JP3232489U - Brushless motor using a permanent magnet embedded rotor - Google Patents

Brushless motor using a permanent magnet embedded rotor Download PDF

Info

Publication number
JP3232489U
JP3232489U JP2021001374U JP2021001374U JP3232489U JP 3232489 U JP3232489 U JP 3232489U JP 2021001374 U JP2021001374 U JP 2021001374U JP 2021001374 U JP2021001374 U JP 2021001374U JP 3232489 U JP3232489 U JP 3232489U
Authority
JP
Japan
Prior art keywords
magnetic pole
pole portion
magnet
peripheral surface
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021001374U
Other languages
Japanese (ja)
Inventor
青島 力
力 青島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xross Vate Inc
Original Assignee
Xross Vate Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xross Vate Inc filed Critical Xross Vate Inc
Priority to JP2021001374U priority Critical patent/JP3232489U/en
Application granted granted Critical
Publication of JP3232489U publication Critical patent/JP3232489U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】永久磁石によるマグネットトルクとロータのインダクタンスの変化による突極率によるインダクタンストルクの両方を損なわない効率的なモーターを提供する。【解決手段】永久磁石はロータの外周面及び内周面に露出して構成し、永久磁石の鎖交磁束を大きく増やす形状とし永久磁石によるマグネットトルクを大きくしつつもリラクタンストルクを発生させるための磁路はリラクタンス部材を通って外側磁極部と内側磁極部との間で構成できるので十分な広さに保つことができ突極比を大きく構成できリラクタンストルクも大きくできる。【選択図】図1PROBLEM TO BE SOLVED: To provide an efficient motor which does not impair both a magnet torque due to a permanent magnet and an inductance torque due to a salient pole ratio due to a change in rotor inductance. SOLUTION: A permanent magnet is formed so as to be exposed on an outer peripheral surface and an inner peripheral surface of a rotor, and has a shape that greatly increases the interlinkage magnetic flux of the permanent magnet so as to generate a reluctance torque while increasing the magnet torque of the permanent magnet. Since the magnetic path can be formed between the outer magnetic pole portion and the inner magnetic pole portion through the reluctance member, it can be kept sufficiently wide, the salient pole ratio can be made large, and the reluctance torque can be made large. [Selection diagram] Fig. 1

Description

永久磁石を用いたブラシレスモータで特にマグネット埋め込み式のロータを用いるブラシレスモータ(IPMモータ)の構造に関するものである。The present invention relates to a brushless motor using a permanent magnet, and particularly to a structure of a brushless motor (IPM motor) using a rotor embedded with a magnet.

近年、軟磁性材料からなるロータとその内部に永久磁石を埋め込み、ロータの軟磁性材料特性のリラクタンストルクによる回転力と永久磁石によるマグネットトルクによる回転力の両方を用いて回転力とする永久磁石埋め込み式のロータを用いたモータ(IPMモータ)が知られているIn recent years, a rotor made of a soft magnetic material and a permanent magnet are embedded inside the rotor, and the permanent magnet is embedded using both the rotational force due to the relaxation torque of the soft magnetic material characteristics of the rotor and the rotational force due to the magnet torque due to the permanent magnet. A motor using a type of rotor (IPM motor) is known.

特許6226867Patent 6226867 特開2015−204638JP 2015-204638

前記先行技術文献等に記載されているIPMモータのロータの構成すなわち軟磁性材料のロータに対してマグネットを埋め込みリラクタンストルクを発生するためのロータ内の磁路をマグネットの外周面に設けるロータ構造では、発生トルクを大きくするには永久磁石の鎖交磁束を大きく増やすかリラクタンスの突極比を大きくするかであり、突極比を大きくするにリラクタンストルクを発生する磁路を広くする必要がある。従来構造の場合は、リラクタンストルクが発生する磁路がマグネットの外周面に形成されているので、その場合は永久磁石がロータの中心方向に配置せざるを得なくなり磁石の利用面積が小さくなってしまう。逆に永久磁石の鎖交磁束を増やそうとすると永久磁石は外周面近くに配置せざるを得なくなり永久磁石の外周面側に配置されているリラクタンストルクが発生する磁路は狭くなってしまい突極比が減少してリラクタンストルクは減少してしまう。In the rotor structure of the IPM motor described in the prior art documents and the like, that is, in the rotor structure in which a magnet is embedded in a rotor made of a soft magnetic material and a magnetic path in the rotor for generating reluctance torque is provided on the outer peripheral surface of the magnet. To increase the generated torque, either increase the interlinkage magnetic flux of the permanent magnet or increase the reluctance salient pole ratio. To increase the salient pole ratio, it is necessary to widen the magnetic path that generates the reluctance torque. .. In the case of the conventional structure, a magnetic path for generating reluctance torque is formed on the outer peripheral surface of the magnet, so in that case, the permanent magnet has to be arranged toward the center of the rotor, and the area used by the magnet becomes smaller. It ends up. Conversely, if you try to increase the interlinkage magnetic flux of the permanent magnet, the permanent magnet must be placed near the outer peripheral surface, and the magnetic path that generates the reluctance torque that is placed on the outer peripheral surface side of the permanent magnet becomes narrower and the salient pole. The ratio decreases and the reluctance torque decreases.

