JP3238211B2 - Manufacturing method of cold rolled steel sheet or hot-dip galvanized cold rolled steel sheet with excellent bake hardenability and non-aging property - Google Patents

Manufacturing method of cold rolled steel sheet or hot-dip galvanized cold rolled steel sheet with excellent bake hardenability and non-aging property

Info

Publication number
JP3238211B2
JP3238211B2 JP26514492A JP26514492A JP3238211B2 JP 3238211 B2 JP3238211 B2 JP 3238211B2 JP 26514492 A JP26514492 A JP 26514492A JP 26514492 A JP26514492 A JP 26514492A JP 3238211 B2 JP3238211 B2 JP 3238211B2
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
rolled steel
annealing
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26514492A
Other languages
Japanese (ja)
Other versions
JPH06116650A (en
Inventor
直樹 吉永
浩作 潮田
治 秋末
邦夫 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26514492A priority Critical patent/JP3238211B2/en
Publication of JPH06116650A publication Critical patent/JPH06116650A/en
Application granted granted Critical
Publication of JP3238211B2 publication Critical patent/JP3238211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、焼付硬化性と非時効性
とに優れた冷延鋼板あるいは溶融亜鉛メッキ冷延鋼板の
製造方法に関する。本発明が係わる冷延鋼板とは、自動
車、家庭電気製品、建物などのプレス成形をして使用さ
れるものである。そして、表面処理をしない狭義の冷延
鋼板と、防錆のために例えばZnメッキや合金化Znメ
ッキなどの表面処理を施した冷延鋼板の両方を含む。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability and non-aging property. The cold-rolled steel sheet according to the present invention is used by press-forming automobiles, home appliances, buildings, and the like. Further, it includes both cold-rolled steel sheets in a narrow sense without surface treatment and cold-rolled steel sheets subjected to surface treatment such as Zn plating or alloyed Zn plating for rust prevention.

【0002】[0002]

【従来の技術】溶鋼の真空脱ガス処理の最近の進歩によ
り、極低炭素鋼の溶製が容易になった現在、良好な加工
性を有する極低炭素鋼板の需要は益々増加しつつある。
この中でも、たとえば特開昭59−31827号公報、
および特開昭59−38337号公報などに開示されて
いるTiとNbを複合添加した極低炭素鋼板は、極めて
良好な加工性を有し、塗装焼付硬化(BH)性を兼備
し、溶融亜鉛メッキ特性にも優れているので、重要な位
置を占めつつある。しかしながら、そのBH量は通常の
BH鋼板のレベルを超えるものではなく、さらなるBH
量を付与しようとすると常温非時効性が確保できなくな
るという欠点を有する。
2. Description of the Related Art With the recent progress in vacuum degassing of molten steel, it has become easier to produce ultra-low carbon steel. At present, the demand for ultra-low carbon steel sheets having good workability is increasing.
Among them, for example, JP-A-59-31827,
And the ultra-low carbon steel sheet to which Ti and Nb are added in combination as disclosed in JP-A-59-38337 and the like have extremely good workability, and have both paint bake hardening (BH) properties and molten zinc. It is occupying an important position because of its excellent plating characteristics. However, the BH amount does not exceed the level of a normal BH steel sheet,
There is a drawback that non-aging at room temperature cannot be ensured if an amount is to be added.

【0003】一方、加工性を確保しつつ強度を上昇させ
るために、従来から多くの試みがなされてきた。特に、
本発明に関わる引張強度が30〜50kgf/mm2 の場合に
は、鋼中にP,Siなどを添加し、これらの固溶体強化
機構を利用して強度を増加してきた。たとえば、特開昭
59−31827号公報、および特開昭59−3833
7号公報においては、TiとNbを添加した極低炭素鋼
板に主にSiとPを添加し、引張強度で45kgf/mm2
までの高強度冷延鋼板の製造方法を開示している。特公
昭57−57945号公報はTi添加極低炭素鋼にPを
添加して高強度冷延鋼板を製造する方法に関する代表的
な先行技術である。
On the other hand, many attempts have been made in the past to increase the strength while ensuring workability. In particular,
When the tensile strength according to the present invention is 30 to 50 kgf / mm 2 , P, Si and the like have been added to steel, and the strength has been increased by utilizing these solid solution strengthening mechanisms. For example, JP-A-59-31827 and JP-A-59-3833.
No. 7 discloses a method of manufacturing a high-strength cold-rolled steel sheet having a tensile strength of up to 45 kgf / mm 2 class by adding Si and P mainly to an ultra-low carbon steel sheet to which Ti and Nb are added. Japanese Patent Publication No. 57-57945 is a typical prior art relating to a method for producing a high-strength cold-rolled steel sheet by adding P to a Ti-added ultra-low carbon steel.

【0004】以上のように従来から強化元素としてP、
次いでSiが多用されている。これは、PやSiは固溶
体強化能が非常に高く少量の添加で強度を上昇でき、か
つ延性や深絞り性がそれほど低下せず、添加コストもそ
れほど上昇しないと考えられてきたからである。しか
し、実際にはこれらの元素だけで強度の上昇を達成しよ
うとすると、強度のみならず降伏強度も同時に著しく上
昇するため、面形状不良が発生し、自動車のパネルには
使用が制約される場合がある。また、溶融亜鉛メッキを
する場合にはメッキ不良をSiが惹起したり、P,Si
が合金化速度を著しく低下させたりするので、生産性が
低下したりする問題がある。
[0004] As described above, conventionally, P,
Next, Si is frequently used. This is because it has been considered that P or Si has a very high solid solution strengthening ability and can be increased in strength by addition of a small amount, and does not decrease ductility and deep drawability so much, and does not increase addition cost so much. However, in fact, when trying to achieve an increase in strength with only these elements, not only the strength but also the yield strength increases significantly at the same time, resulting in poor surface shape, which limits the use of automotive panels. There is. When hot-dip galvanizing is performed, poor plating may be caused by Si or P, Si
However, there is a problem that the alloying speed is remarkably reduced and the productivity is lowered.

【0005】一方、固溶体強化元素としてMnやCrを
利用することも知られている。特開昭63−19014
1号公報および特開昭64−62440号公報にはMn
をTi含有極低炭素鋼板へ添加し、また、特公昭59−
42742号公報や前記した特公昭57−57945号
公報においては、MnとCrをTi添加極低炭素鋼へ添
加する技術が開示されている。
On the other hand, it is known to use Mn or Cr as a solid solution strengthening element. JP-A-63-19014
No. 1 and JP-A-64-62440 disclose Mn.
Is added to a Ti-containing ultra-low carbon steel sheet.
Japanese Patent Publication No. 42742 and the above-mentioned Japanese Patent Publication No. 57-57945 disclose a technique of adding Mn and Cr to a Ti-added ultra-low carbon steel.

【0006】(i)MnやCrの添加は、主な添加元素
であるPやSiの補助的な役割しかなく、したがって、
得られた冷延鋼板も強度のわりには降伏強度が高く、か
つ(ii)上記(i)以外の目的で、たとえば(a)本発
明の特徴である焼鈍後の組織を混合組織とするために添
加されているのではないのはもちろんのこと、(b)加
工硬化率を向上させる、(c)BH性を付与する、
(d)2次加工性を向上させる、(e)溶融亜鉛メッキ
のメッキ性を改善する、などの目的で積極的に添加され
ているわけでもない。
(I) Addition of Mn or Cr only plays an auxiliary role of P or Si which is a main additive element.
The obtained cold-rolled steel sheet also has a high yield strength instead of strength, and (ii) for the purpose other than the above (i), for example, (a) to make the structure after annealing, which is a feature of the present invention, a mixed structure. It is of course not added, (b) improving the work hardening rate, (c) imparting BH properties,
Neither is it positively added for the purpose of (d) improving the secondary workability, or (e) improving the galvanizing property of hot-dip galvanizing.

【0007】さらに、特開平2−111841号公報
は、Tiを添加した極低炭素鋼に1.5%以上3.5%
未満のMnを添加した焼付硬化性を有する良加工性冷延
鋼板および溶融亜鉛メッキ鋼板を開示している。多量の
Mnの添加により、Ar3 変態点の低下による熱間圧延
の操業安定性と金属組織の均一性を目的としている。ま
た、一層の延性の向上を目的にCrやVの0.2〜1.
0%までの添加も開示している。
Further, Japanese Patent Application Laid-Open No. 2-111841 discloses that ultra-low carbon steel with Ti added is 1.5% to 3.5%.
Disclosed are good workability cold rolled steel sheets and hot-dip galvanized steel sheets having bake hardenability with less than Mn added. By adding a large amount of Mn, the aim is to improve the operation stability of hot rolling and the uniformity of the metal structure by lowering the Ar 3 transformation point. Further, for the purpose of further improving ductility, 0.2 to 1.
Additions of up to 0% are also disclosed.

