JP3234601B2 - 主にメタンから成り、少なくとも2モル%の窒素を含む炭化水素の液化混合物の原料ストックを脱ニトロ化する方法 - Google Patents

主にメタンから成り、少なくとも2モル%の窒素を含む炭化水素の液化混合物の原料ストックを脱ニトロ化する方法

Info

Publication number
JP3234601B2
JP3234601B2 JP50750293A JP50750293A JP3234601B2 JP 3234601 B2 JP3234601 B2 JP 3234601B2 JP 50750293 A JP50750293 A JP 50750293A JP 50750293 A JP50750293 A JP 50750293A JP 3234601 B2 JP3234601 B2 JP 3234601B2
Authority
JP
Japan
Prior art keywords
lng
nitrogen
fraction
stream
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP50750293A
Other languages
English (en)
Other versions
JPH06503608A (ja
Inventor
パラドウスキ,アンリ
マンジヤン,クリステイーヌ
ブラン,クロード
Original Assignee
エルフ・エクスプロラシオン・プロデユクシオン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルフ・エクスプロラシオン・プロデユクシオン filed Critical エルフ・エクスプロラシオン・プロデユクシオン
Publication of JPH06503608A publication Critical patent/JPH06503608A/ja
Application granted granted Critical
Publication of JP3234601B2 publication Critical patent/JP3234601B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Treating Waste Gases (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 詳細な説明 本発明は、主にメタンから成り、少なくとも2モル%
の窒素を含む炭化水素の液化混合物(LNGと略称する)
の原料ストックから窒素を除去してこの窒素含量を1モ
ル%未満にする方法に関する。
燃料ガスまたは燃料ガスの成分として使用するために
天然ガスという名称で供給されるガスは、主にメタンか
ら成り、また、一般には可変量(10モル%以上になるこ
ともある。)の窒素を含む炭化水素の混合物である。
一般には、天然ガスを採取した場所で液化して液化天
然ガス(LNG)にし、この液化によって一定モル量の気
体の炭化水素混合物が占める体積を約600分の1にする
ことができ、これらの液化ガスをその使用場所まで輸送
するには、大気圧と等しいかわずかに高い圧力を有する
サイズの大きい断熱貯蔵容器に入れて行うことができ
る。液化ガスの使用場所では、液化ガスを燃料ガスまた
は燃料ガス成分としてすぐに使用するために気化させる
か、あるいは、後で使用するために輸送用の貯蔵容器と
同じ種類の貯蔵容器に貯蔵しておく。
液化天然ガス中に窒素がかなりの量、例えば1モル%
より多く存在すると、一定量の炭化水素の輸送コストが
増加し、さらに、一定量の液化天然ガスの気化により生
じる燃料ガスの発熱量が減少するので好ましくなく、液
化天然ガスは、それを輸送したり気化させる前に窒素除
去を行ってその窒素含量を許容できる値、一般には1モ
ル%未満、好ましくは0.5モル%未満に下げることが一
般に行われている。
公知文献であるJ−P.G.Jacks and J.C.McMillan著
“Economic removal of nitrogen from LNG",the journ
al Hydrocarbon Processing刊,December 1977,pages 13
3 to 136には、特に、窒素除去カラム中で再沸騰させな
がらストリップすることによる液化天然ガスの窒素除去
法が記載されている。該方法(図3参照)では、圧力が
大気圧よりも高いLNG原料ストックを間接熱交換により
冷却した後、大気圧付近まで減圧し、冷却したLNG原料
ストックを複数の理論分別段を含む窒素除去カラムに導
入し、LNG留分を窒素除去カラムの底部で回収し、該留
分を処理すべきLNG原料ストックとともに間接熱交換に
かけ、次いで、該熱交換後、この留分を再沸騰留分とし
て窒素除去カラムに再注入し、この注入は、窒素除去カ
ラムの一番底のトレイの下で行い、メタンおよび窒素に
富む気体留分は窒素除去カラムの上端で除去し、窒素を
除去したLNG流は該カラムの底部で抜き出す。窒素除去
カラムの上端で集めたメタンおよび窒素に富む気体留分
は、その中に含まれる負の熱量を回収した後に加圧して
燃料ガス流を作り、窒素除去プラントなどの場所で使用
される。
上記で引用した窒素除去法の主な欠点は、窒素除去カ
ラムの上端で集めたメタンおよび窒素に富む気体留分か
ら得られる燃料ガスの量がその場所、一般には窒素除去
装置がある天然ガスの液化場所での条件よりもかなり多
いということである。得られる燃料ガスのメタン含量が
プラント条件に対応するように窒素の除去を行うと、窒
素除去カラムの上端で除去される気体留分およびその結
果得られるそれに応じた燃料ガスはかなりの量の窒素を
含み、それは、場合によっては50モル%より多くなりう
る。そのような燃料ガスを燃やすには、発熱量の小さい
燃料ガスに適応されるバーナー技術に頼る必要があり、
この結果、該燃料ガスを発熱量の大きい天然ガスで置き
換えることが必要になった場合、技術上の問題が生じ
る。
ドイツ特許出願No.3,822,175(1990年4月1日公開)
は天然ガスの窒素除去法に関し、その方法では、高めら
れた圧力下にある天然ガスに含まれる高沸点化合物を分
離した後、その天然ガスを間接熱交換により冷却し、次
いで、2〜3バールに減圧して液化天然ガス相を作り、
2〜3バールで作動する窒素除去カラムに導入する。該
カラムの上端では窒素に富む気体留分が得られ、底部で
は窒素が除去されたLNG流が得られる。この方法では、
第一および第二の液体留分を、窒素除去カラムの中央部
分と下方部分との間で、液体天然ガス相の導入レベルよ
り下に位置するレベルで該カラムから抜き出し、これら
の留分を間接熱交換にかけて天然ガスを冷却し、次い
で、該熱交換後に該留分を窒素除去カラムに再注入す
る。各留分の再注入は、窒素除去カラムにおいてこの留
分を抜き出すレベルより下に位置するレベルで行い、そ
の結果、一番上で抜き出す留分の再注入レベルは、その
二つの留分の抜き出しレベルの間に位置する。
本発明の主題は、再沸騰を伴う窒素除去カラムを使用
するLNGの改善された窒素除去法にあり、該方法によりL
NGの窒素含量を1モル%未満、特に0.5モル%未満に容
易に下げることができ、一方、得られる燃料ガスの量お
よびこの燃料ガスの窒素含量を制限することができる。
本発明の、主にメタンから成り、少なくとも2モル%
の窒素を含む炭化水素の液化混合物(LNG)の原料スト
ックから窒素を除去してこの窒素含量を1モル%未満に
減少させる方法は、0.5MPaより高い圧力で供給される、
処理すべきLNG原料ストックを間接熱交換によって冷却
し、減圧して0.1〜0.3MPaの圧力にし、冷却したLNG原料
ストックを、複数の理論分別段を含む窒素除去カラムに
導入し、少なくとも一つの第一LNG留分を冷却したLNG原
料ストックを導入したレベルよりも下に位置するレベル
