JP3233329B2 - Radiation temperature measuring device and radiation temperature measuring method - Google Patents

Radiation temperature measuring device and radiation temperature measuring method

Info

Publication number
JP3233329B2
JP3233329B2 JP29524794A JP29524794A JP3233329B2 JP 3233329 B2 JP3233329 B2 JP 3233329B2 JP 29524794 A JP29524794 A JP 29524794A JP 29524794 A JP29524794 A JP 29524794A JP 3233329 B2 JP3233329 B2 JP 3233329B2
Authority
JP
Japan
Prior art keywords
radiation
output
wavelengths
spectral
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29524794A
Other languages
Japanese (ja)
Other versions
JPH08152360A (en
Inventor
誠 甲斐
正孝 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP29524794A priority Critical patent/JP3233329B2/en
Publication of JPH08152360A publication Critical patent/JPH08152360A/en
Application granted granted Critical
Publication of JP3233329B2 publication Critical patent/JP3233329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は放射温度測定装置及び放
射温度測定方法に関する。さらに詳細には、被測定部位
から放射される分光放射出力を被測定部位とは異なる参
照部位からの分光放射放射出力と比較参照することによ
り、非接触で被測定部位の温度を測定する放射温度測定
装置及び放射温度測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation temperature measuring device and a radiation temperature measuring device.
The present invention relates to an irradiation temperature measuring method . More specifically, a radiation temperature for measuring the temperature of the measured part in a non-contact manner by comparing and referring to the spectral radiated output radiated from the measured part with the spectral radiated radiation output from a reference part different from the measured part. The present invention relates to a measuring device and a radiation temperature measuring method .

【0002】[0002]

【従来の技術】被測定部位から放射される熱放射のエネ
ルギーはその被測定部位の温度に依存する。物体が黒体
の場合には、プランクの放射則に従い分光放射輝度と温
度の関係式が成立する。黒体でない物体の温度は放射率
で補正して求める必要があるが、輝度温度を放射率で補
正する測定器としてパイロメータがある。しかし実際に
は放射率の決定が非常に困難である場合が多いという問
題があった。放射率の補正をしないで、熱放射を利用し
て温度を測定する方法の1つに2色式放射温度測定法が
ある。この方法は異なる2個の測定波長における放射輝
度比から温度を求める方法で、被測定部位が灰色体なら
ば波長にかかわらず放射率が一定なので、放射率に関係
なく真温度が得られる。また灰色体でない場合において
も被測定部位の温度、測定角度、表面状態がおよぼす2
波長の放射輝度比への影響はほとんどなく一定とみなす
ことができるというものである。
2. Description of the Related Art The energy of heat radiation radiated from a measurement site depends on the temperature of the measurement site. When the object is a black body, a relational expression between spectral radiance and temperature is established according to Planck's radiation law. Although the temperature of an object that is not a black body needs to be obtained by correcting it with emissivity, there is a pyrometer as a measuring device that corrects the luminance temperature with emissivity. In practice, however, there is a problem that it is often very difficult to determine the emissivity. One of the methods for measuring temperature using thermal radiation without correcting the emissivity is a two-color radiation temperature measurement method. In this method, the temperature is obtained from the radiance ratios at two different measurement wavelengths. If the part to be measured is a gray body, the emissivity is constant regardless of the wavelength, so that the true temperature can be obtained regardless of the emissivity. In addition, even when the body is not a gray body, the temperature, the measurement angle, and the surface condition of the measurement site affect
The effect of the wavelength on the radiance ratio is almost negligible and can be regarded as constant.

【0003】2色式放射温度測定法により温度を求める
に際し、いま被測定部位を灰色体と仮定し、ウィーンの
公式を適用する。また測定2波長をそれぞれλ1、λ2
し、この2波長につき、それぞれプランクの放射則に基
づく式の分光放射輝度による割合を分光放射輝度比Rと
したとき、温度Tは次の式(1)で得られる。ただし、
2 は放射の第2係数で、C2 =ch/k(ただし、c
は光速、hはプランク定数、kはボルツマン定数)であ
る。
[0003] In determining the temperature by the two-color radiation temperature measurement method, it is assumed that the measurement site is a gray body, and the Wien formula is applied. When the two measured wavelengths are λ 1 and λ 2 , respectively, and the ratio of the spectral radiance to the spectral radiance of the equation based on Planck's radiation law is R for each of the two wavelengths, the temperature T is expressed by the following equation (1) ). However,
C 2 is the second coefficient of radiation, C 2 = ch / k (where c
Is the speed of light, h is Planck's constant, and k is Boltzmann's constant.

【0004】[0004]

【数1】 (Equation 1)

【0005】[0005]

【発明が解決しようとする課題】一般に被測定部位から
の熱放射を検出して温度を求める方法は、被測定部位か
らの熱放射にその他の放射が重畳して検出されると、得
られる温度値に誤差が含まれてくる。従来の2色式放射
温度測定法は、単色放射の放射輝度から得られた輝度温
度を放射率で補正する方法(例えば光高温計で用いられ
ている方法)と比較して、放射率の設定誤差による温度
値への影響は低減される。
In general, a method of detecting temperature by detecting heat radiation from a measurement site is to obtain a temperature by detecting other radiation superimposed on heat radiation from the measurement site. Values contain errors. The conventional two-color radiation temperature measurement method sets the emissivity by comparing the luminance temperature obtained from the radiance of monochromatic radiation with the emissivity (for example, a method used in an optical pyrometer). The influence of the error on the temperature value is reduced.

【0006】しかしながら、被測定部位からの熱放射に
その他の放射が重畳している場合は、依然として得られ
る温度値に誤差が含まれるという問題が残る。例えば放
電ランプの電極温度を測定する場合、電極は発光管内に
存在するため非接触方式である熱放射を利用した温度測
定法を利用せざるをえない。そのため電極は放電による
放射の鞘の中に埋没してしまうことが多く、電極からの
熱放射のみを検出しようとしても放電による放射がどう
しても重畳して検出されてしまうという問題があった。
However, when other radiation is superimposed on the thermal radiation from the part to be measured, there remains a problem that the obtained temperature value still contains an error. For example, when measuring the electrode temperature of a discharge lamp, since the electrodes are present in the arc tube, a temperature measurement method using thermal radiation, which is a non-contact method, must be used. Therefore, the electrodes are often buried in the sheath of the radiation by the discharge, and there is a problem that the radiation by the discharge is inevitably detected in a superposed manner even if only the heat radiation from the electrode is to be detected.

【0007】本発明者等は、2色式放射温度測定法を適
用する場合、被測定部位からの熱放射にその他の放射が
重畳して検出器において検出される誤差をいかに低減す
るかを種々検討した。その結果、重畳する熱放射以外の
放射がどの様な分光放射特性を持っているのかを知るこ
とにより、生じる誤差の低減あるいは補正が可能となる
ことを見出し、本発明をするにいたった。
[0007] When the two-color radiation temperature measurement method is applied, the present inventors have variously studied how to reduce the error detected by the detector by superimposing other radiation on the heat radiation from the measurement site. investigated. As a result, the present inventors have found that it is possible to reduce or correct the generated error by knowing what kind of spectral radiation characteristic of the radiation other than the superimposed thermal radiation has, and have made the present invention.

【0008】本発明は、前記問題点に鑑み、被測定部位
から放射される熱放射に重畳して検出されるその他の放
射の分光放射特性に応じた2色式放射温度測定を行い、
その測定値に基づいて温度を算出することにより、正確
な温度を得ることができる放射温度測定装置及び放射温
度測定方法を提供することを目的とする。
In view of the above problems, the present invention performs two-color radiation temperature measurement in accordance with the spectral radiation characteristics of other radiation detected by being superimposed on heat radiation radiated from a measurement site,
A radiation temperature measuring device and a radiation temperature measuring device capable of obtaining an accurate temperature by calculating a temperature based on the measured value.
It is intended to provide a degree measurement method .