【0008】しかし、多量のMnやCrの添加により機
械的性質、特に強度と延性のバランスを改善するという
思想に基づくものではない。さらに、ここでもBH量は
通常のレベルから逸脱するものではなく、これまで以上
の高いBHと常温非時効性を両立するには至っていな
い。
However, it is not based on the idea that the addition of a large amount of Mn or Cr improves the mechanical properties, especially the balance between strength and ductility. Furthermore, the BH amount does not deviate from the usual level here, and it has not been possible to achieve both higher BH and non-aging at room temperature.

【0009】以上のような、フェライト単相組織を有す
る鋼板に対して、複合組織を有する鋼板も知られてい
る。低炭素アルミキルド鋼にSi,Mn,Crなどの合
金元素を添加し、連続焼鈍温度とその後の冷却速度を適
正化することにより、フェライト相とマルテンサイト相
とを混在させた、いわゆるDual Phase鋼(D
P鋼)と呼ばれるものがその代表例である。
A steel sheet having a composite structure is also known in addition to a steel sheet having a ferrite single phase structure as described above. By adding alloying elements such as Si, Mn, and Cr to low-carbon aluminum-killed steel and optimizing the continuous annealing temperature and the subsequent cooling rate, a so-called Dual Phase steel in which a ferrite phase and a martensite phase are mixed together ( D
What is called P steel) is a typical example.

【0010】このようなDP鋼は、高強度でありながら
極めて低い降伏比(YR)を有し、かつ常温非時効で高
いBHを有することが知られている。しかしながら、平
均r値が1.0程度と低く深絞り性に劣るという欠点を
有する。ちなみにこのような冷延鋼板の製造方法につい
ては、特公昭53−39368号、特開昭50−751
13号、特開昭51−39524号公報に開示されてい
る。
[0010] Such DP steel is known to have a very low yield ratio (YR) despite its high strength, and to have a high BH due to non-aging at room temperature. However, there is a disadvantage that the average r value is as low as about 1.0 and the deep drawability is poor. Incidentally, a method for producing such a cold-rolled steel sheet is disclosed in JP-B-53-39368 and JP-A-50-751.
No. 13 and JP-A-51-39524.

【0011】これらの低炭素アルミキルド鋼を素材とし
た複合組織鋼板に対して、特公平3−2224号公報お
よび特公平3−21611号公報には極低炭素鋼を素材
とした複合組織鋼板について開示されている。これらは
極低炭素鋼に多量のNbとB、さらにはTiを複合添加
して焼鈍後の組織をフェライト相と低温変態生成相との
複合組織とし高r値、高BH、高延性および常温非時効
性を兼ね備えた冷延鋼板を得るものである。
Japanese Patent Publication No. 3-2224 and Japanese Patent Publication No. 3-21611 disclose a composite structure steel sheet made of an ultra-low carbon steel as a composite steel sheet made of a low carbon aluminum killed steel. Have been. These alloys contain a large amount of Nb, B, and Ti in an extremely low-carbon steel to form a structure after annealing to form a composite structure of a ferrite phase and a low-temperature transformation generation phase, with a high r value, a high BH, a high ductility, and a non-normal temperature. It is intended to obtain a cold-rolled steel sheet having aging properties.

【0012】しかしながら、本発明者らが鋭意検討した
結果、このようにNb,B、場合によってはTiを添加
することによって複合組織化する場合には、以下のよう
な問題点を有することが明らかとなった。 1)このような多量のNb,BさらにはTiを活用して
複合組織化する場合には、Ac1 変態点が低下するわけ
ではなく、複合組織を得るためには極めて高い温度の焼
鈍が必須となり、連続焼鈍時に板破断等のトラブルの原
因となること、 2)α+γの温度領域が極めて狭いため、板幅方向に組
織が変化し、結果として材質が大きくばらついたり、数
℃の焼鈍温度の変化によって複合組織になる場合となら
ない場合があり、製造が極めて不安定となる。
However, as a result of intensive studies made by the present inventors, it is clear that the following problems arise when a composite structure is formed by adding Nb, B, and in some cases, Ti. It became. 1) When a composite structure is formed by utilizing such a large amount of Nb, B and Ti, the Ac 1 transformation point does not decrease, but annealing at an extremely high temperature is essential to obtain a composite structure. 2) Since the temperature range of α + γ is extremely narrow, the structure changes in the width direction of the sheet, and as a result, the material greatly varies or the annealing temperature of several degrees Celsius The change may or may not result in a composite structure, making the manufacture extremely unstable.

【0013】さらに多量のBは、3)延性の劣化をもた
らすばかりでなく、4)メッキ不良などの原因となり、
溶融亜鉛メッキ鋼板としては不適切である。5)また、
5kgf/mm2 以上のBHを付与することが困難であるばか
りか、BH量が5kgf/mm2 を超えると人工時効後のYP
−Elが0.2%を超えてしまい、常温非時効性が確保
されなくなる。
Further, a large amount of B not only causes 3) deterioration of ductility but also causes 4) poor plating.
It is not suitable as a galvanized steel sheet. 5) Also,
Not only is it difficult to apply BH of 5 kgf / mm 2 or more, but if the BH amount exceeds 5 kgf / mm 2 , the YP
-El exceeds 0.2% and non-aging at room temperature cannot be ensured.

【0014】特開平3−277741号公報には、極低
炭素鋼にNb,B,TiさらにはMn,Crを添加した
鋼をAc1 −50℃以上Ac1 変態点未満の温度で焼鈍
することにより、その組織を5%以下の体積率のアシキ
ュラーフェライトとフェライトとからなる複合組織とす
ることにより、BH性と常温非時効性さらには加工性を
兼ね備えた鋼板を提供する技術が開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 3-277774 discloses that a steel obtained by adding Nb, B, Ti, Mn, and Cr to a very low carbon steel is annealed at a temperature from Ac 1 -50 ° C. to less than the Ac 1 transformation point. Discloses a technique for providing a steel sheet having both BH property, non-aging property at room temperature, and workability by making the structure a composite structure composed of acicular ferrite and ferrite having a volume ratio of 5% or less. I have.

【0015】しかしながら、本発明者らが詳細に調べた
結果以下のような問題点があることが明らかとなった。
すなわち、第2相の体積率が5%以下の複合組織鋼板で
は、従来レベル以上、つまり5kgf/mm2 以上のBHを付
与するのが困難であり、また、BH量が5kgf/mm2 を超
えると人工時効後のYP−Elが0.2%を超えてしま
うことがあり常温非時効性の確保が極めて困難であるこ
とが分かった。このことは第2相の体積率が少ないた
め、フェライトに導入される可動転位密度が充分でない
ことが原因であると考えられる。
However, as a result of a detailed investigation by the present inventors, it has been found that there are the following problems.
That is, it is difficult to provide BH of the conventional structure or higher, that is, 5 kgf / mm 2 or more, with a composite structure steel sheet having a volume fraction of the second phase of 5% or less, and the BH amount exceeds 5 kgf / mm 2 . YP-El after artificial aging may exceed 0.2%, indicating that it is extremely difficult to ensure non-aging at room temperature. It is considered that this is because the volume ratio of the second phase is small, and thus the mobile dislocation density introduced into the ferrite is not sufficient.

【0016】以上のように極低炭素鋼における複合組織
鋼板についていくつかの提案がなされているが、そのB
H量は到底従来レベルを逸脱するものではなく、常温非
時効性についても従来のレベルをわずかに上回る程度に
とどまっていた。
As described above, several proposals have been made on composite structure steel sheets in ultra-low carbon steel.
The H content did not deviate from the conventional level at all, and the room temperature non-aging property was slightly higher than the conventional level.

【0017】[0017]

【発明が解決しようとする課題】自動車のパネルなどに
使用される鋼板には、プレスの後にスプリングバックや
面歪などが生じない良好な面形状性が厳しく要求され
る。ところで、面形状性は、降伏強度が低いほど好まし
いことはよく知られている。しかし、鋼板の高強度化
は、従来技術で述べたように一般に降伏強度の著しい上
昇を伴う。したがって、強度を上昇させる場合には、降
伏強度の上昇を極力抑制する必要がある。
A steel sheet used for a panel of an automobile or the like is strictly required to have a good surface shape which does not cause a springback or a surface distortion after pressing. By the way, it is well known that the lower the yield strength, the better the surface shape is. However, increasing the strength of a steel sheet generally involves a significant increase in yield strength as described in the prior art. Therefore, when increasing the strength, it is necessary to suppress the increase in the yield strength as much as possible.