において窒素除去カラムから回収し、該第一留分を、処
理すべきLNG原料ストックとの間接熱交換にかけ、次い
で、該熱交換の後、この第一留分を第一再沸騰留分とし
て窒素除去カラムに再注入し、この注入は、第一留分の
回収レベルより下に位置するレベルで行い、メタンおよ
び窒素に富む気体留分は窒素除去カラムの上端で除去
し、窒素除去されたLNG流は該カラムの底部で抜き出す
方法であり、処理すべきLNG原料ストックの減圧が、LNG
原料ストックと窒素除去カラムから回収されるLNG留分
との間の間接熱交換の上流または下流、好ましくは上流
にあるタービンにおいて動的に行われる第一減圧および
該間接熱交換と動的減圧との後に静的に行われる第二減
圧を含むことを特徴とする。
LNG原料ストックの動的第一減圧は、減圧タービンに
おいてLNGが気化しないような圧力まで行うのが有利で
ある。
本発明によれば、第二LNG留分を、冷却したLNG原料ス
トックの導入レベルと第一LNG留分の回収レベルとの間
に位置するレベルにおいて窒素除去カラムから回収し、
この第二LNG留分を、すでに第一LNG留分とともに間接熱
交換を行ったLNG原料ストックとともに間接熱交換にか
け、間接熱交換後、この第二LNG留分を第二再沸騰留分
として窒素除去カラムに再注入し、この注入を該第一お
よび第二LNG留分の回収レベルの間に位置するレベルで
行うのが好ましい。第一LNG留分の回収レベルと第二LNG
留分の窒素除去カラムへと再注入レベルとは、少なくと
も2個の理論分別段で分けるのが好ましい。
本発明方法の一態様によれば、窒素を除去すべきLNG
原料ストックをまず最初に動的第一減圧にかけた後、そ
の動的に減圧されたLNG原料ストックを大きい流れと小
さい流れに分け、大きい流れは窒素除去カラムから回収
したLNG留分とともに間接熱交換にかけた後、静的第二
減圧にかけ、小さい流れは窒素除去カラムの上端で除去
されるメタンおよび窒素に富む気体留分とともに間接熱
交換にかけて冷却した後、静的に減圧し、冷却・静的減
圧した大・小の流れを一緒にして冷却LNG原料ストック
とし、窒素除去カラムに導入する。
窒素除去カラムの上端で除去されるメタンおよび窒素
に富む気体留分は、より高温の流体とともに間接熱交換
することによって負の熱量を除いた後、適当な圧力まで
加圧して、窒素除去プラントなどの場所で用いる燃料ガ
ス流を作る。該加圧は、一般には多段階で行う。
有利な態様によれば、燃料ガス流の留分を迂回させ
て、窒素除去カラムに導入される冷却したLNG原料スト
ックの温度より低い温度および窒素除去カラム上端を支
配する圧力に実質的に相当する圧力を有する部分液化ガ
ス留分に変換し、該変換を、加圧、窒素除去カラムの上
端で除去されるメタンおよび窒素に富む気体留分ととも
に行う間接熱交換、次いで静的減圧により行い、こうし
て得た部分液化ガス留分を還流流体として、窒素除去カ
ラム中に、冷却したLNG原料ストックの導入レベルとメ
タンおよび窒素に富む気体留分を除去するレベルとの間
に位置するレベルにおいて注入する。この方法により、
窒素除去カラムにおける分留が改善され、また、窒素除
去カラム上端で除去される気体留分に入るメタンの量が
減少する。
上記態様の別の様式で、窒素除去カラムの還流流体を
作ることを意図し、燃料ガス流の迂回される留分から成
る液化ガス留分から、ほとんど窒素から成るガスを生成
することを可能にする態様によれば、間接熱交換の段階
で生じる液化ガス留分を第一および第二流の液化ガスに
分け、第一液化ガス流は静的減圧を行って、窒素除去カ
ラム上端を支配する圧力に実質的に相当する圧力を有す
る減圧流を作り、第二液化ガスは減圧後、蒸留カラムで
分留して、このカラムの上端にほとんど窒素から成るガ
ス流を作り、また、該カラムの底部ではメタンと窒素と
から成る液体流を抜き出し、該液体流は静的減圧にかけ
ることにより、減圧流の圧力に実質的に相当する圧力を
有する減圧2相流を作り、減圧流および2相流を一緒に
して、窒素除去カラムに注入する還流流体を作る。この
別の様式では、減圧2相流を、減圧流と一緒にする前
に、ほとんど窒素から成る気体流の除去レベルと第二液
化ガス流の導入レベルとの間に位置する蒸留カラムのレ
ベルで、蒸留カラムの中身とともに間接熱交換させるの
が有利である。
本発明によれば、窒素除去すべきLNGの動的第一減圧
を行うタービンで発生する仕事により、多段加圧の一部
を行い得る。この多段加圧は、窒素除去カラムの上端で
除去されるメタンおよび窒素に富む気体留分に対して、
該留分に含まれる負の熱量を回収した後に行われ、その
結果燃料ガス流を生成する。好ましくは、動的減圧ター
ビンで発生する仕事により該多段加圧の最終段階を行
う。
窒素を除去すべきLNG原料ストックをさらに第一およ
び第二減圧の間で中間減圧にかけ、該原料ストックから
メタンおよび窒素に富む気体相を分離し、その負の熱量
を回収した後、該気体相を多段加圧の中間段階に注入し
て燃料ガス流を生成する。
他の特徴および利点は、本発明方法の多数の態様の下
記説明により、より明らかにされるであろう。下記説明
では、該態様を実施するためのプラントを図式的に示す
図1〜4を参照する。
これらの種々の図において、同一の構成要素には常に
同じ記号を付す。
図1において、導管1を経由してきた窒素を除去すべ
きLNGの原料ストックは、タービン21で動的第一減圧を
受けて導管1中のLNG原料ストックの圧力と0.1MPa〜0.3
MPaの圧力との中間圧力になる。該中間圧力は、好まし
くは、減圧タービン中でLNGが気化しない程度の圧力で
ある。この動的第一減圧により半減圧LNG流22が得ら
れ、次いで間接熱交換2を通って冷却され、バルブ3を
通過すると静的第二減圧を受けて圧力が0.1MPa〜0.3MP
になり、引き続き冷却される。冷却・減圧されたLNG原
料ストックは、導管4を経由して窒素除去カラム5に導
入される。該カラムは複数の理論分別段を含む分別カラ
ムであり、例えば、プレートカラムまたは充填カラムで
ある。第一LNG留分は、冷却・減圧されたLNG原料ストッ
クの導入レベルより下に位置するレベルに置かれた導管
6を経由して窒素除去カラム5から回収され、該留分
は、熱交換器2において、該交換器を通過するLNG原料
ストックとともに間接向流熱交換にかけられ、この原料
ストックは第一LNG留分の負の熱量によって冷却され
る。次いで、該熱交換後、この第一留分は第一再沸騰留
分として導管7経由でカラム5に再注入される。この注
入は、導管6を経由する第一LNG留分の回収レベルより
下に位置するレベルで行う。第二LNG留分も、導管8を
経由してカラム5から、冷却・減圧されたLNG原料スト
ックの導入レベルと第一LNG留分の回収レベルとの間に
位置するレベルにおいて回収され、該第二留分は、熱交
換器2において、すでに第一LNG留分とともに間接熱交
換を受けたLNG原料ストックとともに間接向流熱交換に
かけられ、該原料ストックが引き続き冷却される。次い
で、その熱交換後、この第二LNG留分は第二再沸騰留分
として導管9経由でカラム5に再注入される。この注入
は、該第一および第二留分の回収レベルの間に位置する
レベルで行われる。第一LNG留分の回収レベルと第二LNG
留分の窒素除去カラム5への再注入レベルとは、少なく
とも2個の理論分別段、すなわち、カラム5がプレート
型の場合は少なくとも2枚のトレイ、またはカラム5が
充填型の場合は少なくとも2枚の理論プレートに相当す
る充填の高さによって隔てる。メタンおよび窒素に富
み、導管4を通ってカラム5に導入されるLNG原料スト
ックの温度を実質的に有する気体留分は、導管10を経由
してカラム5の上端で除去される。貯蔵または輸送に適
する窒素除去LNG流は、カラム5の底部からポンプ12を
取り付けた導管11を経由して抜き出される。カラム5の
上端で除去される気体留分は、導管10を経由して熱交換
