JPH03112862A - Preparation of raw material fine powder for zirconia ceramic and zirconia ceramic - Google Patents

Preparation of raw material fine powder for zirconia ceramic and zirconia ceramic

Info

Publication number
JPH03112862A
JPH03112862A JP1251530A JP25153089A JPH03112862A JP H03112862 A JPH03112862 A JP H03112862A JP 1251530 A JP1251530 A JP 1251530A JP 25153089 A JP25153089 A JP 25153089A JP H03112862 A JPH03112862 A JP H03112862A
Authority
JP
Japan
Prior art keywords
zirconia ceramic
raw material
zirconia
fine powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1251530A
Other languages
Japanese (ja)
Inventor
Taketo Arai
建人 新井
Ichiro Kakei
一郎 加計
Hiroaki Sotomiya
外京 宏章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Cement Co Ltd filed Critical Osaka Cement Co Ltd
Priority to JP1251530A priority Critical patent/JPH03112862A/en
Publication of JPH03112862A publication Critical patent/JPH03112862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide raw material fine powder having improved slurry formability and moldability without containing strong coagulated secondary particles by sintering a zirconia ceramic material and subsequently finely impact- grinding the calcined product. CONSTITUTION:A kind or more of zirconia ceramic materials synthesized by a known wet process or dry process and containing a stabilizer is calcined at 600-1300 deg.C in the atmosphere for 1-24hrs. The calcination product is, if necessary, crushed up to the maximum particle size of 2mm, fed into a high speed rotation type impact grinding machine, impact-ground at a rotation number of 10000-20000rpm and subsequently classified into raw material fine powder having an average volume particle size of 0.8-10mum and a bulk density of 0.3-0.7 and used for preparing zirconia ceramic. The raw material and a dispersing agent are dispersed in water to form a slurry, which is molded and sintered to provide a zirconia ceramic sintered product having a flexual strength of >=1100MPa.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ジルコニアセラミクス製造用原料微粉末の製
造方法およびこの微粉末を使用して得られるジルコニア
セラミクスに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a raw material fine powder for producing zirconia ceramics, and to zirconia ceramics obtained using this fine powder.

従来技術とその問題点 従来ジルコニアセラミクス製造原料微粉末は、ジルコニ
ア材料を湿式工程若しくは乾式工程により合成した後、
仮焼するか、或いは原料粉末を調合・混合した後、仮焼
し、この仮焼物を粉砕することにより、製造されている
。この際に行われている粉砕工程は、湿式粉砕法と乾式
粉砕法とに大別される。
Conventional technology and its problems Conventionally, fine powder raw materials for manufacturing zirconia ceramics are produced by synthesizing zirconia material through a wet process or a dry process, and then
It is manufactured by calcining, or by preparing and mixing raw material powders, calcining, and pulverizing the calcined product. The pulverization process carried out at this time is roughly divided into a wet pulverization method and a dry pulverization method.

湿式粉砕法は、被粉砕物を良好に粉砕できる利点がある
が、水、有機溶剤などを分散媒として使用するので、粉
砕後に乾燥工程を必要とする。粉砕物の乾燥には、スプ
レードライヤーなどによる造粒乾燥法、直接乾燥法など
が採用されている。
The wet pulverization method has the advantage that the material to be pulverized can be pulverized well, but since water, an organic solvent, etc. are used as a dispersion medium, a drying step is required after pulverization. For drying the pulverized material, methods such as granulation drying using a spray dryer, direct drying, etc. are used.