【0018】さらに、プレス成形をしたあとの鋼板には
耐デント性が要求される。耐デント性とは、組上がった
自動車に石などが当たる場合、鋼板の永久的な凹み変形
に対する抵抗性を意味する。耐デント特性は、板厚が一
定の場合、プレス加工して塗装焼付したのちの変形応力
が高いほど良好になる。したがって同じ降伏強度の鋼板
を考えた場合、塗装焼付硬化能が高く、また、加工硬化
能が高いほど耐デント特性は向上することになる。
Further, the steel sheet after press forming is required to have dent resistance. The dent resistance means resistance to permanent dent deformation of a steel plate when a stone or the like hits the assembled vehicle. When the plate thickness is constant, the dent resistance becomes better as the deformation stress after press working and coating baking is higher. Therefore, when considering steel sheets having the same yield strength, the paint bake hardening ability is high, and the higher the work hardening ability, the better the dent resistance is.

【0019】以上から、自動車のパネルなどに使用され
る望ましい鋼板、降伏強度はそれほど高くなく、著しく
加工硬化し、高い塗装焼付硬化能を併せ持つ鋼板であ
る。もちろん、平均r値(深絞り特性)や伸び(張出特
性)などの加工性にも優れる必要があり、さらに常温で
実質的に非時効である必要がある。
From the above, it is desirable that the steel sheet used for automobile panels and the like be a steel sheet which has not so high a yield strength, is extremely work-hardened, and has high paint bake hardenability. Of course, it is necessary to have excellent workability such as an average r value (deep drawing property) and elongation (extension property), and it is necessary to be substantially non-aging at room temperature.

【0020】本発明は、以上のような要望を満足するも
のであって、特に塗装焼付硬化能に関しては、5kgf/mm
2 以上の高いBH量を目的に応じて付与することがで
き、かつ常温非時効性を兼ね備えた、従来にはない冷延
鋼板を提供することを目的とするものである。
The present invention satisfies the above-mentioned demands, and particularly, with respect to the paint baking hardening ability, 5 kgf / mm
An object of the present invention is to provide an unprecedented cold-rolled steel sheet that can provide a high BH amount of 2 or more according to the purpose and also has non-aging property at room temperature.

【0021】[0021]

【課題を解決するための手段】本発明者らは、上記の目
標を達成するために、鋭意、研究を遂行し、以下に述べ
るような従来にはない知見を得た。すなわち、Nb,T
iを単独または複合で添加した極低炭素鋼をベースに
B,Mn,Crを添加して冷間圧延、焼鈍、調質圧延後
の組織と引張特性について、特にα+γ2相域で焼鈍し
た場合とγ単相域で焼鈍した場合との違いについて調査
した。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have intensively studied and obtained the following unprecedented knowledge. That is, Nb, T
Microstructure and tensile properties after cold rolling, annealing, and temper rolling with addition of B, Mn, and Cr based on ultra-low carbon steel to which i is added alone or in combination, especially when annealing in the α + γ2 phase region The difference from the case of annealing in the γ single phase region was investigated.

【0022】α+γ2相域で焼鈍した場合、フェライト
と低温変態生成物からなる複合組織を得ることができた
が、1)複合組織とするための温度域は、極めて狭い範
囲しか存在しないため、製造時に材質のばらつきが極め
て大きいこと、2)さらに、このような鋼ではBHを5
kgf/mm2 以上付与することは困難であるばかりか、BH
が5kgf/mm2 以上となると人工時効後の降伏点伸び(Y
P−El)が0.2%を超えてしまうことがあり、常温
非時効性が確保され難くなる。
When annealed in the α + γ2 phase region, a composite structure composed of ferrite and a low-temperature transformation product could be obtained. However, 1) Since the temperature range for forming the composite structure exists only in a very narrow range, the production was carried out. Sometimes, the variation of the material is extremely large. 2) Furthermore, BH is 5
It is not only difficult to apply more than kgf / mm 2
Is 5 kgf / mm 2 or more, the yield point elongation after artificial aging (Y
P-El) may exceed 0.2%, making it difficult to ensure normal-temperature non-aging properties.

【0023】これに対して、γ単相域で焼鈍した場合に
は、1)γ単相領域で焼鈍するため、焼鈍後の組織を低
温変態生成物単相組織とすることができるため、製造時
の材質のばらつきが極めて小さい。低温変態生成物と
は、フェライト単相温度域で焼鈍したときに得られる、
いわゆるポリゴナルフェライト以外の組織をすべて含
む。
On the other hand, when annealing is performed in the γ single phase region, 1) annealing is performed in the γ single phase region, so that the structure after annealing can be a low-temperature transformation product single phase structure. The variation of the material at the time is extremely small. Low-temperature transformation products are obtained when annealed in ferrite single phase temperature range,
Includes all structures other than the so-called polygonal ferrite.

【0024】2)γ域では、熱延中あるいは巻取り中に
形成したTiC,NbCなどの炭化物が、再溶解するの
で、5kgf/mm2 以上のBH性を容易に付与することがで
き、3)また、たとえBH量が10kgf/mm2 程度となっ
ても、人工時効後のYP−Elが0.2%を超えること
はなく、非常に優れた常温非時効性とBH性とを両立す
ることが分かった。この原因は必ずしも明らかではない
が、生成した低温変態生成物中に導入された可動転位密
度がかなり高いことが原因であると思われる。
2) In the γ region, carbides such as TiC and NbC formed during hot rolling or winding are redissolved, so that a BH property of 5 kgf / mm 2 or more can be easily provided. Also, even if the BH content is about 10 kgf / mm 2 , the YP-El after artificial aging does not exceed 0.2%, and both the excellent non-aging property at normal temperature and the BH property are compatible. I understood that. The reason for this is not necessarily clear, but is thought to be due to the fact that the mobile dislocation density introduced into the formed low-temperature transformation product is considerably high.

【0025】さらに、BH量と人工時効後の降伏点伸び
(YP−El)との関係に及ぼす焼鈍後の冷却速度につ
いて検討した結果を図2に示す。用いた材料の化学成分
は、0.004%C−0.01%Si−1.5%Mn−
0.07%P−0.005%S−0.02%Nb−0.
04%Al−0.0015%Nで、ヒートサイクルは図
1のとおりである。
FIG. 2 shows the result of studying the cooling rate after annealing on the relationship between the BH amount and the yield point elongation after artificial aging (YP-El). The chemical composition of the material used is 0.004% C-0.01% Si-1.5% Mn-
0.07% P-0.005% S-0.02% Nb-0.
At 04% Al-0.0015% N, the heat cycle is as shown in FIG.

【0026】これより明らかなとおり高BHと非時効性
(YP−El<0.2%)とを両立させるためには、焼
鈍後の冷却速度を30℃/s以上とすることが必要であ
ることが分かった。この原因は必ずしも明らかではない
ものの、30℃/s以上で冷却することにより非時効性
を確保するために充分な可動転位密度が得られることに
よるものと考えられた。
As is clear from this, in order to achieve both high BH and non-aging property (YP-El <0.2%), it is necessary to set the cooling rate after annealing to 30 ° C./s or more. I understood that. Although the cause is not necessarily clear, it is considered that the cooling at a rate of 30 ° C./s or more provides a sufficient mobile dislocation density to secure non-aging properties.

【0027】次に高強度化する際の強化元素として考え
られるMn,Cr,P,Siがそれぞれ機械的性質に対
していかなる影響を及ぼすかについて検討した結果、以
下のような新知見を得た。すなわち、従来から固溶強化
元素として多用されているSi,Pはa)まず微量の添
加で著しく降伏強度を上昇させること、b)その結果、
低歪域での加工硬化率が著しく減少することが判明し
た。
Next, as a result of examining how each of Mn, Cr, P, and Si, which are considered as strengthening elements in increasing the strength, has an effect on mechanical properties, the following new findings were obtained. . In other words, Si and P, which have been frequently used as solid solution strengthening elements, a) firstly increase the yield strength remarkably by adding a small amount thereof, and b)
It was found that the work hardening rate in the low strain region was significantly reduced.