円筒形状の磁石保持部材と
該磁石保持部材の外周面に複数の扇型板形状であり軟磁性材料からなる隣り合う磁石とは異なる極性に着磁された永久磁石が交互に設けられて構成される外側磁石層と、該磁石保持部材の内周面に前記外側磁石層と同じ方向の磁界となるように配置された複数の扇型板形状であり隣り合う磁石とは異なる極性に着磁された永久磁石が交互に設けられて構成される内側磁石層と、一端を前記外側磁石層の外周面と同方向に向けられた外側磁極対向部ともう一端を前記内側磁石層の内周面と同方向に向けられた内側磁極対向部とを持ち前記外側磁石層を形成する各磁石の隣り合う境界面並びに前記内側磁石層を形成する各磁石の隣り合う境界面に挿入された軟磁性材料で形成されたリラクタンス部材とからなるロータと、
軟磁性材料からなり該ロータの外側磁石層の外周面に隙間をもって対向する第1の外側磁極部と該ロータの内側磁石層の内周面に隙間をもって対向する第1の内側磁極部と該第1の内側磁極部と前記第1の外側磁極部とをつなぐ連結部を持つ第1ステータと、
前記第1ステータの第1の外側磁極部と連結部の間であって前記ロータの外側磁石層とは軸方向に並んで配置され第1ステータに巻回され第1の外側磁極部を励磁する第1の外側コイルと、
前記第1ステータの第1の内側磁極部と連結部の間に前記ロータの内側磁石層とは軸方向に並んで配置され第1ステータに巻回され第1の外側磁極と異なる極性に第1の内側磁極部を励磁する第1の内側コイルと、
軟磁性材料からなり該ロータの外側磁石層の外周面に隙間をもって対向する第2の外側磁極部と該ロータの内側磁石層の内周面に隙間をもって対向する第2の内側磁極部と該第2の内側磁極部と前記第2の外側磁極部とをつなぐ連結部を持つ第2ステータと、
前記第2ステータの第2の外側磁極部と連結部の間であって前記ロータの外側磁石層とは軸方向に並んで配置され第2ステータに巻回され第2の外側磁極部を励磁する第2の外側コイルと、
前記第2ステータの第2の内側磁極部と連結部の間に前記ロータの内側磁石層とは軸方向に並んで配置され第2ステータに巻回され第2の外側磁極と異なる極性に第2の内側磁極部を励磁する第2の内側コイルと、
軟磁性材料からなり該ロータの外側磁石層の外周面に隙間をもって対向する第3の外側磁極部と該ロータの内側磁石層の内周面に隙間をもって対向する第3の内側磁極部と該第3の内側磁極部と前記第3の外側磁極部とをつなぐ連結部を持つ第3ステータと、
前記第3ステータの第3の外側磁極部と連結部の間であって前記ロータの外側磁石層とは軸方向に並んで配置され第3ステータに巻回され第3の外側磁極部を励磁する第3の外側コイルと、
前記第3ステータの第3の内側磁極部と連結部の間であって前記ロータの内側磁石層とは軸方向に並んで配置され第3ステータに巻回され第3の外側磁極と異なる極性に第3の内側磁極部を励磁する第3の内側コイルと、
を備える。
A cylindrical magnet holding member and a plurality of fan-shaped plate-shaped permanent magnets magnetized to a different polarity from adjacent magnets made of a soft magnetic material are alternately provided on the outer peripheral surface of the magnet holding member. The outer magnet layer and the inner peripheral surface of the magnet holding member have a plurality of fan-shaped plates arranged so as to have a magnetic field in the same direction as the outer magnet layer, and are magnetized with a polarity different from that of adjacent magnets. An inner magnet layer formed by alternately providing permanent magnets, an outer magnetic pole facing portion having one end directed in the same direction as the outer peripheral surface of the outer magnet layer, and an inner peripheral surface of the inner magnet layer at the other end. A soft magnetic material inserted into the adjacent interface of each magnet forming the outer magnet layer and the adjacent interface of each magnet forming the inner magnet layer and having an inner magnetic pole facing portion oriented in the same direction. A rotor made of formed relaxation members,
A first outer magnetic pole portion made of a soft magnetic material and facing the outer peripheral surface of the outer magnet layer of the rotor with a gap, a first inner magnetic pole portion facing the inner peripheral surface of the inner magnet layer of the rotor with a gap, and the first. A first stator having a connecting portion connecting the inner magnetic pole portion of 1 and the first outer magnetic pole portion,
Between the first outer magnetic pole portion of the first stator and the connecting portion, the outer magnet layer of the rotor is arranged side by side in the axial direction and wound around the first stator to excite the first outer magnetic pole portion. With the first outer coil,
The inner magnet layers of the rotor are arranged in an axial direction between the first inner magnetic pole portion and the connecting portion of the first stator, and are wound around the first stator to have a polarity different from that of the first outer magnetic pole. The first inner coil that excites the inner magnetic pole of the
A second outer magnetic pole portion made of a soft magnetic material and facing the outer peripheral surface of the outer magnet layer of the rotor with a gap, a second inner magnetic pole portion facing the inner peripheral surface of the inner magnet layer of the rotor with a gap, and the first A second stator having a connecting portion connecting the inner magnetic pole portion of 2 and the second outer magnetic pole portion,
Between the second outer magnetic pole portion of the second stator and the connecting portion, the outer magnet layer of the rotor is arranged side by side in the axial direction and wound around the second stator to excite the second outer magnetic pole portion. With the second outer coil,
The inner magnet layer of the rotor is arranged side by side in the axial direction between the second inner magnetic pole portion and the connecting portion of the second stator, and is wound around the second stator to have a polarity different from that of the second outer magnetic pole. The second inner coil that excites the inner magnetic pole of the
A third outer magnetic pole portion made of a soft magnetic material and facing the outer peripheral surface of the outer magnet layer of the rotor with a gap, a third inner magnetic pole portion facing the inner peripheral surface of the inner magnet layer of the rotor with a gap, and the first A third stator having a connecting portion connecting the inner magnetic pole portion of 3 and the third outer magnetic pole portion, and
Between the third outer magnetic pole portion of the third stator and the connecting portion, the outer magnet layer of the rotor is arranged side by side in the axial direction and wound around the third stator to excite the third outer magnetic pole portion. With the third outer coil,
Between the third inner magnetic pole portion and the connecting portion of the third stator, the inner magnet layer of the rotor is arranged side by side in the axial direction and wound around the third stator to have a polarity different from that of the third outer magnetic pole. A third inner coil that excites the third inner magnetic pole,
To be equipped.

上記の構成により、永久磁石はロータの外周面及び内周面に露出して構成できるため永久磁石の鎖交磁束を大きく増やす形状とし永久磁石によるマグネットトルクを大きくしつつもリラクタンストルクを発生させるための磁路はリラクタンス部材を通って外側磁極部と内側磁極部との間で構成できるので十分な広さに保つことができ突極比を大きく構成できリラクタンストルクも大きくできる。With the above configuration, the permanent magnet can be exposed on the outer and inner peripheral surfaces of the rotor, so that the shape is such that the interlinkage magnetic flux of the permanent magnet is greatly increased, and the reluctance torque is generated while increasing the magnet torque of the permanent magnet. Since the magnetic path can be formed between the outer magnetic pole portion and the inner magnetic pole portion through the reluctance member, it can be maintained at a sufficient width, the salient pole ratio can be increased, and the reluctance torque can be increased.

本発明の第1の実施例の各部品の構成を示す分解斜視図An exploded perspective view showing the configuration of each component according to the first embodiment of the present invention. 組み立て時の断面図Cross section at the time of assembly 断面平面図Sectional plan view 断面平面図Sectional plan view 制御回路のブロック図Control circuit block diagram 動作時の励磁表Excitation table during operation マグネットの着磁状態を示す平面図Top view showing the magnetized state of the magnet