器13に送られ、そこで、より高温の1種または多数の流
体14との間接熱交換を受けて負の熱量を引き渡し、次い
で、その熱交換の後、第一冷却器17と関連した第一コン
プレッサ16および第二冷却器19と関連した第二コンプレ
ッサ18を含む多段コンプレッサ装置15の第一コンプレッ
サ16に導入する。該コンプレッサ装置は、使用の際に必
要とされる圧力まで加圧した燃料ガス流20を供給する。
図2は、図1で図式的に示したプラントの全ての構成
要素と他の構成要素とを含むプラントを図式的に示し、
導管1を経由してきた窒素を除去すべきLNGの原料スト
ックは、タービン21で動的第一減圧を受けて導管1中の
LNG原料ストックの圧力と0.1MPa〜0.3MPaの圧力との中
間圧力になる。該中間圧力は、好ましくは、減圧タービ
ン中でLNGが気化しない程度の圧力である。この動的第
一減圧により半減圧LNG流22が得られ、これは、大きい
流れ23と小さい流れ24とに別れる。大きい流れ23は間接
熱交換器2で間接熱交換を受けて冷却され、次いで、バ
ルブ3を通過することにより静的第二減圧を受けて0.1M
Pa〜0.3MPaの圧力になり、引き続き冷却される。また、
小さい流れ24は間接熱交換器13に送られ、そこで、メタ
ンおよび窒素に富み、窒素除去カラム5の上端で導管10
を経由して除去される気体留分とともに間接向流熱交換
を受けて冷却され、次いで、バルブ25を通過することに
より静的に減圧されて0.1MPa〜0.3MPa付近の圧力にな
る。各バルブ3および25から出てくる冷却・減圧された
大きいLNG流23Dおよび小さいLNG流24Dは、合流して冷却
・減圧されたLNG原料ストックとなり、導管4を経由し
て窒素除去カラム5に導入される。窒素除去カラム5な
らびに間接熱交換器2および13で行われる操作として
は、図1のプラントの対応する構成要素に対して記載し
た操作が含まれる。コンプレッサ装置15は、コンプレッ
サ16および18ならびに関連する冷却器17および19の他
に、最終コンプレッサ26および関連冷却器27を含み、後
者のコンプレッサは、減圧タービン21によって駆動され
る。熱交換器13を通過した後、気体留分10は、3段階で
加圧、すなわち、最初にコンプレッサ16で、次にコンプ
レッサ18で、最後に最終コンプレッサ26で加圧され、コ
ンプレッサ26の出口で、使用の際に必要な圧力に加圧さ
れた燃料ガス流20を得る。
燃料ガス流20の留分28は迂回され、コンプレッサ29で
の加圧、次いでコンプレッサ29と関連する冷却器30での
冷却、次いで間接熱交換器13とコンプレッサ装置15との
間にある間接熱交換器31での間接向流熱交換による冷
却、次いでメタンおよび窒素に富み、窒素除去カラム5
の上端で導管10を経由して除去される気体留分とともに
該熱交換器13で間接向流熱交換を受けることによる冷
却、最後にバルブ32による静的減圧を含む処理を受け
て、該カラム5に導入される冷却LNG原料ストックより
低い温度およびこのカラムの上端を支配する圧力に実質
的に相当する圧力を有する部分液化ガス留分になる。部
分液化ガス留分は、導管33を経由して還流流体としてカ
ラム5に注入され、その注入レベルは、冷却LNG原料ス
トックが導管4を経由して導入されるレベルと窒素およ
びメタンに富む低温の気体留分が導管10を経由して除去
されるレベルとの間に位置する。
図3に図式的に示したプラントを使用する本発明方法
の態様は、図2に図式的に示したプラントを使用する方
法の態様と、窒素を少なくした還流流体およびほとんど
窒素から成るガス流を生成するために窒素除去カラムの
還流流体となる液化ガス留分を追加処理する点において
のみ異なる。従って、図3のプラントは、図2のプラン
トの全ての構成要素および該追加処理に適切な部材を含
む。図3では、導管1を経由してきた窒素を除去すべき
LNGの原料ストックを、図2のプラントを用いる態様で
記載した処理と同様の処理にかける。上記追加処理に対
しては、間接熱交換器31および13で順次行われる間接熱
交換により生じる液化ガス留分28Rを第一液化ガス流34
および第二液化ガス流35に分ける。第一液化ガス流34
は、バルブ32を経由することにより静的減圧を受けて、
窒素除去カラム5の上端を支配する圧力に実質的に相当
する圧力を有する減圧流になる。第二液化ガス流35は、
バルブ36を通過して静的減圧を受けた後、蒸留カラム37
での分留にかけられ、このカラムの上端では、ほとんど
窒素から成るガス流41が作られ、該カラム37の底部では
メタンおよび窒素から成る液体流38を抜き出す。液体流
38は、バルブ39を通過することにより静的減圧を受け
て、バルブ32から出でくる減圧流に実質的に相当する圧
力になり、次いで、得られる減圧2相流40は、蒸留カラ
ム37の上部を通過して、このカラムの中身とともに間接
熱交換され、該中身をさらに冷却する。蒸留カラム37で
の通過レベルは、ガス流41の除去レベルと第二液化ガス
流35の導入レベルとの間に位置する。その後、その減圧
2相流はバルブ32から出てくる減圧流と合流して部分液
化ガス留分となり、導管33を経由して、還流流体として
窒素除去カラム5に注入される。ほとんど窒素から成
り、蒸留カラム37の上端で除去されるガス流41は、導管
33を経由して窒素除去カラム5に注入される還流流体の
温度と導管4を経由して該カラム5に導入される冷却LN
G原料ストックの温度との間の温度を有する。このガス
流41は、間接熱交換器13および31を順次通過するように
送られ、間接向流熱交換によって、その負の熱量がより
高温の流体、特に燃料ガス20から迂回される留分28およ
び半減圧LNG原料ストックの小さい流れ24に回収され、
使用に供される。
図4に図式的に示したプラントを使用する本発明方法
の態様は、図3に図式的に示したプラントを使用する方
法の態様と、間接熱交換器2において間接熱交換を行う
前に半減圧LNG原料ストックの大きい流れ23の追加減圧
を行う点においてのみ異なる。この追加減圧は、その流
れ23からメタンおよび窒素に富む気体相を分離し、多段
コンプレッサ装置15の入口に送られる気体留分10の量を
少なくするためであり、気体相は、コンプレッサ装置15
における気体留分の加圧の中間段階において気体留分10
に再注入される。図4は、図3の全ての構成要素および
他の構成要素を含み、導管1を経由してきた窒素を除去
すべきLNG原料ストックは、タービン21で動的第一減圧
を受けて半減圧LNG流22となり、小さい流れ24(図2に
関する態様で示したように処理される。)と大きい流れ
23とに分けられる。この半減圧LNGの大きい流れは、バ
ルブ42および分離器ボトル43を通過することにより追加
の静的減圧を受けて、バルブ3の下流側での圧力を0.1M
Pa〜0.3MPaに保つ。メタンおよび窒素に富む気体留分45
は、該分離器43の上端で除去され、LNG流44は、この分
離器の底部で抜き出される。このLNG流は、次に、図3
のプラントを使用する方法の態様での大きいLNG流23の
処理において記載した操作を含み、窒素除去LNG流11、
燃料ガス流20および窒素流41を生じる処理を受ける。メ
タンおよび窒素に富む気体相45は、間接熱交換器13およ
び31を順次通過するように送られ、その負の熱量をより
高温の流体、特に燃料ガス20から迂回される留分28およ
び半減圧LNG原料ストックの小さい流れ24に、間接向流
熱交換により引き渡す。次いで、コンプレッサ46の吸引
側に送られるが、コンプレッサ46は多段コンプレッサ装
置15のコンプレッサ16によっても供給を受け、その供給
は、冷却器17を通ってコンプレッサ装置15のコンプレッ
サ18の吸引側へ順次連結している。
上記説明を補足するために、本発明方法の態様の4個
の実施例を以下に示すが、本発明は以下の実施例により
限定されるものではない。各態様は、図1〜4に図式的
に示すプラントから選択される種々のプラントを使用す