【0028】一方、従来固溶体強化元素としてあまり用
いられていないMn,Crを添加すると、a)降伏強度
は殆ど増加せず、引張強度が増加する、b)その結果、
低歪域での加工硬化率がむしろこれらの添加により増加
するという、極めて重要な新知見を得た。Mn,Crで
低温変態生成物単相組織としたことに加えて、このこと
も本発明鋼が低降伏比を呈する理由であると思われる。
また、このような、P,Siの低減は、Ae3 点を低下
させる点においても意義のあることである。
On the other hand, when Mn or Cr, which has not been used as a solid solution strengthening element in the past, is added, a) the yield strength hardly increases and the tensile strength increases. B) As a result,
A very important new finding was that the work hardening rate in the low strain range was rather increased by these additions. In addition to having a low-temperature transformation product single-phase structure with Mn and Cr, this also seems to be the reason that the steel of the present invention exhibits a low yield ratio.
Further, such reduction of P and Si is also significant in lowering the Ae 3 point.

【0029】さらに、本発明者らは、本発明鋼が溶融亜
鉛メッキ冷延鋼板としても長所を有することが分かっ
た。すなわち、SiやPが多量に添加された鋼において
は溶融亜鉛メッキ時のメッキ性、さらにはその後の合金
化反応の遅滞化を引き起こすことが知られているが、M
nやCrを添加した鋼においては、たとえ同時にSiや
Pが多量に含有されている場合でも溶融亜鉛メッキ特性
を損なうことがないことが判明した。
Furthermore, the present inventors have found that the steel of the present invention has advantages as a hot-dip galvanized cold-rolled steel sheet. That is, it is known that in steels to which Si or P is added in a large amount, the plating property during hot-dip galvanizing and furthermore, the subsequent alloying reaction is delayed.
It has been found that in the steel to which n or Cr is added, even if a large amount of Si or P is contained at the same time, the galvanizing characteristics are not impaired.

【0030】本発明は、このような思想と新知見に基づ
いて構築された従来にはない全く新しい鋼板であり、そ
の要旨とするところは以下のとおりである。 (1)重量%で、C:0.0005〜0.0070%、
Si:0.001〜0.8%、Mn:0.6〜4.0
%、P:0.003〜0.15%、S:0.0010〜
0.015%、Al:0.005〜0.1%、N:0.
0003〜0.0060%、さらに、Ti:0.003
〜0.1%およびNb:0.003〜0.1%のうち、
一種類以上を含有し、残部Feおよび不可避的不純物か
らなる組成を有するスラブを(Ar3 −100)℃以上
の温度で熱間圧延の仕上げを行い、室温から750℃の
温度で巻取り、60%以上の圧延率で冷間圧延を行い、
連続焼鈍における焼鈍温度をAe3 変態点以上とし、焼
鈍温度から(Ar1 −50℃)〜(Ar1 +50℃)ま
での温度域を平均冷却速度30℃/s以上で冷却し、低
温変態生成物単相組織を有することを特徴とする焼付硬
化性と成形性とに優れた冷延鋼板の製造方法。
The present invention is an unprecedented and completely new steel plate constructed on the basis of such ideas and new findings, and its gist is as follows. (1) By weight%, C: 0.0005 to 0.0070%,
Si: 0.001 to 0.8%, Mn: 0.6 to 4.0
%, P: 0.003 to 0.15%, S: 0.0010
0.015%, Al: 0.005 to 0.1%, N: 0.
0003-0.0060%, and Ti: 0.003
-0.1% and Nb: 0.003-0.1%
A slab containing at least one kind and having a composition consisting of the balance of Fe and unavoidable impurities is subjected to hot rolling at a temperature of (Ar 3 -100) ° C. or more, and is wound at a temperature of room temperature to 750 ° C. Cold rolling at a rolling rate of at least
The annealing temperature in the continuous annealing is set to the Ae 3 transformation point or higher, and the temperature range from the annealing temperature to (Ar 1 -50 ° C.) to (Ar 1 + 50 ° C.) is cooled at an average cooling rate of 30 ° C./s or more, and low-temperature transformation is generated. A method for producing a cold-rolled steel sheet having excellent bake hardenability and formability, characterized by having a single-phase structure.

【0031】(2)B:0.0030%未満を含有する
スラブを用いる(1)に記載の焼付硬化性と非時効性と
に優れた冷延鋼板の製造方法。
(2) B: The method for producing a cold-rolled steel sheet excellent in bake hardenability and non-aging property according to (1), wherein a slab containing less than 0.0030% is used.

【0032】(3)Cr:0.01〜3.0%を含有す
るスラブを用いる(1)あるいは(2)に記載の焼付硬
化性と非時効性とに優れた冷延鋼板の製造方法。
(3) The method for producing a cold-rolled steel sheet according to (1) or (2), wherein the slab contains Cr: 0.01 to 3.0% and has excellent bake hardenability and non-aging properties.

【0033】(4)(1),(2)あるいは(3)に記
載の化学成分を有するスラブを(Ar3 −100)℃以
上の温度で熱間圧延の仕上げを行い、室温から750℃
の温度で巻取り、60%以上の圧延率で冷間圧延を行
い、インライン焼鈍型の溶融亜鉛メッキラインにおい
て、焼鈍温度をAe3 変態点以上とし、焼鈍温度から
(Ar1 −50℃)〜(Ar1 +50℃)までの温度域
を平均冷却速度30℃/s以上とし、低温変態生成物単
相組織を有することを特徴とする焼付硬化性と非時効性
とに優れた溶融亜鉛メッキ冷延鋼板の製造方法。
(4) The slab having the chemical composition described in (1), (2) or (3) is subjected to hot rolling at a temperature of (Ar 3 -100) ° C. or more, and is heated from room temperature to 750 ° C.
And cold rolling at a rolling rate of 60% or more. In the in-line annealing type hot-dip galvanizing line, the annealing temperature is set to the Ae 3 transformation point or higher, and the annealing temperature is (Ar 1 -50 ° C.) to (Ar 1 + 50 ° C.) The average cooling rate is 30 ° C./s or more, and the hot-dip galvanizing cold is excellent in baking hardenability and non-aging characteristics, characterized by having a low-temperature transformation product single phase structure. Manufacturing method of rolled steel sheet.

【0034】[0034]

【作用】ここに本発明において鋼組成および製造条件を
上述のように限定する理由についてさらに説明する。 C:Cは製品の材質特性を決定する極めて重要な元素で
ある。本発明は真空脱ガス処理をした極低炭素鋼を前提
とするが、Cが0.0005%未満となると粒界強度が
低下し、2次加工性が劣化し、かつ製造コストが著しく
増加するので、その下限を0.0005%とする。一
方、C量が0.0070%を超えると成形性の劣化を招
き、また常温非時効性が確保されなくなるので、上限を
0.0070%とする。
The reason why the steel composition and the manufacturing conditions are limited as described above in the present invention will be further described. C: C is a very important element that determines the material properties of the product. The present invention is based on ultra-low carbon steel subjected to vacuum degassing, but if C is less than 0.0005%, the grain boundary strength decreases, the secondary workability deteriorates, and the production cost increases significantly. Therefore, the lower limit is set to 0.0005%. On the other hand, if the C content exceeds 0.0070%, the moldability is deteriorated and the non-aging property at room temperature is not ensured, so the upper limit is made 0.0070%.

【0035】Si:Siは安価に強度を増加させる元素
として知られており、その添加量は狙いとする強度レベ
ルに応じて変化するが、添加量が0.8%超となると降
伏強度が上昇しすぎてプレス成形時に面歪が生じる。ま
た、Ae3 変態点が上昇し、低温変態生成物単相組織を
得るための焼鈍温度が著しく高くなる。さらに、化成処
理性の低下、溶融亜鉛メッキ密着性の低下、合金化反応
の遅延による生産性の低下などの問題が生ずる。下限
は、製鋼技術のおよびコストの観点から0.001%と
する。
Si: Si is known as an element that increases strength at low cost, and its addition amount changes according to the intended strength level, but when the addition amount exceeds 0.8%, the yield strength increases. Surface distortion occurs during press molding due to excessive strain. Also, the Ae 3 transformation point rises, and the annealing temperature for obtaining a low-temperature transformation product single-phase structure becomes extremely high. Further, problems such as a decrease in chemical conversion treatment, a decrease in adhesion to hot-dip galvanizing, and a decrease in productivity due to a delay in alloying reaction occur. The lower limit is 0.001% from the viewpoint of steelmaking technology and cost.

【0036】Mn,Cr:MnおよびCrは、本発明に
おいて最も重要な元素である。すなわちMn,Crは、
Ae3 変態点を低下させるため低温変態生成物単相組織
を得るためにそれほど高い温度を必要としない。
Mn, Cr: Mn and Cr are the most important elements in the present invention. That is, Mn and Cr are
Not so high temperatures are required to obtain a low temperature transformation product single phase structure to lower the Ae 3 transformation point.

