の焼結体は、好ましくは焼結体の相対密度
が98%以上、平均結晶粒子径が0.4μm以下であ
り、かつ平均結晶粒子径の変動係数が60%以下である
焼結体である。焼結体が高強度、高靱性、耐摩耗性、耐
候性に優れた特性を達成するためには、相対密度が98
%以上であるのが好ましい。特に耐候性に優れる為には
平均結晶粒子径を0.4μm以下と小さくするのが好ま
しい。また、巨大粒子や極小粒子が無く、粒子がそろっ
ている条件として標準偏差が0.15以下であるか、或
いは変動係数が60%以下であるのが好ましい。これら
の条件を満たす焼結体は、本発明のジルコニア粉末を使
用し、焼結温度、焼結時間等の焼結条件を適宜制御する
ことにより得ることができる。
The sintered body of the present invention is obtained by sintering the above-mentioned zirconia powder. Preferably, the relative density of the sintered body is 98% or more, the average crystal grain size is 0.4 μm or less, and the standard deviation of the crystal grain size is 0.15 or less.
The sintered body of the present invention preferably has a relative density of 98% or more, an average crystal grain size of 0.4 μm or less, and a coefficient of variation of the average crystal grain size of 60% or less. It is a union. In order for the sintered body to achieve high strength, high toughness, wear resistance, and weather resistance, the relative density is 98.
% Or more is preferable. In particular, in order to have excellent weather resistance, it is preferable to reduce the average crystal grain size to 0.4 μm or less. Further, it is preferable that the standard deviation is 0.15 or less or the coefficient of variation is 60% or less as a condition that there are no giant particles or extremely small particles and the particles are aligned. The sintered body satisfying these conditions can be obtained by using the zirconia powder of the present invention and appropriately controlling the sintering conditions such as the sintering temperature and the sintering time.

【0022】本発明の焼結体の色度は、Yが50〜7
0、かつδxとδyが共に0.0000を越え0.01
50以下であることが好ましい。色度は、一般にY,
x,yの3値で表す。Yは明度を表し、x、yは色彩を
表す。色が全くない点はW点(ホワイトポイント)とよ
ばれ、x=0.3101、y=0.3161である。明
度が高いと白を呈し、低いと黒を呈する。δx、δyは
ホワイトポイントとの差を示し、この値が小さいほど白
色を呈する。好ましくはδxとδyは、共に0.010
以下である。
The chromaticity of the sintered body of the present invention is such that Y is 50 to 7
0 and both δx and δy exceed 0.0000 and 0.01
It is preferably 50 or less. Chromaticity is generally Y,
It is represented by three values of x and y. Y represents lightness, and x and y represent color. A point having no color is called a W point (white point), and x = 0.3101 and y = 0.3161. High brightness gives white, low brightness gives black. δx and δy represent the difference from the white point, and the smaller this value, the whiter the image. Preferably both δx and δy are 0.010.
It is the following.

【0023】また、色度は不純物含有量の指標にもなり
得る。すなわち、焼結体特性、特に焼結密度が高く、結
晶粒子径が小さく、その大きさがそろっている焼結体で
あるためには、まず不純物が少ないことが重要である。
不純物が含まれていると光の吸収が起こり、Yは低く、
δx、δyの値が大きくなってくる。例えば、焼結体特
性に影響があるような不純物が含まれるとY値は50未
満となり、δx、δyは共に0.015を越えることが
ある。
The chromaticity can also be an index of the content of impurities. That is, in order for the sintered body to have characteristics such as a high sintered density, a small crystal grain size, and a uniform size, it is important that the amount of impurities is small.
Absorption of light occurs when impurities are contained, Y is low,
The values of δx and δy increase. For example, if impurities that affect the properties of the sintered body are included, the Y value becomes less than 50, and both δx and δy may exceed 0.015.

【0024】本発明の焼結体は、光部材や光学用途に好
適に使用される。これらの用途では、光の減衰が少ない
ことが望まれており、本発明の焼結体は光の吸収が少な
く、反射率も高いからである。
The sintered body of the present invention is preferably used for optical members and optical applications. In these applications, it is desired that light is not attenuated so much, and the sintered body of the present invention absorbs light little and has high reflectance.

【0025】[0025]

【実施例】以下実施例について述べる。EXAMPLES Examples will be described below.

【0026】実施例の物性の測定、評価は以下のように
行った。
The physical properties of the examples were measured and evaluated as follows.

【0027】(1)Y2 3、Al2 3 、Fe2 3
TiO2の定量分析 粉末約0.1gを白金るつぼに秤量し、硫酸水素カリウ
ムで融解した。これを希硝酸で溶解して定溶し、ICP
発光分光分析法で元素を定量した。この定量値を酸化物
換算した。ICP発光分光分析装置としてはセイコー電
子工業製SPS1200VR型を用いた。
(1) Y 2 O 3 , Al 2 O 3 , Fe 2 O 3 ,
Quantitative analysis powder of TiO 2 About 0.1 g was weighed in a platinum crucible and melted with potassium hydrogen sulfate. ICP
Elements were quantified by optical emission spectroscopy. This quantitative value was converted into oxide. As the ICP emission spectrum analyzer, SPS1200VR type manufactured by Seiko Instruments Inc. was used.

【0028】(2)ナトリウム元素の定量分析 粉末約0.1gを白金るつぼに秤量し、硫酸水素カリウ
ムで融解した。これを希硝酸で溶解して定溶し、原子吸
光分析法により元素を定量した。この定量値を酸化物換
算した。原子吸光分析装置としては島津製作所製AA−
600を用いた。
(2) Quantitative analysis of elemental sodium About 0.1 g of powder was weighed in a platinum crucible and melted with potassium hydrogen sulfate. This was dissolved in dilute nitric acid to make a constant solution, and the element was quantified by atomic absorption spectrometry. This quantitative value was converted into oxide. As an atomic absorption spectrometer, Shimadzu AA-
600 was used.