図1から図7は本発明の実施例を示す図であり、図1は各部品の構成を示す分解斜視図、図2は組み立て時の断面図、図3と図4は断面平面図、図5は制御回路のブロック図、図6は動作時の励磁表、図7は永久磁石の着磁状態を示す平面図である。
図1において、1は円筒形状の磁石保持部材、2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,2l,2m,2nは扇型板形状の永久磁石である外側磁石で磁石保持部材1の円筒外周部1aに固着されている。
外側磁石2a,2c,2e,2g,2i,2k,2mは外周面がS極、磁石保持部材1の円筒外周面1aに面した内周面はN極になるように着磁されている。
外側磁石2a,2c,2e,2g,2i,2k,2mと隣り合って配列された外側磁石2b,2e,2f,2h,2j,2l,2nは外周面がN極、磁石保持部材1の円筒外周面1aに面した内周面はS極になるように着磁されている。
4a,4b,4c,4d,4e,4f,4g,4h,4i,4j,4k,4l,4m,4nは軟磁性材料からなるリラクタンス部材でそれぞれが外側磁石2aと2bの間、外側磁石2bと2cの間、外側磁石2cと2dの間、外側磁石2dと2eの間、外側磁石2eと2fの間、外側磁石2fと2gの間、外側磁石2gと2hの間、外側磁石2hと2iの間、外側磁石2iと2jの間、外側磁石2jと2kの間、外側磁石2kと2lの間、外側磁石2lと2mの間、外側磁石2mと2nの間、外側磁石2nと2aの間に配置されている。
外側磁石2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,2l,2m,2nで外側磁石層を形成している。
3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nは扇型板形状の永久磁石である内側磁石で磁石保持部材1の円筒内周部1bに固着されている。
内側磁石3a,3c,3e,3g,3i,3k,3mは磁石保持部材1の円筒内周面1bに面した内周面はS極に、内周面がN極なるように着磁されている。
内側磁石3a,3c,3e,3g,3i,3k,3mはそれぞれが外側磁石2a,2c,2e,2g,2i,2k,2mと同じ角度範囲になるように配置されている。
内側磁石3b,3d,3f,3h,3j,3l,3nは磁石保持部材1の円筒内周面1bに面した内周面はN極に、内周面がS極なるように着磁されている。
内側磁石3b,3d,3f,3h,3j,3l,3nはそれぞれが外側磁石2b,2d,2f,2h,2j,2l,2nと同じ角度範囲になるように配置されている。
また外側磁石2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,2l,2m,2nとそれぞれの円周方向に関して同じ角度範囲で対応する内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとはそれぞれが同じ磁界を形成するような向きで配置されていることになる
リラクタンス部材4a,4b,4c,4d,4e,4f,4g,4h,4i,4j,4k,4l,4m,4nはそれぞれが内側磁石3aと3bの間、内側磁石3bと3cの間、内側磁石3cと3dの間、内側磁石3dと3eの間、内側磁石3eと3fの間、内側磁石3fと3gの間、内側磁石3gと3hの間、内側磁石3hと3iの間、内側磁石3iと3jの間、内側磁石3jと3kの間、内側磁石3kと3lの間、内側磁石3lと3mの間、内側磁石3mと3nの間、内側磁石3nと3aの間に配置されている。
内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nで内側磁石層を形成している。
リラクタンス部材4aは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4aa、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4abを備える。
リラクタンス部材4bは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4ba、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4bbを備える。
リラクタンス部材4cは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4ca、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4cbを備える。
リラクタンス部材4dは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4da、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4dbを備える。
リラクタンス部材4eは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4ea、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4ebを備える。
リラクタンス部材4fは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4fa、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4fbを備える。
リラクタンス部材4gは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4ga、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4gbを備える。
リラクタンス部材4hは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4ha、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4hbを備える。
リラクタンス部材4iは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4ia、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4ibを備える。
リラクタンス部材4jは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4ja、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4jbを備える。
リラクタンス部材4kは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4ka、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4kbを備える。
リラクタンス部材4lは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4la、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4lbを備える。
リラクタンス部材4mは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4ma、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4mbを備える。
リラクタンス部材4nは一端が外側磁石層の外周面を向き後述の外側磁極部に隙間をもって対向する外側磁極対向部4na、もう一端が内側磁石層の内周面を向き後述の内側磁極部に隙間をもって対向する内側磁極対向部4nbを備える。
磁石保持部材1と外側磁石2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,2l,2m,2nからなる外側磁石層、内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nからなる内側磁石層と、リラクタンス部材4a,4b,4c,4d,4e,4f,4g,4h,4i,4j,4k,4l,4m,4nでロータを形成している。
磁石保持部材1は後述のベースステータに回転可能に取り付けられている。
外側磁石2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,2l,2m,2nの表面磁束密度は内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nの表面磁束密度よりも高くなるように着磁されている。
5は軟磁性材料からなるベースステータで前記外側磁石層の外周側の着磁部に隙間をもって対向する外側磁極部5aが円周を12分割された30度ごとに配置されて、内側磁極部5bが前記内側着磁層の内周側の着磁部に隙間をもって対向し外側磁極部5aと同じ角度範囲に円周を12分割された30度ごとに配置されている。前記外側磁極部5aと内側磁極部5bとは連結部5c部で磁気的に連結され磁気回路を構成する。
図に示すように複数の外側磁極部と永久磁石を挟んで隙間をもってそれに同じ角度範囲で対向する内側磁極部とを連結部を介してつなぐステータをこのベースステータで構成する。
ロータの回転位相に応じて前記リラクタンス部材4a,4b,4c,4d,4e,4f,4g,4h,4i,4j,4k,4l,4m,4nと外側磁極部5a、内側磁極部5b、連結部5cでエアギャップを持つ磁路を形成する。
6、7、8、9、10、11、12、13、14、15、16、17は外側コイルで外側コイル6、外側コイル8、外側コイル10、外側コイル12、外側コイル14、外側コイル16、外側コイル7、外側コイル9、外側コイル10、外側コイル13、外側コイル15、外側コイル17の周方向における順番で前記ベースステータ5の外側磁極部5aと連結部5cの間に前記外側磁石2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,2l,2m,2nとは軸方向に並んで配置され外側磁極部を励磁可能に巻回されている。
外側コイル6,12と外側コイル9,15は同時に励磁されるが巻き方向が逆のため外側コイル6,12によって励磁される外側磁極部5aと外側コイル9,15によって励磁される外側磁極部5aはお互いに異なる極性に励磁される。
外側コイル7,13と外側コイル10,16は同時に励磁されるが巻き方向が逆のため外側コイル7,13によって励磁される外側磁極部5aと外側コイル10,16によって励磁される外側磁極部5aはお互いに異なる極性に励磁される。
外側コイル8,14と外側コイル11,17は同時に励磁されるが巻き方向が逆のため外側コイル8,14によって励磁される外側磁極部5aと外側コイル11,17によって励磁される外側磁極部5aはお互いに異なる極性に励磁される。
18、19、20、21、22、23、24、25、26、27、28、29は内側コイルであり内側コイル18は前記外側コイル6が巻回される外側磁極5aと同じ角度範囲で永久磁石を挟んでその内周面に隙間をもって対向する内側磁極部5bと連結部5cの間に前記内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとは軸方向に並んで配置され、内側磁極部5bを外側コイル6が外側磁極5aを励磁するのとは異なる極で同時に励磁可能に巻回されている。
内側コイル19は前記外側コイル7が巻回される外側磁極5aと同じ角度範囲で永久磁石を挟んでその内周面に隙間をもって対向する内側磁極部5bと連結部5cの間に前記内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとは軸方向に並んで配置され、内側磁極部5bを外側コイル7が外側磁極5aを励磁するのとは異なる極で同時に励磁可能に巻回されている。
内側コイル20は前記外側コイル8が巻回される外側磁極5aと同じ角度範囲で永久磁石を挟んでその内周面に隙間をもって対向する内側磁極部5bと連結部5cの間に前記内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとは軸方向に並んで配置され、内側磁極部5bを外側コイル8が外側磁極5aを励磁するのとは異なる極で同時に励磁可能に巻回されている。
内側コイル21は前記外側コイル9が巻回される外側磁極5aと同じ角度範囲で永久磁石を挟んでその内周面に隙間をもって対向する内側磁極部5bと連結部5cの間に前記内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとは軸方向に並んで配置され、内側磁極部5bを外側コイル9が外側磁極5aを励磁するのとは異なる極で同時に励磁可能に巻回されている。
内側コイル22は前記外側コイル10が巻回される外側磁極5aと同じ角度範囲で永久磁石を挟んでその内周面に隙間をもって対向する内側磁極部5bと連結部5cの間に前記内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとは軸方向に並んで配置され、内側磁極部5bを外側コイル10が外側磁極5aを励磁するのとは異なる極で同時に励磁可能に巻回されている。
内側コイル23は前記外側コイル10が巻回される外側磁極5aと同じ角度範囲で永久磁石を挟んでその内周面に隙間をもって対向する内側磁極部5bと連結部5cの間に前記内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとは軸方向に並んで配置され、内側磁極部5bを外側コイル10が外側磁極5aを励磁するのとは異なる極で同時に励磁可能に巻回されている。
内側コイル24は前記外側コイル12が巻回される外側磁極5aと同じ角度範囲で永久磁石を挟んでその内周面に隙間をもって対向する内側磁極部5bと連結部5cの間に前記内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとは軸方向に並んで配置され、内側磁極部5bを外側コイル12が外側磁極5aを励磁するのとは異なる極で同時に励磁可能に巻回されている。
内側コイル25は前記外側コイル13が巻回される外側磁極5aと同じ角度範囲で永久磁石を挟んでその内周面に隙間をもって対向する内側磁極部5bと連結部5cの間に前記内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとは軸方向に並んで配置され、内側磁極部5bを外側コイル13が外側磁極5aを励磁するのとは異なる極で同時に励磁可能に巻回されている。
内側コイル26は前記外側コイル14が巻回される外側磁極5aと同じ角度範囲で永久磁石を挟んでその内周面に隙間をもって対向する内側磁極部5bと連結部5cの間に前記内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとは軸方向に並んで配置され、内側磁極部5bを外側コイル14が外側磁極5aを励磁するのとは異なる極で同時に励磁可能に巻回されている。
内側コイル27は前記外側コイル15が巻回される外側磁極5aと同じ角度範囲で永久磁石を挟んでその内周面に隙間をもって対向する内側磁極部5bと連結部5cの間に前記内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとは軸方向に並んで配置され、内側磁極部5bを外側コイル15が外側磁極5aを励磁するのとは異なる極で同時に励磁可能に巻回されている。
内側コイル28は前記外側コイル16が巻回される外側磁極5aと同じ角度範囲で永久磁石を挟んでその内周面に隙間をもって対向する内側磁極部5bと連結部5cの間に前記内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとは軸方向に並んで配置され、内側磁極部5bを外側コイル16が外側磁極5aを励磁するのとは異なる極で同時に励磁可能に巻回されている。
内側コイル29は前記外側コイル17が巻回される外側磁極5aと同じ角度範囲で永久磁石を挟んでその内周面に隙間をもって対向する内側磁極部5bと連結部5cの間に前記内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nとは軸方向に並んで配置され、内側磁極部5bを外側コイル17が外側磁極5aを励磁するのとは異なる極で同時に励磁可能に巻回されている。
ベースステータ5は3d部で前記磁石保持部材1の軸部1cが回転可能に保持している。
外側コイル6,7,8,9,10,11,12,13,14,15,16、17の導線線径をd1とし、内側コイル18、19、20、21、22、23、24、25、26、27、28、29の導線線径をd2とするとd1>d2となるよう構成されている。
外側コイル6,12,9,15は請求項における第1の外側コイル、内側コイル18,24、21、27は請求項における第1の内側コイルであり第1の外側コイルと第1の内側コイルで三相ブラシレスモータのU相を構成する。
外側コイル6,12,9,15で励磁される外側磁極5aが第1の外側磁極部、内側コイル18,24、21、27で励磁される内側磁極5bが第1の内側磁極部であり、第1の外側磁極部と第1の内側磁極部と連結部5c部とで第1のステータを構成する。
外側コイル7,13,10,16は請求項における第2の外側コイル、内側コイル19,25、22、28は請求項における第2の内側コイルであり第2の外側コイルと第2の内側コイルで三相ブラシレスモータのV相を構成する。
外側コイル7,13,10,16で励磁される外側磁極5aが第2の外側磁極部、内側コイル19,25、22、28で励磁される内側磁極5bが第2の内側磁極部であり、第2の外側磁極部と第2の内側磁極部と連結部5c部とで第2のステータを構成する。
外側コイル8,14,11,17は請求項における第3の外側コイル、内側コイル20,26、23、29は請求項における第3の内側コイルであり第3の外側コイルと第3の内側コイルで三相ブラシレスモータのW相を構成する。
外側コイル8,14,11,17で励磁される外側磁極5aが第3の外側磁極部、内側コイル20,26、23、29で励磁される内側磁極5bが第3の内側磁極部であり、第3の外側磁極部と第3の内側磁極部と連結部5c部とで第3のステータを構成する。
組み立て時の断面の様子を図2に示す。
図3、図4は永久磁石の位置でみた平面断面図である。
図3で示す状態は、第1の外側コイルである外側コイル6,12,9,15と第1の内側コイルである内側コイル18,24、21、27に通電がなされてそれらコイルにより励磁された第1の外側磁極5aと第1の内側磁極5bが励磁状態にあり、第2の外側コイルである外側コイル7,13,10,16と第2の内側コイルである内側コイル19,25、22、28に通電がなされてそれらコイルにより励磁された第2の外側磁極5aと第2の内側磁極5bが励磁状態にある場合の永久磁石からなる外側磁石層と内側磁石層の鎖交磁束が最大となる位相となるときのロータの位相を示している。
図4で示す状態は、第1の外側コイルである外側コイル6,12,9,15と第1の内側コイルである内側コイル18,24、21、27に通電がなされてそれらコイルにより励磁された第1の外側磁極5aと第1の内側磁極5bが励磁状態にあり第2の外側コイルである外側コイル7,13,10,16と第2の内側コイルである内側コイル19,25、22、28に通電がなされてそれらコイルにより励磁された第2の外側磁極5aと第2の内側磁極5bが励磁状態にある場合のリラクタンス部材4a,4b,4c,4d,4e,4f,4g,4h,4i,4j,4k,4l,4m,4nとで形成する磁路のリラクタンスが最小となりロータの位相が安定状態になる状態のロータ位相を示している。
図5は制御回路およびコイル結線を示すブロック図であり、Tr1、Tr2、Tr3、Tr4、Tr5、Tr6はそれぞれトランジスタで公知のY字結線3相モータ駆動回路である。図6は通電のシーケンスによるコイルの励磁状態を示すコイル励磁表である。第1状態から第2状態、第3状態、第4状態、第5状態、第6状態へと通電を切り替えてU相、V相、W相をそれぞれ励起しモータを回転させていく。
図5において、外側コイル6と内側コイル18と、外側コイル7と内側コイル19と、外側コイル8と内側コイル20と、外側コイル9と内側コイル21と、外側コイル10と内側コイル22と、外側コイル11と内側コイル23と、外側コイル12と内側コイル24と、外側コイル13と内側コイル25と、外側コイル14と内側コイル26と、外側コイル15と内側コイル27と、外側コイル16と内側コイル28と、外側コイル17と内側コイル29とがそれぞれ並列に接続されている。
d1>d2となるよう構成されているためコイルの流れる電流も外側コイルのほうが内側コイルよりも多くなり外側磁極部5aが外側コイル6,7,8,9,10,11,12,13,14,15,16、17で励磁されて発生する磁束は内側磁極部5cが内側コイル18、19、20、21、22、23、24、25、26、27、28、29で励磁されたときに発生する磁束よりも多くなる。
図7は永久磁石1の着磁状態を示すもので矢印で磁束を示している。
図7に示すようにロータの外側磁石2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,2l,2m,2nの表面磁束総数は内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nの表面磁束総数よりも高く設定されており、外側磁石2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,2l,2m,2nには多くの磁束が発生する外側磁極部3a、内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nには外側磁極部5aよりも少ない磁束が発生する内側磁極部5bが対向しバランスの良い効率的な駆動力が発生するようになっている。
ロータの外側磁石2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,2l,2m,2nの外側着磁層及び内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nの内側着磁層の両方の面に対し磁界を作用させているので従来の構成に比べて高い駆動力が発生することができる。
外側磁極5aには外側磁石2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,2l,2m,2nが対向し、内側磁極5bには内側磁石3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nが対向するように構成されているので外側磁石と内側磁石を一体的に構成した場合に比べて磁石の厚さを薄く構成できる。さらに磁石保持部材1を樹脂で構成した場合はロータを軽量化することができ、また、軟磁性材料からなるリラクタンス部材4a,4b,4c,4d,4e,4f,4g,4h,4i,4j,4k,4l,4m,4nにより磁路形成される場合のロータ回転位相におけるリラクタンスの変化が大きくとれるのでリラクタンストルクを大きくすることができる。
1 to 7 are views showing an embodiment of the present invention, FIG. 1 is an exploded perspective view showing a configuration of each component, FIG. 2 is a sectional view at the time of assembly, and FIGS. 3 and 4 are a sectional plan view and a view. 5 is a block diagram of the control circuit, FIG. 6 is an excitation table during operation, and FIG. 7 is a plan view showing a magnetized state of the permanent magnet.
In FIG. 1, 1 is a cylindrical magnet holding member, 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, 2n are fan-shaped permanent magnets. It is fixed to the outer peripheral portion 1a of the cylinder of the magnet holding member 1 with an outer magnet.
The outer peripheral surfaces of the outer magnets 2a, 2c, 2e, 2g, 2i, 2k, and 2m are magnetized so that the outer peripheral surface is the S pole and the inner peripheral surface of the magnet holding member 1 facing the cylindrical outer peripheral surface 1a is the N pole.
The outer magnets 2b, 2e, 2f, 2h, 2j, 2l, and 2n arranged adjacent to the outer magnets 2a, 2c, 2e, 2g, 2i, 2k, and 2m have an outer peripheral surface of N pole and a cylinder of the magnet holding member 1. The inner peripheral surface facing the outer peripheral surface 1a is magnetized so as to be an S pole.