【0037】しかも、Mn,Crを活用することによっ
て得た単相組織鋼板においては、通常では得られない5
kgf/mm2 以上のBH量を容易に付与することができ、5
kgf/mm2 以上のBH性を有する場合にも非常に優れた常
温非時効性を示す。この性質は、MnやCrを活用して
得た単相組織鋼板に特有のもので、フェライト単相組織
鋼板やNb,B,Tiの数種類の組合せによって得た複
合組織鋼板あるいは、低温変態生成物単相組織鋼板では
得られない特性である。
In addition, a single-phase structure steel sheet obtained by utilizing Mn and Cr cannot be usually obtained.
BH amount of kgf / mm 2 or more can be easily given,
Even when it has a BH property of not less than kgf / mm 2 , it shows extremely excellent non-aging property at room temperature. This property is peculiar to a single-phase steel sheet obtained by utilizing Mn or Cr, and is a ferrite single-phase steel sheet, a composite steel sheet obtained by combining several kinds of Nb, B, and Ti, or a low-temperature transformation product. This is a characteristic that cannot be obtained with a single-phase structure steel sheet.

【0038】さらに、重要な点は、通常の鋼において
は、α+γ2相域あるいはγ単相域で焼鈍すると著しく
r値が劣化することが知られているが、Mn,Crを積
極的に添加した鋼においては、たとえγ単相領域で焼鈍
しても、rがほとんど劣化しないことである。
Further, it is important to note that, in ordinary steels, it is known that the r-value is significantly deteriorated when annealed in the α + γ2 phase region or the γ single phase region, but Mn and Cr were positively added. In steel, even if annealed in the γ single phase region, r is hardly deteriorated.

【0039】また、Mn,Crは降伏強度をあまり増加
させずに強度を増加させる有効な固溶体強化元素であ
り、かつ化成処理性を改善したり、溶融亜鉛メッキ性を
改善する効果も有する。本発明においては、Mnを必須
とし、Crは必要に応じて添加する。
Further, Mn and Cr are effective solid solution strengthening elements for increasing the strength without significantly increasing the yield strength, and also have the effect of improving the chemical conversion treatment property and the galvanizing property. In the present invention, Mn is essential, and Cr is added as needed.

【0040】すなわち、Ae3 変態点を低下させるとい
う観点からは、CrよりもMnの方が効果が高いのでM
nを活用する。Crは、BH性を向上させる、加工硬化
能を高めるなどの観点で優れた効果を発揮するので、こ
れらの特性をさらに高めたい場合には添加する。Mnに
ついては0.6%未満の添加では、上に述べた効果が顕
著に現れないので、その下限を0.6%とする。一方、
4.0%を超えると好ましい低温変態生成物単相組織が
得られなくなるので上限を4.0%とする。
That is, from the viewpoint of lowering the Ae 3 transformation point, Mn is more effective than Cr,
Take advantage of n. Cr exerts an excellent effect from the viewpoint of improving the BH property and enhancing the work hardening ability, and is added when it is desired to further enhance these properties. With respect to Mn, if the addition is less than 0.6%, the above-mentioned effects are not significantly exhibited, so the lower limit is set to 0.6%. on the other hand,
If it exceeds 4.0%, a desirable low-temperature transformation product single phase structure cannot be obtained, so the upper limit is made 4.0%.

【0041】また、Crは、0.01%未満では上の効
果が発揮されないので、下限を0.01%とし、3.0
%を超えるとやはり良好な組織が得られなくなるので上
限を3.0%とする。
If the content of Cr is less than 0.01%, the above effect is not exhibited, so the lower limit is made 0.01% and 3.0% is set.
%, The good structure cannot be obtained, so the upper limit is set to 3.0%.

【0042】P:PはSiと同様に安価に強度を上昇す
る元素として知られており、その添加量は狙いとする強
度レベルに応じて変化する。添加量が0.15%を超え
ると低温変態生成物単相組織を得るための焼鈍温度が著
しく高くなり、また、降伏強度が増加し過ぎてプレス時
に面形状不良を引き起こす。
P: As with Si, P is known as an element that increases strength at low cost, and the amount of P added varies according to the intended strength level. When the addition amount exceeds 0.15%, the annealing temperature for obtaining a single-phase structure of the low-temperature transformation product becomes remarkably high, and the yield strength is excessively increased to cause poor surface shape at the time of pressing.

【0043】さらに、連続溶融亜鉛メッキ時に合金化反
応が極めて遅くなり、生産性が低下する。また、2次加
工性も劣化する。したがって、その上限値を0.15%
とする。また、製鋼技術およびコストの観点から下限は
0.003%とする。
Further, the alloying reaction during continuous hot-dip galvanizing becomes extremely slow, and the productivity is reduced. Further, the secondary workability also deteriorates. Therefore, the upper limit is 0.15%
And In addition, the lower limit is set to 0.003% from the viewpoint of steelmaking technology and cost.

【0044】S:S量は低い方が好ましいが、0.00
1%未満になると製造コストが高くなるのでこれを下限
値とする。一方、0.015%超となるとMnSが数多
く析出し、加工性が劣化するのでこれを上限値とする。
S: The lower the S content, the better, but 0.00
If it is less than 1%, the production cost increases, so this is set as the lower limit. On the other hand, if the content exceeds 0.015%, a large amount of MnS precipitates and the workability deteriorates.

【0045】Al:Alは脱酸調製およびTiを添加し
ない場合にはNの固定に使用するが、0.005%未満
ではTiやNbの歩留が低下する。一方、0.1%超に
なるとコストアップを招くので上限を0.1%とする。
Al: Al is used for deoxidation preparation and for fixing N when Ti is not added, but if it is less than 0.005%, the yield of Ti and Nb decreases. On the other hand, if it exceeds 0.1%, the cost is increased, so the upper limit is made 0.1%.

【0046】Ti,Nb:Ti,NbはN,C,Sの全
部または一部を固定することにより、極低炭素鋼の加工
性と非時効性を確保する役割を有する。さらには熱延板
の結晶粒を微細化し、製品板の加工性を良好にする。T
i,Nbが0.003%未満ではその添加効果が現れな
いのでこれを下限値とする。一方、0.10%を超える
と著しい合金コストの上昇を招くので上限値を0.10
%とする。
Ti, Nb: Ti, Nb has a role of securing workability and non-aging property of the ultra-low carbon steel by fixing all or a part of N, C, S. Furthermore, the crystal grains of the hot-rolled sheet are refined, and the workability of the product sheet is improved. T
If i and Nb are less than 0.003%, the effect of addition is not exhibited, so this is set as the lower limit. On the other hand, if it exceeds 0.10%, a significant increase in alloy cost is caused.
%.

【0047】N:Nは低い方が好ましい。しかし、0.
0003%未満にするには著しいコストアップを招く。
一方、あまり多いと多量のTi,Nb,Alが必要にな
ったり、加工性が劣化したりするので0.0060%を
上限値とする。
N: N is preferably low. However, 0.
Reducing it to less than 0003% results in a significant increase in cost.
On the other hand, if the amount is too large, a large amount of Ti, Nb, Al is required, or the workability is deteriorated. Therefore, the upper limit is made 0.0060%.

【0048】B:Bは2次加工脆化の防止に有効であ
り、また、低温変態生成物単相組織を得るのに有効であ
るので0.0030%未満添加することもできる。しか
し、0.0030%以上となると加工性の劣化の原因と
なるので上限を0.0030%未満とする。
B: B is effective in preventing the embrittlement of secondary processing and is effective in obtaining a single-phase structure of a low-temperature transformation product, so B can be added in an amount of less than 0.0030%. However, when the content is 0.0030% or more, the workability is deteriorated. Therefore, the upper limit is set to less than 0.0030%.

【0049】次に、製造条件の限定理由について述べ
る。熱延の素材は、特に限定されるものではなく、連続
鋳造スラブでもよいし、ストリップキャスターなどによ
って鋳造した薄鋳帯でもよいし、そのほかのスラブでも
よい。
Next, the reasons for limiting the manufacturing conditions will be described. The material for hot rolling is not particularly limited, and may be a continuously cast slab, a thin cast strip cast by a strip caster or the like, or another slab.