【0029】(3)電気伝導度 300ccのビーカーに電気伝導度5μS/cmの純水
210g、ジルコニア粉末90gを入れ、良く攪拌した
後、超音波発生機に10分間かけて30wt%のスラリ
ーを作製した。このスラリーを電気伝導度計を用いて電
気伝導度を測定した。電気伝導度計としては堀場製作所
製LAB導電率計DS−12を用いた。
(3) 210 g of pure water having an electric conductivity of 5 μS / cm and 90 g of zirconia powder were placed in a beaker having an electric conductivity of 300 cc, and after stirring well, a 30 wt% slurry was prepared in an ultrasonic generator for 10 minutes. did. The electric conductivity of this slurry was measured using an electric conductivity meter. As the electric conductivity meter, LAB conductivity meter DS-12 manufactured by HORIBA, Ltd. was used.

【0030】(4)pH 粉末を濃度30wt%のスラリーにし、pHメーターを
用いてスラリーのpHを測定した。スラリーの作製方法
は電気伝導度の測定方法に記載された内容と同じであ
る。pHメーターとしては堀場製作所製D−14を用い
た。
(4) pH The powder was made into a slurry having a concentration of 30 wt%, and the pH of the slurry was measured using a pH meter. The method for producing the slurry is the same as the content described in the method for measuring electrical conductivity. Horiba D-14 was used as the pH meter.

【0031】(5)BET比表面積 BET比表面積の測定はJIS−R1626「ファイン
セラミックス粉体の気体吸着BET法による比表面積の
測定方法」に則り、BET1点法で行った。
(5) BET Specific Surface Area The BET specific surface area was measured by the BET one-point method in accordance with JIS-R1626 "Method for measuring specific surface area of fine ceramic powder by gas adsorption BET method".

【0032】(6)二次凝集粒子の平均粒径 粉末を濃度30wt%のスラリーにした。スラリーの作
製方法は電気伝導度の測定方法に記載された内容と同じ
である。粒度分布計を用い、調製したスラリーの二次粒
子径を測定し、累積分布が50%に相当する、いわゆる
メジアン径を平均粒径とした。粒度分布計としては日機
装製マイクロトラック粒度分布計7995−10SRA
を用いた。
(6) The average particle size powder of the secondary agglomerated particles was made into a slurry having a concentration of 30 wt%. The method for producing the slurry is the same as the content described in the method for measuring electrical conductivity. The secondary particle size of the prepared slurry was measured using a particle size distribution meter, and the so-called median size corresponding to a cumulative distribution of 50% was taken as the average particle size. Nikkiso Microtrac Particle Size Analyzer 7995-10SRA
Was used.

【0033】(7)一次粒子の平均粒径 透過型電子顕微鏡を用いて粉末を観察し、任意の点5カ
所で100000倍の写真を撮った。画像処理装置を用
いて、撮影した写真の一次粒子の平均円相当径を求め
た。平均円相当径を一次粒子の平均粒径とした。透過型
電子顕微鏡としては日本電子製JEM2000EXを用
い、画像処理装置としては日本アビオニクス製TVイメ
ージプロセッサEXCELを用いた。
(7) Average Particle Size of Primary Particles The powder was observed using a transmission electron microscope, and 100,000 times photographs were taken at five arbitrary points. The average equivalent circle diameter of the primary particles of the photographed photograph was determined using an image processing device. The average circle equivalent diameter was defined as the average particle diameter of the primary particles. A JEM2000EX manufactured by JEOL was used as the transmission electron microscope, and a TV image processor EXCEL manufactured by Nippon Avionics was used as the image processing device.

【0034】(8)単斜晶率 粉末をX線回折し、その回折強度(回折ピークの面積)
から次式によって算出した。ただし、回折強度はローレ
ンツ因子による補正後の値を使用した。
(8) The monoclinic crystal powder was subjected to X-ray diffraction, and its diffraction intensity (area of diffraction peak)
Was calculated from the following formula. However, the diffraction intensity used the value after correction by Lorentz factor.

【0035】[0035]

【数1】 [Equation 1]

【0036】尚、X線回折装置としては、理学電機製を
用いた。
An X-ray diffractometer manufactured by Rigaku Denki Co., Ltd. was used.

【0037】(9)焼結体の色度 粉末をCIP装置を用いて98MPa(1ton/cm
2)の条件で成形し、その成形体をφ25×L25mm
の円柱に加工し、1350℃の温度で2時間焼結した。
焼結体の平面部を鏡面仕上げし、カラーコンピューター
を用いて色度(Y,x,y)を測定した。Y値は明度を
表し、x、y値は色彩を表す値である。色度はW点(ホ
ワイトポイント)との差を以下の式で求めた。 δx=│x−0.3101│ δy=│y−0.3161│ カラーコンピューターとしては、スガ試験機製SM−4
を用い、CIP装置としては三菱重工業製三菱冷間等方
圧加圧装置を用いた。
(9) The chromaticity powder of the sintered body was 98 MPa (1 ton / cm) by using a CIP device.
Molded under the conditions of 2 ), the molded body is φ25 × L25mm
And was sintered at a temperature of 1350 ° C. for 2 hours.
The flat surface portion of the sintered body was mirror-finished, and the chromaticity (Y, x, y) was measured using a color computer. The Y value represents lightness, and the x and y values represent color. For the chromaticity, the difference from the W point (white point) was calculated by the following formula. δx = │x-0.3101│ δy = │y-0.3161│ As a color computer, SM-4 manufactured by Suga Test Instruments Co., Ltd.
As the CIP device, a Mitsubishi cold isotropic pressure press made by Mitsubishi Heavy Industries was used.

【0038】(10)相対密度 粉末をCIP装置を用いて98MPa(1ton/cm
2)の条件で成形し、その成形体をφ25×L25mm
の円柱に加工し、焼結した。焼結体をアルキメデス法に
より焼結密度を測定した。焼結密度を理論密度で除した
値を100分率で表した値を相対密度とした。ここで、
理論密度は6.08g/cm3とした。
(10) The relative density of the powder was 98 MPa (1 ton / cm) using a CIP device.
Molded under the conditions of 2 ), the molded body is φ25 × L25mm
It was processed into a cylinder and sintered. The sintered density of the sintered body was measured by the Archimedes method. The value obtained by dividing the value obtained by dividing the sintered density by the theoretical density by 100 was taken as the relative density. here,
The theoretical density was 6.08 g / cm 3 .