る。
実施例1 下記組成(モル)を有するLNG(液化天然ガス)を図
1に図式的に示したのと同じプラントを使用し、上述し
たように操作することにより処理した。
− メタン :88% − エタン : 5.2% − プロパン : 1.7% − イソブタン : 0.3% − n−ブタン : 0.4% − イソペンタン : 0.1% − 窒素 : 4.3% 流量20,000キロモル/時間、圧力5.7MPaおよび温度−
149.3℃で導管1を経由してきた窒素を除去すべきLNG原
料ストックが、タービン21で動的第一減圧を受けて、温
度−150℃および圧力450kPaの半減圧LNG流22となった。
その半減圧LNG流22は、間接熱交換器2を通過して第一
冷却されて−162℃になり、次いで、バルブ3を通過し
て第二減圧を受け、温度−166℃および圧力120kPaの冷
却・減圧LNG原料ストックとなった。その原料ストック
を、下方に順次番号を付けた11個のトレイを含む窒素除
去カラム5の一番上のトレイに導入した。第一LNG留分
を、カラム5から10番目のトレイのレベルで、導管6を
経由して回収した。該留分の温度は−159.5℃であり、
流量は19,265キロモル/時間であった。該留分は、次い
で、間接熱交換器2を通過し、導管7を経由して、カラ
ム5の11番目のトレイの下に位置するレベルで、カラム
5に第一再沸騰留分として戻した。第二LNG留分は、カ
ラム5から第4トレイのレベルで、導管8を経由して回
収した。該留分の温度は−164℃であり、流量は19,425
キロモル/時間であった。次いで、該留分は、間接熱交
換器2を通過し、導管9を経由して、カラム5の第4と
第5のトレイの間に位置するレベルで、カラム5に第二
再沸騰留分として戻した。温度が−158.5℃で、窒素の
モル含量が0.2%である窒素除去LNG流は、カラム5の底
部で、導管11を経由して、18,290キロモル/時間の流量
で抜き出した。温度−166℃および圧力120kPaの気体留
分は、カラム5の上端で、導管10を経由て、1713キロモ
ル/時間の流量で除去した。該留分は48.1モル%の窒素
および51.9%のメタンを含み、高級炭化水素は40ppm
(モル)未満であった。気体留分10は熱交換器13を通
り、そこで、温度−25℃の流体とともに間接向流熱交換
されて、−46℃の温度になった。次いで、コンプレッサ
装置15の第一コンプレッサ16の吸引側に送られて加圧さ
れた。冷却器19で冷却された後、温度40℃、圧力2.5MPa
の加圧燃料ガス流20がこの多段コンプレッサ装置15から
1713キロモル/時間で供給された。
実施例2 組成、圧力および流量が実施例1のLNGと同じであるL
NGを、図2で図式的に示したものと同じプラントを使用
し、上述したように操作して処理した。
温度−148.2℃で導管1を経由してきたLNG原料ストッ
クが、タービン21で動的第一減圧を受けて、温度−149
℃および圧力450kPaの半減圧LNG流22となった。その半
減圧流LNG22を、流量が各々19,100キロモル/時間およ
び900キロモル/時間である大きい流れ23および小さい
流れ24に分けた。大きい流れ23は、熱交換器2を通過す
ることにより第一冷却を受けて−162℃になり、次い
で、バルブ3により第二減圧を受けて、温度−166℃、
圧力120kPaの冷却・減圧された大きいLNG流23Dになっ
た。小さい流れ24は、間接熱交換器13を通過することに
より−164℃に冷却され、次いで、バルブ25により減圧
されて、温度−167℃、圧力120kPaの減圧・冷却された
小さいLNG流24Dになった。冷却・減圧された大きいLNG
流23Dおよび小さいLNG流24Dは合流して、下方に順次番
号を付けた11個のトレイを含む窒素除去カラム5の一番
上のトレイに導管4を経由して導入されるLNG原料スト
ックとなった。第一および第二LNG留分はカラム5から
回収し、間接熱交換器2に送り、次いで、実施例1に示
した再沸騰留分としてカラム5に戻した。導管6を通過
する第一LNG留分は、温度−159.5℃および流量19,600キ
ロモル/時間であり、導管8を通過する第二LNG留分
は、温度−165℃および流量19,700キロモル/時間であ
った。温度が−158.5℃で、窒素のモル含量が0.2%であ
る窒素除去LNG流が、カラム5の底部から導管11を経由
して18,520キロモル/時間の流量で抜き出された。温度
−169℃および圧力120kPaの気体留分は、カラム5の上
端から導管10を経由して1976キロモル/時間の流量で除
去された。該留分は、55.8モル%の窒素および44.2モル
%のメタンを含んでいた。気体留分10の温度を、間接熱
交換器13および31に順次通すことにより、−45℃、次い
で−25℃にした後、該気体留分をコンプレッサ装置15の
第一コンプレッサ16の吸引側に送って、最初にコンプレ
ッサ16、次いでコンプレッサ18、最後に最終コンプレッ
サ26の3段階で加圧した。
最後のコンプレッサは減圧タービン21により駆動し
た。コンプレッサ26での供給により、冷却器27で冷却さ
れた、温度40℃、圧力2.5MPaの加圧燃料ガス流20が1976
キロモル/時間で得られた。加圧燃料ガス流20からは、
留分28が500キロモル/時間で回収された。該留分は、
コンプレッサ29で加圧して圧力を5.5MPaとした後、冷却
器30、熱交換器31および熱交換器13を順次通過させて−
148℃に冷却し、最後にバルブ32を通過させて減圧し、
温度−186℃および圧力120kPaの部分液化ガス留分を得
た。この部分液化ガス留分は、還流流体として、窒素除
去カラム5に、導管33を経由して注入した。注入レベル
は、該カラムの一番上のトレイと導管10のレベルとの間
に位置した。
実施例3 組成、圧力および流量が実施例1のLNGと同じであるL
NGを、図3で図式的に示したものと同じプラントを使用
し、上述したように操作して処理した。
温度−148.2℃で導管1を経由してきたLNG原料ストッ
クが、タービン21で動的第一減圧を受けて、温度−149
℃および圧力450kPaの半減圧LNG流22となった。その半
減圧流LNG22を、流量が各々19,100キロモル/時間およ
び900キロモル/時間である大きい流れ23および小さい
流れ24に分けた。大きい流れ23は、熱交換器2を通過す
ることにより第一冷却を受けて−162℃になり、次い
で、バルブ3により第二減圧を受けて、温度−166℃、
圧力120kPaの冷却・減圧された大きいLNG流23Dになっ
た。小さい流れ24は、熱交換器13を通過することにより
−164℃に冷却され、次いで、バルブ25により減圧され
て、温度−167℃、圧力120kPaの減圧・冷却された小さ
いLNG流24Dになった。冷却・減圧された大きいLNG流23D
および小さいLNG流24Dは合流してLNG原料ストックとな
り、下方に順次番号を付けた11個のトレイを含む窒素除
去カラム5の3番目のトレイに導管4を経由して導入さ
れた。第一および第二LNG留分はカラム5から回収して
間接熱交換器2に送り、次いで、実施例2に示した再沸
騰留分としてカラム5に戻した。導管6を通過する第一
LNG留分は、温度−159.5℃および流量19,610キロモル/
時間であり、導管8を通過する第二LNG留分は、温度−1
65℃および流量19,710キロモル/時間であった。温度−
184.5℃および圧力120kPaの部分液化ガス留分を、還流
流体として、カラム5の一番上のトレイと導管10のレベ
ルとの間に位置するレベルで、導管33を経由して注入し
た。温度が−158.5℃で窒素のモル含量が0.2%である窒
素除去LNG流を、カラム5の底部から、導管11を経由し
て18,530キロモル/時間の流量で抜き出した。
温度−168℃、圧力120kPaのガス留分は、カラム5の
上端から、導管10を経由して1875キロモル/時間の流量