【0050】熱延の仕上げ温度は製品板の加工性を確保
するという観点から(Ar3 −100)℃以上とする必
要がある。また、巻取り温度は室温から750℃とす
る。本発明はその製品材質が熱延巻取り温度の影響をあ
まり受けないという特徴を有する。これは、MnやCr
などをかなり添加しており熱延板の組織が著しく微細で
均一化していることが一因と考えられる。巻取り温度の
上限が750℃であることは、コイル両端部での材質劣
化に起因する歩留低下を防止する観点から決定される。
The finishing temperature for hot rolling must be (Ar 3 -100) ° C. or higher from the viewpoint of ensuring the workability of the product sheet. The winding temperature is from room temperature to 750 ° C. The present invention is characterized in that the material of the product is not so affected by the hot rolling temperature. This is because Mn and Cr
It is considered that one of the causes is that the structure of the hot-rolled sheet is extremely fine and uniform because of the considerable addition of such materials. The fact that the upper limit of the winding temperature is 750 ° C. is determined from the viewpoint of preventing a decrease in yield due to material deterioration at both ends of the coil.

【0051】冷間圧延は、通常の条件でよく、焼鈍後の
深絞り性を確保する目的からその圧延率は、60%以上
とする。連続焼鈍あるいはライン内焼鈍方式の連続溶融
亜鉛メッキ設備の焼鈍温度は、Ae3 変態点以上とす
る。焼鈍温度がAe3 変態点以下では、本発明の特徴で
ある低温変態生成物単相組織を得ることはできない。
The cold rolling may be performed under ordinary conditions, and the rolling reduction is set to 60% or more for the purpose of ensuring the deep drawability after annealing. The annealing temperature of the continuous galvanizing equipment of the continuous annealing or the in-line annealing method is set to the Ae 3 transformation point or higher. When the annealing temperature is lower than the Ae 3 transformation point, a low-temperature transformation product single-phase structure characteristic of the present invention cannot be obtained.

【0052】焼鈍時の均熱後の冷却条件は、焼鈍温度か
ら(Ar1 −50℃)〜(Ar1 +50℃)までの温度
域を平均冷却速度30℃/s以上とする。これによっ
て、高いBHを出現させるために充分な固溶Cが確保さ
れ、優れた非時効性を得るために必要な高い可動転位密
度を得ることができる。
The cooling condition after soaking during annealing is such that the average cooling rate is 30 ° C./s or more in the temperature range from the annealing temperature to (Ar 1 -50 ° C.) to (Ar 1 + 50 ° C.). As a result, a sufficient amount of solid solution C for ensuring high BH is secured, and a high mobile dislocation density required for obtaining excellent non-aging properties can be obtained.

【0053】かくして、本発明によれば、降伏強度は低
く、著しく加工硬化し、高い塗装焼付硬化能と非時効性
とを併せ持ち、平均r値(深絞り特性)や伸び(張出特
性)などの加工性にも優れる鋼板を得ることができる。
特に塗装焼付硬化能に関しては、10kgf/mm2 程度の高
いBH量を必要に応じて付与することができ、かつ常温
非時効性を兼ね備えた冷延鋼板を提供することが可能で
ある。
Thus, according to the present invention, the yield strength is low, the work hardens remarkably, it has both high baking hardenability and non-aging property, and the average r value (deep drawing property), elongation (extension property), etc. It is possible to obtain a steel sheet having excellent workability.
In particular, with regard to paint bake hardening ability, a high BH amount of about 10 kgf / mm 2 can be provided as necessary, and a cold-rolled steel sheet having non-aging properties at room temperature can be provided.

【0054】[0054]

【実施例】【Example】

〈実施例1〉表1に示す組成を有する鋼を溶製し、スラ
ブ加熱温度1180℃、仕上げ温度910℃、巻取り温
度700℃で熱間圧延し、4.0mm厚の鋼帯とした。酸
洗後80%の圧下率の冷間圧延を施し0.8mm厚の冷延
板とし、ついで加熱速度10℃/s、均熱820〜99
0℃×50s、焼鈍温度から600℃までを平均冷却速
度80℃/s、600℃から室温まで70℃/sの連続
焼鈍を行った。さらに0.8%の圧下率の調質圧延を
し、JIS5号引張試験片を採取し引張試験に供した。
引張試験結果をまとめて表2に示す。
Example 1 A steel having a composition shown in Table 1 was melted and hot-rolled at a slab heating temperature of 1180 ° C., a finishing temperature of 910 ° C., and a winding temperature of 700 ° C. to obtain a 4.0 mm thick steel strip. After pickling, cold rolling was performed at a rolling reduction of 80% to form a cold-rolled sheet having a thickness of 0.8 mm, and then a heating rate of 10 ° C./s and a soaking temperature of 820 to 99.
The continuous annealing was performed at 0 ° C. × 50 s from the annealing temperature to 600 ° C. at an average cooling rate of 80 ° C./s and from 600 ° C. to room temperature at 70 ° C./s. Further, temper rolling was performed at a rolling reduction of 0.8%, and a JIS No. 5 tensile test piece was sampled and subjected to a tensile test.
Table 2 summarizes the results of the tensile test.

【0055】ここで、WH量は、圧延方向に2%の引張
歪を付加したときの加工硬化量であり、2%変形応力か
ら降伏応力(YP)を差し引いた量である。また、BH
量は2%予歪材に170℃×20分の塗装焼付相当の熱
処理を施してから再度引張試験を行った場合の応力の増
加量(再引張試験時の下降伏応力から2%変形応力を差
し引いた値)である。また、2次加工脆化遷移温度は、
調質圧延した鋼板から直径50mmのブランクを打ち抜
き、ついで直径33mmのポンチでカップ成形し、これに
種々の温度で落重試験を施した場合の延性−脆性遷移温
度である。
Here, the WH amount is a work hardening amount when a tensile strain of 2% is applied in the rolling direction, and is an amount obtained by subtracting the yield stress (YP) from the 2% deformation stress. Also, BH
The amount of increase in stress when a 2% prestrained material is subjected to a heat treatment equivalent to paint baking at 170 ° C. for 20 minutes and then subjected to a tensile test again (2% deformation stress from the drop yield stress at the time of the retensile test) (Subtracted value). The secondary working embrittlement transition temperature is
This is a ductile-brittle transition temperature when a blank having a diameter of 50 mm is punched from a temper-rolled steel sheet, then cup-formed with a punch having a diameter of 33 mm, and subjected to a drop test at various temperatures.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【表2】 [Table 2]

【0058】表1の焼鈍温度から明らかなように、本発
明鋼においては、低温変態生成物単相組織とするための
焼鈍温度が、比較鋼のそれよりもかなり低いことが分か
る。したがって、連続焼鈍設備に無理な負担をかけるこ
となく製造することができる。
As is clear from the annealing temperatures in Table 1, it is understood that in the steel of the present invention, the annealing temperature for obtaining the low-temperature transformation product single phase structure is considerably lower than that of the comparative steel. Therefore, it can be manufactured without imposing an unreasonable burden on the continuous annealing equipment.

【0059】また、表2から明らかなように、従来鋼の
同レベルの引張強度を有する鋼板と比較して、本発明鋼
は、従来にはない高いBH性を有し、かつ非常に優れた
常温非時効性を兼ね備えていることが分かる。このこと
はMnやCrさらにはBを用いて低温変態生成物単相組
織化した鋼板においては、その他の鋼板に比べて、好ま
しい転位密度を有することが主な原因であると思われ
る。
Further, as is clear from Table 2, the steel of the present invention has an unprecedentedly high BH property and is extremely excellent as compared with the steel sheet having the same level of tensile strength as the conventional steel. It turns out that it has non-aging property at room temperature. This is considered to be mainly due to the fact that a steel sheet having a low-temperature transformation product single-phase structure using Mn, Cr or B has a preferable dislocation density as compared with other steel sheets.

【0060】もうひとつ特徴的なのは、本発明によれ
ば、γ単相温度域での焼鈍にも関わらず、r値がほとん
ど劣化しないことである。また、本発明鋼は降伏強度が
低く、面形状性に優れ、WH量も高い。したがって、た
とえば自動車の外内板パネルには好適の材料である。
Another characteristic is that, according to the present invention, the r value hardly deteriorates despite annealing in the γ single phase temperature range. Further, the steel of the present invention has low yield strength, excellent surface shape, and a high WH amount. Therefore, it is a suitable material for the outer and inner panel of an automobile, for example.