造粒乾燥法は、設備費が高いという大きな問題点がある
。また、直接乾燥法において、水を分散媒として使用す
る場合には、水の蒸発乾燥時にとくに粉末の強い凝集が
生ずる。この様に強固に凝集した二次粒子を多量に含む
ジルコニアセラミクス原料粉末を使用して、例えば鋳込
成形を行なう場合には、スラリー中での粉末の分散性が
不良となるので、分散剤などの大量の添加剤の使用を必
要とするだけでなく、作業性なども低下し、さらに均質
な焼結体も得られ難い。一方、有機溶剤を分散媒として
使用する場合には、粉末の凝集という問題点は、軽減さ
れるものの、乾燥設備を防爆構造にするなどの防災上お
よび取扱い上の十分な配慮が必要となる。従って、有機
溶剤のコストに加えて、乾燥設備のコストも大きくなり
、経済的に不利となる。
The granulation drying method has a major problem in that the equipment cost is high. Furthermore, when water is used as a dispersion medium in the direct drying method, particularly strong agglomeration of powder occurs during evaporation and drying of the water. When using zirconia ceramic raw material powder containing a large amount of strongly agglomerated secondary particles in this way, for example, when performing casting molding, the dispersibility of the powder in the slurry will be poor, so dispersants etc. Not only does this require the use of a large amount of additives, but the workability is also reduced, and it is difficult to obtain a homogeneous sintered body. On the other hand, when an organic solvent is used as a dispersion medium, the problem of powder aggregation is alleviated, but sufficient consideration must be given to disaster prevention and handling, such as making the drying equipment explosion-proof. Therefore, in addition to the cost of the organic solvent, the cost of the drying equipment also increases, which is economically disadvantageous.

乾式粉砕法には、乾式ボールミル、ローラーミル、ジェ
ットミルなどの機器が使用されている。
Equipment such as dry ball mills, roller mills, and jet mills are used in the dry grinding method.

乾式ボールミル粉砕法では、主に粉砕媒体の摩擦により
粉砕が行おれるので、被粉砕物が粉砕媒体によって強く
圧縮され、その結果、固(凝集した二次粒子を多く含む
粉末が形成される。また、過粉砕現象によって、一部に
超微粉末も生成し、これが粉末の凝集を促進する。ロー
ラーミルによる粉砕においても、乾式ボールミルによる
粉砕におけるとほぼ同様の粉末が得られるので、やはり
均質な焼結体を得難い。ジェットミルによる粉砕の場合
には、その粉砕機構が被粉砕物同士の衝突によるもので
あるため、粉砕物の凝集は、生じない。
In the dry ball milling method, pulverization is performed mainly by the friction of the pulverizing media, so the material to be pulverized is strongly compressed by the pulverizing media, and as a result, a powder containing many solid (agglomerated) secondary particles is formed. In addition, due to the over-grinding phenomenon, some ultra-fine powder is generated, which promotes the agglomeration of the powder. Grinding with a roller mill produces almost the same powder as that with a dry ball mill, so it is still homogeneous. It is difficult to obtain a sintered body.In the case of pulverization using a jet mill, since the pulverization mechanism is based on collision of the objects to be crushed, agglomeration of the pulverized materials does not occur.

しかしながら、この粉砕法は、大量の原料粉砕には、不
適であり、また粉砕処理能力に対する設備費の割合が大
きくなり、経済的に不利である。
However, this pulverization method is not suitable for pulverizing a large amount of raw materials, and the ratio of equipment cost to pulverization processing capacity becomes large, which is economically disadvantageous.

問題点を解決するための手段 本発明者は、上記の如き従来技術の問題点に鑑みて鋭意
研究を進めた結果、常法による乾式工程或いは湿式工程
で合成したジルコニア材料を仮焼した後、衝撃粉砕する
場合には、強固な凝集二次粒子を実質的に含まず、成形
が容易であり、且つ均一な焼結体となるジルコニアセラ
ミクス製造用微粉末が得られることを見出した。
Means for Solving the Problems The inventor of the present invention has carried out intensive research in view of the problems of the prior art as described above, and as a result, after calcining a zirconia material synthesized by a conventional dry process or wet process, It has been found that when impact pulverized, a fine powder for producing zirconia ceramics can be obtained which does not substantially contain strong agglomerated secondary particles, is easy to mold, and forms a uniform sintered body.