で除去した。該留分は、52.9モル%の窒素および47.1モ
ル%のメタンを含んでいた。気体留分10の温度を、間接
熱交換器13および31に順次通すことにより、−45℃、次
いで−28℃にした後、該留分を実施例2に記載したよう
に3段階で加圧した。コンプレッサ26での供給により、
冷却器27で冷却された、温度40℃、圧力2.5MPaの加圧燃
料ガス流20が1875キロモル/時間で得られた。加圧燃料
ガス流20からは、留分28が500キロモル/時間で回収さ
れた。該留分は、コンプレッサ29で加圧されて圧力を5.
5MPaとした後、冷却器30、熱交換器31および熱交換器13
を順次通過して冷却され、温度−148℃および圧力5.4MP
aの液化ガス留分28を得た。該留分28Rを、流量が各々1
キロモル/時間および499キロモル/時間の第一液化ガ
ス流34および第二液化ガス流35に分けた。第一液化ガス
流34は、バルブ32により減圧されて、温度−185℃およ
び圧力120kPaの減圧流34Dとなった。第二液化ガス流35
は、バルブ36により減圧されて、温度−165℃および圧
力710kPaの第二減圧流35Dとなった。第二減圧流35Dは、
11個のトレイを含む蒸留カラム37で分留した。41.7モル
%の窒素および58.3モル%のメタンから成る液体流38を
403キロモル/時間でカラム37の底部から抜き出した。
該液体流38は、バルブ39により減圧されて温度−185
℃、圧力135kPaの減圧2相流40となり、蒸留カラム37の
上部を通過させて、このカラムの中身とともに間接熱交
換を行った。通過レベルは、該カラムの一番上のトレイ
とそのカラムの上端の導管41のレベルとの間に位置し
た。その後、該2相流40は減圧流34Dと合流して部分液
化ガス留分となり、還流流体として窒素除去カラム5に
注入した。99.9モル%の窒素および0.1モル%のメタン
から成るガス流41は、蒸留カラム37の上端で除去した。
該ガス流は、流量が96キロモル/時間で、温度は−174.
5℃、圧力は700kPaであった。ガス流41は、間接熱交換
器13および31を順次通過して、その中に含まれる負の熱
量が回収され、温度30℃および圧力680kPaの窒素流41R
となった。
実施例4 組成、圧力および流量が実施例1のLNGと同じであるL
NGを、図4で図式的に示したのと同じプラントを使用
し、上述したように操作して処理した。
導管1を経由してきたLNG原料ストックが、タービン2
1で動的第一減圧を受けて、温度−146℃および圧力500k
Paの半減圧LNG流22となった。その半減圧流LNG22を、流
量が各々19,000キロモル/時間および900キロモル/時
間である大きい流れ23および小さい流れ24に分けた。大
きい流れ23は、バルブ42を通過して387kPaに減圧され、
分離器ボトル43で気体留分およびLNG留分に分離した。3
9.22モル%の窒素、60.76モル%のメタンおよび0.02モ
ル%のエタンから成り、流量455キロモル/時間、温度
−149℃および圧力387kPaを有する気体相45を、該分離
器の上部で除去した。
温度−149℃および圧力390kPaのLNG流44は、該分離器
の底部から18,645キロモル/時間の流量で抜き出した。
LNG流44は、熱交換器2を通って−162℃に冷却され、次
いで、バルブ3により第二減圧を受けて、温度−165℃
および圧力120kPaの冷却・減圧された大きいLNG流44Dと
なった。小さい流れ24は、熱交換器13を通過して−164
℃に冷却され、次いで、バルブ25により減圧されて、温
度−166℃および圧力120kPaの減圧・冷却された小さいL
NG流24Dとなった。冷却・減圧された大きいLNG流44Dお
よび小さいLNG流24Dは合流してLNG原料ストックとな
り、下方に順次番号を付けた11個のトレイを含む窒素除
去カラム5の3番目のトレイに導管4を経由して導入さ
れた。第一および第二LNG留分はカラム5から回収し、
間接熱交換器2に送り、次いで、実施例3に示した再沸
騰留分としてカラム5に戻した。導管6を通過する第一
LNG留分は、温度−159.5℃および流量19,470キロモル/
時間であり、導管8を通過する第二LNG留分は、温度−1
64℃および流量19,660キロモル/時間であった。温度−
182℃、流量740キロモル/時間および圧力120kPaの部分
液化ガス留分を、還流流体として、カラム5の一番上の
トレイと導管10のレベルとの間に位置するレベルで、導
管33を経由して注入した。温度が−158.5℃で窒素のモ
ル含量が0.2%である窒素除去LNG流を、カラム5の底部
から、導管11を経由して18,520キロモル/時間の流量で
抜き出した。温度−168℃、圧力120kPaのガス留分は、
カラム5の上端から、導管10を経由して1760キロモル/
時間の流量で除去した。該留分は、52.1モル%の窒素お
よび47.9モル%のメタンを含んでいた。
気体留分10の温度を、熱交換器13に通すことにより、
−40℃にした後、該気体留分をコンプレッサ装置15の第
一コンプレッサ16の吸引側に送り、4段階で加圧、すな
わち、最初に順次コンプレッサ16、46および18で、最後
に最終コンプレッサ26で加圧した。最後のコンプレッサ
は減圧タービン21により駆動した。分離器43の上端で除
去した気体相45は、熱交換器13および21を順次通過し
て、その中に含まれる負の熱量が回収された後、38℃の
温度でコンプレッサ46の吸引側に送られた。コンプレッ
サ46は、コンプレッサ16によっても供給される。コンプ
レッサ26での供給により、冷却器27で冷却された、温度
40℃、圧力2.5MPaの加圧燃料ガス流20が2215キロモル/
時間で得られた。加圧燃料ガス流20からは、留分28が92
5キロモル/時間で回収された。該留分は、コンプレッ
サ29で加圧されて圧力を7MPaとした後、冷却器30、熱交
換器31および熱交換器13を順次通過させて冷却し、温度
−146℃および圧力6.9MPaの液化ガス留分28Rを得た。該
留分28Rを、流量が各々1キロモル/時間および924キロ
モル/時間の第一液化ガス流34および第二液化ガス流35
に分けた。第一液化ガス流34は、バルブ32により減圧さ
れて、温度−183℃および圧力120kPaの減圧流34Dとな
り、第二液化ガス流35は、バルブ36により減圧されて、
温度−163℃および圧力710kPaの第二減圧流35Dとなっ
た。第二減圧流35Dは、11個のトレイを含む蒸留カラム3
7で分留した。36.9モル%の窒素および63.2モル%のメ
タンから成り、50ppm(モル)未満のエタンを含む液体
流38が740キロモル/時間でカラム37の底部から抜き出
された。
該液体流38は、バルブ39により減圧して温度−183
℃、圧力135kPaの減圧2相流40とし、蒸留カラムの上部
を通過させて、実施例3で示したようにこのカラムの中
身とともに間接熱交換を行った。その後、該2相流40を
減圧流34Dと合わせて部分液化ガス留分とし、還流流体
として窒素除去カラム5に注入した。99.9モル%の窒素
および0.1モル%のメタンから成るガス流41は、蒸留カ
ラム37の上端で除去した。該ガス流は、流量が184キロ
モル/時間で、温度は−174.5℃、圧力は700kPaであっ
た。ガス流41は、間接熱交換器13および31を順次通過し
て、その中に含まれる負の熱量が回収され、温度36.5℃
および圧力680kPaの窒素流41Rとなった。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ブラン,クロード フランス国、エフ−64000・ポー、リ ユ・ドウ・バニエール・24 (56)参考文献 特開 昭49−88903(JP,A) (58)調査した分野(Int.Cl.7,DB名) C10L 3/10 F25J 3/02