【0061】〈実施例2〉表1の鋼3−2を用いて連続
焼鈍における均熱温度の影響について検討した。熱間圧
延と冷間圧延の条件は、実施例1と同様である。その
後、10℃/sで加熱し、830〜920℃において5
0s間保定した後、焼鈍温度から600℃までを平均冷
却速度80℃/s、600℃から350℃までを70℃
/sで冷却し、350℃にて3分間保定し、350℃か
ら室温までを70℃/sの連続焼鈍を行った。
Example 2 The effect of soaking temperature in continuous annealing was examined using steel 3-2 in Table 1. The conditions of the hot rolling and the cold rolling are the same as in the first embodiment. Then, it heats at 10 degreeC / s, and it is 5 at 830-920 degreeC.
After holding for 0 s, the average cooling rate from the annealing temperature to 600 ° C was 80 ° C / s, and the average cooling rate from 600 ° C to 350 ° C was 70 ° C.
/ S, kept at 350 ° C. for 3 minutes, and continuously annealed from 350 ° C. to room temperature at 70 ° C./s.

【0062】さらに0.8%の圧下率の調質圧延をし、
JIS5号引張試験片を採取し引張試験に供した。引張
試験結果をまとめて表3に示す。
Further, temper rolling at a rolling reduction of 0.8% is performed.
JIS No. 5 tensile test pieces were collected and subjected to a tensile test. Table 3 summarizes the results of the tensile tests.

【0063】表3から明らかなように、本発明のように
γ単相域で焼鈍することにより、低温変態生成物単相組
織とした場合には、均熱温度が変化しても安定して優れ
た材質特性を得ることが分かる。これに対してα+γ2
相温度域で焼鈍した場合には均熱温度の変化に対してB
H量が敏感で、その量もγ域焼鈍時よりも小さい。
As is evident from Table 3, when the single-phase structure of the low-temperature transformation product is obtained by annealing in the γ single-phase region as in the present invention, even if the soaking temperature changes, it is stable. It can be seen that excellent material properties are obtained. On the other hand, α + γ2
In the case of annealing in the phase temperature range, B
The amount of H is sensitive, and the amount is smaller than that during annealing in the γ region.

【0064】[0064]

【表3】 [Table 3]

【0065】〈実施例3〉表1の鋼3−1〜3−5およ
び4−1〜4−4をスラブ加熱温度1220℃、仕上げ
温度900℃、巻取り温度500℃の条件で熱間圧延
し、3.8mm厚の鋼板とした。酸洗後、冷間圧延して
7.5mm厚の冷延板とし、ついで加熱温度15℃/sで
最高加熱温度830〜990℃として加熱してから約7
0℃/sで冷却し、460℃で慣用の溶融亜鉛メッキを
行い(浴中Al濃度は0.11%)、さらに加熱して5
20℃で20s間合金化処理後約20℃/sで室温まで
冷却した。得られた合金化亜鉛メッキ鋼板についてメッ
キ性外観、パウダリング性およびメッキ皮膜中のFe濃
度を測定した。これらの結果を表4にまとめて示す。
Example 3 Hot rolling was performed on steels 3-1 to 3-5 and 4-1 to 4-4 shown in Table 1 under the conditions of a slab heating temperature of 1220 ° C., a finishing temperature of 900 ° C., and a winding temperature of 500 ° C. And a steel plate having a thickness of 3.8 mm. After pickling, it was cold-rolled into a cold-rolled sheet having a thickness of 7.5 mm, and then heated at a heating temperature of 15 ° C / s to a maximum heating temperature of 830 to 990 ° C, and then heated for about 7 hours.
Cool at 0 ° C / s, perform conventional hot-dip galvanizing at 460 ° C (Al concentration in the bath is 0.11%), and further heat to 5%.
After the alloying treatment at 20 ° C. for 20 seconds, it was cooled to room temperature at about 20 ° C./s. About the obtained alloyed galvanized steel sheet, the plating appearance, the powdering property, and the Fe concentration in the plating film were measured. These results are summarized in Table 4.

【0066】[0066]

【表4】 [Table 4]

【0067】ここでメッキ性の外観は下記の基準で評価
した。 ◎ :面積率で100%メッキが付着した状態 ○ :面積率で90%以上メッキが付着した状態 △ :面積率で60〜90%メッキが付着した状態 × :面積率で30〜60%メッキが付着した状態 ××:面積率で30%以下しかメッキが付着していない
状態
Here, the appearance of the plating property was evaluated according to the following criteria. ◎: 100% plated area adhered ○: 90% or more plated area △: 60 to 90% plated area ×: 30 to 60% plated area Attached state XX: A state in which plating is adhered only in an area ratio of 30% or less.

【0068】ここでメッキ密着性は180°の密着曲げ
を行い、亜鉛皮膜の剥離状況を曲げ加工部にセロテープ
を接着したのち、これをはがしてテープに付着した剥離
メッキ量から判定した。評価は下記の5段階とした。 1:剥離大 2:剥離中 3:剥離小 4:剥離微量
5:剥離全くなし また、メッキ層中のFe濃度は、X線回折によって求め
た。
Here, the plating adhesion was determined by performing 180 ° contact bending to determine the peeling state of the zinc film from the amount of peel plating adhered to the tape after the cellophane tape was adhered to the bent portion. The evaluation was based on the following five levels. 1: Large peeling 2: Peeling off 3: Small peeling 4: Small amount of peeling
5: No peeling at all The Fe concentration in the plating layer was determined by X-ray diffraction.

【0069】表4から明らかなように本発明では、メッ
キ性外観、パウダリング性が良好であり、合金層中のF
e濃度も望ましい相と考えられているδ1 相のそれに相
当する量となっている。これは、本発明においてはメッ
キ密着性を劣化させ合金化反応速度を遅くするP,B,
Siを低減し、MnやCrを添加しているためと考えら
れる。また、MnやCrが添加されている場合には、あ
る程度の量のPやSiが含有されてもメッキ特性を損な
わないことが分かる。
As is evident from Table 4, in the present invention, the plating appearance and the powdering property are good and the F content in the alloy layer is good.
The e concentration is also equivalent to that of the δ 1 phase, which is considered a desirable phase. This is because, in the present invention, P, B,
This is probably because Si was reduced and Mn and Cr were added. Further, it is understood that when Mn or Cr is added, even if a certain amount of P or Si is contained, the plating characteristics are not impaired.

【0070】[0070]

【発明の効果】本発明によれば従来にはないBH性と常
温非時効性とを兼ね備えた冷延鋼板を得ることができ
る。また、本発明鋼は、プレス成形性も極めて良好であ
り、さらに、溶融亜鉛メッキ特性にも優れているため防
錆機能も発揮できる。その結果、本発明鋼を自動車のボ
ディやフレームなどに使用すると板厚の軽減すなわち車
体の軽量化が可能となるので最近注目されている地球環
境の保全にも本発明は大きく寄与できる。このように本
発明の産業上の意義は極めて大きい。
According to the present invention, it is possible to obtain a cold-rolled steel sheet having both the unprecedented BH property and the normal temperature non-aging property. Further, the steel of the present invention has extremely good press-formability, and is also excellent in hot-dip galvanizing properties, so that it can also exhibit a rust prevention function. As a result, when the steel of the present invention is used for a body or a frame of an automobile, the thickness of the body can be reduced, that is, the weight of the vehicle body can be reduced. Thus, the industrial significance of the present invention is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】BHと人工時効後のYP−Elに及ぼす焼鈍後
の冷却速度の影響を検討するためのヒートサイクルであ
る。
FIG. 1 is a heat cycle for examining the effect of cooling rate after annealing on BH and YP-El after artificial aging.