すなわち、本発明は、下記のジルコニアセラミクス製造
用原料微粉末の製造方法および該粉末を使用して得られ
るジルコニアセラミックス焼結体を提供するものである
: [3]湿式工程および乾式工程で合成されたジルコニア
セラミクス材料の一種または二種以上の混合物を仮焼し
た後、仮焼物を衝撃微粉砕して体積平均粒径が0.8〜
10μmの粉末を得ることを特徴とするジルコニアセラ
ミクス製造用原料微粉末の製造方法。
That is, the present invention provides the following method for producing raw material fine powder for producing zirconia ceramics and a zirconia ceramic sintered body obtained using the powder: [3] Synthesized in a wet process and a dry process. After calcining one or a mixture of two or more of the zirconia ceramic materials, the calcined material is impact pulverized to a volume average particle diameter of 0.8 to
A method for producing fine raw material powder for producing zirconia ceramics, characterized by obtaining powder of 10 μm.

■上記項■に記載の方法により製造されたジルコニアセ
ラミクス原料微粉末を成形し、焼結して得られる曲げ強
度1100MPa以上のジルコニアセラミックス焼結体
(2) A zirconia ceramic sintered body having a bending strength of 1100 MPa or more obtained by molding and sintering the zirconia ceramic raw material fine powder produced by the method described in the above item (2).

[3]湿式工程および乾式工程で合成されたジルコニア
セラミクス材料の一種または二種以上の混合物を仮焼し
た後、仮焼物を最大粒径21111以下まで解砕し、次
いで衝撃微粉砕して体積平均粒径が0.8〜10μmの
粉末を得ることを特徴とするジルコニアセラミクス原料
微粉末の製造方法。
[3] After calcining one or a mixture of two or more zirconia ceramic materials synthesized in a wet process and a dry process, the calcined material is crushed to a maximum particle size of 21111 or less, and then impact pulverized to obtain a volume average A method for producing fine powder of zirconia ceramic raw material, characterized by obtaining powder having a particle size of 0.8 to 10 μm.

■上記項■に記載の方法により製造されたジルコニアセ
ラミクス原料微粉末を成形し、焼結して得られる曲げ強
度1100MPa以上のジルコニアセラミクス焼結体。
(2) A zirconia ceramic sintered body having a bending strength of 1100 MPa or more obtained by molding and sintering the zirconia ceramic raw material fine powder produced by the method described in the above item (2).

本発明において出発原料として使用するジルコニア材料
は、公知の湿式工程若しくは乾式工程で製造されたもの
で良く、異なる製造手法により得られた2種以上の混合
物であっても良い。この様なジルコニア材料は、通常イ
ツトリア、マグネシア、カルシア、希土類酸化物などの
公知の安定化剤を含んでいる。また、ジルコニア材料の
粒子径は、特に限定されないが、通常0.1〜100μ
m程度であることが好ましい。
The zirconia material used as a starting material in the present invention may be manufactured by a known wet process or dry process, or may be a mixture of two or more types obtained by different manufacturing methods. Such zirconia materials typically contain known stabilizers such as yttria, magnesia, calcia, rare earth oxides, and the like. In addition, the particle size of the zirconia material is not particularly limited, but is usually 0.1 to 100 μm.
It is preferable that it is about m.

本発明においては、上記の様な粉末状のジルコニア材料
を仮焼する。仮焼は、ジルコニア材料を大気雰囲気中6
00〜1300℃程度で1〜24時間程時間熱すること
により行なわれる。
In the present invention, the powdered zirconia material as described above is calcined. Calcination is performed by heating the zirconia material in an air atmosphere.
This is carried out by heating at about 00 to 1300°C for about 1 to 24 hours.

次いで上記で得られたジルコニア粉末仮焼物を衝撃によ
り微粉砕する。微粉砕処理に供する仮焼物の寸法は、最
大粒径2mm以下とすることが好ましく、1mm以下と
することがより好ましい。従って、必要ならば、微粉砕
に先立って仮焼物をあらかじめ解砕しておいても良い。
Next, the calcined zirconia powder obtained above is pulverized by impact. The dimensions of the calcined material to be subjected to the pulverization treatment are preferably such that the maximum particle size is 2 mm or less, and more preferably 1 mm or less. Therefore, if necessary, the calcined material may be crushed in advance prior to pulverization.

衝撃粉砕は、例えば、種々の形式の衝撃粉砕機により行
なうことが出来る。その−例として、高速回転式衝撃粉
砕機が挙げられる。これは、多数のビンを配置した対向
する2枚の円板を高速で回転させ、その間に微粉砕され
るべき仮焼物を供給して、ピン間での衝撃により粉砕を
行なう形式の粉砕機である。高速回転式衝撃粉砕機とし
ては、(イ)2枚の円板が互いに反対方向に回転するタ
イプのものでも良く、或いは(ロ)一方の円板が固定さ
れ、他方の円板が回転するタイプのものでも良い。円板
の回転数は、仮焼物の粉砕性、要求される微粉末の粒度
などにより適宜定められるが、(イ)のタイプのもので
、2つの円板の合計回転数10000〜2000Orp
m程度、(ロ)のタイプのもので、回転数10000〜
2000Orpm程度である。
Impact milling can be carried out, for example, by various types of impact mills. Examples include high-speed rotary impact mills. This is a type of pulverizer that rotates two opposing disks with a large number of bottles arranged at high speed, supplies the calcined material between them to be pulverized, and pulverizes the material by impact between the pins. be. The high-speed rotating impact crusher may be of the type (a) in which two disks rotate in opposite directions, or (b) the type in which one disk is fixed and the other rotates. It could be something like that. The number of rotations of the disks is appropriately determined depending on the crushability of the calcined material, the required particle size of the fine powder, etc., but for type (a), the total number of rotations of the two disks is 10,000 to 2,000 Orp.
m, type (b), rotation speed 10,000~
It is about 2000 rpm.

上記の微粉砕により得られるジルコニア微粉末の粒度は
、平均体積粒径として0.8〜10μmの範囲にあるこ
とが必要である。微粉末の粒度が10μmを上回る場合
或いは0.8μm未満である場合には、微粉砕物を分級
して、粒度調整を行なえば良い。
The particle size of the zirconia fine powder obtained by the above-mentioned pulverization is required to be in the range of 0.8 to 10 μm as an average volume particle size. When the particle size of the fine powder is more than 10 μm or less than 0.8 μm, the finely pulverized product may be classified to adjust the particle size.

この様な微粉砕操作により得られるジルコニア微粉末は
、固い凝集粒子を含まず、嵩高な粉末であり、その嵩密
度は、0.3〜0.7程度である。
The zirconia fine powder obtained by such a pulverization operation does not contain hard agglomerated particles and is a bulky powder, and its bulk density is about 0.3 to 0.7.

この微粉末は、分散性および成形性も良好で、例えば、
濃度75重全%程度、粘度100cps程度の鋳込成形
用のスラリーを調製するに必要な分散剤(例えば、ポリ
アクリル酸系など)は、僅かに約0.25重量%程度に
過ぎない。この分散剤の使用量は、公知の乾式ボールミ
ルによる粉砕品をスラリー化するに要する量の1/4程
度である。
This fine powder also has good dispersibility and moldability, for example,
The amount of dispersant (for example, polyacrylic acid type, etc.) required to prepare a slurry for casting molding having a concentration of about 75% by weight and a viscosity of about 100 cps is only about 0.25% by weight. The amount of this dispersant used is about 1/4 of the amount required to slurry a pulverized product using a known dry ball mill.

また、本発明法によるジルコニア微粉末を転勤造粒成形
法によりビーズ化する場合には、真球に極めて近い直径
1〜10mn+程度のビーズを得ることができる。これ
は、微粉末が固く凝集した粗大二次粒子を含まないので
、成形時の締まりが良好となるためである。これに対し
、例えば、公知の湿式ボールミルにより得られる微粉末
では、真球に近いビーズの成形は出来ない。何故ならば
、この場合には、固く凝集した二次粒子が多いので、造
粒時に成型圧が均一にかからず、ビーズがいびつな形状
となるからである。
Further, when the fine zirconia powder according to the present invention is formed into beads by the transfer granulation method, beads having a diameter of approximately 1 to 10 mm+, which is extremely close to a true sphere, can be obtained. This is because the fine powder does not contain coarse secondary particles that are tightly aggregated, so the compaction during molding becomes better. On the other hand, for example, with fine powder obtained by a known wet ball mill, it is not possible to mold beads that are close to perfect spheres. This is because in this case, since there are many secondary particles that are tightly aggregated, the molding pressure is not applied uniformly during granulation, resulting in beads having an irregular shape.

本発明方法により製造されたジルコニアセラミクス製造
用原料微粉末は、常法により成形され、焼成され、ジル
コニアセラミクス製品とされる。
The raw material fine powder for producing zirconia ceramics produced by the method of the present invention is molded and fired by a conventional method to produce a zirconia ceramic product.

この製品は、成形体の曲げ強度、嵩密度、成形性、など
の点で、従来法によるジルコニアセラミクス製造用原料
微粉末から製造された製品に比して優れている。
This product is superior to products manufactured from fine raw material powder for producing zirconia ceramics by conventional methods in terms of bending strength, bulk density, formability, etc. of the molded body.

発明の効果 本発明方法により製造されるジルコニアセラミクス製造
用原料微粉末は、凝集粒子が極めて少ないので、スラリ
ー形成が容易で、分散剤の使用口も大幅に減少し、従っ
て、セラミクスの製造コストも軽減される。
Effects of the Invention The raw material fine powder for producing zirconia ceramics produced by the method of the present invention has extremely few agglomerated particles, so it is easy to form a slurry, and the number of uses for the dispersant is greatly reduced, thus reducing the production cost of ceramics. Reduced.

また、ジルコニア材料の粉砕に使用する機器も、小形化
されるので、設備費も、低下する。
Furthermore, the equipment used to crush the zirconia material is also downsized, so equipment costs are also reduced.

さらに、上記のようにして得られる微粉末を使用して製
造されるジルコニアセラミクスの各種の物性も、改善さ
れる。例えば、曲げ強度は、通常1100MPa以上に
も達する。
Furthermore, various physical properties of zirconia ceramics produced using the fine powder obtained as described above are also improved. For example, the bending strength usually reaches 1100 MPa or more.

実施例 以下に実施例および比較例を示し、本発明の特徴とする
ところをより一層明確にする。
EXAMPLES Examples and comparative examples are shown below to further clarify the features of the present invention.

実施例1 加水分解法により製造したジルコニア材料(イツトリア
含M−i=3モル%)を850°Cで10時間仮焼した
後、得られた仮焼物を最大粒径1mm以下に解砕して粗
原料粉末を得た。
Example 1 A zirconia material (Ittria content M-i = 3 mol%) produced by a hydrolysis method was calcined at 850°C for 10 hours, and the resulting calcined product was crushed to a maximum particle size of 1 mm or less. A crude raw material powder was obtained.

次いで、2枚の円板の一方が回転する形式の高速回転式
衝撃粉砕機(円板の直径=160mm、ピンの数=40
0本)を回転数1800Orpmで運転しつつ、上記粗
原料粉末を10kg/時間の割合で供給し、衝撃微粉砕
した。
Next, a high-speed rotary impact crusher of the type in which one of two discs rotates (diameter of disc = 160 mm, number of pins = 40
0) was operated at a rotational speed of 1800 rpm, the above crude raw material powder was supplied at a rate of 10 kg/hour and subjected to impact pulverization.

かくして得られたジルコニア微粉末の体積平均粒径は、
約1.5μmで、嵩密度は、0.60であった。
The volume average particle size of the zirconia fine powder thus obtained is:
The bulk density was approximately 1.5 μm and 0.60.

このジルコニア微粉末を使用し、ポリアクリル酸系分散
剤0.25%を配合して、固型分濃度73重量%の水性
スラリーを調製し、常法による鋳込み成形法により、6
0nmX80mmx6mmの大きさに成型し、1500
℃で3時間焼成し、試験片を得た。
Using this zirconia fine powder and blending 0.25% of a polyacrylic acid dispersant, an aqueous slurry with a solid content concentration of 73% by weight was prepared, and by a conventional casting method, 6
Molded into a size of 0nm x 80mm x 6mm, 1500
It was baked at ℃ for 3 hours to obtain a test piece.

得られた試験片の相対密度は、99.5%であり、JI
S  R1601による3点曲げ試験強度では、約12
00MPaの値を示した。
The relative density of the obtained test piece was 99.5%, and JI
The three-point bending test strength according to S R1601 is approximately 12
It showed a value of 00 MPa.

第1表に本実施例の結果とともに公知の乾式ボールミル
法による粉砕品を使用して得られた同様の試験片につい
ての結果を併せて示す。
Table 1 shows the results of this example as well as the results of similar test pieces obtained using pulverized products produced by the known dry ball mill method.

第 1表 実施例2 加水分解法により製造したジルコニア材料(イツトリア
含有量=3モル%)を1050℃で10時間仮焼した後
、得られた仮焼物を最大粒径1mm以下に解砕して粗原
料粉末を得た。
Table 1 Example 2 A zirconia material (yttria content = 3 mol%) produced by a hydrolysis method was calcined at 1050°C for 10 hours, and the resulting calcined product was crushed to a maximum particle size of 1 mm or less. A crude raw material powder was obtained.

次いで、2枚の円板の一方が回転する形式の高速回転式
衝撃粉砕機(円板の直径=160a+m、ピンの数=4
00本)を回転数18000rpmで運転しつつ、上記
粗原料粉末を10kg/時間の割合で供給し、衝撃微粉
砕した。
Next, a high-speed rotary impact crusher of the type in which one of two discs rotates (diameter of disc = 160a + m, number of pins = 4)
00) was operated at a rotational speed of 18,000 rpm, the above crude raw material powder was supplied at a rate of 10 kg/hour and subjected to impact pulverization.

かくして得られたジルコニア微粉末を分級し、粗大粒子
を除去した微粉末の体積平均粒径は、約1.6μmで、
嵩密度は、0.52であった。
The zirconia fine powder thus obtained was classified and coarse particles were removed, and the volume average particle size of the fine powder was approximately 1.6 μm.
The bulk density was 0.52.

このジルコニア微粉末を使用して、転勤造粒成形法によ
り、直径2mmのビーズを成型し、1500℃で3時間
焼成した。
Using this zirconia fine powder, beads with a diameter of 2 mm were molded by a transfer granulation method and fired at 1500° C. for 3 hours.

第2表に本実施例により得られた焼結体の物性を示す。Table 2 shows the physical properties of the sintered body obtained in this example.

なお、第2表は、エタノールを溶媒としてしようする公
知の湿式ボールミル粉砕法により得られた粉末を使用す
る焼結体の特性を併せて示す。
Table 2 also shows the characteristics of a sintered body using powder obtained by a known wet ball milling method using ethanol as a solvent.

Claims (1)

【特許請求の範囲】 [1]湿式工程および乾式工程で合成されたジルコニア
セラミクス材料の一種または二種以上の混合物を仮焼し
た後、仮焼物を衝撃微粉砕して体積平均粒径が0.8〜
10μmの粉末を得ることを特徴とするジルコニアセラ
ミクス製造用原料微粉末の製造方法。 [2]請求項[1]に記載の方法により製造されたジル
コニアセラミクス原料微粉末を成形し、焼結して得られ
る曲げ強度1100MPa以上のジルコニアセラミック
ス焼結体。 [3]湿式工程および乾式工程で合成されたジルコニア
セラミクス材料の一種または二種以上の混合物を仮焼し
た後、仮焼物を最大粒径2mm以下まで解砕し、次いで
衝撃微粉砕して体積平均粒径が0.8〜10μmの粉末
を得ることを特徴とするジルコニアセラミクス製造用原
料微粉末の製造方法。 [4]請求項[3]に記載の方法により製造されたジル
コニアセラミクス原料微粉末を成形し、焼結して得られ
る曲げ強度1100MPa以上のジルコニアセラミクス
焼結体。
[Claims] [1] After calcining one or a mixture of two or more zirconia ceramic materials synthesized in a wet process and a dry process, the calcined material is impact-pulverized to have a volume average particle diameter of 0. 8~
A method for producing fine raw material powder for producing zirconia ceramics, characterized by obtaining powder of 10 μm. [2] A zirconia ceramic sintered body having a bending strength of 1100 MPa or more obtained by molding and sintering the zirconia ceramic raw material fine powder produced by the method according to claim [1]. [3] After calcining one or a mixture of two or more zirconia ceramic materials synthesized in a wet process and a dry process, the calcined product is crushed to a maximum particle size of 2 mm or less, and then impact pulverized to obtain a volume average A method for producing fine raw material powder for producing zirconia ceramics, characterized in that powder having a particle size of 0.8 to 10 μm is obtained. [4] A zirconia ceramic sintered body having a bending strength of 1100 MPa or more obtained by molding and sintering the zirconia ceramic raw material fine powder produced by the method according to claim [3].
JP1251530A 1989-09-26 1989-09-26 Preparation of raw material fine powder for zirconia ceramic and zirconia ceramic Pending JPH03112862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1251530A JPH03112862A (en) 1989-09-26 1989-09-26 Preparation of raw material fine powder for zirconia ceramic and zirconia ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1251530A JPH03112862A (en) 1989-09-26 1989-09-26 Preparation of raw material fine powder for zirconia ceramic and zirconia ceramic

Publications (1)

Publication Number Publication Date
JPH03112862A true JPH03112862A (en) 1991-05-14

Family

ID=17224182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1251530A Pending JPH03112862A (en) 1989-09-26 1989-09-26 Preparation of raw material fine powder for zirconia ceramic and zirconia ceramic

Country Status (1)

Country Link
JP (1) JPH03112862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108275997A (en) * 2018-02-06 2018-07-13 厦门嘉联科技开发有限公司 A kind of preparation process of coloured glaze compound zirconia ceramic mobile phone backboard

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108275997A (en) * 2018-02-06 2018-07-13 厦门嘉联科技开发有限公司 A kind of preparation process of coloured glaze compound zirconia ceramic mobile phone backboard

Similar Documents

Publication Publication Date Title
TW401383B (en) Firing sol-gel alumina particles
JP4984204B2 (en) Indium oxide powder and method for producing the same
KR101208896B1 (en) Manufacturing method of alumina abrasive grains and alumina abrasive grains manufactured by the method
JP3280056B2 (en) Sintered microcrystalline ceramic material and method for producing the same
JPH0788391A (en) Production of superfine powder
JP2860953B2 (en) Components for zirconia dispersing and crushing machines
JP2008272688A (en) Crushing method of ceramic raw material
JPH03112862A (en) Preparation of raw material fine powder for zirconia ceramic and zirconia ceramic
AU737211B2 (en) Grinding media consisting essentially of sintered TiO2 particles
JP2699770B2 (en) Highly-fillable silicon nitride powder and method for producing the same
JP3564576B2 (en) Method for producing zirconia powder
JP3251972B2 (en) Zirconia powder agglomerates for tumbling granulation
JP4270848B2 (en) Alumina particles and method for producing the same
JP2977214B2 (en) Mixing and grinding method of barium titanate-based ceramic raw materials
JP3242970B2 (en) Zirconia powder composition for tumbling granulation
JP2953003B2 (en) Method for producing translucent alumina raw material powder
JPH06234526A (en) Powdery zirconia composition for rolling granulation
JPS60141671A (en) Manufacture of zirconia sintered body
JP4514894B2 (en) Aluminum oxide powder with excellent fillability and process for producing the same
JP2007230853A (en) Ito powder, its production method and method for producing ito sputtering target
JP2631924B2 (en) Manufacturing method of alumina pulverizer member
KR100687778B1 (en) A manufacturing method for minute powder of sericite
JP4547770B2 (en) Method for producing alumina powder
JPH06126204A (en) Method of pulverizing ceramic powder
JPH0825798B2 (en) Abrasion resistant zirconia sintered body