Claims (11)

    (57)【特許請求の範囲】
  1. 【請求項1】主にメタンから成り、少なくとも2モル%
    の窒素を含む炭化水素の液化混合物(LNG)の原料スト
    ックをから窒素を除去してこの窒素含量を1モル%未満
    に減少させる方法であって、0.5MPaより高い圧力で供給
    される、処理すべきLNG原料ストックを間接熱交換
    (2)によって冷却し、減圧(21,3)して0.1〜0.3MPa
    の圧力にし、冷却されたLNG原料ストックを、複数の理
    論分別段を含む窒素除去カラム(5)に導入し、少なく
    とも一つの第一LNG留分(6)を冷却したLNG原料ストッ
    クを導入したレベル(4)よりも下に位置するレベルに
    おいて窒素除去カラムから回収し、該第一留分を、処理
    すべきLNG原料ストックとの間接熱交換にかけ、次い
    で、該熱交換の後、この第一留分を第一再沸騰留分
    (7)として窒素除去カラムに再注入し、この注入は、
    第一留分を回収したレベルより下に位置するレベルで行
    い、メタンおよび窒素に富む気体留分(10)は窒素除去
    カラムの上端で除去し、窒素が除去されたLNG流(11)
    は該カラムの底部で抜き出す方法において、処理すべき
    LNG原料ストックの減圧が、LNG原料ストックと窒素除去
    カラムから回収されるLNG留分(6,8)との間の間接熱交
    換(2)の上流または下流にあるタービン(21)におい
    て動的に行われる第一減圧および該間接熱交換と動的減
    圧との後に静的に行われる第二減圧(3)を含むことを
    特徴とする方法。
  2. 【請求項2】LNG原料ストックの動的第一減圧(21)
    を、LNGが減圧タービンにおいて気化しないような圧力
    まで行うことを特徴とする請求項1に記載の方法。
  3. 【請求項3】第二LNG留分(8)を、冷却したLNG原料ス
    トックの導入レベルと第一LNG留分の回収レベルとの間
    に位置するレベルにおいて窒素除去カラムから回収し、
    この第二LNG留分を、すでに第一LNG留分との間接熱交換
    を行ったLNG原料ストックとの間接熱交換(2)にか
    け、間接熱交換後、この第二LNG留分を第二再沸騰留分
    (9)として窒素除去カラムに再注入し、この注入を該
    第一および第二LNG留分の回収レベルの間に位置するレ
    ベルで行うことを特徴とする請求項1または2に記載の
    方法。
  4. 【請求項4】第一LNG留分(6)の回収レベルおよび第
    二LNG留分(9)の窒素除去カラム(5)への再注入レ
    ベルを少なくとも2個の理論分別段で隔てることを特徴
    とする請求項3に記載の方法。
  5. 【請求項5】窒素を除去すべきLNG原料ストック(1)
    をまず最初に動的第一減圧(21)にかけた後、動的に減
    圧されたLNG原料ストックを大きい流れ(23)と小さい
    流れ(24)に分け、大きい流れ(23)は窒素除去カラム
    から回収したLNG留分(6,8)との間接熱交換(2)にか
    けた後、静的第二減圧(3)にかけ、小さい流れ(24)
    は窒素除去カラムの上端で除去されるメタンおよび窒素
    に富む気体留分(10)との間接熱交換(13)にかけて冷
    却した後、静的に減圧(25)し、冷却・減圧した大・小
    の流れ(44D,24D)を一緒にし冷却LNG原料ストック
    (4)とし、窒素除去カラム(5)に導入することを特
    徴とする請求項1〜4のいずれか一項に記載の方法。
  6. 【請求項6】窒素除去カラム(5)の上端で除去される
    メタンおよび窒素に富む気体留分(10)から、より高温
    の流体(14,28)との間接熱交換(13)によって負の熱
    量を除いた後、適当な圧力まで加圧(15)して燃料ガス
    流(20)を作ることを特徴とする請求項1〜5のいずれ
    か一項に記載の方法。
  7. 【請求項7】燃料ガス流(20)の留分(28)を迂回させ
    て、窒素除去カラムに導入される冷却したLNG原料スト
    ック(4)の温度より低い温度および窒素除去カラム上
    端を支配する圧力に実質的に相当する圧力を有する部分
    液化ガス留分(33)に変換し、該変換は、加圧(29)、
    少なくとも窒素除去カラムの上端で除去されるメタンお
    よび窒素に富む気体留分とともに行う間接熱交換(1
    3)、次いで静的減圧(32)により行い、こうして得た
    部分液化ガス留分(33)を還流流体として、窒素除去カ
    ラム中に、冷却したLNG原料ストック(4)の導入レベ
    ルとメタンおよび窒素に富む気体留分(10)を除去する
    レベルとの間に位置するレベルにおいて注入することを
    特徴とする請求項6に記載の方法。
  8. 【請求項8】間接熱交換(13)の段階で生じる液化ガス
    留分(28R)を第一流(34)および第二流(35)の液化
    ガスに分け、第一液化ガス流(34)は静的減圧(32)を
    行って、窒素除去カラム上端を支配する圧力に実質的に
    相当する圧力を有する減圧流(34D)を作り、第二液化
    ガス流(35)は減圧後、蒸留カラム(37)で分留して、
    このカラムの上端にほとんど窒素から成るガス流(41)
    を作り、また、該カラムの底部ではメタンと窒素とから
    成る液体流(38)を抜き出し、該液体流は静的減圧(3
    9)にかけることにより、減圧流の圧力に実質的に相当
    する圧力を有する減圧2相流(40)を作り、減圧流(34
    D)および2相流(40)を一緒にして、窒素除去カラム
    に注入する還流流体(33)を作ることを特徴とする請求
    項7に記載の方法。
  9. 【請求項9】減圧2相流(40)を、減圧流(34D)と一
    緒にする前に、蒸留カラム(37)のほとんど窒素から成
    る気体流(41)の除去レベルと第二液化ガス流(35)の
    導入レベルとの間に位置するレベルで、蒸留カラム(3
    7)の中身とともに間接熱交換させることを特徴とする
    請求項8に記載の方法。
  10. 【請求項10】処理すべきLNG原料ストックの動的第一
    減圧を行う減圧タービン(21)で発生する仕事により、
    窒素除去カラムの上端で除去されるメタンおよび窒素に
    富む気体流留分(10)に対して、該留分に含まれる負の
    熱量を回収した後に行われ、その結果燃料ガス流(20)
    を生成する加圧(15)の一部(26)を行い、好ましくは
    該加圧の最終段階を行うことを特徴とする請求項2〜8
    のいずれか一項に記載の方法。
  11. 【請求項11】LNG原料ストックを第一および第二減圧
    の間で中間減圧(42)にかけて該原料ストックからメタ
    ンおよび窒素に富む気体相(45)を分離し、その負の熱
    量を回収(13,31)した後、該気体相(45)を加圧(1
    5)の中間段階(46)に注入して燃料ガス流(20)を生
    成することを特徴とする請求項6〜10のいずれか一項に
    記載の方法。
JP50750293A 1991-10-23 1992-10-22 主にメタンから成り、少なくとも2モル%の窒素を含む炭化水素の液化混合物の原料ストックを脱ニトロ化する方法 Expired - Lifetime JP3234601B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR919113081A FR2682964B1 (fr) 1991-10-23 1991-10-23 Procede de deazotation d'un melange liquefie d'hydrocarbures consistant principalement en methane.
FR91/13081 1991-10-23
PCT/FR1992/000991 WO1993008436A1 (fr) 1991-10-23 1992-10-22 Procede de deazotation d'une charge d'un melange liquefie d'hydrocarbures consistant principalement en methane et renfermant au moins 2 % molaire d'azote