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明の第1番目の放射温度測定装置は、放電ラン
プの電極温度を測定する放射温度測定装置であって、
測定部位から放射される波長の分光放射出力を検出す
る第1の多波長検出手段と、前記被測定部位とは異なる
参照部位から放射される波長の分光放射出力を検出す
る第2の多波長検出手段と、前記第2の多波長検出手段
で検出した分光放射出力を入力し、この分光放射出力の
中で、その出力が存在しない2波長、または十分にその
出力が無視できる2波長、または補正を行う場合の定数
の設定し易い2波長のいずれかを選択する2波長選択手
段と、前記2波長選択手段によって選択された2波長の
内容に応じて補正内容を決定し、前記補正内容に基づい
て前記参照部位の分光放射出力を用いた前記被測定部位
の分光放射出力の補正を行い、温度値を算出する演算手
段とを備えていることを特徴とする。
In order to achieve the above object, a first radiation temperature measuring device according to the present invention comprises a discharge lamp.
A radiation temperature measuring device for measuring an electrode temperature of a probe, a first multi-wavelength detecting means for detecting a multi- wavelength spectral radiation output radiated from a measured portion, and a reference portion different from the measured portion. Second multi-wavelength detecting means for detecting the emitted multi- wavelength spectral radiation output, and the second multi-wavelength detecting means
Input the spectral radiation output detected in
In which the output is not present at two wavelengths, or
Two wavelengths with negligible output, or constants for correction
Wavelength selection method for selecting one of two wavelengths that are easy to set
And the two wavelengths selected by the two wavelength selecting means.
Determine the content of the correction according to the content and, based on the content of the correction,
The measured part using the spectral radiation output of the reference part
And a calculating means for calculating the temperature value by correcting the spectral radiation output .

【0010】次に本発明の第2番目の放射温度測定装置
は、放電ランプの電極温度を測定する放射温度測定装置
であって、被測定部位から放射される波長の分光放射
出力を検出する多波長検出手段と、該検出手段を移動さ
せるための駆動手段と、検出した部位の中から演算に使
用する前記被測定部位とは異なる参照部位を選択する参
照部位選択手段と、前記参照部位から放射される分光放
射出力をもとに、この分光放射出力の中で、その出力が
存在しない2波長、または十分にその出力が無視できる
2波長、または補正を行う場合の定数の設定し易い2波
長のいずれかを選択する2波長選択手段と、前記2波長
選択手段によって選択された2波長の内容に応じて補正
内容を決定し、前記補正内容に基づいて前記参照部位の
分光放射出力を用いた前記被測定部位の分光放射出力の
補正を行い、温度値を算出する演算手段とを備えている
ことを特徴とする。
Next, a second radiation temperature measuring device of the present invention is a radiation temperature measuring device for measuring an electrode temperature of a discharge lamp.
A is, of moving the multiple wavelength detection means for detecting the spectral radiation output of the multi-wavelength emitted from the measurement site, the detection means
Driving means for, using the calculation from the detected site
To select a reference site different from the measurement site to be used.
Illuminated site selecting means; and a spectral emission radiated from the reference site.
Of the spectral radiation output based on the radiation output
Two wavelengths that do not exist, or their output is negligible
Two wavelengths or two waves for which constants are easy to set when performing correction
Two wavelength selecting means for selecting one of the lengths, and the two wavelengths
Correction according to the contents of the two wavelengths selected by the selection means
Determine the content, and based on the correction content,
The spectral radiation output of the measurement site using the spectral radiation output.
A calculating means for performing a correction and calculating a temperature value.

【0011】前記構成においては、2波長選択手段によ
って選択された2波長が、その出力が存在しない2波長
である場合には、被測定部位の分光放射出力の補正を行
わないことが好ましい。
In the above arrangement, the two-wavelength selecting means
Are the two wavelengths whose output does not exist
If, the spectral radiation output of the measurement site is corrected.
It is preferable not to know.

【0012】次に本発明の第番目の放射温度測定方法
は、放電ランプの電極温度を測定する放射温度測定方法
であって、被測定部位から放射される多波長の分光放射
出力を検出するステップと、前記被測定部位とは異なる
参照部位から放射される多波長の分光放射出力を検出す
るステップと、前記参照部位から放射された分光放射出
力をもとに、この分光放射出力の中で、その出力が存在
しない2波長、または十分にその出力が無視できる2波
長、または補正を行う場合の定数の設定し易い2波長の
いずれかを選択するステップと、前記選択された2波長
の内容に応じて補正内容を決定し、前記補正内容に基づ
いて前記参照部位の分光放射出力を用いた前記被測定部
位の分光放射出力の補正を行い、温度値を算出するステ
ップを含むことを特徴とする。
Next, a first radiation temperature measuring method according to the present invention is a radiation temperature measuring method for measuring an electrode temperature of a discharge lamp.
And multi-wavelength spectral radiation radiated from the measurement site
The step of detecting the output is different from the measured part
Detects multi-wavelength spectral radiation output radiated from a reference site
The spectral radiation emitted from the reference site.
Based on the force, there is an output in this spectral radiation output
Not two wavelengths, or two waves whose output is negligible
Length or two wavelengths for which constants are easy to set when performing correction
Selecting any one of the two wavelengths
The correction content is determined according to the content of the correction, and based on the correction content,
The measured part using the spectral radiation output of the reference part
To correct the spectral radiation output of
It is characterized by including a tip.

【0013】次に本発明の第番目の放射温度測定方法
は、放電ランプの電極温度を測定する放射温度測定方法
であって、被測定部位から放射される波長の分光放射
出力を検出するステップと、検出した部位の中から演算
に使用する前記被測定部位とは異なる参照部位を選択す
るステップと、前記参照部位から放射される分光放射出
力をもとに、この分光放射出力の中で、その出力が存在
しない2波長、または十分にその出力が無視できる2波
長、または補正を行う場合の定数の設定し易い2波長の
いずれかを選択するステップと、前記選択された2波長
の内容に応じて補正内容を決定し、前記補正内容に基づ
いて前記参照部位の分光放射出力を用いた前記被測定部
位の分光放射出力の補正を行い、温度値を算出するステ
ップを含むことを特徴とする。記方法においては、
択された2波長が、その出力が存在しない2波長である
場合には、被測定部位の分光放射出力の補正を行わない
ことが好ましい。
[0013] The second radiation temperature measuring method of the present invention then, the radiation temperature measuring method for measuring the electrode temperature of the discharge lamp
A is a step of detecting the spectral radiation output of the multi-wavelength emitted from the measurement site, calculating from the detected site
Select a reference site different from the measurement site to be used for
The spectral radiation emitted from the reference site.
Based on the force, there is an output in this spectral radiation output
Not two wavelengths, or two waves whose output is negligible
Length or two wavelengths for which constants are easy to set when performing correction
Selecting any one of the two wavelengths
The correction content is determined according to the content of the correction, and based on the correction content,
The measured part using the spectral radiation output of the reference part
The method further comprises the step of correcting the spectral radiation output of each position and calculating a temperature value. In the previous SL method, select
The two selected wavelengths are the two wavelengths whose output does not exist
In this case, it is preferable not to correct the spectral radiation output of the measurement site .

【0014】[0014]

【作用】第1番目の放射温度測定装置及び放射温度測定
方法の前記構成によれば、まず第1の多波長検出手段を
用いて被測定部位から放射される熱放射と、同時に重畳
される熱放射以外の放射の合成としての分光放射出力を
特定の2波長に限定せず多波長で検出し、次に第2の多
波長検出手段を用いて被測定部位とは異なる参照部位か
ら放射される被測定部位と同多波長の分光放射出力を検
出し、2波長選択手段を用いて参照部位から放射された
分光放射出力をもとに温度値を演算するのに適切な、す
なわち参照部位から放射される、熱放射の混在してこな
い分光放射出力の中でその出力が存在しない2波長、そ
れが存在しなければ十分にその出力が無視できる2波
長、さらにそれも存在しなければ差し引く場合の定数の
設定し易い2波長を選択し、そして演算手段に選択した
特定2波長の、被測定部位と参照部位からの出力をそれ
ぞれ入力し、被測定部位からの出力より参照部位の出力
を差し引くかあるいは適切な定数を乗じて差し引くこと
により、被測定部位から放射される正味の熱放射による
2波長の分光放射出力比を得て、2色式放射温度測定法
に基づく演算処理により真温度を得ることができる。
2番目の放射温度測定放置及び放射温度測定方法の前記
構成によれば、まず多波長検出手段を用いて被測定部位
から放射される熱放射と、同時に重畳される熱放射以外
の放射の合成としての分光放射出力を特定の2波長に限
定せず多波長で検出し、次に駆動手段を用いて検出手段
を被測定部位とは異なる少なくとも2部位以上に移動さ
せ、それぞれの部位において被測定部位と同多波長の分
光放射出力を検出し、参照部位選択手段を用いて検出し
た部位の中から温度値を演算するのに適切な、すなわち
熱放射の混在がないあるいはそれがなければ熱放射以外
の放射出力と被測定部位からの熱放射以外の放射出力と
の相関が明らかな分光放射出力が得られる、被測定部位
とは異なる参照部位を選択し、そしてその選択した参照
部位における分光放射出力から温度値を演算するのに適
切な、すなわち参照部位から放射される、熱放射の混在
してこない分光放射出力の中でその出力が存在しない2
波長、それが存在しなければ十分にその出力が無視でき
る2波長、さらにそれも存在しなければ差し引く場合の
定数の設定し易い2波長を選択し、そして演算手段に選
択した特定2波長の、被測定部位と参照部位からの出力
をそれぞれ入力し、被測定部位からの出力より参照部位
の出力を差し引くかあるいは適切な定数を乗じて差し引
くことにより、被測定部位から放射される正味の熱放射
による2波長の分光放射出力比を得て、2色式放射温度
測定法に基づく演算処理により真温度を得ることができ
る。
SUMMARY OF] According to the configuration of the first radiation temperature measuring device and the radiation temperature measuring method, the thermal radiation emitted from the measurement site using a first first multiple wavelength detector, heat to be superimposed simultaneously Spectral radiation output as a combination of radiation other than radiation is detected at multiple wavelengths without being limited to two specific wavelengths, and is then radiated from a reference portion different from the measured portion using a second multi-wavelength detecting means. Spectral radiation output of the same multi-wavelength as the part to be measured is detected, and it is suitable for calculating a temperature value based on the spectral radiation output radiated from the reference part using the two-wavelength selection means, that is, radiation from the reference part. Two wavelengths whose output does not exist in the spectral radiation output where thermal radiation does not coexist, two wavelengths whose output is sufficiently negligible if they do not exist, and subtracted if they do not exist Two wavelengths for which constants are easy to set Then, the outputs from the measured part and the reference part of the selected two wavelengths are input to the calculating means, and the output of the reference part is subtracted from the output from the measured part or subtracted by multiplying by an appropriate constant. As a result, it is possible to obtain a two-wavelength spectral radiation output ratio due to the net heat radiation radiated from the measurement site, and obtain a true temperature by an arithmetic process based on a two-color radiation temperature measurement method. No.
According to the second configuration of the radiation temperature measurement standing and the radiation temperature measurement method, first, the multi-wavelength detection means is used to combine the heat radiation radiated from the measurement site with the radiation other than the heat radiation simultaneously superimposed. Is detected at multiple wavelengths without being limited to two specific wavelengths, and then the detecting means is moved to at least two or more parts different from the part to be measured using the driving means, and the part to be measured is It is suitable for detecting the spectral radiation output of the same multiple wavelengths and calculating the temperature value from the part detected using the reference part selection means, that is, there is no mixed heat radiation or if there is no heat radiation other than heat radiation Select a reference site that is different from the measured site, and obtain a spectral output that clearly shows the correlation between the radiated output of the measured site and the radiated output other than the heat radiation from the measured site. Suitable for calculating the temperature value from the injection force, i.e. emitted from the reference site, and its output in the spectral radiation output does not come mix of thermal radiation is not present 2
Wavelength, two wavelengths whose output can be neglected sufficiently if they do not exist, and two wavelengths whose constants are easily set when subtracting if they do not exist are selected. By inputting the output from the measured part and the output from the reference part, and subtracting the output of the reference part from the output from the measured part or by multiplying by an appropriate constant, the net heat radiation radiated from the measured part , And a true temperature can be obtained by arithmetic processing based on a two-color radiation temperature measurement method.

【0015】第2発明の放射温度測定装置の前記構成に
よれば、まず検出手段を用いて被測定部位から放射され
る熱放射と同時に重畳される熱放射以外の放射の合成と
しての特定2波長の分光放射出力を検出し、次に駆動手
段を用いて検出手段を被測定部位からの熱放射の混在し
てこない熱放射以外の放射のみを検出できる参照部位に
移動させ、参照部位からの特定2波長の分光放射出力を
検出し、演算手段に被測定部位と参照部位からの出力を
それぞれ入力し、被測定部位からの出力より参照部位の
出力を差し引くかあるいは適切な定数を乗じて差し引く
ことにより、被測定部位から放射される正味の熱放射に
よる2波長の分光放射出力比を得て、2色式放射温度測
定法に基づく演算処理により真温度を得ることができ
る。
According to the configuration of the radiation temperature measuring device of the second invention, first, the specific two wavelengths as a combination of the radiation other than the heat radiation superimposed simultaneously with the heat radiation radiated from the measurement site by using the detecting means. Then, using the driving means, the detecting means is moved to a reference part capable of detecting only the radiation other than the heat radiation in which the heat radiation from the part to be measured is not mixed, and specified from the reference part. Detect the two-wavelength spectral radiation output, input the output from the measured part and the output from the reference part to the calculating means, and subtract the output of the reference part from the output from the measured part, or subtract it by multiplying by an appropriate constant. As a result, the spectral radiation output ratio of two wavelengths due to the net heat radiation radiated from the measurement site can be obtained, and the true temperature can be obtained by the arithmetic processing based on the two-color radiation temperature measurement method.

【0016】第3発明の放射温度測定装置の前記構成に
よれば、まず第1の多波長検出手段を用いて被測定部位
から放射される熱放射と、同時に重畳される熱放射以外
の放射の合成としての分光放射出力を特定の2波長に限
定せず多波長で検出し、次に第2の多波長検出手段を用
いて被測定部位とは異なる参照部位から放射される被測
定部位と同多波長の分光放射出力を検出し、2波長選択
手段を用いて参照部位から放射された分光放射出力をも
とに温度値を演算するのに適切な、すなわち参照部位か
ら放射される、熱放射の混在してこない分光放射出力の
中でその出力が存在しない2波長、それが存在しなけれ
ば十分にその出力が無視できる2波長、さらにそれも存
在しなければ差し引く場合の定数の設定し易い2波長を
選択し、そして演算手段に選択した特定2波長の、被測
定部位と参照部位からの出力をそれぞれ入力し、被測定
部位からの出力より参照部位の出力を差し引くかあるい
は適切な定数を乗じて差し引くことにより、被測定部位
から放射される正味の熱放射による2波長の分光放射出
力比を得て、2色式放射温度測定法に基づく演算処理に
より真温度を得ることができる。
According to the above configuration of the radiation temperature measuring device of the third invention, first, the first multi-wavelength detecting means is used to measure the heat radiation radiated from the measurement site and the radiation other than the heat radiation superimposed simultaneously. Spectral radiation output as synthesis is detected at multiple wavelengths without being limited to two specific wavelengths, and then is measured using a second multi-wavelength detecting means to be the same as the measured part radiated from a reference part different from the measured part. Thermal radiation that is suitable for detecting multi-wavelength spectral radiation output and calculating a temperature value based on the spectral radiation output emitted from the reference site using the two-wavelength selection means, that is, emitted from the reference site Among the spectral radiation outputs that do not coexist, two wavelengths whose output does not exist, two wavelengths whose output can be neglected if they do not exist, and constants in the case of subtraction if they do not exist are easy to set Select two wavelengths and play By inputting the output of the measured part and the reference part of the specific two wavelengths selected as the means, and subtracting the output of the reference part from the output from the measured part or by multiplying by an appropriate constant, the measured A spectral radiation output ratio of two wavelengths due to the net thermal radiation radiated from the site is obtained, and a true temperature can be obtained by arithmetic processing based on a two-color radiation temperature measurement method.

【0017】第4発明の放射温度測定装置の前記構成に
よれば、まず多波長検出手段を用いて被測定部位から放
射される熱放射と、同時に重畳される熱放射以外の放射
の合成としての分光放射出力を特定の2波長に限定せず
多波長で検出し、次に駆動手段を用いて検出手段を被測
定部位とは異なる少なくとも2部位以上に移動させ、そ
れぞれの部位において被測定部位と同多波長の分光放射
出力を検出し、参照部位選択手段を用いて検出した部位
の中から温度値を演算するのに適切な、すなわち熱放射
の混在がないあるいはそれがなければ熱放射以外の放射
出力と被測定部位からの熱放射以外の放射出力との相関
が明らかな分光放射出力が得られる、被測定部位とは異
なる参照部位を選択し、そしてその選択した参照部位に
おける分光放射出力から温度値を演算するのに適切な、
すなわち参照部位から放射される、熱放射の混在してこ
ない分光放射出力の中でその出力が存在しない2波長、
それが存在しなければ十分にその出力が無視できる2波
長、さらにそれも存在しなければ差し引く場合の定数の
設定し易い2波長を選択し、そして演算手段に選択した
特定2波長の、被測定部位と参照部位からの出力をそれ
ぞれ入力し、被測定部位からの出力より参照部位の出力
を差し引くかあるいは適切な定数を乗じて差し引くこと
により、被測定部位から放射される正味の熱放射による
2波長の分光放射出力比を得て、2色式放射温度測定法
に基づく演算処理により真温度を得ることができる。
According to the above configuration of the radiation temperature measuring device of the fourth invention, first, the multi-wavelength detecting means is used to combine the heat radiation radiated from the measurement site with the radiation other than the heat radiation superimposed simultaneously. The spectral radiation output is detected at multiple wavelengths without being limited to two specific wavelengths, and then the detection means is moved to at least two or more different parts from the part to be measured by using the driving means. It is appropriate to detect the same multi-wavelength spectral radiation output and to calculate the temperature value from the parts detected using the reference part selecting means, that is, there is no mixture of heat radiation or if there is no heat radiation other than heat radiation Select a reference site that is different from the measured site, and obtain a spectral emission output at the selected reference site that provides a spectral emission output that clearly shows the correlation between the radiated output and the radiated output other than heat radiation from the measured site. To compute the temperature values from the appropriate,
That is, two wavelengths in which the output does not exist in the spectral radiation output which is not mixed with the heat radiation radiated from the reference portion,
If it does not exist, two wavelengths whose output can be neglected sufficiently, and if it does not exist, two wavelengths whose constants to be subtracted are easy to set are selected, and the measured two specific wavelengths selected by the arithmetic means are measured. By inputting the output from the part and the output from the reference part, and subtracting the output of the reference part from the output from the part to be measured or by multiplying the output by an appropriate constant, 2 by the net heat radiation radiated from the part to be measured The true temperature can be obtained by calculating the spectral radiation output ratio of the wavelength and performing arithmetic processing based on the two-color radiation temperature measurement method.

【0018】第5発明の放射温度測定装置の前記好まし
い例によれば、まず多部位多波長同時検出手段Eを用い
て被測定部位を含む少なくとも2部位から放射される、
少なくとも2波長の分光放射出力を同時に検出し、次に
参照部位選択手段を用いて検出した部位の中から温度値
を演算するのに適切な、すなわち熱放射の混在がないあ
るいはそれがなければ熱放射以外の放射出力と被測定部
位からの熱放射以外の放射出力との相関が明らかな分光
放射出力が得られる、被測定部位とは異なる参照部位を
選択し、そしてその選択した参照部位における分光放射
出力から温度値を演算するのに適切な、すなわち参照部
位から放射される、熱放射の混在してこない分光放射出
力の中でその出力が存在しない2波長、それが存在しな
ければ十分にその出力が無視できる2波長、さらにそれ
も存在しなければ差し引く場合の定数の設定し易い2波
長を選択し、そして演算手段に選択した特定2波長の、
被測定部位と参照部位からの出力をそれぞれ入力し、被
測定部位からの出力より参照部位の出力を差し引くかあ
るいは適切な定数を乗じて差し引くことにより、被測定
部位から放射される正味の熱放射による2波長の分光放
射出力比を得て、2色式放射温度測定法に基づく演算処
理により真温度を得ることができる。
According to the preferred embodiment of the radiation temperature measuring apparatus of the fifth invention, the radiation is first emitted from at least two parts including the part to be measured by using the multi-part, multi-wavelength simultaneous detection means E.
Suitable for simultaneously detecting at least two wavelengths of spectral radiation output and then calculating a temperature value from the detected parts using the reference part selection means, that is, if there is no mixed heat radiation or there is no heat radiation, Select a reference site different from the measured site, and obtain a spectral output that clearly shows the correlation between the radiated output other than radiation and the radiated output other than heat radiation from the measured site, and then spectroscopy at the selected reference site Two wavelengths that are appropriate for calculating the temperature value from the radiation output, that is, two wavelengths where the output does not exist in the spectral radiation output that is not mixed with the heat radiation emitted from the reference part, and that it is not enough Two wavelengths whose outputs are negligible, and two wavelengths whose constants are easily set when subtracting if there is no such output are selected.
By inputting the output from the measured part and the output from the reference part, and subtracting the output of the reference part from the output from the measured part or by multiplying by an appropriate constant, the net heat radiation radiated from the measured part , And a true temperature can be obtained by arithmetic processing based on a two-color radiation temperature measurement method.

【0019】[0019]

【実施例】本発明の放射温度測定装置の実施例について
図面を参照しながら説明する。 (実施例1)図1は本発明の放射温度測定装置の1実施
例を説明する図で、放電ランプの電極温度測定に適用し
た場合を説明する図である。垂直方向から見た図1
(a)に示すように、放電ランプ点灯中は電極9は放電
アーク10による放射の鞘(雰囲気)の中に埋没してい
る。図1において、1は被測定部位、2は参照部位、6
は検出手段A、7は検出手段B、8は演算手段を示し、
3は熱放射、4は熱放射3に重畳して検出される熱放射
以外の放射、5は熱放射の混在してこない熱放射以外の
放射を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the radiation temperature measuring apparatus according to the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 is a view for explaining an embodiment of a radiation temperature measuring apparatus according to the present invention, and is a view for explaining a case where the present invention is applied to measurement of an electrode temperature of a discharge lamp. Figure 1 seen from the vertical direction
As shown in (a), the electrode 9 is buried in the sheath (atmosphere) of radiation by the discharge arc 10 during the operation of the discharge lamp. In FIG. 1, reference numeral 1 denotes a measured portion, 2 denotes a reference portion, 6
Denotes detection means A, 7 denotes detection means B, 8 denotes arithmetic means,
Reference numeral 3 denotes heat radiation, 4 denotes radiation other than heat radiation detected to be superimposed on the heat radiation 3, and 5 denotes radiation other than heat radiation in which heat radiation is not mixed.

【0020】検出手段A6は、被測定部位1(図1の電
極先端を横方向からみた中央部)から放射される放射を
検出する装置で、測定光学系と、アパーチャと、分光
器、帯域フィルター等からなる分光手段と、この分光放
射出力を受光する光電検出器(シリコンホトダイオー
ド、光電子増倍管など)とからなっている。
The detecting means A6 is a device for detecting the radiation radiated from the portion to be measured 1 (the central portion of the electrode tip in FIG. 1 as viewed from the lateral direction), and comprises a measuring optical system, an aperture, a spectroscope, and a bandpass filter. And a photodetector (silicon photodiode, photomultiplier, etc.) for receiving the spectral emission output.

【0021】検出手段A6で被測定部位1から放射され
る放射を検出しようとすると、実際上、他の部位からの
放射が重畳されて検出されてしまう。本実施例の検出手
段A6は、測定光学系にレンズを用い、被測定部位1か
らの放射を集光して結像させ、アパーチャを介して83
5.4nmと945.0nmの熱放射を検出手段に入射
させるようにしている。また、測定光学系はレンズを備
えたものとしてもアパーチャを備えたものとしてもよ
い。アパーチャとしては、測定部位を選択して熱放射を
通過させる方法による装置か、あるいは同径のアパーチ
ャを複数用いて被測定部位からの放射を平行光とし検出
手段に入射させる方法による装置等でもよい。
If the detection means A6 tries to detect the radiation radiated from the measured part 1, radiation from other parts is actually superimposed and detected. The detection means A6 of the present embodiment uses a lens in the measurement optical system, collects radiation from the measured portion 1 to form an image, and forms an image through the aperture.
Thermal radiation of 5.4 nm and 945.0 nm is incident on the detecting means. Further, the measuring optical system may have a lens or an aperture. As the aperture, an apparatus based on a method of selecting a measurement site and allowing thermal radiation to pass, or an apparatus based on a method of using a plurality of apertures having the same diameter and converting the radiation from the measured site into parallel light and incident on the detection unit may be used. .

【0022】検出手段B7は、被測定部位1とは異なる
部位(図1の電極を外した真横部)である参照部位2の
熱放射以外の放射5を検出する装置である。この検出手
段B7は、検出手段A6と同様に、測定光学系と、アパ
ーチャと、分光器、帯域フィルター等からなる分光手段
と、この分光手段を経た分光放射出力を受光する光電検
出器(シリコンホトダイオード、光電子増倍管など)と
からなっている。この検出手段A7の装置構成は検出手
段A6と同じにしている。
The detecting means B7 is an apparatus for detecting the radiation 5 other than the heat radiation of the reference part 2, which is a part different from the part 1 to be measured (right next to the electrode in FIG. 1). The detecting means B7, like the detecting means A6, includes a measuring optical system, an aperture, a spectroscopic means including a spectroscope, a band-pass filter, and the like, and a photoelectric detector (silicon photodiode) which receives a spectral radiation output through the spectroscopic means. , Photomultiplier tubes, etc.). The device configuration of the detecting means A7 is the same as that of the detecting means A6.

【0023】演算手段8は、熱放射3と熱放射以外の放
射5から温度を演算して求める装置である。検出手段A
6で被測定部位から放射される熱放射3と重畳される熱
放射以外の放射4が合成された分光放射出力を検出し、
検出手段B7で熱放射の混在してこない熱放射以外の放
射5の分光放射出力を検出し、これら2つの出力を入力
し、熱放射3を算出した後温度を演算して求める。
The calculating means 8 is a device for calculating the temperature from the heat radiation 3 and the radiation 5 other than the heat radiation. Detection means A
6, detecting a spectral radiation output in which the radiation 4 other than the thermal radiation superimposed on the thermal radiation 3 radiated from the measurement site is synthesized;
The detection means B7 detects the spectral radiation output of the radiation 5 other than the thermal radiation in which the thermal radiation does not coexist, inputs these two outputs, calculates the thermal radiation 3, and calculates the temperature.

【0024】以下に、演算手段8で被測定部位から放射
される正味の熱放射による温度を求める方法について説
明する。先ず、被測定部位から放射される熱放射3と重
畳される熱放射以外の放射4が合成された分光放射出力
から熱放射の混在してこない熱放射以外の放射5の分光
放射出力を差し引くか、あるいは適切な定数を乗じて差
し引くことにより、被測定部位から放射される正味の熱
放射による2波長の分光放射出力比を得る。
Hereinafter, a description will be given of a method of calculating the temperature due to the net heat radiation radiated from the measurement site by the calculating means 8. First, the spectral radiation output of the radiation 5 other than the heat radiation in which no heat radiation is mixed is subtracted from the spectral radiation output in which the radiation 4 other than the thermal radiation superimposed on the thermal radiation 3 radiated from the measured portion is superimposed. Alternatively, by multiplying by an appropriate constant and subtracting the result, a spectral radiation output ratio of two wavelengths due to the net heat radiation radiated from the measurement site is obtained.

【0025】(a)検出手段B7から、測定を行なった
前記835.4nmおよび945.0nmの2波長出力
が熱放射以外の放射が検出されない場合:この場合は重
畳される熱放射以外の放射4からも前記2波長の出力は
検出されないと考えられる。なぜなら放電ランプの場
合、被測定部位1と参照部位2との距離に比較して周囲
の鞘状の放電アーク10の半径は十分大きく、被測定部
位1と参照部位2との距離程度での発光粒子密度の分布
勾配は無視できるためである。したがって参照部位2の
分光放射出力中に測定2波長の出力成分が存在しないこ
とを確認することにより、検出手段A6で検出された8
35.4nmおよび945.0nmの測定2波長におけ
る出力は、被測定部位から放射される熱放射3成分のみ
と確認される。これより測定した2波長であるλ1=8
35.4nm、λ2=945.0nmおよびλ1 、λ2
それぞれの分光放射出力を演算手段8に入力し、測定2
波長放射出力比Rを求め、さらに式(1)により演算処
理を行い、真温度を得る。
(A) When no radiation other than heat radiation is detected from the detection means B7 at the two-wavelength output of 835.4 nm and 945.0 nm measured in this case: In this case, radiation 4 other than heat radiation superimposed is used. Therefore, it is considered that the output of the two wavelengths is not detected. This is because, in the case of a discharge lamp, the radius of the surrounding sheath-shaped discharge arc 10 is sufficiently large compared to the distance between the measurement site 1 and the reference site 2, and light emission occurs at about the distance between the measurement site 1 and the reference site 2. This is because the distribution gradient of the particle density can be ignored. Therefore, by confirming that there is no output component of the two measured wavelengths in the spectral radiation output of the reference part 2, the detection means A6 detects the output component.
The outputs at the two measurement wavelengths of 35.4 nm and 945.0 nm are confirmed to be only three components of the heat radiation radiated from the measurement site. Λ 1 = 8, two wavelengths measured from this
35.4 nm, λ 2 = 945.0 nm and λ 1 , λ 2
The respective spectral radiation outputs are input to the calculating means 8 and the measurement 2
The wavelength radiation output ratio R is obtained, and further, the arithmetic processing is performed by the equation (1) to obtain the true temperature.

【0026】(b)検出手段B7から、測定を行なった
前記835.4nmおよび945.0nmの2波長出力
が、一方測定を行なった2波長の出力が熱放射の混在し
ていない熱放射以外の放射5が検出される場合:この場
合は重畳される熱放射以外の放射4からも前記2波長の
出力は検出されると考えられる。従って検出手段A6で
検出された分光放射出力の内、重畳される熱放射以外の
放射がどの程度なのかを明かにし、後の演算のために差
し引く必要がある。
(B) From the detecting means B7, the measured two-wavelength outputs of 835.4 nm and 945.0 nm are output. On the other hand, the measured two-wavelength outputs are other than heat radiation in which heat radiation is not mixed. When radiation 5 is detected: In this case, it is considered that the output of the two wavelengths is detected from the radiation 4 other than the superimposed thermal radiation. Therefore, it is necessary to clarify the amount of radiation other than the superimposed thermal radiation out of the spectral radiation output detected by the detection means A6, and to subtract the radiation for the subsequent calculation.

【0027】この熱放射以外の放射を差し引くための考
え方を図2に示す。検出手段A6で検出される重畳され
る熱放射以外の放射4は電極から測定方向へのアーク放
射の積分量である。検出手段B7で検出される分光放射
出力は、測定方向上における全てのアークの放射の積分
量である。一般に断面方向に存在する発光粒子の密度分
布が電極を中心とした同心円上に分布し、被測定部位1
と参照部位2との距離が放電アーク10の半径に対して
十分短いので、検出手段A6で検出される分光放射出力
から検出手段B7で検出される分光放射出力の1/2を
差し引くことで、被測定部位から放射される正味の熱放
射が分離され、よって被測定部位から放射される正味の
熱放射による2波長の分光放射出力比を得て、前記熱放
射の混在していない熱放射以外の放射5がない場合と同
様に、2色式放射温度測定法に基づく演算処理により真
温度を得ることができる。
FIG. 2 shows a concept for subtracting radiation other than heat radiation. The radiation 4 other than the superimposed heat radiation detected by the detection means A6 is an integral amount of arc radiation from the electrode in the measurement direction. The spectral radiation output detected by the detecting means B7 is an integral amount of radiation of all arcs in the measurement direction. Generally, the density distribution of the luminescent particles existing in the cross-sectional direction is distributed on a concentric circle centered on the electrode, and
Since the distance between the detection part A and the reference part 2 is sufficiently short with respect to the radius of the discharge arc 10, by subtracting の of the spectral radiation output detected by the detecting means B7 from the spectral radiation output detected by the detecting means A6, The net heat radiation radiated from the measurement site is separated, and thus the two-wavelength spectral radiation output ratio due to the net heat radiation radiated from the measurement site is obtained. In the same manner as in the case where there is no radiation 5, the true temperature can be obtained by the arithmetic processing based on the two-color radiation temperature measurement method.

【0028】なお本実施例1においては検出手段を2台
用いたが、図3に示すように、検出手段A6に図示しな
い駆動手段Aを組み合わせることにより、1台の検出手
段で本実施例の効果を得ることができる。
In the first embodiment, two detecting means are used. However, as shown in FIG. 3, by combining a detecting means A6 with a driving means A (not shown), one detecting means of the present embodiment is used. The effect can be obtained.

【0029】(実施例2)図4は検出手段として多波長
検出手段を用いる機器構成の例を示す図である。本実施
例では実施例1と異なり検出手段A6、検出手段B7の
代わりに、それぞれマルチチャンネル分光器を用いる。
このマルチチャンネル分光器の一方の多波長検出手段C
13は、被測定部位から放射される熱放射3と重畳され
る熱放射以外の放射4が合成された分光放射出力を検出
し、多波長検出手段D14は、熱放射の混在してこない
熱放射以外の放射5の分光放射出力を検出するようにし
ている。
(Embodiment 2) FIG. 4 is a diagram showing an example of a device configuration using a multi-wavelength detecting means as a detecting means. In the present embodiment, unlike the first embodiment, a multi-channel spectrometer is used instead of the detection means A6 and the detection means B7.
One multi-wavelength detecting means C of this multi-channel spectrometer
13 detects a spectral radiation output in which the radiation 4 other than the thermal radiation 3 superimposed on the thermal radiation 3 radiated from the part to be measured is synthesized, and the multi-wavelength detecting means D14 detects the thermal radiation which is not mixed with the thermal radiation. The spectral radiation output of the other radiation 5 is detected.

【0030】多波長検出手段C13および多波長検出手
段D14は、測定光学系と、アパーチャと、分光器と、
フォトダイオードアレイより構成し、各波長成分に分光
された複数の単色放射をアレイ状の検出器で必要な波長
域に関して同時に検出するものである。
The multi-wavelength detecting means C13 and the multi-wavelength detecting means D14 include a measuring optical system, an aperture, a spectroscope,
It is constituted by a photodiode array, and a plurality of monochromatic radiations separated into each wavelength component are simultaneously detected in a required wavelength region by an array-like detector.

【0031】本実施例の場合マルチチャンネル分光器を
用いるため、後の演算に使用する2波長を選択しなけれ
ばならない。そのためにこれら多波長検出手段C13、
D14の分光放射出力を波長選択手段12に入力し、演
算に適切な2波長を選択する。2波長の選択の基準は、
前記第3発明の作用の項で述べた通り、温度値を演算す
るのに適切な2波長である。具体的には高圧水銀ランプ
の場合には、655.0nmと750.0nmの2波長
が適切である。
In this embodiment, since a multi-channel spectroscope is used, two wavelengths to be used in the subsequent calculation must be selected. Therefore, these multi-wavelength detecting means C13,
The spectral radiation output of D14 is input to the wavelength selecting means 12, and two wavelengths suitable for the calculation are selected. The criteria for selecting two wavelengths are:
As described in the operation of the third aspect, the two wavelengths are suitable for calculating the temperature value. Specifically, in the case of a high-pressure mercury lamp, two wavelengths of 655.0 nm and 750.0 nm are appropriate.

【0032】適切な2波長、例えば、655.0nmと
750.0nmを選択したのち、この2波長に対応した
各部位の分光放射出力を演算手段8に入力する。次に、
実施例1の場合と同様に、先ず被測定部位から放射され
る熱放射3と重畳される熱放射以外の放射4が合成され
た分光放射出力と熱放射の混在してこない熱放射以外の
放射5の分光放射出力との比較する。続いて、この比較
に基づいて、必要な判断あるいは補正を経て、演算処理
後真温度を得る。
After selecting appropriate two wavelengths, for example, 655.0 nm and 750.0 nm, the spectral radiation output of each part corresponding to the two wavelengths is input to the calculating means 8. next,
As in the case of the first embodiment, first, the radiation 4 other than the thermal radiation superimposed on the thermal radiation 3 radiated from the measurement site is combined with the spectral radiation output and the radiation other than the heat radiation in which the heat radiation is not mixed. 5 with the spectral emission output. Subsequently, based on this comparison, the necessary true or correct temperature is obtained through necessary judgment or correction.

【0033】(実施例3)図5は参照部位を複数設定
し、その中から最も適切な部位を選択することのできる
機器構成とした例を示す図である。本実施例では実施例
2と異なり多波長検出手段C13は1台用い、この多波
長検出手段C13を出力検出毎に被測定部位に接続する
ように駆動させる駆動手段B15と、参照部位を選択す
る参照部位選択手段16とを備えている。
(Embodiment 3) FIG. 5 is a diagram showing an example in which a plurality of reference portions are set, and an apparatus configuration capable of selecting the most appropriate portion from the plurality of reference portions. In the present embodiment, unlike the second embodiment, one multi-wavelength detecting means C13 is used, and a driving means B15 for driving the multi-wavelength detecting means C13 so as to be connected to a portion to be measured for each output detection, and a reference portion are selected. Reference site selection means 16 is provided.

【0034】参照部位選択手段16は、演算に適切な2
波長を選択する装置である。前記第4発明の作用の項で
述べた通り、温度値を演算するのに適切な2波長を選択
する。高圧水銀ランプの場合には、例えば、655.0
nm、750.0nmである。
The reference part selecting means 16 provides a suitable
This is a device for selecting a wavelength. As described in the section of the operation of the fourth invention, two wavelengths suitable for calculating the temperature value are selected. In the case of a high-pressure mercury lamp, for example, 655.0
nm, 750.0 nm.

【0035】そして、全ての部位の分光放射出力が得ら
れたのち参照部位選択手段16により参照部位として適
切な部位を選択する。参照部位を決定したのちは、演算
に使用する2波長を選択し、次いで実施例2の場合と同
様に演算を行い、真温度を求める。 (実施例4)図6にさらに被測定部位1を含む3部位以
上を対象に、同時に検出できる機器構成例を示す図であ
る。本実施例では多部位多波長同時検出手段17を備え
ている。この多部位多波長同時検出手段17は、例えば
マルチチャンネル分光器を測定部位の数だけ用意し時間
同期測定を行うようにしている。各部位の分光放射出力
検出後、真温度が得られるまでの流れは実施例3と同様
である。
Then, after the spectral radiation outputs of all the parts are obtained, the reference part selecting means 16 selects an appropriate part as the reference part. After determining the reference portion, two wavelengths to be used for the calculation are selected, and then the calculation is performed in the same manner as in the second embodiment to obtain the true temperature. (Embodiment 4) FIG. 6 is a diagram showing an example of a device configuration capable of simultaneously detecting three or more sites including the site 1 to be measured. In this embodiment, a multi-site / multi-wavelength simultaneous detection unit 17 is provided. The multi-site multi-wavelength simultaneous detecting means 17 prepares, for example, multi-channel spectrometers by the number of measurement sites and performs time-synchronous measurement. The flow from the detection of the spectral radiation output of each part until the true temperature is obtained is the same as in the third embodiment.

【0036】なお前記多部位多波長同時検出手段17は
必ずしも測定部位の数だけ備えなくてもよい。
The multi-site / multi-wavelength simultaneous detecting means 17 does not necessarily have to be provided by the number of measurement sites.

【0037】[0037]

【発明の効果】以上説明したように本発明では、上述の
ように構成し、被測定部位から放射される熱放射に熱放
射以外の放射を、温度測定毎に参照部位からの熱放射の
混在してこない熱放射以外の放射から見積り差し引くこ
とにより、正味の熱放射が分離され、正味の熱放射によ
る2波長の分光放射出力比を得ることができ、2色式放
射温度測定法に基づく演算処理により真温度を得られ
る。
As described above, according to the present invention, the heat radiation radiated from the measured portion is mixed with the heat radiation radiated from the reference portion for each temperature measurement. By subtracting an estimate from radiation other than heat radiation that has not been obtained, the net heat radiation is separated, and a two-wavelength spectral radiation output ratio due to the net heat radiation can be obtained. Calculation based on the two-color radiation temperature measurement method True temperature can be obtained by processing.

【0038】また検出手段としてマルチチャンネル分光
器を用い、波長選択手段を組み合わせることにより、重
畳される熱放射以外の放射の分光放射特性に応じた2波
長を測定毎に選択することができ、従来の2色式放射温
度測定装置のように固定2波長で常に測定する方式に比
較して、重畳される熱放射以外の放射による温度値への
ずれへの影響をより少なくすることが可能となる。
Further, by using a multi-channel spectroscope as the detecting means and combining the wavelength selecting means, two wavelengths corresponding to the spectral radiation characteristics of the radiation other than the superposed heat radiation can be selected for each measurement. It is possible to reduce the influence of the radiation other than the superimposed heat radiation on the temperature value deviation as compared with the method of always measuring at two fixed wavelengths as in the two-color radiation temperature measurement device described above. .

【0039】また参照部位を複数設定し、その中から最
も適切な部位を選択することのできる部位選択手段を組
み合わせれば、被測定部位と参照部位との位置関係を常
に固定しておく必要がなく、被測定部位と参照部位とが
どの様な位置関係の測定対象に対応することができる。
If a plurality of reference parts are set and a part selection means capable of selecting the most appropriate part from the reference parts is combined, it is necessary to always fix the positional relationship between the part to be measured and the reference part. In addition, the position to be measured and the reference region can correspond to the measurement target in any positional relationship.

【0040】さらに多部位多波長同時検出手段を組み合
わせれば被測定部位および参照部位からの放射が時間的
に変動しておりかつその変動が温度値与える影響が大き
いと考えられる場合、同時に被測定部位および参照部位
からの選択した2波長の分光放射出力が測定でき、その
結果、時間的変動要因をなくすことができる。
Further, if the multi-site multi-wavelength simultaneous detection means is combined, if the radiation from the measured part and the reference part fluctuates with time and the fluctuation is considered to have a large influence on the temperature value, the measured The selected two wavelengths of the spectral radiant output from the site and the reference site can be measured, and as a result, time-varying factors can be eliminated.

【0041】また、放電灯等におけるように、電極温度
が発光管管内および高輝度放射源(放電アーク)の情報
を大きく反映している場合には、電極温度を精度良く測
定することは、放電灯のランプ寿命特性および放電アー
クの物理的・化学的特性解析に大いに有効であるといえ
る。
Further, when the electrode temperature largely reflects the information of the inside of the arc tube and the high-intensity radiation source (discharge arc) as in a discharge lamp or the like, it is necessary to measure the electrode temperature with high accuracy. It can be said that it is very effective for analyzing lamp life characteristics of electric lamps and physical and chemical characteristics of discharge arcs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例における放射温度測定装
置の構成図である。
FIG. 1 is a configuration diagram of a radiation temperature measuring device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例に関して、分光放射出力
の補正方法を説明するための模式図である。
FIG. 2 is a schematic diagram for explaining a method of correcting a spectral radiation output according to the first embodiment of the present invention.

【図3】本発明の第1の実施例における放射温度測定装
置の図1とは異なる構成の構成図である。
FIG. 3 is a configuration diagram of a radiation temperature measuring device according to a first embodiment of the present invention, which is different from FIG.

【図4】本発明の第2の実施例における放射温度測定装
置の構成図である。
FIG. 4 is a configuration diagram of a radiation temperature measuring device according to a second embodiment of the present invention.

【図5】本発明の第3の実施例における放射温度測定装
置の構成図である。
FIG. 5 is a configuration diagram of a radiation temperature measuring device according to a third embodiment of the present invention.

【図6】本発明の第4の実施例における放射温度測定装
置の構成図である。
FIG. 6 is a configuration diagram of a radiation temperature measuring device according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 被測定部位 2 参照部位 3 被測定部位から放射される熱放射 4 重畳される熱放射以外の放射 5 熱放射の混在してこない熱放射以外の放射 6 検出手段A 7 検出手段B 8 演算手段 9 電極 10 放電アーク 11 駆動手段A 12 波長選択手段 13 多波長検出手段C 14 多波長検出手段D 15 駆動手段B 16 参照部位選択手段 17 多部位多波長同時検出手段 DESCRIPTION OF SYMBOLS 1 Measurement part 2 Reference part 3 Heat radiation radiated from a measurement part 4 Radiation other than superimposed heat radiation 5 Radiation other than heat radiation in which heat radiation does not mix 6 Detecting means A 7 Detecting means B 8 Arithmetic means 9 Electrode 10 Discharge arc 11 Driving means A 12 Wavelength selecting means 13 Multi-wavelength detecting means C 14 Multi-wavelength detecting means D 15 Driving means B 16 Reference site selecting means 17 Multi-site multi-wavelength simultaneous detecting means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−116433(JP,A) 特開 平5−142051(JP,A) 特開 平5−142052(JP,A) 特開 平3−287030(JP,A) 特開 平3−287031(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01J 5/00 - 5/62 G01J 1/00 - 1/46 G01N 21/00 - 21/61 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-116433 (JP, A) JP-A-5-142051 (JP, A) JP-A-5-142052 (JP, A) JP-A-3- 287030 (JP, A) JP-A-3-287703 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01J 5/00-5/62 G01J 1/00-1/46 G01N 21/00-21/61

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】放電ランプの電極温度を測定する放射温度
測定装置であって、被測定部位から放射される波長の
分光放射出力を検出する第1の多波長検出手段と、前記
被測定部位とは異なる参照部位から放射される波長の
分光放射出力を検出する第2の多波長検出手段と、前記
第2の多波長検出手段で検出した分光放射出力を入力
し、この分光放射出力の中で、その出力が存在しない2
波長、または十分にその出力が無視できる2波長、また
は補正を行う場合の定数の設定し易い2波長のいずれか
を選択する2波長選択手段と、前記2波長選択手段によ
って選択された2波長の内容に応じて補正内容を決定
し、前記補正内容に基づいて前記参照部位の分光放射出
力を用いた前記被測定部位の分光放射出力の補正を行
い、温度値を算出する演算手段とを備えていることを特
徴とする放射温度測定装置。
1. A radiation temperature for measuring an electrode temperature of a discharge lamp.
A measuring device, a first multi-wavelength detection means for detecting the spectral radiation output of the multi-wavelength emitted from the measuring site, said multi-wavelength spectral radiation output emitted from different reference site and measurement site a second multiple wavelength detection means for detecting the
Inputting the spectral radiation output detected by the second multi-wavelength detecting means
However, in this spectral radiation output,
Wavelength, or two wavelengths whose output is negligible, or
Is one of two wavelengths for which constants can be easily set for correction
And a two-wavelength selecting means for selecting
The correction content according to the content of the two wavelengths selected
Based on the correction content,
Correction of the spectral radiation output of the measurement site using force.
And a calculating means for calculating a temperature value.
【請求項2】放電ランプの電極温度を測定する放射温度
測定装置であって、被測定部位から放射される波長の
分光放射出力を検出する多波長検出手段と、該検出手段
移動させるための駆動手段と、検出した部位の中から
演算に使用する前記被測定部位とは異なる参照部位を選
択する参照部位選択手段と、前記参照部位から放射され
る分光放射出力をもとに、この分光放射出力の中で、そ
の出力が存在しない2波長、または十分にその出力が無
視できる2波長、または補正を行う場合の定数の設定し
易い2波長のいずれかを選択する2波長選択手段と、前
記2波長選択手段によって選択された2波長の内容に応
じて補正内容を決定し、前記補正内容に基づいて前記参
照部位の分光放射出力を用いた前記被測定部位の分光放
射出力の補正を行い、温度値を算出する演算手段とを備
えていることを特徴とする放射温度測定装置。
2. A radiation temperature for measuring an electrode temperature of a discharge lamp.
A measuring device, using a multiple wavelength detector for detecting a multi-wavelength spectral radiation output emitted from the measurement site, and drive means for moving the detecting means, the calculation from the detected site Based on a reference region selecting means for selecting a reference region different from the measured region, and a spectral radiation output radiated from the reference region ,
Two wavelengths where there is no output, or if there is not enough output
Set two wavelengths that can be viewed, or set constants when performing correction
A two-wavelength selecting means for selecting any one of the two wavelengths
According to the contents of the two wavelengths selected by the two wavelength selecting means.
The correction content, and based on the correction content,
Spectral emission of the measured part using the spectral emission output of the illumination part
A radiation temperature measuring device comprising: a calculating means for correcting a radiation output and calculating a temperature value.
【請求項3】2波長選択手段によって選択された2波長
が、その出力が存在しない2波長である場合には、被測
定部位の分光放射出力の補正を行わないことを特徴とす
る請求項1または2に記載の放射温度測定装置
3. The two wavelengths selected by the two wavelength selecting means.
Is the two wavelengths whose output does not exist,
It is characterized in that the spectral radiation output of the fixed site is not corrected
The radiation temperature measuring device according to claim 1 .
【請求項4】放電ランプの電極温度を測定する放射温度
測定方法であって、被測定部位から放射される波長の
分光放射出力を検出するステップと、前記被測定部位と
は異なる参照部位から放射される波長の分光放射出力
を検出するステップと、前記参照部位から放射された分
光放射出力をもとに、この分光放射出力の中で、その出
力が存在しない2波長、または十分にその出力が無視で
きる2波長、または補正を行う場合の定数の設定し易い
2波長のいずれかを選択するステップと、前記選択され
た2波長の内容に応じて補正内容を決定し、前記補正内
容に基づいて前記参照部位の分光放射出力を用いた前記
被測定部位の分光放射出力の補正を行い、温度値を算出
するステップを含むことを特徴とする放射温度測定方
法。
4. A radiation temperature for measuring an electrode temperature of a discharge lamp.
A measuring method, a step of detecting a multi- wavelength spectral radiant output radiated from the measured site, and a step of detecting a multi- wavelength spectral radiant output radiated from a reference portion different from the measured portion, Based on the spectral radiation output radiated from the reference part , the
Two wavelengths where there is no force, or its output is negligible
Easy to set up two wavelengths or constants for correction
Selecting one of the two wavelengths;
The correction content is determined according to the content of the two wavelengths, and the
Using the spectral radiation output of the reference site based on the volume
A method for measuring a radiation temperature, comprising: correcting a spectral radiation output of a measurement site to calculate a temperature value.
【請求項5】放電ランプの電極温度を測定する放射温度
測定方法であって、被測定部位から放射される波長の
分光放射出力を検出するステップと、検出した部位の中
から演算に使用する前記被測定部位とは異なる参照部位
を選択するステップと、前記参照部位から放射される分
光放射出力をもとに、この分光放射出力の中で、その出
力が存在しない2波長、または十分にその出力が無視で
きる2波長、または補正を行う場合の定数の設定し易い
2波長のいずれかを選択するステップと、前記選択され
た2波長の内容に応じて補正内容を決定し、前記補正内
容に基づいて前記参照部位の分光放射出力を用いた前記
被測定部位の分光放射出力の補正を行い、温度値を算出
するステップを含むことを特徴とする放射温度測定方
法。
5. A radiation temperature for measuring an electrode temperature of a discharge lamp.
A measurement method, a step of detecting a multi- wavelength spectral radiation output radiated from the measured part, and selecting a reference part different from the measured part used for calculation from the detected part, Based on the spectral radiation output radiated from the reference part , the
Two wavelengths where there is no force, or its output is negligible
Easy to set up two wavelengths or constants for correction
Selecting one of the two wavelengths;
The correction content is determined according to the content of the two wavelengths, and the
Using the spectral radiation output of the reference site based on the volume
A method for measuring a radiation temperature, comprising: correcting a spectral radiation output of a measurement site to calculate a temperature value.
【請求項6】選択された2波長が、その出力が存在しな
い2波長である場合には、被測定部位の分光放射出力の
補正を行わないことを特徴とする請求項4または5に記
載の放射温度測定方法。
6. The two selected wavelengths, for which the output does not exist.
If there are two wavelengths, the spectral radiation output of the
6. The method according to claim 4, wherein no correction is performed.
Radiation temperature measuring method of the mounting.
JP29524794A 1994-11-29 1994-11-29 Radiation temperature measuring device and radiation temperature measuring method Expired - Lifetime JP3233329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29524794A JP3233329B2 (en) 1994-11-29 1994-11-29 Radiation temperature measuring device and radiation temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29524794A JP3233329B2 (en) 1994-11-29 1994-11-29 Radiation temperature measuring device and radiation temperature measuring method

Publications (2)

Publication Number Publication Date
JPH08152360A JPH08152360A (en) 1996-06-11
JP3233329B2 true JP3233329B2 (en) 2001-11-26

Family

ID=17818124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29524794A Expired - Lifetime JP3233329B2 (en) 1994-11-29 1994-11-29 Radiation temperature measuring device and radiation temperature measuring method

Country Status (1)

Country Link
JP (1) JP3233329B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277327A (en) * 2001-03-15 2002-09-25 Mitsubishi Heavy Ind Ltd Temperature measuring method in fusion furnace and temperature-gas concentration simultaneous measuring method
JP5103835B2 (en) 2006-09-12 2012-12-19 三菱電機株式会社 Radiation temperature measuring device and radiation temperature measuring method
WO2017047376A1 (en) * 2015-09-16 2017-03-23 三菱マテリアル株式会社 Method of measuring temperature of an object to be measured, dust temperature and dust concentration
JP6734153B2 (en) * 2015-09-16 2020-08-05 三菱マテリアル株式会社 Method for measuring the temperature of the object to be measured, the temperature of dust and the concentration of dust
JP7382952B2 (en) * 2018-10-16 2023-11-17 古河電気工業株式会社 Temperature measurement system, temperature measurement method and laser processing equipment
JP7393647B2 (en) * 2020-03-04 2023-12-07 日本製鉄株式会社 Temperature measuring device and temperature measuring method

Also Published As

Publication number Publication date
JPH08152360A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
JP4829995B2 (en) Emission spectrometer with charge-coupled device detector
US7489396B1 (en) Spectrophotometric camera
JP3233329B2 (en) Radiation temperature measuring device and radiation temperature measuring method
JP2011232106A (en) Icp optical emission spectrometer
JP4493804B2 (en) Inductively coupled plasma spectrometer.
JP2911471B2 (en) Atomic emission spectrometer
JP2008268106A (en) Method of measuring temperature information
JP4324693B2 (en) Spectral response measuring device of photodetector, measuring method thereof, and spectral irradiance calibration method of light source
JPH0572039A (en) Correcting method for spectrum of fluorescence spectrophotometer and fluorescence spectrophotometer with spectrum correcting function
US6391647B1 (en) Method and a device for atomic absorption spectroscopy
KR20040010172A (en) Emissivity distribution measuring method and apparatus
JP4506524B2 (en) Optical emission spectrometer
JP2000105152A (en) Method and apparatus for measurement of temperature
Bedrin et al. Measurement of the spectral radiance of plasma sources
US5861948A (en) Atomic absorption spectrophotometer
JPS63142238A (en) Method and apparatus for emission spectroanalysis
JPH05296843A (en) Calibrating apparatus of visible near infrared radiometer
Burdakov et al. A complex of imaging diagnostic devices of vacuum UV radiation for the GOL-3 multimirror trap
JPH10332485A (en) Data processing method for emission spectrochemical analysis device
JPH0778564A (en) Fluorescent lamp inspection method
JPH10300673A (en) Induction coupling plasma emission spectroanalysis device
JPH11183253A (en) Emission analyzing device
JPH06331547A (en) Emission spectroscopic analytical apparatus
JPH0599749A (en) Non-contact temperature measuring method
JP2001056253A (en) Temperature measuring method and temperature measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

EXPY Cancellation because of completion of term