【0039】(11)相対密度の変化率−1 相対密度を測定する方法と同様の方法で、1350℃で
3時間焼結品と1450℃で3時間焼結品の相対密度を
測定した。焼結温度に対する相対密度の変化率は以下の
式から求めた。 温度に対する相対密度の変化率(%)=(B−A)/A
×100 A : 1350℃で3時間焼結品の相対密度 B : 1450℃で3時間焼結品の相対密度 (12)相対密度の変化率−2(11)と同様に、13
75℃で2時間焼結品と1375℃で9時間焼結品の 相対密度を測定した。焼結時間に対する相対密度の変化
率は以下の式から求めた。 時間に対する相対密度の変化率(%)=(D−C)/C
×100 C : 1375℃で2時間焼結品の相対密度 D : 1375℃で9時間焼結品の相対密度 (13)平均結晶粒子径 粉末をCIP装置を用いて98MPa(1ton/cm
2)の条件で成形し、その成形体をφ25×L25mm
の円柱に加工し、焼結した。焼結温度と焼結時間は?焼
結体の平面部を鏡面仕上げし、焼結した温度より50℃
低い温度で3時間サーマルエッチングした。走査型電子
顕微鏡を用いてそのサンプルを観察し、任意の点5カ所
で30000倍の写真を撮った。画像処理装置を用い
て、撮影した写真の結晶粒子の平均円相当径を求めた。
平均円相当径を平均結晶粒子径とした。また、各結晶粒
子径より標準偏差を求めた。
(11) Relative Density Change Rate-1 The relative densities of the sintered product at 1350 ° C. for 3 hours and the sintered product at 1450 ° C. for 3 hours were measured by the same method as the method for measuring the relative density. The rate of change of relative density with respect to the sintering temperature was obtained from the following formula. Change rate of relative density with respect to temperature (%) = (B−A) / A
× 100 A: Relative density of sintered product at 1350 ° C. for 3 hours B: Relative density of sintered product at 1450 ° C. for 3 hours (12) Relative density change rate −2 (11)
The relative density of the sintered product at 75 ° C. for 2 hours and the sintered product at 1375 ° C. for 9 hours was measured. The change rate of the relative density with respect to the sintering time was obtained from the following formula. Change rate of relative density with respect to time (%) = (D−C) / C
× 100 C: Relative density of sintered product at 1375 ° C. for 2 hours D: Relative density of sintered product at 1375 ° C. for 9 hours (13) Average crystal particle size The powder was 98 MPa (1 ton / cm 2) using a CIP device.
Molded under the conditions of 2 ), the molded body is φ25 × L25mm
It was processed into a cylinder and sintered. What is the sintering temperature and sintering time? The flat surface of the sintered body is mirror-finished and the temperature is 50 ° C from the sintering temperature.
Thermally etched at low temperature for 3 hours. The sample was observed using a scanning electron microscope, and a photograph of 30,000 times was taken at five arbitrary points. Using an image processing device, the average equivalent circle diameter of the crystal grains in the photographed photograph was determined.
The average equivalent circle diameter was defined as the average crystal grain size. In addition, the standard deviation was determined from the crystal grain size.

【0040】ここでは、走査型電子顕微鏡として日立製
S−510を用い、画像処理装置としては日本アビオニ
クス製TVイメージプロセッサEXCELを用いた。
Here, S-510 manufactured by Hitachi was used as the scanning electron microscope, and TV image processor EXCEL manufactured by Nippon Avionics was used as the image processing apparatus.

【0041】(14)結晶粒子径の変動係数 (13)で求めた平均結晶粒子径(x)、及び標準偏差
(σ)を用いて以下の式により変動係数を求めた。
(14) Coefficient of variation of crystal grain size The coefficient of variation was determined by the following formula using the average crystal grain size (x) determined in (13) and the standard deviation (σ).

【0042】変動係数(%)=σ/x×100 (15)焼結温度に対する平均結晶粒子径の変化率 平均結晶粒子径を測定する方法と同様の方法で、135
0℃で2時間焼結品と1450℃で2時間焼結品の平均
結晶粒子径を測定した。焼結温度に対する平均結晶粒子
径の変化率は以下の式から求めた。 焼結温度に対する平均結晶粒子径変化率(%)=(F−
E)/E×100 E : 1350℃で3時間焼結品の平均結晶粒子径 F : 1450℃で3時間焼結品の平均結晶粒子径 (16)焼結時間に対する平均結晶粒子径の変化率 (15)と同様に、1375℃で2時間焼結品と137
5℃で9時間焼結品の平均結晶粒子径を測定した。焼結
時間に対する平均結晶粒子径の変化率は以下の式から求
めた。 焼結時間に対する平均結晶粒子径変化率(%)=(H−
G)/G×100 G : 1375℃で2時間焼結品の平均結晶粒子径相
対密度 H : 1375℃で9時間焼結品の平均結晶粒子径相
対密度 (17)曲げ強度 粉末をCIP装置を用いて98MPa(1ton/cm
2)の条件で成形し、その成形体を1350℃の温度で
2時間焼結した。焼結体から3×4×約40mmの試料
片を切り出し、JIS−R1601「ファインセラミッ
クスの曲げ強さ試験方法」に則り、3点曲げ強度を測定
した。
Coefficient of variation (%) = σ / x × 100 (15) Rate of change of average crystal grain size with respect to sintering temperature By the same method as the method for measuring the average crystal grain size, 135
The average crystal grain diameters of the sintered product at 0 ° C. for 2 hours and the sintered product at 1450 ° C. for 2 hours were measured. The rate of change of the average crystal grain size with respect to the sintering temperature was obtained from the following formula. Average crystal grain diameter change rate (%) with respect to sintering temperature = (F-
E) / E × 100 E: Average crystal particle size of sintered product at 1350 ° C. for 3 hours F: Average crystal particle size of sintered product at 1450 ° C. for 3 hours (16) Rate of change of average crystal particle size with respect to sintering time Same as (15), 137 with sintered product at 1375 ° C for 2 hours
The average crystal grain size of the sintered product was measured at 5 ° C. for 9 hours. The rate of change of the average crystal grain size with respect to the sintering time was obtained from the following formula. Average crystal grain size change rate (%) = (H-
G) / G × 100 G: Relative density of average crystal grain size of sintered product at 1375 ° C. for 2 hours H: Average density of crystal grain size of sintered product at 1375 ° C. for 9 hours (17) Bending strength 98 MPa (1 ton / cm
It was molded under the conditions of 2 ) and the molded body was sintered at a temperature of 1350 ° C. for 2 hours. A sample piece of 3 × 4 × about 40 mm was cut out from the sintered body, and the three-point bending strength was measured according to JIS-R1601 “Bending strength test method for fine ceramics”.

【0043】(18)熱水寿命評価 粉末をCIP装置を用いて98MPa(1ton/cm
2) の条件で成形し、その成形体をφ25×L25mm
の円柱に加工し、焼結した。粉末の単斜率測定と同様に
焼結体の単斜晶率を測定し、単斜晶がないことを確認
後、オートクレーブを用いて140℃の熱水中で24時
間保持した。熱水処理した焼結体の単斜晶率を再び測定
し、単斜晶の確認されなかったものを○、単斜晶が確認
されたものを×と評価した。○が合格である。
(18) Hot water life evaluation powder is 98 MPa (1 ton / cm) by using a CIP device.
Molded under the conditions of 2) , the molded body is φ25 × L25mm
It was processed into a cylinder and sintered. The monoclinic crystal ratio of the sintered body was measured in the same manner as the powder monoclinic ratio measurement, and after confirming that there was no monoclinic crystal, it was held in hot water at 140 ° C. for 24 hours using an autoclave. The monoclinic crystal ratio of the hydrothermally treated sintered body was measured again, and those in which monoclinic crystals were not confirmed were evaluated as ◯, and those in which monoclinic crystals were confirmed were evaluated as ×. ○ means pass.

【0044】実施例1 ZrOCl2 溶液にY2 3 濃度として5.0〜5.4
重量%となるようにYCl3 溶液を加えて、Al2 3
濃度として0.2〜0.4重量%となるようにAlCl
3溶液を加えて、アンモニア水を加えて水酸化物を共沈
させ、共沈物を遠心分離器で水洗し、乾燥した後、70
0〜1000℃で2時間仮焼した。得られた仮焼体は、
媒体攪拌ミルを用いて6時間、純水で湿式粉砕した後、
分級装置で微細粒及び粗大粒を取り除き、限外ろ過装置
を用い水洗した。水洗後のスラリーを噴霧乾燥した。得
られた粉末は分級装置で粗大粒を除去し、脱鉄装置で脱
鉄した。実施例表に記載のNo1、3の粉末を得た。な
お原料に使用したZrOCl2 、YCl3 、AlCl3
は不純物の少ないものを選定した。得られた粉末につい
て、ナトリウム元素、鉄元素、チタン元素、Y2 3
Al2 3 の定量分析、電気伝導度、pH、BET比表
面積、二次凝集粒子の平均粒径、電子顕微鏡で測定され
る1次粒子の平均粒径、単斜晶率を測定した。この粉末
から成形体を作製し、様々な温度で焼結体を作製し、焼
結体の相対密度、結晶粒子径を測定した。それらから焼
結温度に対する相対密度の変化率、焼結時間に対する相
対密度の変化率、焼結温度に対する結晶粒子径の変化
率、焼結時間に対する結晶粒子径の変化率を求めた。結
果を表1〜3に示す。
Example 1 A ZrOCl 2 solution having a Y 2 O 3 concentration of 5.0 to 5.4 was used.
A YCl 3 solution was added so that the weight% became Al 2 O 3
AlCl so that the concentration becomes 0.2 to 0.4% by weight.
After adding 3 solutions, ammonia water was added to coprecipitate the hydroxide, and the coprecipitate was washed with water by a centrifuge and dried,
It was calcined at 0 to 1000 ° C. for 2 hours. The obtained calcined body is
After wet grinding with pure water for 6 hours using a medium stirring mill,
Fine particles and coarse particles were removed with a classifier and washed with water using an ultrafiltration device. The slurry after washing with water was spray-dried. Coarse particles were removed from the obtained powder with a classifier and deironed with an iron remover. The powder of No. 1 and 3 described in the example table was obtained. ZrOCl 2 , YCl 3 and AlCl 3 used as raw materials
Selected the one with few impurities. About the obtained powder, sodium element, iron element, titanium element, Y 2 O 3 ,
The quantitative analysis of Al 2 O 3 , electrical conductivity, pH, BET specific surface area, average particle size of secondary agglomerated particles, average particle size of primary particles measured by an electron microscope, and monoclinic crystal ratio were measured. A molded body was produced from this powder, a sintered body was produced at various temperatures, and the relative density and crystal grain size of the sintered body were measured. From these, the rate of change of relative density with respect to sintering temperature, the rate of change of relative density with respect to sintering time, the rate of change of crystal particle diameter with respect to sintering temperature, and the rate of change of crystal particle diameter with respect to sintering time were obtained. The results are shown in Tables 1 to 3.

【0045】実施例2 ZrOCl2 溶液にY2 3 濃度として5.0〜5.2
重量%となるようにYCl3 溶液を加えて混合し、アン
モニア水を加えて水酸化物を共沈させ、共沈物を遠心分
離器で水洗し、乾燥した後、800〜1000℃で2時
間仮焼した。得られた仮焼体にAl2 3 を0.2〜
0.4重量%添加し、媒体攪拌ミルを用いて6時間、純
水で湿式粉砕した後、分級装置で微細粒及び粗大粒を取
り除き、限外ろ過装置を用い水洗した。水洗後のスラリ
ーを噴霧乾燥した。得られた粉末は分級装置で粗大粒を
除去し、脱鉄装置で脱鉄した。実施例表に記載のNo
4、5の粉末を得た。なお原料に使用したZrOC
2 、YCl3 、Al2 3 は不純物の少ないものを選
定した。得られた粉末について実施例1と同様に評価し
た。結果を表1〜3に示す。
Example 2 A ZrOCl 2 solution having a Y 2 O 3 concentration of 5.0 to 5.2 was used.
YCl 3 solution was added and mixed so as to be a weight% of the mixture, and aqueous ammonia was added to coprecipitate the hydroxide. The coprecipitate was washed with water by a centrifuge, dried and then at 800 to 1000 ° C. for 2 hours. It was calcined. Al 2 O 3 is added to the obtained calcined body in an amount of 0.2 to
0.4 wt% was added, and the mixture was wet pulverized with pure water for 6 hours using a medium stirring mill, then fine particles and coarse particles were removed with a classifier, and washed with water using an ultrafiltration device. The slurry after washing with water was spray-dried. Coarse particles were removed from the obtained powder with a classifier and deironed with an iron remover. No. described in the example table
Four and five powders were obtained. ZrOC used as the raw material
L 2 , YCl 3 , and Al 2 O 3 were selected to have few impurities. The obtained powder was evaluated in the same manner as in Example 1. The results are shown in Tables 1 to 3.

【0046】実施例3 ZrOCl2 溶液にY2 3 濃度として5.4重量%と
なるようにYCl3 溶液を加えて混合し、水酸化ナトリ
ウム溶液を加えて水酸化物を共沈させ、共沈物を遠心分
離器で水洗し、乾燥した後、800〜1000℃で2時
間仮焼した。得られた仮焼体にAl2 3 を0.2〜
0.4重量%添加し、媒体攪拌ミルを用いて8時間、純
水で湿式粉砕した後、分級装置で微細粒及び粗大粒を取
り除き、限外ろ過装置を用い水洗した。水洗後のスラリ
ーを噴霧乾燥した。得られた粉末は分級装置で粗大粒を
除去し、脱鉄装置で脱鉄した。実施例表に記載のNo2
の粉末を得た。なお原料に使用したZrOCl2 、YC
3 、Al2 3 は不純物の少ないものを選定し、共沈
反応は実施例1、2の半分の濃度で行った。得られた粉
末について実施例1と同様に評価した。結果を表1〜3
に示す。
Example 3 To a ZrOCl 2 solution, a YCl 3 solution was added and mixed so that the Y 2 O 3 concentration was 5.4% by weight, and a sodium hydroxide solution was added to coprecipitate a hydroxide. The precipitate was washed with a centrifuge, dried, and then calcined at 800 to 1000 ° C. for 2 hours. Al 2 O 3 is added to the obtained calcined body in an amount of 0.2 to
0.4 wt% was added, and after wet pulverizing with pure water for 8 hours using a medium stirring mill, fine particles and coarse particles were removed with a classifier, and washed with water using an ultrafilter. The slurry after washing with water was spray-dried. Coarse particles were removed from the obtained powder with a classifier and deironed with an iron remover. No. 2 described in the example table
Of powder was obtained. ZrOCl 2 and YC used as raw materials
l 3 and Al 2 O 3 were selected to have few impurities, and the coprecipitation reaction was carried out at a concentration half that of Examples 1 and 2. The obtained powder was evaluated in the same manner as in Example 1. The results are shown in Tables 1 to 3.
Shown in.

【0047】実施例4 実施例1、2、3で得られたNo1〜5の粉末を用い、
1350℃で2時間焼結して焼結体を作製し、焼結体の
相対密度、曲げ強度、平均結晶粒子径、結晶粒子径の標
準偏差、変動係数、Y、δx、δy、熱水処理後の単斜
晶率を測定した。結果を表4〜5に示す。
Example 4 The powders Nos. 1 to 5 obtained in Examples 1, 2 and 3 were used.
Sintering was performed at 1350 ° C. for 2 hours to produce a sintered body, and the relative density, bending strength, average crystal particle diameter, standard deviation of crystal particle diameter, variation coefficient, Y, δx, δy, hot water treatment of the sintered body The subsequent monoclinic rate was measured. The results are shown in Tables 4-5.

【0048】比較例1 ZrOCl2 溶液にY2 3 濃度として5.0〜5.7
重量%となるようにYCl3 溶液を加えて混合し、水酸
化ナトリウムを加えて水酸化物を共沈させ、共沈物を水
洗し、乾燥した後、700〜1000℃で2時間仮焼し
た。得られた仮焼体にAl2 3 を0〜1.2重量%添
加し、媒体攪拌ミルを用いて10時間湿式粉砕し、噴霧
乾燥して粉末を得た。得られた粉末は分級装置で粗大粒
を除去し、脱鉄装置で脱鉄した。比較例に記載のNo
6、7の粉末を得た。実施例1と同様に評価した。結果
を表6〜8に示す。
Comparative Example 1 A ZrOCl 2 solution having a Y 2 O 3 concentration of 5.0 to 5.7 was used.
A YCl 3 solution was added and mixed so as to have a weight percentage, sodium hydroxide was added to coprecipitate a hydroxide, the coprecipitate was washed with water, dried, and then calcined at 700 to 1000 ° C. for 2 hours. . Al 2 O 3 was added to the obtained calcined body in an amount of 0 to 1.2% by weight, wet-milled for 10 hours using a medium stirring mill, and spray-dried to obtain a powder. Coarse particles were removed from the obtained powder with a classifier and deironed with an iron remover. No described in the comparative example
Powders 6 and 7 were obtained. Evaluation was performed in the same manner as in Example 1. The results are shown in Tables 6-8.

【0049】比較例2 ZrOCl2 溶液にY2 3 濃度として5.4重量%と
なるようにYCl3 溶液を加えて混合し、水酸化ナトリ
ウムを加えて水酸化物を共沈させ、共沈物を水洗し、乾
燥した後、800〜1000℃で2時間仮焼した。得ら
れた仮焼体にAl2 3 を0.3重量%添加し、媒体攪
拌ミルを用いて3時間湿式粉砕し、噴霧乾燥して粉末を
得た。得られた粉末は分級装置で粗大粒を除去し、脱鉄
装置で脱鉄した。比較例に記載のNo8の粉末を得た。
実施例1と同様に評価した。結果を表6〜8に示す。
Comparative Example 2 A YCl 3 solution was added to a ZrOCl 2 solution so as to have a Y 2 O 3 concentration of 5.4% by weight and mixed, and sodium hydroxide was added to coprecipitate a hydroxide to coprecipitate. The product was washed with water, dried, and then calcined at 800 to 1000 ° C. for 2 hours. 0.3% by weight of Al 2 O 3 was added to the obtained calcined body, the mixture was wet-ground for 3 hours using a medium stirring mill, and spray-dried to obtain a powder. Coarse particles were removed from the obtained powder with a classifier and deironed with an iron remover. The powder of No8 described in the comparative example was obtained.
Evaluation was performed in the same manner as in Example 1. The results are shown in Tables 6-8.

【0050】比較例3 比較例1、2得られたNo6〜8の粉末を用い、135
0℃で2時間焼結して焼結体を作製し、焼結体の相対密
度、曲げ強度、平均結晶粒子径、結晶粒子径の標準偏
差、Y、δx、δy、熱水処理後の単斜晶率を測定し
た。結果を表9〜10に示す。
Comparative Example 3 Comparative Examples 1 and 2 The powders Nos. 6 to 8 obtained were used, and 135
Sintering was performed at 0 ° C. for 2 hours to prepare a sintered body, and the relative density, bending strength, average crystal grain size, standard deviation of crystal grain size, Y, δx, δy, and the single body after hot water treatment of the sintered body were prepared. The crystallinity was measured. The results are shown in Tables 9-10.

【0051】比較例4 比較例1、2得られたNo6〜8の粉末を用い、150
0℃で2時間焼結して焼結体を作製し、焼結体の相対密
度、曲げ強度、平均結晶粒子径、結晶粒子径の標準偏
差、変動係数、Y、δx、δy、熱水処理後の単斜晶率
を測定した。結果を表9〜10のNo9〜11に示す。
Comparative Example 4 Comparative Examples 1 and 2 Using the obtained powders of Nos. 6-8, 150
Sintering is performed at 0 ° C. for 2 hours to produce a sintered body, and the relative density, bending strength, average crystal grain size, standard deviation of crystal grain size, variation coefficient, Y, δx, δy, hot water treatment of the sintered body The subsequent monoclinic rate was measured. The results are shown in Nos. 9 to 11 of Tables 9 to 10.

【0052】評価結果は表1〜表10に示す。表から明
らかなように実施例のジルコニア粉末は、機械的特性、
品質耐候性に優れた焼結体を得ることができる。一方、
本発明の範囲を外れた比較例は粉末の焼結性が悪く、ま
た焼結体は機械的特性、品質耐候性などの焼結体特性に
劣っていた。
The evaluation results are shown in Tables 1-10. As is apparent from the table, the zirconia powders of Examples have mechanical properties,
It is possible to obtain a sintered body having excellent weather resistance. on the other hand,
In Comparative Examples outside the scope of the present invention, the sinterability of the powder was poor, and the sintered body was inferior in mechanical characteristics, quality characteristics, and other characteristics of the sintered body.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】[0056]

【表4】 [Table 4]

【0057】[0057]

【表5】 [Table 5]

【0058】[0058]

【表6】 [Table 6]

【0059】[0059]

【表7】 [Table 7]

【0060】[0060]

【表8】 [Table 8]

【0061】[0061]

【表9】 [Table 9]

【0062】[0062]

【表10】 [Table 10]

【0063】[0063]

【発明の効果】本発明により、成形性が良く、焼結性お
よび焼結体特性に優れた焼結体を与える粉末およびその
焼結体を提供することができる。
Industrial Applicability According to the present invention, it is possible to provide a powder and a sintered body thereof which have a good moldability and give a sintered body excellent in sinterability and sintered body characteristics.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G030 AA03 AA12 AA16 AA27 AA36 BA01 BA18 CA01 CA04 GA11 GA27 4G031 AA01 AA08 AA11 AA12 AA21 AA29 BA01 BA18 CA04 GA01 GA03 GA11 4G048 AA02 AC08 AD03    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4G030 AA03 AA12 AA16 AA27 AA36                       BA01 BA18 CA01 CA04 GA11                       GA27                 4G031 AA01 AA08 AA11 AA12 AA21                       AA29 BA01 BA18 CA04 GA01                       GA03 GA11                 4G048 AA02 AC08 AD03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニア粉末がY2 3 を0.1〜6
重量%、Al2 3 を0.1〜1重量%の範囲で含み、
ナトリウム元素の含有量がNa2O換算で0.01重量
%以下、鉄元素の含有量がFe2 3換算で0.001
重量%以下、チタン元素の含有量がTiO2換算で0.
05重量%以下であり、かつ該ジルコニア粉末を純水で
30重量%スラリー化したときの電気伝導度が300μ
S/cm以下、pHが5〜7の範囲であることを特徴と
するジルコニア粉末。
1. Zirconia powder contains Y 2 O 3 in an amount of 0.1-6.
% By weight, containing Al 2 O 3 in the range of 0.1 to 1% by weight,
The content of sodium element is 0.01% by weight or less in terms of Na 2 O, and the content of iron element is 0.001 in terms of Fe 2 O 3.
Weight% or less, the content of titanium element in terms of TiO 2 is 0.
It is not more than 05% by weight, and the electrical conductivity of the zirconia powder when slurried in pure water at 30% by weight is 300 μ.
A zirconia powder having an S / cm or lower and a pH in the range of 5 to 7.
【請求項2】 BET比表面積が8〜17m2/g、一
次粒子の平均粒径が0.04〜0.08μm及び二次凝
集粒子の平均粒径が0.3〜1.0μmであり、かつ単
斜晶率が20〜40%であることを特徴とする請求項1
に記載のジルコニア粉末。
2. The BET specific surface area is 8 to 17 m 2 / g, the average particle diameter of the primary particles is 0.04 to 0.08 μm, and the average particle diameter of the secondary agglomerated particles is 0.3 to 1.0 μm, The monoclinic crystal ratio is 20 to 40%.
The zirconia powder according to.
【請求項3】 ジルコニアを主成分とする粉末であっ
て、該粉末を98MPaの条件で成形後に1350℃3
時間焼結して得られる焼結体の相対密度が98%以上で
あり、1350℃3時間と1450℃3時間の焼結体の
平均結晶粒子径の変化率が50%以下および焼結体の相
対密度の変化率が2%以下であり、かつ1375℃2時
間と1375℃9時間の焼結体の平均結晶粒子径の変化
率が10%以下および焼結体の相対密度の変化率が1%
以下であることを特徴とするジルコニア粉末。
3. A powder containing zirconia as a main component, which is molded at 1350 ° C. after molding under the condition of 98 MPa.
The relative density of the sintered body obtained by time sintering is 98% or more, the change rate of the average crystal grain size of the sintered body at 1350 ° C. for 3 hours and 1450 ° C. for 3 hours is 50% or less, and The change rate of the relative density is 2% or less, the change rate of the average crystal grain size of the sintered body at 1375 ° C. for 2 hours and 1375 ° C. for 9 hours is 10% or less, and the change rate of the relative density of the sintered body is 1%. %
The zirconia powder characterized by being the following.
【請求項4】 請求項1〜3のいずれかに記載のジルコ
ニア粉末を焼結してなる焼結体。
4. A sintered body obtained by sintering the zirconia powder according to claim 1.
【請求項5】 ジルコニアを主成分とする粉末を焼結し
てなる焼結体であって、該焼結体の相対密度が98%以
上、平均結晶粒子径が0.4μm以下であり、かつ結晶
粒子径の標準偏差が0.15以下であることを特徴とす
る焼結体。
5. A sintered body obtained by sintering powder containing zirconia as a main component, wherein the relative density of the sintered body is 98% or more, and the average crystal particle size is 0.4 μm or less, and A sintered body having a standard deviation of crystal grain diameter of 0.15 or less.
【請求項6】 ジルコニアを主成分とする粉末を焼結し
てなる焼結体であって、該焼結体の相対密度が98%以
上、平均結晶粒子径が0.4μm以下であり、かつ結晶
粒子径の変動係数が60%以下である焼結体。
6. A sintered body obtained by sintering a powder containing zirconia as a main component, wherein the relative density of the sintered body is 98% or more, and the average crystal grain size is 0.4 μm or less, and A sintered body having a variation coefficient of crystal particle diameter of 60% or less.
【請求項7】 色度が、Yが50〜70、かつδxとδ
yが共に0.0000を越え0.0150以下であるこ
とを特徴とする請求項4から6のいずれかに記載の焼結
体。
7. The chromaticity is such that Y is 50 to 70 and δx and δ
Both of y are more than 0.0000 and 0.0150 or less, The sintered compact according to any one of claims 4 to 6 characterized by things.
JP2002267902A 2001-10-16 2002-09-13 Zirconia powder and sintered compact thereof Pending JP2003192452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267902A JP2003192452A (en) 2001-10-16 2002-09-13 Zirconia powder and sintered compact thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001317815 2001-10-16
JP2001-317815 2001-10-16
JP2002267902A JP2003192452A (en) 2001-10-16 2002-09-13 Zirconia powder and sintered compact thereof

Publications (1)

Publication Number Publication Date
JP2003192452A true JP2003192452A (en) 2003-07-09

Family

ID=27615463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267902A Pending JP2003192452A (en) 2001-10-16 2002-09-13 Zirconia powder and sintered compact thereof

Country Status (1)

Country Link
JP (1) JP2003192452A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170719A (en) * 2003-12-10 2005-06-30 Nippon Denko Kk Zirconium oxide powder with high lightness and whiteness and sintered compact and manufacturing method thereof
JP2006143551A (en) * 2004-11-24 2006-06-08 Toray Ind Inc Zirconia powder
JP2006240928A (en) * 2005-03-04 2006-09-14 Tosoh Corp Zirconia fine powder and method of manufacturing the same
JP2007332026A (en) * 2007-08-27 2007-12-27 Tosoh Corp Zirconia sintered compact
JP2009137774A (en) * 2007-12-03 2009-06-25 Sumitomo Osaka Cement Co Ltd Zirconia particle, its producing method, zirconia transparent dispersion liquid, transparent complex and its producing method
JP2010105892A (en) * 2008-10-31 2010-05-13 Kanto Denka Kogyo Co Ltd Zirconia fine particle and method for producing the same
JP2011500501A (en) * 2007-10-23 2011-01-06 エボニック デグサ ゲーエムベーハー Zirconium dioxide powder and zirconium dioxide dispersion
JP2011241131A (en) * 2010-05-20 2011-12-01 Sumitomo Metal Electronics Devices Inc Ceramic sintered body, light-reflecting article, and package for storing light-emitting element
JP2013075824A (en) * 2012-12-25 2013-04-25 Sumitomo Osaka Cement Co Ltd Transparent composite and method for producing the same
JP2015502309A (en) * 2011-10-10 2015-01-22 スリーエム イノベイティブ プロパティズ カンパニー Airgel, baked and crystalline product and method for producing the same
WO2015093531A1 (en) * 2013-12-17 2015-06-25 京セラ株式会社 Fiber guide
JP2015221727A (en) * 2014-05-22 2015-12-10 東ソー株式会社 Zirconia sintered body and manufacturing method therefor
JP2018172227A (en) * 2017-03-31 2018-11-08 Dowaエレクトロニクス株式会社 ε IRON OXIDE POWDER WITH PART OF IRON SITES SUBSTITUTED WITH METAL ELEMENT OTHER THAN IRON, METHOD OF PRODUCING THE SAME, AND PASTE
JP2020099841A (en) * 2018-12-19 2020-07-02 旭化成株式会社 Crystal manufacturing method and crystal manufacturing device
WO2020217942A1 (en) * 2019-04-25 2020-10-29 東ソー株式会社 Sintered body, powder, and method for producing same
WO2021215419A1 (en) * 2020-04-22 2021-10-28 東ソー株式会社 Sintered body and method for producing same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170719A (en) * 2003-12-10 2005-06-30 Nippon Denko Kk Zirconium oxide powder with high lightness and whiteness and sintered compact and manufacturing method thereof
JP2006143551A (en) * 2004-11-24 2006-06-08 Toray Ind Inc Zirconia powder
JP2006240928A (en) * 2005-03-04 2006-09-14 Tosoh Corp Zirconia fine powder and method of manufacturing the same
JP2007332026A (en) * 2007-08-27 2007-12-27 Tosoh Corp Zirconia sintered compact
JP2011500501A (en) * 2007-10-23 2011-01-06 エボニック デグサ ゲーエムベーハー Zirconium dioxide powder and zirconium dioxide dispersion
JP2009137774A (en) * 2007-12-03 2009-06-25 Sumitomo Osaka Cement Co Ltd Zirconia particle, its producing method, zirconia transparent dispersion liquid, transparent complex and its producing method
JP2010105892A (en) * 2008-10-31 2010-05-13 Kanto Denka Kogyo Co Ltd Zirconia fine particle and method for producing the same
JP2011241131A (en) * 2010-05-20 2011-12-01 Sumitomo Metal Electronics Devices Inc Ceramic sintered body, light-reflecting article, and package for storing light-emitting element
US9925126B2 (en) 2011-10-10 2018-03-27 3M Innovative Properties Company Aerogels, calcined and crystalline articles and methods of making the same
US9657152B2 (en) 2011-10-10 2017-05-23 3M Innovative Properties Company Aerogels, calcined and crystalline articles and methods of making the same
US10052266B2 (en) 2011-10-10 2018-08-21 3M Innovative Properties Company Aerogels, calcined and crystalline articles and methods of making the same
JP2015502309A (en) * 2011-10-10 2015-01-22 スリーエム イノベイティブ プロパティズ カンパニー Airgel, baked and crystalline product and method for producing the same
JP2013075824A (en) * 2012-12-25 2013-04-25 Sumitomo Osaka Cement Co Ltd Transparent composite and method for producing the same
CN105813964A (en) * 2013-12-17 2016-07-27 京瓷株式会社 Fiber guide
JPWO2015093531A1 (en) * 2013-12-17 2017-03-23 京セラ株式会社 Fiber guide
WO2015093531A1 (en) * 2013-12-17 2015-06-25 京セラ株式会社 Fiber guide
JP2015221727A (en) * 2014-05-22 2015-12-10 東ソー株式会社 Zirconia sintered body and manufacturing method therefor
JP2018172227A (en) * 2017-03-31 2018-11-08 Dowaエレクトロニクス株式会社 ε IRON OXIDE POWDER WITH PART OF IRON SITES SUBSTITUTED WITH METAL ELEMENT OTHER THAN IRON, METHOD OF PRODUCING THE SAME, AND PASTE
JP2020099841A (en) * 2018-12-19 2020-07-02 旭化成株式会社 Crystal manufacturing method and crystal manufacturing device
JP7235494B2 (en) 2018-12-19 2023-03-08 旭化成株式会社 Crystal manufacturing method and crystal manufacturing apparatus
WO2020217942A1 (en) * 2019-04-25 2020-10-29 東ソー株式会社 Sintered body, powder, and method for producing same
WO2021215419A1 (en) * 2020-04-22 2021-10-28 東ソー株式会社 Sintered body and method for producing same

Similar Documents

Publication Publication Date Title
EP2263988B1 (en) Light-transmitting sintered zirconia compact, process for producing the same, and use thereof
JP2003192452A (en) Zirconia powder and sintered compact thereof
JP4984204B2 (en) Indium oxide powder and method for producing the same
JP2023138969A (en) Zirconia sintered body and manufacturing method therefor
JP7110484B2 (en) Zirconia powder, method for producing zirconia powder, method for producing zirconia sintered body, and zirconia sintered body
EP4039648A1 (en) Zirconia powder, zirconia sintered body, and production method for zirconia sintered body
WO2022138881A1 (en) Zirconia pre-sintered body
JP4254222B2 (en) Zirconia powder
JP2018172263A (en) Zirconia powder and method for producing the same
EP1484282B1 (en) Cerium based composite oxide, sintered product thereof and method for preparation thereof
JP2004269331A (en) Easily sintering tetragonal zirconia powder and its manufacturing method
JP4253877B2 (en) Zirconia fine powder and method for producing the same
KR20210144777A (en) spinel powder
JP2017128471A (en) Zirconia powder and method for producing the same
WO2022075345A1 (en) Zirconia powder, zirconia sintered body, and method for producing zirconia sintered body
WO2021153211A1 (en) Stabilized zirconia sintered body and zirconia powder
JP5142468B2 (en) Method for producing barium titanate powder
Simonov-Emel’yanov et al. Preparation of highly porous Nb x Ta 1–x C ceramics from polymer-matrix composite materials based on a phenol-formaldehyde binder and low hydrated hydroxide of niobium and tantalum
JP7472956B2 (en) Powder and its manufacturing method
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JP2803314B2 (en) Method for producing alumina-zirconia composite powder and sintered body
JPH06234526A (en) Powdery zirconia composition for rolling granulation
Yang et al. Preparation of yttria-stabilized tetragonal zirconia ceramics for optical ferrule
KR102066489B1 (en) Infrared ray transmission spinel with improved mechanical strength and method of thereof
JP2001080919A (en) Fine powdery zirconia and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729