Publications (2)

Publication Number Publication Date
JPH06503608A JPH06503608A (ja) 1994-04-21
JP3234601B2 true JP3234601B2 (ja) 2001-12-04

Family

ID=9418229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50750293A Expired - Lifetime JP3234601B2 (ja) 1991-10-23 1992-10-22 主にメタンから成り、少なくとも2モル%の窒素を含む炭化水素の液化混合物の原料ストックを脱ニトロ化する方法

Country Status (15)

Country Link
US (1) US5421165A (ja)
EP (1) EP0572590B1 (ja)
JP (1) JP3234601B2 (ja)
AU (1) AU657816B2 (ja)
CA (1) CA2099003C (ja)
DE (1) DE69213437T2 (ja)
DZ (1) DZ1630A1 (ja)
ES (1) ES2093855T3 (ja)
FR (1) FR2682964B1 (ja)
GR (1) GR3021723T3 (ja)
MY (1) MY108223A (ja)
NO (1) NO180277C (ja)
NZ (1) NZ244874A (ja)
RU (1) RU2085815C1 (ja)
WO (1) WO1993008436A1 (ja)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4235006A1 (de) * 1992-10-16 1994-04-21 Linde Ag Verfahren zum Auftrennen eines im wesentlichen aus Wasserstoff, Methan und C¶3¶/C¶4¶-Kohlenwasserstoffen bestehenden Einsatzstromes
GB2297825A (en) * 1995-02-03 1996-08-14 Air Prod & Chem Process to remove nitrogen from natural gas
US5992175A (en) * 1997-12-08 1999-11-30 Ipsi Llc Enhanced NGL recovery processes
FR2772896B1 (fr) * 1997-12-22 2000-01-28 Inst Francais Du Petrole Procede de liquefaction d'un gaz notamment un gaz naturel ou air comportant une purge a moyenne pression et son application
MY114649A (en) 1998-10-22 2002-11-30 Exxon Production Research Co A process for separating a multi-component pressurized feed stream using distillation
MY117066A (en) 1998-10-22 2004-04-30 Exxon Production Research Co Process for removing a volatile component from natural gas
US6116050A (en) * 1998-12-04 2000-09-12 Ipsi Llc Propane recovery methods
DE19914239A1 (de) * 1999-03-29 2000-10-05 Linde Ag Verfahren zum Betreiben eines Prozesses für die Verflüssigung einer Kohlenwasserstoff-reichen Fraktion
US6070429A (en) * 1999-03-30 2000-06-06 Phillips Petroleum Company Nitrogen rejection system for liquified natural gas
FR2818365B1 (fr) * 2000-12-18 2003-02-07 Technip Cie Procede de refrigeration d'un gaz liquefie, gaz obtenus par ce procede, et installation mettant en oeuvre celui-ci
GB0111961D0 (en) 2001-05-16 2001-07-04 Boc Group Plc Nitrogen rejection method
GB0116960D0 (en) 2001-07-11 2001-09-05 Boc Group Plc Nitrogen rejection method and apparatus
GB0216537D0 (en) * 2002-07-16 2002-08-28 Boc Group Plc Nitrogen rejection method and apparatus
GB0220791D0 (en) * 2002-09-06 2002-10-16 Boc Group Plc Nitrogen rejection method and apparatus
CN100541093C (zh) * 2003-02-25 2009-09-16 奥特洛夫工程有限公司 一种烃气处理的方法和设备
US6978638B2 (en) * 2003-05-22 2005-12-27 Air Products And Chemicals, Inc. Nitrogen rejection from condensed natural gas
US7155931B2 (en) * 2003-09-30 2007-01-02 Ortloff Engineers, Ltd. Liquefied natural gas processing
PE20060219A1 (es) * 2004-07-12 2006-05-03 Shell Int Research Tratamiento de gas natural licuado
EP1789739B1 (en) * 2004-09-14 2020-03-04 Exxonmobil Upstream Research Company Method of extracting ethane from liquefied natural gas
DE102005010053A1 (de) * 2005-03-04 2006-09-07 Linde Ag Helium-Gewinnung bei LNG-Anlagen
EP1715267A1 (en) * 2005-04-22 2006-10-25 Air Products And Chemicals, Inc. Dual stage nitrogen rejection from liquefied natural gas
FR2885679A1 (fr) * 2005-05-10 2006-11-17 Air Liquide Procede et installation de separation de gaz naturel liquefie
FR2891900B1 (fr) * 2005-10-10 2008-01-04 Technip France Sa Procede de traitement d'un courant de gnl obtenu par refroidissement au moyen d'un premier cycle de refrigeration et installation associee.
WO2007131850A2 (en) * 2006-05-15 2007-11-22 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
WO2008034875A2 (en) * 2006-09-22 2008-03-27 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
DE102007010032A1 (de) * 2007-03-01 2008-09-04 Linde Ag Verfahren zum Abtrennen von Stickstoff aus verflüssigtem Erdgas
US9869510B2 (en) * 2007-05-17 2018-01-16 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20080314079A1 (en) * 2007-06-19 2008-12-25 Air Products And Chemicals, Inc. Nitrogen Rejection Column Reboiler Configuration
EA016149B1 (ru) * 2007-07-19 2012-02-28 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и устройство для выделения и разделения на фракции сырьевого потока смешанных углеводородов
US20090139263A1 (en) * 2007-12-04 2009-06-04 Air Products And Chemicals, Inc. Thermosyphon reboiler for the denitrogenation of liquid natural gas
US20090282865A1 (en) 2008-05-16 2009-11-19 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
DE102008056191A1 (de) * 2008-11-06 2010-05-12 Linde Ag Verfahren zum Abtrennen von Stickstoff
DE102008056196A1 (de) * 2008-11-06 2010-05-12 Linde Ag Verfahren zum Abtrennen von Stickstoff
US8522574B2 (en) * 2008-12-31 2013-09-03 Kellogg Brown & Root Llc Method for nitrogen rejection and or helium recovery in an LNG liquefaction plant
DE102009008229A1 (de) * 2009-02-10 2010-08-12 Linde Ag Verfahren zum Abtrennen von Stickstoff
US20100287982A1 (en) 2009-05-15 2010-11-18 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
DE102009038458A1 (de) * 2009-08-21 2011-02-24 Linde Ag Verfahren zum Abtrennen von Stickstoff aus Erdgas
DE102010035230A1 (de) * 2010-08-24 2012-03-01 Linde Aktiengesellschaft Verfahren zum Abtrennen von Stickstoff aus Erdgas
DE102012008961A1 (de) * 2012-05-03 2013-11-07 Linde Aktiengesellschaft Verfahren zum Rückverflüssigen einer Methan-reichen Fraktion
CA2909614C (en) 2013-04-22 2021-02-16 Shell Internationale Research Maatschappij B.V. Method and apparatus for producing a liquefied hydrocarbon stream
EP2796818A1 (en) 2013-04-22 2014-10-29 Shell Internationale Research Maatschappij B.V. Method and apparatus for producing a liquefied hydrocarbon stream
WO2015036429A2 (en) * 2013-09-13 2015-03-19 Shell Internationale Research Maatschappij B.V. Natural gas liquefaction system and method of producing a liquefied natural gas stream
EP2857782A1 (en) 2013-10-04 2015-04-08 Shell International Research Maatschappij B.V. Coil wound heat exchanger and method of cooling a process stream
EP2957621A1 (en) 2014-06-17 2015-12-23 Shell International Research Maatschappij B.V. De-superheater system and compression system employing such de-superheater system, and method of producing a pressurized and at least partially condensed mixture of hydrocarbons
EP2957620A1 (en) 2014-06-17 2015-12-23 Shell International Research Maatschappij B.V. Method and system for producing a pressurized and at least partially condensed mixture of hydrocarbons
US10443930B2 (en) * 2014-06-30 2019-10-15 Black & Veatch Holding Company Process and system for removing nitrogen from LNG
EP2977430A1 (en) 2014-07-24 2016-01-27 Shell Internationale Research Maatschappij B.V. A hydrocarbon condensate stabilizer and a method for producing a stabilized hydrocarbon condenstate stream
EP2977431A1 (en) 2014-07-24 2016-01-27 Shell Internationale Research Maatschappij B.V. A hydrocarbon condensate stabilizer and a method for producing a stabilized hydrocarbon condenstate stream
CN105240064B (zh) * 2015-11-25 2017-06-16 杰瑞石油天然气工程有限公司 一种lng能量回收工艺
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
IT201800010171A1 (it) * 2018-11-08 2020-05-08 Saipem Spa Processo per la ri-liquefazione e contemporanea diminuzione del contenuto di azoto nel bog per assorbimento autorefrigerato
US11686528B2 (en) * 2019-04-23 2023-06-27 Chart Energy & Chemicals, Inc. Single column nitrogen rejection unit with side draw heat pump reflux system and method
US11674749B2 (en) * 2020-03-13 2023-06-13 Air Products And Chemicals, Inc. LNG production with nitrogen removal
US20230076428A1 (en) * 2021-09-02 2023-03-09 Air Products And Chemicals, Inc. Integrated nitrogen rejection for liquefaction of natural gas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455158A (en) * 1983-03-21 1984-06-19 Air Products And Chemicals, Inc. Nitrogen rejection process incorporating a serpentine heat exchanger
DE3531307A1 (de) * 1985-09-02 1987-03-05 Linde Ag Verfahren zur abtrennung von c(pfeil abwaerts)2(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)-kohlenwasserstoffen aus erdgas
DE3822175A1 (de) * 1988-06-30 1990-01-04 Linde Ag Verfahren zum entfernen von stickstoff aus stickstoffhaltigem erdgas
AU3354989A (en) * 1989-03-13 1990-10-09 Kerr-Mcgee Corporation Process for cryogenically separating natural gas streams
US5051120A (en) * 1990-06-12 1991-09-24 Union Carbide Industrial Gases Technology Corporation Feed processing for nitrogen rejection unit