【図2】焼鈍後の冷却速度とBH,YP−Elとの関係
の図表である。
FIG. 2 is a table showing a relationship between a cooling rate after annealing and BH, YP-El.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 邦夫 北九州市戸畑区飛幡町1番1号 新日本 製鐵株式会社 八幡製鐵所内 (56)参考文献 特開 平4−136123(JP,A) 特開 平6−122939(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 - 9/48 C21D 8/02 - 8/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kunio Nishimura 1-1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi Nippon Steel Corporation Yawata Works (56) References JP-A-4-136123 (JP, A) JP-A-6-122939 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 9/46-9/48 C21D 8/02-8/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.0005〜0.0070%、 Si:0.001〜0.8%、 Mn:0.6〜4.0%、 P :0.003〜0.15%、 S :0.0010〜0.015%、 Al:0.005〜0.1%、 N :0.0003〜0.0060%、 さらに、 Ti:0.003〜0.1%およびNb:0.003〜
0.1%のうち、一種類以上、 残部Feおよび不可避的不純物からなる組成を有するス
ラブを(Ar3 −100)℃以上の温度で熱間圧延の仕
上げを行い、室温から750℃の温度で巻取り、60%
以上の圧延率で冷間圧延を行い、連続焼鈍における焼鈍
温度をAe3 変態点以上とし、焼鈍温度から(Ar1
50℃)〜(Ar1 +50℃)までの温度域を平均冷却
速度30℃/s以上とし、低温変態生成物単相組織
することを特徴とする焼付硬化性と成形性とに優れた冷
延鋼板の製造方法。
C .: 0.0005 to 0.0070%, Si: 0.001 to 0.8%, Mn: 0.6 to 4.0%, P: 0.003 to 0. 15%, S: 0.0010 to 0.015%, Al: 0.005 to 0.1%, N: 0.0003 to 0.0060%, and Ti: 0.003 to 0.1% and Nb : 0.003 ~
Of the 0.1%, one or more slabs having a composition consisting of the balance of Fe and unavoidable impurities are subjected to hot rolling at a temperature of (Ar 3 -100) ° C. or more, and at a temperature of room temperature to 750 ° C. Winding, 60%
Cold rolling is performed at the above rolling ratio, the annealing temperature in continuous annealing is set to the Ae 3 transformation point or higher, and (Ar 1
50 ℃) ~ (Ar 1 + a 50 ° C.) the temperature range of up to an average cooling rate of 30 ° C. / s or higher, baking hardenability and moldability, characterized by chromatic <br/> the low-temperature transformation product single phase structure And excellent cold rolled steel sheet manufacturing method.
【請求項2】 B:0.0030%未満を含有するスラ
ブを用いる請求項1に記載の焼付硬化性と非時効性とに
優れた冷延鋼板の製造方法。
2. The method for producing a cold-rolled steel sheet according to claim 1, wherein a slab containing B: less than 0.0030% is used.
【請求項3】 Cr:0.01〜3.0%を含有するス
ラブを用いる請求項1あるいは2に記載の焼付硬化性と
非時効性とに優れた冷延鋼板の製造方法。
3. The method for producing a cold-rolled steel sheet having excellent bake hardenability and non-aging property according to claim 1, wherein a slab containing Cr: 0.01 to 3.0% is used.
【請求項4】 請求項1,2あるいは3に記載の化学成
分を有するスラブを(Ar3 −100)℃以上の温度で
熱間圧延の仕上げを行い、室温から750℃の温度で巻
取り、60%以上の圧延率で冷間圧延を行い、インライ
ン焼鈍型の溶融亜鉛メッキラインにおいて、焼鈍温度を
Ae3 変態点以上とし、焼鈍温度から(Ar1 −50
℃)〜(Ar1 +50℃)までの温度域を平均冷却速度
30℃/s以上とし、低温変態生成物単相組織を有する
ことを特徴とする焼付硬化性と非時効性とに優れた溶融
亜鉛メッキ冷延鋼板の製造方法。
4. A slab having the chemical composition according to claim 1, 2 or 3, is subjected to hot rolling at a temperature of (Ar 3 -100) ° C. or higher, and is wound at a temperature from room temperature to 750 ° C. Cold rolling is performed at a rolling rate of 60% or more, and in the in-line annealing type hot-dip galvanizing line, the annealing temperature is set to the Ae 3 transformation point or higher, and the annealing temperature is changed to (Ar 1 −50).
(C) to (Ar 1 + 50 ° C.), with an average cooling rate of 30 ° C./s or more, and having a low-temperature transformation product single-phase structure and excellent in bake hardenability and non-aging properties. Manufacturing method of galvanized cold rolled steel sheet.
JP26514492A 1992-10-02 1992-10-02 Manufacturing method of cold rolled steel sheet or hot-dip galvanized cold rolled steel sheet with excellent bake hardenability and non-aging property Expired - Fee Related JP3238211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26514492A JP3238211B2 (en) 1992-10-02 1992-10-02 Manufacturing method of cold rolled steel sheet or hot-dip galvanized cold rolled steel sheet with excellent bake hardenability and non-aging property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26514492A JP3238211B2 (en) 1992-10-02 1992-10-02 Manufacturing method of cold rolled steel sheet or hot-dip galvanized cold rolled steel sheet with excellent bake hardenability and non-aging property

Publications (2)

Publication Number Publication Date
JPH06116650A JPH06116650A (en) 1994-04-26
JP3238211B2 true JP3238211B2 (en) 2001-12-10

Family

ID=17413248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26514492A Expired - Fee Related JP3238211B2 (en) 1992-10-02 1992-10-02 Manufacturing method of cold rolled steel sheet or hot-dip galvanized cold rolled steel sheet with excellent bake hardenability and non-aging property

Country Status (1)

Country Link
JP (1) JP3238211B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW422082U (en) * 1996-07-26 2001-02-11 Sharp Kk Dish washer for washing dishes by rotating a dish basket, and the dish basket therefor
EP1076105A4 (en) * 1999-02-25 2009-01-07 Jfe Steel Corp Steel plate, hot-dip steel plate and alloyed hot-dip steel plate and production methods therefor
TWI290177B (en) 2001-08-24 2007-11-21 Nippon Steel Corp A steel sheet excellent in workability and method for producing the same
JP2005325393A (en) * 2004-05-13 2005-11-24 Jfe Steel Kk High strength cold rolled steel sheet and its manufacturing method
JP4818879B2 (en) * 2006-10-31 2011-11-16 新日本製鐵株式会社 Method for producing cold-rolled steel sheet with excellent ductility and room temperature aging resistance
JP4818880B2 (en) * 2006-10-31 2011-11-16 新日本製鐵株式会社 Method for producing bake hardenable cold rolled steel sheet with excellent ductility and room temperature aging resistance
CN113817962A (en) * 2021-08-26 2021-12-21 包头钢铁(集团)有限责任公司 Galvanized high-strength IF steel strip for connecting plate of edge beam of automobile wheel cover and preparation method thereof

Also Published As

Publication number Publication date
JPH06116650A (en) 1994-04-26

Similar Documents

Publication Publication Date Title
EP0608430B1 (en) Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same
KR0121737B1 (en) Cold rolled sheet and hot-galvanized, cold-rolled sheet, both excellent in bake hardening, cold nonaging and forming
JP2003221623A (en) Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
JP3365632B2 (en) High-strength cold-rolled steel sheet and hot-dip galvanized high-strength cold-rolled steel sheet having good formability and methods for producing them
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP3238211B2 (en) Manufacturing method of cold rolled steel sheet or hot-dip galvanized cold rolled steel sheet with excellent bake hardenability and non-aging property
JP2980785B2 (en) Cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet excellent in bake hardenability and formability, and methods for producing them
JP3016636B2 (en) High strength cold rolled steel sheet with good formability
JP3745496B2 (en) Manufacturing method of cold-rolled steel sheet and alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
JP2004143470A (en) Steel sheet excellent in paint bake hardenability and retarded natural aging hardenability and its manufacturing process
JPH06122940A (en) Cold rolled steel sheet and galvanized cold rolled steel sheet having excellent baking hardenability and also cold monaging property and production thereof
JP3350096B2 (en) Cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet having excellent bake hardenability and formability, and methods for producing them
JPH06116648A (en) Production of cold rolled steel sheet or hot dip galvanized steel sheet excellent in baking hardenability and non-aging characteristic
JP3238210B2 (en) Method for producing cold-rolled steel sheet or hot-dip galvanized cold-rolled steel sheet with excellent formability and bake hardenability
JP3044641B2 (en) Room temperature non-ageing cold rolled steel sheet with remarkably high paint bake hardening performance
JP3309771B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JPH05255807A (en) High strength cold rolled steel sheet and calvanized high strength cold rolled steel sheet excellent in formability and their manufacture
JPH0681081A (en) Cold roller steel sheet and galvanized cold rolled steel sheet combining excellent baking hardenability and cold nonaging property as well and production thereof
JP2556633B2 (en) Method for producing cold-rolled steel sheets with excellent hot-dip galvanizing properties
JP2620444B2 (en) High strength hot rolled steel sheet excellent in workability and method for producing the same
JP2827740B2 (en) Method for producing steel sheet with excellent fatigue characteristics and deep drawability
JP2827739B2 (en) Method for producing steel sheet with excellent fatigue characteristics and deep drawability
JPH05263184A (en) Good workability high strength cold rolled steel sheet excellent in fatigue strength in spot weld zone
JPH06116651A (en) Production of cold rolled steel sheet or hot dip galvanized cold rolled steel sheet excellent in formability and baking hardenability
JPH05263189A (en) High strength cold rolled steel sheet and galvanized high strength cold rolled steel sheet good in formability, and their manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees