JP2015221727A - Zirconia sintered body and manufacturing method therefor - Google Patents

Zirconia sintered body and manufacturing method therefor Download PDF

Info

Publication number
JP2015221727A
JP2015221727A JP2014105873A JP2014105873A JP2015221727A JP 2015221727 A JP2015221727 A JP 2015221727A JP 2014105873 A JP2014105873 A JP 2014105873A JP 2014105873 A JP2014105873 A JP 2014105873A JP 2015221727 A JP2015221727 A JP 2015221727A
Authority
JP
Japan
Prior art keywords
sintered body
zirconia
average particle
zirconia sintered
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014105873A
Other languages
Japanese (ja)
Other versions
JP6405699B2 (en
Inventor
松井 光二
Koji Matsui
光二 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014105873A priority Critical patent/JP6405699B2/en
Publication of JP2015221727A publication Critical patent/JP2015221727A/en
Application granted granted Critical
Publication of JP6405699B2 publication Critical patent/JP6405699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zirconia sintered body excellent in strength and toughness as well as water heat degradation resistance.SOLUTION: A zirconia sintered body yttria concentration containing 0.05 to 3 wt.% of alumina of 2 to 4 mol% with a relative density of the zirconia sintered body of 99.7% or more, an average particle diameter of crystal particles of 0.1 to 0.3 μm, flexure strength of 1600 MPa or more and monoclinic phase rate after immersing in hot water at 140°C for 75 hours of 5% or less is used. The sintered body is obtained by molding zirconia particles having the average particle diameter of secondary particles of 0.1 to 0.4 μm, a ratio of the average particle diameter of the secondary particles/the average particle diameter of primary particles measured by an electron microscope of 1 to 8 and yttria concentration containing 0.05 to 3 wt.% of alumina of 2 to 4 mol% and pre-sintering it at 1100 to 1200°C and conducting hot rolling isostatic press treatment on obtained pre-sintered body at pressure of 50 to 500 MPa and temperature of 1150 to 1250°C.

Description

本発明は、精密加工部品,光コネクター部品及び粉砕機用部材などの構造部材や歯科材及び人工骨材などの生体材料に使用される、特に機械的強度及び耐水熱特性に優れたジルコニア焼結体及びその製造方法に関するものである。   The present invention is a zirconia sintered material particularly excellent in mechanical strength and hydrothermal resistance used for structural materials such as precision processing parts, optical connector parts and crusher members, and biomaterials such as dental materials and artificial bone materials. The present invention relates to a body and a manufacturing method thereof.

イットリア安定化正方晶ジルコニアセラミックスは、機械的特性(強度・靭性)に優れているため、光コネクター部品,精密加工部品,粉砕メディア,粉砕機用部材,刃物等の幅広い用途で使用されている。高強度・高靭性の発現は、応力集中場で準安定相の正方晶が体積膨張を伴って安定相の単斜晶へ相変態するために、破壊エネルギー吸収と圧縮応力が生じるためにクラックの進展が抑制される応力誘起相変態による強化(変態強化)機構で理解されている。   Yttria-stabilized tetragonal zirconia ceramics are excellent in mechanical properties (strength and toughness), and are therefore used in a wide range of applications such as optical connector parts, precision processed parts, grinding media, grinding machine members, and blades. The development of high strength and toughness is due to the fact that metastable tetragonal crystals undergo phase transformation to stable monoclinic crystals with volume expansion in the stress concentration field, so that fracture energy is absorbed and compressive stress is generated. It is understood by the strengthening (transformation strengthening) mechanism by stress-induced phase transformation that suppresses the progress.

一方、このジルコニアセラミックスは、水雰囲気下では、長期間の間に除々に正方晶が単斜晶へ自発的に相変態するために、体積膨張に起因する微細クラックが発生して強度・靭性が低下する劣化現象が起こることが指摘されている。最近では、様々な用途での高性能化の要求が高まってきており、特に使用環境の厳しい条件でも劣化しない品質信頼性の高い、即ち、機械的特性に優れ、かつ、製品寿命の長いものが求められている。品質信頼性は、水熱処理による劣化加速試験で評価されている。   On the other hand, in zirconia ceramics, tetragonal crystals gradually and spontaneously transform into monoclinic crystals in a water atmosphere over a long period of time, resulting in the formation of fine cracks due to volume expansion, resulting in increased strength and toughness. It has been pointed out that a deteriorating phenomenon occurs. Recently, there has been an increasing demand for high performance in various applications. In particular, high quality and reliability that does not deteriorate even under severe conditions of use, that is, excellent mechanical properties and long product life. It has been demanded. Quality reliability is evaluated in accelerated deterioration tests using hydrothermal treatment.

このジルコニア材料の本質的な欠点である劣化を改善するために、出発原料であるジルコニア粉末に様々な添加物を加えて焼結性を改善し、耐水熱特性を向上させようとする研究がなされている。   In order to improve the deterioration, which is an essential drawback of this zirconia material, studies have been made to improve the sinterability and improve the hydrothermal resistance by adding various additives to the starting zirconia powder. ing.

例えば、特許文献1には、安定化剤としてイットリアを含み、さらにジルコニウムイオンのイオン半径よりも小さいイオン半径を有する陽イオン及び/又は価数が4価以外の陽イオンの1種以上を含むジルコニア焼結体が開示されている。しかしながら、得られた焼結体の強度については、更なる高強度化の市場要求を満たすために、より一層の向上が求められていた。   For example, Patent Document 1 includes zirconia containing yttria as a stabilizer and further having a cation having an ionic radius smaller than that of zirconium ions and / or a cation having a valence other than tetravalent. A sintered body is disclosed. However, the strength of the obtained sintered body has been required to be further improved in order to satisfy the market demand for further strengthening.

また、特許文献2には、2〜4モル%のイットリアを含有し、相対密度99%以上、結晶粒径が0.15μm以下、600nmの吸収散乱係数が5.0mm−1以下の透光性ジルコニア焼結体が開示されているが、機械的強度(破壊靭性)につき未だ改善の余地があった。 Patent Document 2 contains 2 to 4 mol% of yttria, has a relative density of 99% or more, a crystal grain size of 0.15 μm or less, and an absorption / scattering coefficient of 600 nm of 5.0 mm −1 or less. Although a zirconia sintered body is disclosed, there is still room for improvement in mechanical strength (fracture toughness).

特許文献3には、2〜4モル%のイットリアを含有し、3点曲げ強度が1700MPa以上のジルコニア焼結体が記載されている。特許文献3で得られるジルコニア焼結体は、製造時に一次焼結温度又はHIP温度が高いため、耐水熱劣化性が低いものである。   Patent Document 3 describes a zirconia sintered body containing 2 to 4 mol% of yttria and having a three-point bending strength of 1700 MPa or more. Since the primary sintering temperature or HIP temperature is high at the time of manufacture, the zirconia sintered body obtained in Patent Document 3 has low hydrothermal deterioration resistance.

特開2007−332026号公報JP 2007-332026 A 特開2008−214168号公報JP 2008-214168 A 特開2008−050247号公報JP 2008-050247 A

本発明では、上記のような従来方法における欠点を解消し、強度及び靭性に優れており、これに加えて耐水熱劣化性に優れるジルコニア焼結体の提供;並びにそのジルコニア焼結体を簡易なプロセスにより製造することのできる製造方法の提供を目的とするものである。   The present invention eliminates the drawbacks of the conventional methods as described above, provides a zirconia sintered body that is excellent in strength and toughness, and in addition has excellent hydrothermal deterioration resistance; The object is to provide a manufacturing method that can be manufactured by a process.

本発明者らは、ジルコニア焼結過程で形成される焼結体微構造、機械的特性及び耐水熱劣化性の関係について詳細に検討し、本発明に到達した。   The inventors of the present invention have studied in detail the relationship between the microstructure of the sintered body formed in the zirconia sintering process, the mechanical characteristics, and the resistance to hydrothermal deterioration, and have reached the present invention.

即ち、本発明は、
1)アルミナを0.05〜3重量%含むイットリア濃度2〜4モル%のジルコニア焼結体であり、該ジルコニア焼結体の相対密度が99.7%以上、結晶粒子の平均粒径が0.1〜0.3μm、曲げ強度が1600MPa以上、かつ、140℃の熱水中に75時間浸漬させた後の単斜晶相率が5%以下であるジルコニア焼結体。
2)ジルコニア焼結体が、シリカ及び/又はゲルマニアを含む上記1)のジルコニア焼結体。
3)2次粒子の平均粒径が0.1〜0.4μmであり、該2次粒子の平均粒径/電子顕微鏡で測定される1次粒子の平均粒径の比が1〜8、かつ、アルミニウム化合物をアルミナ換算として0.05〜3重量%含有するイットリア濃度2〜4モル%のジルコニア粉末を成形して1100〜1200℃で予備焼結させ、得られた予備焼結体を圧力50〜500MPa、温度1150〜1250℃で熱間静水圧プレス処理する上記1)又は2のジルコニア焼結体の製造方法。
4)ジルコニア粉末が、珪素及び/又はゲルマニウム化合物を含む上記3)のジルコニア焼結体の製造方法。
を要旨とするものである。
That is, the present invention
1) A zirconia sintered body containing 0.05 to 3% by weight of alumina and having a yttria concentration of 2 to 4 mol%. The relative density of the zirconia sintered body is 99.7% or more, and the average grain size of crystal grains is 0. A zirconia sintered body having a monoclinic phase ratio of 5% or less after being immersed in hot water at 140 ° C. for 75 hours with a bending strength of 1 to 0.3 μm or more.
2) The zirconia sintered body according to 1) above, wherein the zirconia sintered body contains silica and / or germania.
3) The average particle size of the secondary particles is 0.1 to 0.4 μm, and the ratio of the average particle size of the secondary particles / the average particle size of the primary particles measured with an electron microscope is 1 to 8, and The zirconia powder having an yttria concentration of 2 to 4 mol% containing 0.05 to 3 wt% of the aluminum compound in terms of alumina was molded and presintered at 1100 to 1200 ° C., and the resulting presintered body was subjected to a pressure of 50 The method for producing a zirconia sintered body according to 1) or 2 above, wherein hot isostatic pressing is performed at ˜500 MPa at a temperature of 1150 to 1250 ° C.
4) The method for producing a zirconia sintered body according to 3) above, wherein the zirconia powder contains silicon and / or a germanium compound.
Is a summary.

以下、本発明をさらに詳細に説明するが、最初に、本明細書において使用する用語の意味を説明する。   Hereinafter, the present invention will be described in more detail. First, meanings of terms used in the present specification will be described.

ジルコニア焼結体に係わる「ジルコニア」とは、イットリアが安定化剤として固溶しているものをいう。「イットリア濃度」とは、Y/(ZrO+Y)の比率をモル%として表した値をいう。「アルミナ濃度」とは、Al/(ZrO+Y+Al+GeO+SiO)の比率を重量%として表した値をいう。「シリカ濃度」とは、SiO/(ZrO+Y+Al+GeO+SiO)の比率を重量%として表した値をいう。
「ゲルマニア濃度」とは、GeO/(ZrO+Y+Al+GeO+SiO)の比率を重量%として表した値をいう。
“Zirconia” related to a zirconia sintered body means that yttria is dissolved as a stabilizer. The “yttria concentration” refers to a value expressed as a mol% ratio of Y 2 O 3 / (ZrO 2 + Y 2 O 3 ). “Alumina concentration” refers to a value expressed as a percentage by weight of Al 2 O 3 / (ZrO 2 + Y 2 O 3 + Al 2 O 3 + GeO 2 + SiO 2 ). “Silica concentration” refers to a value expressed as a percentage by weight of SiO 2 / (ZrO 2 + Y 2 O 3 + Al 2 O 3 + GeO 2 + SiO 2 ).
The “germanian concentration” refers to a value expressed as a percentage by weight of GeO 2 / (ZrO 2 + Y 2 O 3 + Al 2 O 3 + GeO 2 + SiO 2 ).

「相対密度」とは、実験的に求めた実測密度ρと、以下に示す数式(1)〜(4)により計算されたイットリア、アルミナ、ゲルマニア及びシリカを含有するジルコニアの真密度ρを用い、(ρ/ρ)×100の比率(%)に換算して表した値のことをいう。
A=0.5080+0.06980X/(100+X) (1)
C=0.5195−0.06180X/(100+X) (2)
ρ=[124.25(100−X)+225.81X]/[150.5(100
+X)AC] (3)
ρ=100/[(mAl/3.987)+(mSi/2.2)+(mGe/6.239)+(100−(mAl+mSi+mGe))/ρ] (4)
ここで、X,mAl,mSiとmGeは、それぞれイットリア濃度(モル%),アルミナ濃度(重量%),シリカ濃度(重量%),ゲルマニア濃度(重量%)を表す。
"Relative density" uses the experimentally obtained actual density ρ and the true density ρ 0 of zirconia containing yttria, alumina, germania and silica calculated by the following formulas (1) to (4). , (Ρ / ρ 0 ) × 100 means a value converted into a ratio (%).
A = 0.58080 + 0.06980X / (100 + X) (1)
C = 0.5195-0.06180X / (100 + X) (2)
ρ Z = [124.25 (100−X) + 225.81X] / [150.5 (100
+ X) A 2 C] (3)
ρ 0 = 100 / [(m Al /3.987)+(m Si /2.2)+(m Ge /6.239)+(100−(m Al + m Si + m Ge )) / ρ Z ] ( 4)
Here, X, mAl , mSi, and mGe represent the yttria concentration (mol%), the alumina concentration (wt%), the silica concentration (wt%), and the germania concentration (wt%), respectively.

結晶粒子に係わる「平均粒径」とは、電子顕微鏡を用いてプラニメトリック法(参考文献:山口喬,セラミックス,19,520−529(1984))により算出されたものの値をいう。   The “average particle size” related to the crystal particles refers to a value calculated by a planimetric method (reference: Satoshi Yamaguchi, Ceramics, 19, 520-529 (1984)) using an electron microscope.

「正方晶の比率(正方晶率)」とは、X線回折(XRD)プロファイルに解析プログラムとしてRIETAN−FP(参考文献:F.Izumi,”The Rietveld Method”,Ed. by R. A. Young, Oxford University Press, Oxford (1993) Chap. 13.)を用いてリートベルト法により算出された重量%の値をいう。   “Tetragonal ratio (tetragonal ratio)” refers to an X-ray diffraction (XRD) profile as an analysis program, RIEtan-FP (reference: F. Izumi, “The Rietveld Method”, Ed. By R. A. Young. , Oxford University Press, Oxford (1993) Chap. 13.) is a weight% value calculated by the Rietveld method.

「曲げ強度」とは、JIS R1601に準じた3点曲げ試験で評価した値をいう。   “Bending strength” refers to a value evaluated by a three-point bending test according to JIS R1601.

「単斜晶率(f)」とは、水熱処理した焼結体についてXRD測定を行い、単斜晶の(111)及び(11−1)反射の面積強度、立方晶及び正方晶の(111)反射の面積強度をそれぞれ求めて、以下の数式(5)により算出された値(%)をいう。
(%)=[I(111)+I(11−1)]×100/[I(111)+I(11−1)+I(111)+I(111)] (5)
ここで、Iは各反射の面積強度、添字m,t及びcはそれぞれ単斜晶,正方晶,立方晶を示す。
The “monoclinic crystal ratio (f m )” is obtained by performing XRD measurement on a hydrothermally treated sintered body, and measuring the area strength of monoclinic (111) and (11-1) reflection, cubic and tetragonal ( 111) The area intensity of reflection is obtained, and the value (%) calculated by the following equation (5).
f m (%) = [I m (111) + I m (11-1)] × 100 / [I m (111) + I m (11-1) + I t (111) + I (111) c ] (5)
Here, I represents the area intensity of each reflection, and subscripts m, t, and c represent monoclinic, tetragonal, and cubic crystals, respectively.

ジルコニア粉末に係わる「2次粒子の平均粒径(D)」とは、体積基準分布が中央値(メディアン)である粒子と同じ体積の球の直径をいい、マイクロトラック粒度分布測定装置によって測定したものである。 “Average particle size of secondary particles (D 2 )” related to zirconia powder refers to the diameter of a sphere having the same volume as a particle whose volume reference distribution is the median (median), and is measured by a microtrack particle size distribution analyzer. It is a thing.

「電子顕微鏡で測定される1次粒子の平均粒径(D)」とは、電子顕微鏡写真により観察される個々の1次粒子の大きさを面積で読み取り、それを円形に換算して粒径を算出したものの平均値をいう。 “Average primary particle size (D 1 ) measured with an electron microscope” means that the size of each primary particle observed by an electron micrograph is read as an area and converted into a circular shape. The average value of the diameters calculated.

本発明のジルコニア焼結体は、アルミナを0.05〜3重量%含むイットリア濃度2〜4モル%のものである。イットリア濃度を2〜4モル%とすることにより、劣化が抑制されて品質信頼性が向上すると共に、機械的特性が向上するからである。より高い品質信頼性及びより強い機械的特性を得るために、イットリア濃度としては、2.5〜3.5モル%が好ましい。また、アルミナ濃度を0.05〜3重量%とすることにより、結晶粒間の境界(粒界)に固溶偏析しているアルミニウムイオンの偏析量が多くなった結果、粒界強度が高くなって強度・靱性が高いものとなるからである。より好ましいアルミナ濃度は、0.1〜1重量%である。   The zirconia sintered body of the present invention has an yttria concentration of 2 to 4 mol% containing 0.05 to 3 wt% of alumina. This is because by setting the yttria concentration to 2 to 4 mol%, deterioration is suppressed and quality reliability is improved, and mechanical properties are improved. In order to obtain higher quality reliability and stronger mechanical properties, the yttria concentration is preferably 2.5 to 3.5 mol%. Further, by setting the alumina concentration to 0.05 to 3% by weight, the amount of segregation of aluminum ions that are solid-segregated at the boundaries (grain boundaries) between crystal grains increases, resulting in an increase in grain boundary strength. This is because the strength and toughness are high. A more preferable alumina concentration is 0.1 to 1% by weight.

さらに、上記のジルコニア焼結体の相対密度が99.7%以上、結晶粒子の平均粒径が0.1〜0.3μmでなければならない。相対密度が99.7%以上であると、強度・靭性の低下要因となる粗大気孔に由来する欠陥や亀裂のサイズが大きくなることを抑制することができる。また、平均粒径が0.1〜0.3μmにあると、品質信頼性の低下要因である自発的な相変態、即ち、劣化が抑制される。好ましい相対密度は99.8%以上であり、好ましい平均粒径は0.15〜0.25μmであり、より好ましくは0.15〜0.2μmである。この粒径範囲の条件に付け加えて、ジルコニア焼結体の結晶構造が正方晶単相(即ち、正方晶率が100%)であれば、よりいっそう劣化耐性に優れたものになる。   Furthermore, the relative density of the above-mentioned zirconia sintered body must be 99.7% or more, and the average grain size of the crystal grains must be 0.1 to 0.3 μm. When the relative density is 99.7% or more, it is possible to suppress an increase in the size of defects and cracks derived from the rough atmospheric pores that cause a decrease in strength and toughness. On the other hand, when the average particle size is 0.1 to 0.3 μm, spontaneous phase transformation, that is, deterioration, which is a factor of lowering quality reliability, is suppressed. A preferable relative density is 99.8% or more, and a preferable average particle diameter is 0.15 to 0.25 μm, more preferably 0.15 to 0.2 μm. In addition to the conditions of this particle size range, if the crystal structure of the zirconia sintered body is a tetragonal single phase (that is, the tetragonal crystal ratio is 100%), the deterioration resistance is further improved.

本発明のジルコニア焼結体は、曲げ強度が1600MPa以上、かつ、140℃の熱水中に75時間浸漬させた後の単斜晶率が5%以下である。より好ましい曲げ強度は1800MPa以上であり、特に好ましい範囲は1800〜2100MPaである。より好ましい単斜晶率は3%以下であり、特に好ましくは1%以下である。   The zirconia sintered body of the present invention has a bending strength of 1600 MPa or more and a monoclinic crystal ratio of 5% or less after being immersed in hot water at 140 ° C. for 75 hours. A more preferable bending strength is 1800 MPa or more, and a particularly preferable range is 1800 to 2100 MPa. A more preferable monoclinic crystal ratio is 3% or less, and particularly preferably 1% or less.

また、本発明のジルコニア焼結体がシリカ及び/又はゲルマニアを含むことが好ましく、その場合、該シリカ濃度を好ましくは0.05〜0.5重量%、ゲルマニア濃度を好ましくは0.05〜1重量%にすると、アルミニウムイオンに加えて珪素イオン及び/又はゲルマニウムイオンも結晶粒界に固溶偏析して粒界強度を高めるので、より強度を向上させるのに効果的である。より好ましいシリカ濃度は0.05〜0.2重量%、ゲルマニア濃度は0.05〜0.5重量%である。   The zirconia sintered body of the present invention preferably contains silica and / or germania. In that case, the silica concentration is preferably 0.05 to 0.5% by weight, and the germania concentration is preferably 0.05 to 1. When the weight percentage is used, in addition to aluminum ions, silicon ions and / or germanium ions are also solid-solution segregated at the crystal grain boundaries to increase the grain boundary strength, which is effective in improving the strength. The silica concentration is more preferably 0.05 to 0.2% by weight, and the germania concentration is 0.05 to 0.5% by weight.

次に、本発明のジルコニア焼結体の製造方法について説明する。   Next, the manufacturing method of the zirconia sintered compact of this invention is demonstrated.

本発明のジルコニア焼結体を得るにあたっては、2次粒子の平均粒径が0.1〜0.4μmであり、該2次粒子の平均粒径/電子顕微鏡で測定される1次粒子の平均粒径の比(D/D)が1〜8、かつ、アルミニウム化合物をアルミナ換算として0.05〜3重量%含有するイットリア濃度2〜4モル%のジルコニア粉末を用いる。 In obtaining the zirconia sintered body of the present invention, the average particle size of the secondary particles is 0.1 to 0.4 μm, and the average particle size of the secondary particles / average of the primary particles measured with an electron microscope A zirconia powder having a particle diameter ratio (D 2 / D 1 ) of 1 to 8 and an yttria concentration of 2 to 4 mol% containing 0.05 to 3 wt% of an aluminum compound in terms of alumina is used.

2次粒子の平均粒径を0.1〜0.4μmとすることにより、焼結性・成形性が良好であり、本発明の高い相対密度を有する焼結体を得ることができる。   By setting the average particle size of the secondary particles to 0.1 to 0.4 μm, the sintered body having good sinterability and formability and having a high relative density according to the present invention can be obtained.

また、ジルコニア粉末のD/D比を1〜8とすることにより、焼結性が良好となり、本発明の高い相対密度を有する焼結体を得ることができる。2次粒子の平均粒径としては、0.2〜0.3μmが好ましく、D/D比については1〜3又は6〜8が好ましい。 Moreover, by setting the D 2 / D 1 ratio of the zirconia powder to 1 to 8, the sinterability is improved, and the sintered body having a high relative density according to the present invention can be obtained. The average particle size of the secondary particles is preferably 0.2 to 0.3 μm, and the D 2 / D 1 ratio is preferably 1 to 3 or 6 to 8.

続いて、本発明では、上記のジルコニア粉末を成形して、1100〜1200℃で予備焼結させ、得られた予備焼結体を圧力50〜500MPa、温度1150〜1250℃で熱間静水圧プレス(HIP)処理する。予備焼結温度が1100℃〜1200℃の範囲にあり、かつ、HIP処理の圧力が50〜500MPa及び温度が1150〜1250℃の範囲にあることにより、焼結体の平均粒径を0.1〜0.2μmとし、本発明の高い相対密度を有する焼結体を得ることができる。   Subsequently, in the present invention, the above zirconia powder is molded and pre-sintered at 1100 to 1200 ° C., and the obtained pre-sintered body is subjected to hot isostatic pressing at a pressure of 50 to 500 MPa and a temperature of 1150 to 1250 ° C. (HIP) Process. When the pre-sintering temperature is in the range of 1100 ° C. to 1200 ° C., the HIP treatment pressure is in the range of 50 to 500 MPa, and the temperature is in the range of 1150 to 1250 ° C., the average particle size of the sintered body is 0.1 The sintered body having a high relative density of the present invention can be obtained with a thickness of ˜0.2 μm.

予備焼結時の昇温速度は特に限定はなく、生産性の観点から50〜200℃/時間とするのが好ましく、焼成温度の保持時間は2〜5時間が好ましい。また、HIP処理時の昇温速度も特に限定はなく、生産性の観点から500〜700℃/時間とするのが好ましく、焼成温度の保持時間は1〜2時間が好ましい。HIPでの圧力媒体としては、通常用いられるアルゴンガスで十分である。   The rate of temperature increase during the pre-sintering is not particularly limited, and is preferably 50 to 200 ° C./hour from the viewpoint of productivity, and the holding time of the firing temperature is preferably 2 to 5 hours. Further, the rate of temperature increase during the HIP treatment is not particularly limited, and is preferably 500 to 700 ° C./hour from the viewpoint of productivity, and the holding time of the firing temperature is preferably 1 to 2 hours. As the pressure medium in the HIP, a commonly used argon gas is sufficient.

ジルコニア粉末を成形する方法としては、加圧成形,射出成形,押出成形等の公知の方法を選択することができる。   As a method for molding the zirconia powder, a known method such as pressure molding, injection molding or extrusion molding can be selected.

上記のジルコニア粉末の製造方法に特に制限はなく、ジルコニア粉末の2次粒子の平均粒径、D/D比、イットリア濃度及びアルミナ濃度を満足しているものであれば、加水分解法や中和共沈法などのいかなる方法で得られたものを用いてもよい。 There is no particular limitation on the method of manufacturing the zirconia powder, an average particle diameter of the secondary particles of the zirconia powder, D 2 / D 1 ratio, as long as it satisfies the yttria concentration and alumina concentration, Ya hydrolysis You may use what was obtained by what kind of methods, such as neutralization coprecipitation method.

このような粉末としては、例えばイットリウム及びアルミニウムを含有する水和ジルコニア微粒子を900〜1100℃の温度で仮焼、粉砕して得られるジルコニア粉末や、イットリウム含有水和ジルコニア微粒子を900〜1100℃の温度で仮焼した後アルミニウム化合物を加えて湿式粉砕して得られるジルコニア粉末を例示することができる。   Examples of such powder include zirconia powder obtained by calcining and pulverizing hydrated zirconia fine particles containing yttrium and aluminum at a temperature of 900 to 1100 ° C, and yttrium-containing hydrated zirconia fine particles at 900 to 1100 ° C. Examples thereof include zirconia powder obtained by calcining at a temperature and then wet pulverizing by adding an aluminum compound.

イットリウム及びアルミニウムを含有する水和ジルコニア微粒子としては、ジルコニウム塩水溶液の加水分解反応により得られる水和ジルコニア微粒子にイットリウム化合物及びアルミニウム化合物を添加して乾燥させればよい。   The hydrated zirconia fine particles containing yttrium and aluminum may be dried by adding an yttrium compound and an aluminum compound to hydrated zirconia fine particles obtained by hydrolysis reaction of an aqueous zirconium salt solution.

また、場合によっては、イットリウム化合物及びアルミニウム化合物を、ジルコニウム塩水溶液の加水分解反応前に予め所定量添加してから加水分解反応を行って調製した水和ジルコニア微粒子を含有する溶液を用いてもよい。   In some cases, a solution containing hydrated zirconia fine particles prepared by adding a predetermined amount of an yttrium compound and an aluminum compound in advance before the hydrolysis reaction of the zirconium salt aqueous solution and then performing the hydrolysis reaction may be used. .

ジルコニウム塩水溶液に酸やアルカリを添加して加水分解反応させると、得られるジルコニア粉末の2次粒子の平均粒径及びD/D比が制御し易くなるので、反応の際に酸やアルカリを添加することが好ましい。添加する酸としては、塩酸,硝酸,硫酸等が挙げられる。アルカリとしては、アンモニア,水酸化ナトリウム,水酸化カリウム等が挙げられる。 When an acid or alkali is added to a zirconium salt aqueous solution to cause a hydrolysis reaction, the average particle diameter and D 2 / D 1 ratio of the secondary particles of the resulting zirconia powder can be easily controlled. Is preferably added. Examples of the acid to be added include hydrochloric acid, nitric acid, sulfuric acid and the like. Examples of the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like.

水和ジルコニア微粒子の製造に用いられるジルコニウム塩としては、例えば、オキシ塩化ジルコニウム,硝酸ジルコニル,塩化ジルコニウム,硫酸ジルコニウムなどを挙げることができ、この他に水酸化ジルコニウムと酸との混合物を用いてもよい。   Examples of the zirconium salt used in the production of the hydrated zirconia fine particles include zirconium oxychloride, zirconyl nitrate, zirconium chloride, zirconium sulfate and the like. Good.

イットリウム化合物としては、例えば、イットリウムの塩化物,水酸化物,含水酸化物、酸化物などを挙げることができる。   Examples of the yttrium compound include yttrium chloride, hydroxide, hydrated oxide, oxide, and the like.

また、アルミニウム化合物としては、例えば、アルミニウムの塩化物,硝酸化物,水酸化物,含水酸化物、酸化物などを挙げることができる。   Examples of the aluminum compound include aluminum chloride, glass oxide, hydroxide, hydrated oxide, and oxide.

また、ジルコニア粉末が珪素及び/又はゲルマニウム化合物を含む場合、ジルコニア粉末に所望の濃度になるように珪素及び/又はゲルマニウム化合物を添加すればよい。特に、イットリウム含有水和ジルコニア微粒子を仮焼した後、アルミニウム化合物と一緒にそれらの化合物を添加して湿式粉砕すれば、添加物の均一性が高まるので効果的である。   Moreover, what is necessary is just to add a silicon and / or a germanium compound so that it may become a desired density | concentration to a zirconia powder, when a zirconia powder contains a silicon and / or a germanium compound. In particular, if the yttrium-containing hydrated zirconia fine particles are calcined and then added together with the aluminum compound and wet pulverized, the uniformity of the additive is increased, which is effective.

珪素化合物としては、シリカ,シリカゾル,ケイ酸などが挙げられる。ゲルマニウム化合物としては、ゲルマニア,水酸化ゲルマニウムなどが挙げられる。   Examples of the silicon compound include silica, silica sol, and silicic acid. Examples of germanium compounds include germania and germanium hydroxide.

以上、詳述したとおり、本発明のジルコニア焼結体は、強度及び靭性に優れており、これに加えて耐水熱劣化性に優れている。また、本発明の方法により、上記のジルコニア焼結体を簡易なプロセスにより製造することができる。   As described above in detail, the zirconia sintered body of the present invention is excellent in strength and toughness, and in addition, is excellent in hydrothermal deterioration resistance. Moreover, said zirconia sintered compact can be manufactured with a simple process by the method of this invention.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に何等限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples at all.

実施例・比較例中、ジルコニア粉末の2次粒子の平均粒径(D)は、マイクロトラック粒度分布計を用いて測定した。試料の前処理条件としては、粉末を蒸留水に懸濁させ、超音波ホモジナイザーを用いて3分間分散させた。 In Examples and Comparative Examples, the average particle diameter (D 2 ) of secondary particles of zirconia powder was measured using a Microtrac particle size distribution meter. As sample pretreatment conditions, the powder was suspended in distilled water and dispersed for 3 minutes using an ultrasonic homogenizer.

ジルコニア粉末の電子顕微鏡で測定される1次粒子の平均粒径(D)は、透過型電子顕微鏡を用い、300個の粒子を画像解析することにより求めた。 The average particle diameter (D 1 ) of primary particles measured with an electron microscope of zirconia powder was determined by image analysis of 300 particles using a transmission electron microscope.

ジルコニア粉末の成形は、金型プレスにより予備成形を行ったあとに、成形圧力300MPaで冷間静水圧プレス(CIP)を行った。次いで、得られた成形体を所定温度(昇温速度;100℃/h、保持時間;2時間)に設定して予備焼結させ、アルゴンガス雰囲気中(150MPa)で所定温度(昇温速度;600℃/h、保持時間;1時間)の条件でHIP処理を行った。   The zirconia powder was molded by performing a cold isostatic press (CIP) at a molding pressure of 300 MPa after preforming with a die press. Subsequently, the obtained molded body was set to a predetermined temperature (temperature increase rate; 100 ° C./h, holding time; 2 hours) and pre-sintered, and was preliminarily sintered in an argon gas atmosphere (150 MPa) (temperature increase rate; HIP treatment was performed under the conditions of 600 ° C./h, holding time: 1 hour.

ジルコニア焼結体の密度は、アルキメデス法により測定した。相対密度が80%よりも低い焼結体は、重量とサイズを測定して算出した。   The density of the zirconia sintered body was measured by the Archimedes method. The sintered body having a relative density lower than 80% was calculated by measuring the weight and size.

結晶粒子の平均粒径は、熱エッチング処理を行ったあとに、電界放出形走査型電子顕微鏡を用いてプラニメトリック法により算出した。具体的には、顕微鏡画像上に円を描いたとき、円内の粒子数nと円周にかかった粒子数Nの合計が少なくとも200個となるような円を描いて、または200個に満たない画像の場合には、粒子数の合計(n+N)が少なくとも200個となるように数視野の画像を用いて複数の円を描き、プラニメトリック法により平均粒径を求めた。 The average grain size of the crystal grains was calculated by the planimetric method using a field emission scanning electron microscope after performing the thermal etching treatment. Specifically, when a circle on a microscope image, a circle such that the total number of particles N i spent in particle number n c and the circumference of the circle is at least 200, or 200 In the case of an image less than 1, a plurality of circles are drawn using images of several fields so that the total number of particles (n c + N i ) is at least 200, and an average particle diameter is obtained by a planimetric method. It was.

ジルコニア結晶相の正方晶率は、XRDをステップスキャン法(2θ:15〜80°、ステップ幅:0.04°、積算時間:8秒/ステップ)で測定し、得られたプロファイルをリートベルト法により定量化することにより求めた。解析は、正方晶単相又は正方晶―立方晶混相とし、各結晶相のプロファイル関数は独立して取扱い、各元素の温度パラメーターは同一とした。   The tetragonal ratio of the zirconia crystal phase was measured by XRD using a step scan method (2θ: 15 to 80 °, step width: 0.04 °, integration time: 8 seconds / step), and the obtained profile was measured using the Rietveld method. Was determined by quantification. The analysis was a tetragonal single phase or a tetragonal-cubic mixed phase, the profile functions of each crystal phase were handled independently, and the temperature parameters of each element were the same.

曲げ強度は、JIS R1601に準じた3点曲げ試験で評価した。   The bending strength was evaluated by a three-point bending test according to JIS R1601.

劣化加速試験は、焼結体を140℃の熱水中に所定時間浸漬させ、生成する単斜晶の比率を求めることによって評価した。単斜晶率は、浸漬処理した焼結体についてXRD測定を行い、前記の数式(5)により算出した。   The accelerated deterioration test was evaluated by immersing the sintered body in 140 ° C. hot water for a predetermined time and determining the ratio of the monoclinic crystals to be formed. The monoclinic crystal ratio was calculated by the above-described mathematical formula (5) by performing XRD measurement on the immersion-treated sintered body.

実施例1
2モル/リットルのオキシ塩化ジルコニウム水溶液1リットルに1モル/リットルの塩酸1.7リットルを混合し、蒸留水を加えて塩酸を含むオキシ塩化ジルコニウム濃度0.37モル/リットルの溶液を調製した。この溶液を還流器付きフラスコ中で攪拌しながら加水分解反応を煮沸温度で250時間行った。
Example 1
1.7 liters of 1 mol / liter hydrochloric acid was mixed with 1 liter of 2 mol / liter zirconium oxychloride aqueous solution, and distilled water was added to prepare a solution having a zirconium oxychloride concentration of 0.37 mol / liter containing hydrochloric acid. While stirring this solution in a flask equipped with a reflux condenser, the hydrolysis reaction was carried out at the boiling temperature for 250 hours.

得られた水和ジルコニア微粒子を含む水溶液に、塩化イットリウムをイットリア濃度が3モル%になるように添加して乾燥させ、1000℃の温度で2時間仮焼した。得られた仮焼粉を水洗処理したあとに、アルミナ濃度が0.25重量%になるようにアルミナゾルを添加し湿式粉砕して乾燥させた。得られたジルコニア粉末の特性を表1に示す。   To the obtained aqueous solution containing hydrated zirconia fine particles, yttrium chloride was added to a yttria concentration of 3 mol%, dried, and calcined at a temperature of 1000 ° C. for 2 hours. After the obtained calcined powder was washed with water, an alumina sol was added so as to have an alumina concentration of 0.25% by weight, wet pulverization and drying. The properties of the obtained zirconia powder are shown in Table 1.

次いで、上記で得られたジルコニア粉末を成形して、1170℃で予備焼結させ、1200℃の条件でHIP処理した。得られた予備焼結体の密度,焼結体特性(相対密度,平均粒径,正方晶率,曲げ強度)と劣化加速試験(エージング時間:25時間,75時間)後の単斜晶率を表2に示す。   Next, the zirconia powder obtained above was molded, pre-sintered at 1170 ° C., and subjected to HIP treatment at 1200 ° C. Density, sintered body characteristics (relative density, average grain size, tetragonal crystal ratio, bending strength) of the obtained pre-sintered body and monoclinic crystal ratio after deterioration acceleration test (aging time: 25 hours, 75 hours) It shows in Table 2.

実施例2
アルミナゾルを添加する代わりに、アルミナ濃度が0.25重量%、シリカ濃度が0.1重量%になるようにアルミナゾルとコロイダルシリカを添加した以外は、実施例1と同様の条件でジルコニア焼結体を得た。得られたジルコニア粉末の特性を表1に、予備焼結体の密度,焼結体特性と劣化加速試験後の単斜晶率を表2に示す。
Example 2
A zirconia sintered body under the same conditions as in Example 1 except that alumina sol and colloidal silica were added so that the alumina concentration was 0.25 wt% and the silica concentration was 0.1 wt% instead of adding the alumina sol. Got. Table 1 shows the characteristics of the obtained zirconia powder, and Table 2 shows the density of the pre-sintered body, the sintered body characteristics, and the monoclinic crystal ratio after the accelerated deterioration test.

実施例3
アルミナゾルを添加する代わりに、アルミナ濃度が0.25重量%、ゲルマニア濃度が0.25重量%になるようにアルミナゾルとゲルマニア粉末を添加し、予備焼結温度を1150℃にした以外は、実施例1と同様の条件でジルコニア焼結体を得た。得られたジルコニア粉末の特性を表1に、予備焼結体の密度,焼結体特性と劣化加速試験後の単斜晶率を表2に示す。
Example 3
Example except that alumina sol and germania powder were added so that the alumina concentration was 0.25 wt% and the germania concentration was 0.25 wt% instead of adding the alumina sol, and the pre-sintering temperature was 1150 ° C. A zirconia sintered body was obtained under the same conditions as in No. 1. Table 1 shows the characteristics of the obtained zirconia powder, and Table 2 shows the density of the pre-sintered body, the sintered body characteristics, and the monoclinic crystal ratio after the accelerated deterioration test.

実施例4
アルミナ濃度を0.95重量%にした以外は、実施例1と同様の条件でジルコニア焼結体を得た。得られたジルコニア粉末の特性を表1に、予備焼結体の密度,焼結体特性と劣化加速試験後の単斜晶率を表2に示す。
Example 4
A zirconia sintered body was obtained under the same conditions as in Example 1 except that the alumina concentration was 0.95% by weight. Table 1 shows the characteristics of the obtained zirconia powder, and Table 2 shows the density of the pre-sintered body, the sintered body characteristics, and the monoclinic crystal ratio after the accelerated deterioration test.

実施例5
1モル/リットルの塩酸0.5リットルを混合した以外は、実施例1と同様の条件でジルコニア焼結体を得た。得られたジルコニア粉末の特性を表1に、予備焼結体の密度,焼結体特性と劣化加速試験後の単斜晶率を表2に示す。
Example 5
A zirconia sintered body was obtained under the same conditions as in Example 1 except that 0.5 liter of 1 mol / liter hydrochloric acid was mixed. Table 1 shows the characteristics of the obtained zirconia powder, and Table 2 shows the density of the pre-sintered body, the sintered body characteristics, and the monoclinic crystal ratio after the accelerated deterioration test.

比較例1
アルミナゾルを添加しない以外は、実施例1と同様の条件でジルコニア焼結体を得た。得られたジルコニア粉末の特性を表1に、予備焼結体とHIP処理の焼結体密度を表2に示す。焼結体密度が極めて低く、その他の特性を評価することができなかった。
Comparative Example 1
A zirconia sintered body was obtained under the same conditions as in Example 1 except that no alumina sol was added. The characteristics of the obtained zirconia powder are shown in Table 1, and the density of the pre-sintered body and the sintered body of the HIP treatment are shown in Table 2. The sintered compact density was extremely low, and other characteristics could not be evaluated.

比較例2
1300℃で予備焼結させ、1400℃の条件でHIP処理した以外は、実施例1と同様の条件でジルコニア焼結体を得た。得られたジルコニア粉末の特性を表1に、予備焼結体の密度,焼結体特性と劣化加速試験後の単斜晶率を表2に示す。
Comparative Example 2
A zirconia sintered body was obtained under the same conditions as in Example 1 except that it was pre-sintered at 1300 ° C. and subjected to HIP treatment at 1400 ° C. Table 1 shows the characteristics of the obtained zirconia powder, and Table 2 shows the density of the pre-sintered body, the sintered body characteristics, and the monoclinic crystal ratio after the accelerated deterioration test.

比較例3
1150℃の温度で仮焼した以外は、実施例1と同様の条件でジルコニア焼結体を得た。得られたジルコニア粉末の特性を表1に、予備焼結体とHIP処理の焼結体密度を表2に示す。焼結体密度が極めて低く、その他の特性を評価することができなかった。
Comparative Example 3
A zirconia sintered body was obtained under the same conditions as in Example 1 except that calcination was performed at a temperature of 1150 ° C. The characteristics of the obtained zirconia powder are shown in Table 1, and the density of the pre-sintered body and the sintered body of the HIP treatment are shown in Table 2. The sintered compact density was extremely low, and other characteristics could not be evaluated.

比較例4
1400℃の条件でHIP処理した以外は、実施例1と同様の条件でジルコニア焼結体を得た。得られたジルコニア粉末の特性を表1に、予備焼結体の密度,焼結体特性と劣化加速試験後の単斜晶率を表2に示す。
Comparative Example 4
A zirconia sintered body was obtained under the same conditions as in Example 1 except that the HIP treatment was performed at 1400 ° C. Table 1 shows the characteristics of the obtained zirconia powder, and Table 2 shows the density of the pre-sintered body, the sintered body characteristics, and the monoclinic crystal ratio after the accelerated deterioration test.

Figure 2015221727
Figure 2015221727

Figure 2015221727
Figure 2015221727

本発明のジルコニア焼結体は、精密加工部品,光コネクター部品及び粉砕機用部材などの構造部材や歯科材及び人工骨材などの生体材料に有用である。   The zirconia sintered body of the present invention is useful for structural materials such as precision processed parts, optical connector parts and pulverizer members, and biomaterials such as dental materials and artificial bone materials.

Claims (4)

アルミナを0.05〜3重量%含むイットリア濃度2〜4モル%のジルコニア焼結体であり、該ジルコニア焼結体の相対密度が99.7%以上、結晶粒子の平均粒径が0.1〜0.3μm、曲げ強度が1600MPa以上、かつ、140℃の熱水中に75時間浸漬させた後の単斜晶相率が5%以下であることを特徴とするジルコニア焼結体。 It is a zirconia sintered body containing 0.05 to 3% by weight of alumina and having a yttria concentration of 2 to 4 mol%. The relative density of the zirconia sintered body is 99.7% or more, and the average particle diameter of crystal grains is 0.1. A zirconia sintered body characterized by having a monoclinic phase ratio of 5% or less after being immersed in hot water of ~ 0.3 μm, bending strength of 1600 MPa or more and 140 ° C. for 75 hours. ジルコニア焼結体が、シリカ及び/又はゲルマニアを含むことを特徴とする請求項1記載のジルコニア焼結体。 The zirconia sintered body according to claim 1, wherein the zirconia sintered body contains silica and / or germania. 2次粒子の平均粒径が0.1〜0.4μmであり、該2次粒子の平均粒径/電子顕微鏡で測定される1次粒子の平均粒径の比が1〜8、かつ、アルミニウム化合物をアルミナ換算として0.05〜3重量%含有するイットリア濃度2〜4モル%のジルコニア粉末を成形して1100〜1200℃で予備焼結させ、得られた予備焼結体を圧力50〜500MPa、温度1150〜1250℃で熱間静水圧プレス処理することを特徴とする請求項1又は2記載のジルコニア焼結体の製造方法。 The average particle size of the secondary particles is 0.1 to 0.4 μm, the ratio of the average particle size of the secondary particles / the average particle size of the primary particles measured with an electron microscope is 1 to 8, and aluminum A zirconia powder having a yttria concentration of 2 to 4 mol% containing 0.05 to 3 wt% of the compound in terms of alumina is molded and presintered at 1100 to 1200 ° C, and the resulting presintered body is subjected to a pressure of 50 to 500 MPa. 3. The method for producing a zirconia sintered body according to claim 1, wherein hot isostatic pressing is performed at a temperature of 1150 to 1250 ° C. 3. ジルコニア粉末が、珪素及び/又はゲルマニウム化合物を含むことを特徴とする請求項3記載のジルコニア焼結体の製造方法。 The method for producing a zirconia sintered body according to claim 3, wherein the zirconia powder contains silicon and / or a germanium compound.
JP2014105873A 2014-05-22 2014-05-22 Zirconia sintered body and manufacturing method thereof Active JP6405699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014105873A JP6405699B2 (en) 2014-05-22 2014-05-22 Zirconia sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014105873A JP6405699B2 (en) 2014-05-22 2014-05-22 Zirconia sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015221727A true JP2015221727A (en) 2015-12-10
JP6405699B2 JP6405699B2 (en) 2018-10-17

Family

ID=54784992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014105873A Active JP6405699B2 (en) 2014-05-22 2014-05-22 Zirconia sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6405699B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727957A (en) * 2019-04-25 2021-11-30 东曹株式会社 Sintered body, powder, and method for producing same
WO2022075345A1 (en) 2020-10-09 2022-04-14 第一稀元素化学工業株式会社 Zirconia powder, zirconia sintered body, and method for producing zirconia sintered body
WO2022168731A1 (en) * 2021-02-03 2022-08-11 国立大学法人 東京大学 Sintered body and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192452A (en) * 2001-10-16 2003-07-09 Toray Ind Inc Zirconia powder and sintered compact thereof
JP2004182554A (en) * 2002-12-05 2004-07-02 Toray Ind Inc Zirconia powder
JP2008024555A (en) * 2006-07-21 2008-02-07 Tosoh Corp Zirconia fine powder, its manufacturing method and its use
JP2008050247A (en) * 2006-07-25 2008-03-06 Tosoh Corp Sintered zirconia having high strength and process for production thereof
JP2014012627A (en) * 2012-06-04 2014-01-23 Tosoh Corp Light-transmitting zirconia sintered compact, and production method thereof
JP2014055096A (en) * 2012-08-17 2014-03-27 Tosoh Corp Zirconia sintered compact and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192452A (en) * 2001-10-16 2003-07-09 Toray Ind Inc Zirconia powder and sintered compact thereof
JP2004182554A (en) * 2002-12-05 2004-07-02 Toray Ind Inc Zirconia powder
JP2008024555A (en) * 2006-07-21 2008-02-07 Tosoh Corp Zirconia fine powder, its manufacturing method and its use
JP2008050247A (en) * 2006-07-25 2008-03-06 Tosoh Corp Sintered zirconia having high strength and process for production thereof
JP2014012627A (en) * 2012-06-04 2014-01-23 Tosoh Corp Light-transmitting zirconia sintered compact, and production method thereof
JP2014055096A (en) * 2012-08-17 2014-03-27 Tosoh Corp Zirconia sintered compact and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727957A (en) * 2019-04-25 2021-11-30 东曹株式会社 Sintered body, powder, and method for producing same
WO2022075345A1 (en) 2020-10-09 2022-04-14 第一稀元素化学工業株式会社 Zirconia powder, zirconia sintered body, and method for producing zirconia sintered body
WO2022168731A1 (en) * 2021-02-03 2022-08-11 国立大学法人 東京大学 Sintered body and method for producing same

Also Published As

Publication number Publication date
JP6405699B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
EP3088373B1 (en) Translucent zirconia sintered body and zirconia powder, and use therefor
JP7077552B2 (en) Zirconia sintered body and its manufacturing method
JP4251758B2 (en) Optical fiber connector parts made of sintered zirconia
JP6221698B2 (en) Pink zirconia sintered body
JP5034349B2 (en) Zirconia fine powder, production method thereof and use thereof
JP2009269812A (en) Light-transmitting sintered zirconia compact, method for producing the same, and use thereof
JP4670227B2 (en) Zirconia ceramics and manufacturing method thereof
JP6405699B2 (en) Zirconia sintered body and manufacturing method thereof
JP6260226B2 (en) Zirconia-alumina composite sintered body and method for producing the same
JP2018172263A (en) Zirconia powder and method for producing the same
JP6236883B2 (en) Translucent zirconia sintered body and method for producing the same
WO2022075346A1 (en) Zirconia powder, zirconia sintered body, and production method for zirconia sintered body
JP5707667B2 (en) Translucent zirconia sintered body, method for producing the same, and use thereof
JP2019535630A (en) Translucent nanocrystalline glass ceramic
JP6221434B2 (en) Zirconia sintered body and manufacturing method thereof
JP4254222B2 (en) Zirconia powder
JP5748012B2 (en) Translucent zirconia sintered body, method for producing the same, and use thereof
JP6340879B2 (en) Zirconia sintered body and manufacturing method thereof
JP6665542B2 (en) Zirconia powder and method for producing the same
KR102641166B1 (en) Zirconia sintered body and manufacturing method thereof
JP5804144B2 (en) Translucent zirconia sintered body and use thereof
WO2022075345A1 (en) Zirconia powder, zirconia sintered body, and method for producing zirconia sintered body
JP6340880B2 (en) Zirconia sintered body and manufacturing method thereof
JP2020001988A (en) Zirconia sintered body and manufacturing method thereof
JP6862702B2 (en) Zirconia calcined body and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R151 Written notification of patent or utility model registration

Ref document number: 6405699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151