4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i, 4j, 4k, 4l, 4m, 4n are relaxation members made of soft magnetic material, which are between the outer magnets 2a and 2b and the outer magnet 2b, respectively. Between 2c, between outer magnets 2c and 2d, between outer magnets 2d and 2e, between outer magnets 2e and 2f, between outer magnets 2f and 2g, between outer magnets 2g and 2h, between outer magnets 2h and 2i Between the outer magnets 2i and 2j, between the outer magnets 2j and 2k, between the outer magnets 2k and 2l, between the outer magnets 2l and 2m, between the outer magnets 2m and 2n, between the outer magnets 2n and 2a. Have been placed.
The outer magnet layer is formed by the outer magnets 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, and 2n.
3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are inner magnets that are fan-shaped permanent magnets, and the inner circumference of the cylinder 1b of the magnet holding member 1 It is stuck to.
The inner magnets 3a, 3c, 3e, 3g, 3i, 3k, and 3m are magnetized so that the inner peripheral surface of the magnet holding member 1 facing the inner peripheral surface 1b of the cylinder is the S pole and the inner peripheral surface is the N pole. There is.
The inner magnets 3a, 3c, 3e, 3g, 3i, 3k, and 3m are arranged so as to have the same angle range as the outer magnets 2a, 2c, 2e, 2g, 2i, 2k, and 2m, respectively.
The inner magnets 3b, 3d, 3f, 3h, 3j, 3l, and 3n are magnetized so that the inner peripheral surface of the magnet holding member 1 facing the cylindrical inner peripheral surface 1b is the north pole and the inner peripheral surface is the south pole. There is.
The inner magnets 3b, 3d, 3f, 3h, 3j, 3l, and 3n are arranged so as to have the same angle range as the outer magnets 2b, 2d, 2f, 2h, 2j, 2l, and 2n, respectively.
Further, the outer magnets 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, 2n and the inner magnets 3a, 3b, 3c corresponding to each other in the same angular range in the circumferential direction. , 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n and the relaxation members 4a, 4b, 4c, which are arranged so as to form the same magnetic field, respectively. 4d, 4e, 4f, 4g, 4h, 4i, 4j, 4k, 4l, 4m, 4n are between the inner magnets 3a and 3b, between the inner magnets 3b and 3c, between the inner magnets 3c and 3d, and the inner magnets, respectively. Between 3d and 3e, between inner magnets 3e and 3f, between inner magnets 3f and 3g, between inner magnets 3g and 3h, between inner magnets 3h and 3i, between inner magnets 3i and 3j, with inner magnets 3j It is arranged between 3k, between the inner magnets 3k and 3l, between the inner magnets 3l and 3m, between the inner magnets 3m and 3n, and between the inner magnets 3n and 3a.
Inner magnets 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n form an inner magnet layer.
One end of the reluctance member 4a faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. A facing inner magnetic pole facing portion 4ab is provided.
One end of the reluctance member 4b faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. A facing inner magnetic pole facing portion 4bb is provided.
One end of the reluctance member 4c faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. A facing inner magnetic pole facing portion 4 kb is provided.
One end of the reluctance member 4d faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. A facing inner magnetic pole facing portion 4db is provided.
One end of the reluctance member 4e faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. A facing inner magnetic pole facing portion 4eb is provided.
One end of the reluctance member 4f faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. A facing inner magnetic pole facing portion 4fb is provided.
One end of the relaxation member 4g faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. It is provided with 4 gb of facing inner magnetic poles facing each other.
One end of the reluctance member 4h faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. A facing inner magnetic pole facing portion 4hb is provided.
One end of the reluctance member 4i faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. A facing inner magnetic pole facing portion 4ib is provided.
One end of the reluctance member 4j faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. A facing inner magnetic pole facing portion 4jb is provided.
One end of the reluctance member 4k faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. It is provided with a facing inner magnetic pole facing portion 4 kb.
One end of the reluctance member 4l faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. It is provided with 4 lbs of facing inner magnetic poles facing each other.
One end of the reluctance member 4m faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. It is provided with a facing inner magnetic pole facing portion 4 mb.
One end of the reluctance member 4n faces the outer peripheral surface of the outer magnet layer and faces the outer magnetic pole portion described later with a gap, and the other end faces the inner peripheral surface of the inner magnet layer and has a gap in the inner magnetic pole portion described later. A facing inner magnetic pole facing portion 4nb is provided.
Outer magnet layer consisting of magnet holding member 1 and outer magnets 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, 2n, inner magnets 3a, 3b, 3c, 3d, Inner magnet layer consisting of 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n and reluctance members 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i, 4j, 4k, The rotor is formed of 4l, 4m, and 4n.
The magnet holding member 1 is rotatably attached to a base stator described later.
The surface magnetic flux densities of the outer magnets 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, 2n are the inner magnets 3a, 3b, 3c, 3d, 3e, 3f, 3g, It is magnetized so as to be higher than the surface magnetic flux densities of 3h, 3i, 3j, 3k, 3l, 3m, and 3n.
Reference numeral 5 denotes a base stator made of a soft magnetic material, in which an outer magnetic pole portion 5a facing the magnetized portion on the outer peripheral side of the outer magnet layer with a gap is arranged every 30 degrees with a circumference divided into 12 and an inner magnetic pole portion 5b. Is opposed to the magnetized portion on the inner peripheral side of the inner magnetized layer with a gap, and is arranged every 30 degrees with the circumference divided into 12 in the same angle range as the outer magnetic pole portion 5a. The outer magnetic pole portion 5a and the inner magnetic pole portion 5b are magnetically connected by a connecting portion 5c to form a magnetic circuit.
As shown in the figure, this base stator constitutes a stator that connects a plurality of outer magnetic pole portions and inner magnetic pole portions facing each other in the same angle range with a gap sandwiching the permanent magnets via a connecting portion.
Depending on the rotation phase of the rotor, the reluctance members 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i, 4j, 4k, 4l, 4m, 4n and the outer magnetic pole portion 5a, the inner magnetic pole portion 5b, and the connecting portion. A magnetic path with an air gap is formed at 5c.
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 are outer coils, and outer coil 6, outer coil 8, outer coil 10, outer coil 12, outer coil 14, outer coil 16 , The outer coil 7, the outer coil 9, the outer coil 10, the outer coil 13, the outer coil 15, and the outer coil 17 in the circumferential direction between the outer magnetic pole portion 5a and the connecting portion 5c of the base stator 5 and the outer magnet 2a. , 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, 2n are arranged side by side in the axial direction, and the outer magnetic pole portion is wound so as to be excitable.
The outer coils 6 and 12 and the outer coils 9 and 15 are excited at the same time, but because the winding directions are opposite, the outer magnetic pole 5a excited by the outer coils 6 and 12 and the outer magnetic pole 5a excited by the outer coils 9 and 15 Are excited to different polarities from each other.
The outer coils 7 and 13 and the outer coils 10 and 16 are excited at the same time, but because the winding directions are opposite, the outer magnetic pole portion 5a excited by the outer coils 7 and 13 and the outer magnetic pole portion 5a excited by the outer coils 10 and 16 Are excited to different polarities from each other.
The outer coils 8 and 14 and the outer coils 11 and 17 are excited at the same time, but because the winding directions are opposite, the outer magnetic pole 5a excited by the outer coils 8 and 14 and the outer magnetic pole 5a excited by the outer coils 11 and 17 Are excited to different polarities from each other.
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 are inner coils, and the inner coil 18 is permanent in the same angle range as the outer magnetic pole 5a around which the outer coil 6 is wound. The inner magnets 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l between the inner magnetic poles 5b and the connecting 5c facing the inner peripheral surface of the magnet with a gap. , 3m and 3n are arranged side by side in the axial direction, and the inner magnetic pole portion 5b is wound around the inner magnetic pole portion 5b at a pole different from that of the outer coil 6 for exciting the outer magnetic pole 5a at the same time.
The inner coil 19 sandwiches a permanent magnet in the same angle range as the outer magnetic pole 5a around which the outer coil 7 is wound, and the inner magnet 3a is located between the inner magnetic pole portion 5b and the connecting portion 5c facing the inner peripheral surface of the permanent magnet with a gap. , 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are arranged side by side in the axial direction, and the outer coil 7 excites the outer magnetic pole 5a on the inner magnetic pole portion 5b. It is wound so that it can be excited at the same time with a pole different from that of the magnet.
The inner coil 20 sandwiches a permanent magnet in the same angle range as the outer magnetic pole 5a around which the outer coil 8 is wound, and the inner magnet 3a is located between the inner magnetic pole portion 5b and the connecting portion 5c facing the inner peripheral surface with a gap. , 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are arranged side by side in the axial direction, and the outer coil 8 excites the outer magnetic pole 5a on the inner magnetic pole portion 5b. It is wound so that it can be excited at the same time with a pole different from that of the magnet.
The inner coil 21 sandwiches a permanent magnet in the same angle range as the outer magnetic pole 5a around which the outer coil 9 is wound, and the inner magnet 3a is located between the inner magnetic pole portion 5b and the connecting portion 5c facing the inner peripheral surface of the permanent magnet with a gap. , 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are arranged side by side in the axial direction, and the outer coil 9 excites the outer magnetic pole 5a on the inner magnetic pole portion 5b. It is wound so that it can be excited at the same time with a pole different from that of the magnet.
The inner coil 22 sandwiches a permanent magnet in the same angle range as the outer magnetic pole 5a around which the outer coil 10 is wound, and the inner magnet 3a is located between the inner magnetic pole portion 5b and the connecting portion 5c facing the inner peripheral surface of the permanent magnet with a gap. , 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are arranged side by side in the axial direction, and the outer coil 10 excites the outer magnetic pole 5a on the inner magnetic pole portion 5b. It is wound so that it can be excited at the same time with a pole different from that of the magnet.
The inner coil 23 sandwiches a permanent magnet in the same angle range as the outer magnetic pole 5a around which the outer coil 10 is wound, and the inner magnet 3a is located between the inner magnetic pole portion 5b and the connecting portion 5c facing the inner peripheral surface with a gap. , 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are arranged side by side in the axial direction, and the outer coil 10 excites the outer magnetic pole 5a on the inner magnetic pole portion 5b. It is wound so that it can be excited at the same time with a pole different from that of the magnet.
The inner coil 24 has a permanent magnet in the same angle range as the outer magnetic pole 5a around which the outer coil 12 is wound, and the inner magnet 3a is located between the inner magnetic pole portion 5b and the connecting portion 5c facing the inner peripheral surface of the permanent magnet with a gap. , 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are arranged side by side in the axial direction, and the outer coil 12 excites the outer magnetic pole 5a on the inner magnetic pole portion 5b. It is wound so that it can be excited at the same time with a pole different from that of the magnet.
The inner coil 25 sandwiches a permanent magnet in the same angle range as the outer magnetic pole 5a around which the outer coil 13 is wound, and the inner magnet 3a is located between the inner magnetic pole portion 5b and the connecting portion 5c facing the inner peripheral surface with a gap. , 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are arranged side by side in the axial direction, and the outer coil 13 excites the outer magnetic pole 5a on the inner magnetic pole portion 5b. It is wound so that it can be excited at the same time with a pole different from that of the magnet.
The inner coil 26 sandwiches a permanent magnet in the same angle range as the outer magnetic pole 5a around which the outer coil 14 is wound, and the inner magnet 3a is located between the inner magnetic pole portion 5b and the connecting portion 5c facing the inner peripheral surface of the permanent magnet with a gap. , 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are arranged side by side in the axial direction, and the outer coil 14 excites the outer magnetic pole 5a on the inner magnetic pole portion 5b. It is wound so that it can be excited at the same time with a pole different from that of the magnet.
The inner coil 27 sandwiches a permanent magnet in the same angle range as the outer magnetic pole 5a around which the outer coil 15 is wound, and the inner magnet 3a is located between the inner magnetic pole portion 5b and the connecting portion 5c facing the inner peripheral surface of the permanent magnet with a gap. , 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are arranged side by side in the axial direction, and the outer coil 15 excites the outer magnetic pole 5a on the inner magnetic pole portion 5b. It is wound so that it can be excited at the same time with a pole different from that of the magnet.
The inner coil 28 sandwiches a permanent magnet in the same angle range as the outer magnetic pole 5a around which the outer coil 16 is wound, and the inner magnet 3a is located between the inner magnetic pole portion 5b and the connecting portion 5c facing the inner peripheral surface of the permanent magnet with a gap. , 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are arranged side by side in the axial direction, and the outer coil 16 excites the outer magnetic pole 5a on the inner magnetic pole portion 5b. It is wound so that it can be excited at the same time with a pole different from that of the magnet.
The inner coil 29 sandwiches a permanent magnet in the same angle range as the outer magnetic pole 5a around which the outer coil 17 is wound, and the inner magnet 3a is located between the inner magnetic pole portion 5b and the connecting portion 5c facing the inner peripheral surface of the permanent magnet with a gap. , 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are arranged side by side in the axial direction, and the outer coil 17 excites the outer magnetic pole 5a on the inner magnetic pole portion 5b. It is wound so that it can be excited at the same time with a pole different from that of the magnet.
The base stator 5 is rotatably held by the shaft portion 1c of the magnet holding member 1 at the 3d portion.
The wire diameters of the outer coils 6,7,8,9,10,11,12,13,14,15,16,17 are d1, and the inner coils 18,19,20,21,22,23,24,25 , 26, 27, 28, 29, where d2 is assumed, d1> d2.
The outer coils 6, 12, 9, and 15 are the first outer coil in the claim, and the inner coils 18, 24, 21, and 27 are the first inner coils in the claim, and the first outer coil and the first inner coil are used. Consists of the U phase of a three-phase brushless motor.
The outer magnetic pole 5a excited by the outer coils 6, 12, 9, 15 is the first outer magnetic pole portion, and the inner magnetic pole 5b excited by the inner coils 18, 24, 21, 27 is the first inner magnetic pole portion. The first outer magnetic pole portion, the first inner magnetic pole portion, and the connecting portion 5c form form the first stator.
Outer coils 7, 13, 10, 16 are the second outer coil in the claim, and inner coils 19, 25, 22, 28 are the second inner coil in the claim, and the second outer coil and the second inner coil. Consists of the V phase of a three-phase brushless motor.
The outer magnetic pole 5a excited by the outer coils 7, 13, 10, 16 is the second outer magnetic pole portion, and the inner magnetic pole 5b excited by the inner coils 19, 25, 22, 28 is the second inner magnetic pole portion. The second outer magnetic pole portion, the second inner magnetic pole portion, and the connecting portion 5c portion form a second stator.
The outer coils 8, 14, 11, and 17 are the third outer coil in the claim, and the inner coils 20, 26, 23, and 29 are the third inner coil in the claim, and the third outer coil and the third inner coil. Consists of the W phase of a three-phase brushless motor.
The outer magnetic pole 5a excited by the outer coils 8, 14, 11, 17 is the third outer magnetic pole portion, and the inner magnetic pole 5b excited by the inner coils 20, 26, 23, 29 is the third inner magnetic pole portion. The third outer magnetic pole portion, the third inner magnetic pole portion, and the connecting portion 5c portion form a third stator.
FIG. 2 shows a cross section at the time of assembly.
3 and 4 are plan sectional views of the permanent magnets.
In the state shown in FIG. 3, the outer coils 6, 12, 9, 15 which are the first outer coils and the inner coils 18, 24, 21, 27 which are the first inner coils are energized and excited by those coils. The first outer magnetic pole 5a and the first inner magnetic pole 5b are in an excited state, and the outer coils 7, 13, 10, 16 which are the second outer coils and the inner coils 19, 25, which are the second inner coils, When the second outer magnetic pole 5a and the second inner magnetic pole 5b excited by the coils are energized and the second outer magnetic pole 5a and the second inner magnetic pole 5b are in an excited state, the interlinkage magnetic flux between the outer magnet layer and the inner magnet layer made of permanent magnets is generated. It shows the phase of the rotor when it becomes the maximum phase.
In the state shown in FIG. 4, the outer coils 6, 12, 9, 15 which are the first outer coils and the inner coils 18, 24, 21, 27 which are the first inner coils are energized and excited by those coils. The first outer magnetic pole 5a and the first inner magnetic pole 5b are in an excited state, and the outer coils 7, 13, 10, 16 which are the second outer coils and the inner coils 19, 25, 22 which are the second inner coils are in an excited state. , 28 are energized and the second outer magnetic pole 5a and the second inner magnetic pole 5b excited by the coils are in an excited state, and the relaxation members 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h , 4i, 4j, 4k, 4l, 4m, 4n show the rotor phase in a state where the relaxation of the magnetic path is minimized and the rotor phase is in a stable state.
FIG. 5 is a block diagram showing a control circuit and coil connection, and Tr1, Tr2, Tr3, Tr4, Tr5, and Tr6 are Y-shaped connection three-phase motor drive circuits known for transistors, respectively. FIG. 6 is a coil excitation table showing the excitation state of the coil according to the energization sequence. The energization is switched from the first state to the second state, the third state, the fourth state, the fifth state, and the sixth state to excite the U phase, the V phase, and the W phase, respectively, to rotate the motor.
In FIG. 5, the outer coil 6, the inner coil 18, the outer coil 7, the inner coil 19, the outer coil 8, the inner coil 20, the outer coil 9, the inner coil 21, the outer coil 10, the inner coil 22, and the outer coil 22 are shown. Coil 11 and inner coil 23, outer coil 12 and inner coil 24, outer coil 13 and inner coil 25, outer coil 14 and inner coil 26, outer coil 15 and inner coil 27, outer coil 16 and inner coil 28, the outer coil 17 and the inner coil 29 are connected in parallel, respectively.
Since it is configured so that d1> d2, the current flowing through the coil is also larger in the outer coil than in the inner coil, and the outer magnetic flux portion 5a is the outer coil 6,7,8,9,10,11,12,13,14. , 15, 16 and 17 generate magnetic flux when the inner magnetic pole 5c is excited by the inner coils 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 and 29. It will be more than the generated magnetic flux.
FIG. 7 shows the magnetized state of the permanent magnet 1, and the magnetic flux is indicated by an arrow.
As shown in FIG. 7, the total number of surface magnetic fluxes of the outer magnets 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, 2n of the rotor is the inner magnets 3a, 3b, 3c, It is set higher than the total number of surface magnetic fluxes of 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n, and the outer magnets 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h. , 2i, 2j, 2k, 2l, 2m, 2n generate a large amount of magnetic flux Outer magnetic pole portion 3a, inner magnet 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l , 3m, 3n are opposed to the inner magnetic pole portion 5b, which generates a smaller magnetic flux than the outer magnetic pole portion 5a, so that a well-balanced and efficient driving force is generated.
Rotor outer magnets 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, 2n outer magnetized layers and inner magnets 3a, 3b, 3c, 3d, 3e, 3f , 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n Since the magnetic field is applied to both surfaces of the inner magnetizing layer, a higher driving force can be generated as compared with the conventional configuration.
The outer magnets 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, 2n face the outer magnetic pole 5a, and the inner magnets 3a, 3b, 3c face the inner magnetic pole 5b. , 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are configured to face each other, so the thickness of the magnet is compared to the case where the outer magnet and the inner magnet are integrally configured. The magnet can be made thin. Further, when the magnet holding member 1 is made of resin, the weight of the rotor can be reduced, and the reluctance members 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i, 4j, which are made of soft magnetic material, can be made lighter. Since the change in reluctance in the rotor rotation phase when the magnetic path is formed by 4k, 4l, 4m, and 4n can be made large, the reluctance torque can be increased.

三相ブラシレスモータの駆動の効率アップに適する構造Structure suitable for improving the efficiency of driving a three-phase brushless motor

1は磁石保持部材
1aは外周円筒部、1bは内周円筒部
2a,2b,2c,2d,2e,2f,2g,2h,2i,2j,2k,2l,2m,2nは外側磁石
3a,3b,3c,3d,3e,3f,3g,3h,3i,3j,3k,3l,3m,3nは内側磁石
4a,4b,4c,4d,4e,4f,4g,4h,4i,4j,4k,4l,4m,4nはリラクタンス部材
5はベースステータ
5aは外側磁極部
5bは内側磁極部
5cは連結部
6,7,8,9,10,11,11,13,14,15,16、17は外側コイル
18、19、20、21、22、23、24、25、26、27、28、29は内側コイル
1 is the outer peripheral cylindrical part of the magnet holding member 1a, 1b is the inner peripheral cylindrical part 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h, 2i, 2j, 2k, 2l, 2m, 2n are the outer magnets 3a, 3b. , 3c, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 3n are inner magnets 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h, 4i, 4j, 4k, 4l. , 4m, 4n is the reluctance member 5, the base stator 5a is the outer magnetic pole part 5b, the inner magnetic pole part 5c is the connecting part 6,7,8,9,10,11,11,13,14,15,16,17 is the outside. Cylinders 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 are inner coils.

Claims (1)

円筒形状の磁石保持部材と、該磁石保持部材の外周面に複数の扇型板形状であり軟磁性材料からなる隣り合う磁石とは異なる極性に着磁された永久磁石が交互に設けられて構成される外側磁石層と、該磁石保持部材の内周面に前記外側磁石層と同じ方向の磁界となるように配置された複数の扇型板形状であり隣り合う磁石とは異なる極性に着磁された永久磁石が交互に設けられて構成される内側磁石層と、一端を前記外側磁石層の外周面と同方向に向けられた外側磁極対向部ともう一端を前記内側磁石層の内周面と同方向に向けられた内側磁極対向部とを持ち前記外側磁石層を形成する各磁石の隣り合う境界面並びに前記内側磁石層を形成する各磁石の隣り合う境界面に挿入された軟磁性材料で形成されたリラクタンス部材とからなるロータと、
軟磁性材料からなり該ロータの外側磁石層の外周面に隙間をもって対向する第1の外側磁極部と該ロータの内側磁石層の内周面に隙間をもって対向する第1の内側磁極部と該第1の内側磁極部と前記第1の外側磁極部とをつなぐ連結部を持つ第1ステータと、
前記第1ステータの第1の外側磁極部と連結部の間であって前記ロータの外側磁石層とは軸方向に並んで配置され第1ステータに巻回され第1の外側磁極部を励磁する第1の外側コイルと、
前記第1ステータの第1の内側磁極部と連結部の間に前記ロータの内側磁石層とは軸方向に並んで配置され第1ステータに巻回され第1の外側磁極と異なる極性に第1の内側磁極部を励磁する第1の内側コイルと、
軟磁性材料からなり該ロータの外側磁石層の外周面に隙間をもって対向する第2の外側磁極部と該ロータの内側磁石層の内周面に隙間をもって対向する第2の内側磁極部と該第2の内側磁極部と前記第2の外側磁極部とをつなぐ連結部を持つ第2ステータと、
前記第2ステータの第2の外側磁極部と連結部の間であって前記ロータの外側磁石層とは軸方向に並んで配置され第2ステータに巻回され第2の外側磁極部を励磁する第2の外側コイルと、
前記第2ステータの第2の内側磁極部と連結部の間に前記ロータの内側磁石層とは軸方向に並んで配置され第2ステータに巻回され第2の外側磁極と異なる極性に第2の内側磁極部を励磁する第2の内側コイルと、
軟磁性材料からなり該ロータの外側磁石層の外周面に隙間をもって対向する第3の外側磁極部と該ロータの内側磁石層の内周面に隙間をもって対向する第3の内側磁極部と該第3の内側磁極部と前記第3の外側磁極部とをつなぐ連結部を持つ第3ステータと、
前記第3ステータの第3の外側磁極部と連結部の間であって前記ロータの外側磁石層とは軸方向に並んで配置され第3ステータに巻回され第3の外側磁極部を励磁する第3の外側コイルと、
前記第3ステータの第3の内側磁極部と連結部の間であって前記ロータの内側磁石層とは軸方向に並んで配置され第3ステータに巻回され第3の外側磁極と異なる極性に第3の内側磁極部を励磁する第3の内側コイルと、
を備えたモータ。
A cylindrical magnet holding member and a plurality of fan-shaped plate-shaped permanent magnets magnetized to different polarities from adjacent magnets made of a soft magnetic material are alternately provided on the outer peripheral surface of the magnet holding member. The outer magnet layer to be magnetized and a plurality of fan-shaped plates arranged on the inner peripheral surface of the magnet holding member so as to have a magnetic field in the same direction as the outer magnet layer, and magnetized to a different polarity from adjacent magnets. An inner magnet layer formed by alternately providing permanent magnets, an outer magnetic pole facing portion having one end directed in the same direction as the outer peripheral surface of the outer magnet layer, and an inner peripheral surface of the inner magnet layer at the other end. A soft magnetic material inserted into the adjacent interface of each magnet forming the outer magnet layer and the adjacent interface of each magnet forming the inner magnet layer, which has an inner magnetic pole facing portion oriented in the same direction as the above. A rotor made of a relaxation member made of
A first outer magnetic pole portion made of a soft magnetic material and facing the outer peripheral surface of the outer magnet layer of the rotor with a gap, a first inner magnetic pole portion facing the inner peripheral surface of the inner magnet layer of the rotor with a gap, and the first. A first stator having a connecting portion connecting the inner magnetic pole portion of 1 and the first outer magnetic pole portion,
Between the first outer magnetic pole portion of the first stator and the connecting portion, the outer magnet layer of the rotor is arranged side by side in the axial direction and wound around the first stator to excite the first outer magnetic pole portion. With the first outer coil,
The inner magnet layers of the rotor are arranged in an axial direction between the first inner magnetic pole portion and the connecting portion of the first stator, and are wound around the first stator to have a polarity different from that of the first outer magnetic pole. The first inner coil that excites the inner magnetic pole of the
A second outer magnetic pole portion made of a soft magnetic material and facing the outer peripheral surface of the outer magnet layer of the rotor with a gap, a second inner magnetic pole portion facing the inner peripheral surface of the inner magnet layer of the rotor with a gap, and the first A second stator having a connecting portion connecting the inner magnetic pole portion of 2 and the second outer magnetic pole portion,
Between the second outer magnetic pole portion of the second stator and the connecting portion, the outer magnet layer of the rotor is arranged side by side in the axial direction and wound around the second stator to excite the second outer magnetic pole portion. With the second outer coil,
The inner magnet layer of the rotor is arranged side by side in the axial direction between the second inner magnetic pole portion and the connecting portion of the second stator, and is wound around the second stator to have a polarity different from that of the second outer magnetic pole. The second inner coil that excites the inner magnetic pole of the
A third outer magnetic pole portion made of a soft magnetic material and facing the outer peripheral surface of the outer magnet layer of the rotor with a gap, a third inner magnetic pole portion facing the inner peripheral surface of the inner magnet layer of the rotor with a gap, and the first A third stator having a connecting portion connecting the inner magnetic pole portion of 3 and the third outer magnetic pole portion, and
Between the third outer magnetic pole portion of the third stator and the connecting portion, the outer magnet layer of the rotor is arranged side by side in the axial direction and wound around the third stator to excite the third outer magnetic pole portion. With the third outer coil,
Between the third inner magnetic pole portion and the connecting portion of the third stator, the inner magnet layer of the rotor is arranged side by side in the axial direction and wound around the third stator to have a polarity different from that of the third outer magnetic pole. A third inner coil that excites the third inner magnetic pole,
Motor equipped with.
JP2021001374U 2021-02-26 2021-02-26 Brushless motor using a permanent magnet embedded rotor Active JP3232489U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021001374U JP3232489U (en) 2021-02-26 2021-02-26 Brushless motor using a permanent magnet embedded rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021001374U JP3232489U (en) 2021-02-26 2021-02-26 Brushless motor using a permanent magnet embedded rotor

Publications (1)

Publication Number Publication Date
JP3232489U true JP3232489U (en) 2021-06-17

Family

ID=76327796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021001374U Active JP3232489U (en) 2021-02-26 2021-02-26 Brushless motor using a permanent magnet embedded rotor

Country Status (1)

Country Link
JP (1) JP3232489U (en)

Similar Documents

Publication Publication Date Title
JP4702286B2 (en) Rotor, motor driving method, compressor
US20070057589A1 (en) Interior permanent magnet rotor and interior permanent magnet motor
WO2008018354A1 (en) Permanent magnet type rotary electric device rotor
JP2007236073A (en) Hybrid rotary electric machine
JP2007143335A (en) Field magneton and motor
JP4970974B2 (en) Rotating electric machine
JP2004304958A (en) Permanent-magnetic motor
JP2011078202A (en) Axial gap motor
JP2008136352A (en) Rotor for permanent magnet motor, manufacturing method of same, permanent magnet motor, compressor, and refrigerating cycle
JP3232489U (en) Brushless motor using a permanent magnet embedded rotor
JP2000050543A (en) Permanent magnet embedded motor
JP4097902B2 (en) Rotor and compressor of permanent magnet motor and refrigeration cycle
JP3210634B2 (en) Permanent magnet type reluctance type rotating electric machine
JP2008187863A (en) Axial gap rotary electric machine and compressor
JP5946258B2 (en) PM stepping motor
JP3985281B2 (en) Rotating electric machine
JP5128800B2 (en) Hybrid permanent magnet rotating electric machine
JP5151183B2 (en) Axial gap type rotating electric machine and compressor
JP3720417B2 (en) Magnet motor
JP4569139B2 (en) Rotor for IPM motor, method for manufacturing rotor for IPM motor using the same, and IPM motor therefor.
JPH10191585A (en) Motor buried with permanent magnet
JP3229592U (en) Motor using permanent magnet
JP4666726B2 (en) Permanent magnet motor rotor
JP2005124335A (en) Switched reluctance motor and control method therefor
JP3777839B2 (en) Permanent magnet embedded motor

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3232489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150