Also Published As

Publication number Publication date
CA2099003C (fr) 2001-05-08
DE69213437D1 (de) 1996-10-10
NO180277C (no) 1997-03-19
NO180277B (no) 1996-12-09
ES2093855T3 (es) 1997-01-01
NO932294D0 (no) 1993-06-22
NZ244874A (en) 1995-03-28
AU2948192A (en) 1993-05-21
FR2682964B1 (fr) 1994-08-05
FR2682964A1 (fr) 1993-04-30
EP0572590B1 (fr) 1996-09-04
AU657816B2 (en) 1995-03-23
RU2085815C1 (ru) 1997-07-27
CA2099003A1 (fr) 1993-04-24
DE69213437T2 (de) 1997-03-27
US5421165A (en) 1995-06-06
MY108223A (en) 1996-08-30
JPH06503608A (ja) 1994-04-21
DZ1630A1 (fr) 2002-02-17
EP0572590A1 (fr) 1993-12-08
NO932294L (no) 1993-08-23
EP0572590A4 (fr) 1993-09-17
GR3021723T3 (en) 1997-02-28
WO1993008436A1 (fr) 1993-04-29

Similar Documents

Publication Publication Date Title
JP3234601B2 (ja) 主にメタンから成り、少なくとも2モル%の窒素を含む炭化水素の液化混合物の原料ストックを脱ニトロ化する方法
EP0095739B1 (en) Nitrogen rejection from natural gas with co2 and variable n2 content
EP0462492B1 (en) Improved feed processing for nitrogen rejection unit
US4878932A (en) Cryogenic rectification process for separating nitrogen and methane
US5617741A (en) Dual column process to remove nitrogen from natural gas
US4710213A (en) Process for separating CO2 from a gaseous mixture
RU2743086C1 (ru) Извлечение гелия из природного газа
EP0231949B1 (en) Process to separate nitrogen and methane
US7568363B2 (en) Treating of a crude containing natural gas
EP2253913A2 (en) Process and apparatus for the recovery of krypton and/or xenon
EP0044679A1 (en) Method of producing gaseous oxygen and a cryogenic plant in which said method can be performed
WO1997016505A1 (en) Propane recovery process
GB2275621A (en) Carbon dioxide recovery process
EP0068587B1 (en) Process to remove nitrogen from natural gas
US20040200353A1 (en) Removing natural gas liquids from a gaseous natural gas stream
US4952305A (en) Process and apparatus for the separation of hydrocarbons
EP0725256B1 (en) Process to remove nitrogen from natural gas
KR0141439B1 (ko) 주공기 증류탑으로부터 직접 크립톤/크세논 농축 스트림을 제조하는 방법
JP2011513503A (ja) 窒素除去塔リボイラーの構成
US5026408A (en) Methane recovery process for the separation of nitrogen and methane
US5205127A (en) Cryogenic process for producing ultra high purity nitrogen
JP2011517322A (ja) 液化天然ガスの脱窒素用熱サイホンリボイラー
JPS63166402A (ja) 炭化水素の分離方法
EP0895961B1 (en) Process and apparatus for separating a gaseous mixture
WO2005061978A1 (en) Process for producing nitrogen depleted liquified natural gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12