JP3231889U - Molding equipment - Google Patents

Molding equipment Download PDF

Info

Publication number
JP3231889U
JP3231889U JP2021000567U JP2021000567U JP3231889U JP 3231889 U JP3231889 U JP 3231889U JP 2021000567 U JP2021000567 U JP 2021000567U JP 2021000567 U JP2021000567 U JP 2021000567U JP 3231889 U JP3231889 U JP 3231889U
Authority
JP
Japan
Prior art keywords
heat transfer
mold
transfer member
plate
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021000567U
Other languages
Japanese (ja)
Inventor
青木 健二
健二 青木
健太郎 坂本
健太郎 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Mach Inc
Original Assignee
Air Water Mach Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Mach Inc filed Critical Air Water Mach Inc
Priority to JP2021000567U priority Critical patent/JP3231889U/en
Application granted granted Critical
Publication of JP3231889U publication Critical patent/JP3231889U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

【課題】送り焼き成形によりエラストマー製品を製造する成形装置において、端部が未加硫状態の中間材料を製造する場合に、未加硫部分の位置精度を向上させる成形装置を提供する。【解決手段】成形装置100は、金型10の表面に接する熱盤20によって成形材料を加熱・冷却して成形する。熱盤20は、金型10の表面に沿って配列される熱伝達部材を備える。冷媒が供給される熱伝達部材は、付勢機構50によって金型10の表面に向けて付勢される。従って、冷媒が供給される熱伝達部材の寸法が低温になり熱媒が供給される熱伝達部材よりも小さくなった状態でも、付勢機構の付勢力によって熱伝達部材が金型10に確実に接触する。【選択図】図3PROBLEM TO BE SOLVED: To provide a molding apparatus for producing an elastomer product by feed-baking, which improves the positional accuracy of an unvulcanized portion when an intermediate material having an unvulcanized end portion is produced. A molding apparatus 100 heats and cools a molding material by a hot plate 20 in contact with the surface of a mold 10. The heat plate 20 includes heat transfer members arranged along the surface of the mold 10. The heat transfer member to which the refrigerant is supplied is urged toward the surface of the mold 10 by the urging mechanism 50. Therefore, even when the size of the heat transfer member to which the refrigerant is supplied becomes low and smaller than the heat transfer member to which the heat medium is supplied, the heat transfer member is reliably attached to the mold 10 by the urging force of the urging mechanism. Contact. [Selection diagram] Fig. 3

Description

本考案は、金型に充填した成形材料を加熱・冷却して成形する成形装置に関する。 The present invention relates to a molding apparatus that heats and cools a molding material filled in a mold to mold.

原材料ポリマーに加硫剤を加えて混錬し金型に充填して加熱する加硫成形によりOリングや長尺のエラストマー製品を製造する方法として、送り焼き成形と呼ばれる製造方法が用いられている。送り焼き成形では、加硫部分と、加硫部分の端部に設けられた未加硫部分を備える中間材料を成形する工程と、中間材料の端部同士を重ね合わせて加熱することにより、未加硫部分同士を加硫接合する工程とを行う。 A manufacturing method called feed-baking is used as a method for manufacturing O-rings and long elastomer products by vulcanization molding in which a vulcanizing agent is added to a raw material polymer, kneaded, filled in a mold, and heated. .. In feed-baking molding, a step of molding an intermediate material having a vulcanized portion and an unvulcanized portion provided at the end of the vulcanized portion and heating by superimposing the ends of the intermediate materials on each other are not performed. A step of vulcanizing and joining the vulcanized portions is performed.

特許文献1には、送り焼き成形に用いる中間材料を製造する成形装置が記載される。特許文献1の成形装置は、上型および下型を備える金型と、上型を背面側(上側)から加熱・冷却する上型用熱盤と、下型を背面側(下側)から加熱・冷却する下型用熱盤を備える。上型用熱盤および下型用熱盤は、上型と下型の間に充填される成形材料の長手方向の中央部分を加熱する加熱ゾーンと、成形材料の一方側の端部を冷却する冷却ゾーンと、成形材料の他方側の端部を冷却する加熱・冷却ゾーンを備える。 Patent Document 1 describes a molding apparatus for producing an intermediate material used for feed baking. The molding apparatus of Patent Document 1 includes a mold provided with an upper mold and a lower mold, a heating plate for an upper mold that heats and cools the upper mold from the back side (upper side), and a lower mold that heats the lower mold from the back side (lower side).・ Equipped with a lower mold heating plate for cooling. The upper and lower mold heaters have a heating zone that heats the longitudinal central portion of the molding material that is filled between the upper and lower molds and cools one end of the molding material. It is provided with a cooling zone and a heating / cooling zone for cooling the other end of the molding material.

特許文献1の成形装置では、上型用熱盤および下型用熱盤の加熱ゾーン、冷却ゾーン、および加熱・冷却ゾーンのそれぞれは、熱媒あるいは冷媒を通す管を備えた直方体状の金属部材からなる。各ゾーンの間には隙間あるいは断熱材が介在する。加熱・冷却ゾーンを構成する金属部材は複数の区画に分割されており、各区画に熱媒あるいは冷媒を通す管が設けられている。従って、熱媒と冷媒をどの区画まで流すかを変更できるので、加硫部分の長さが異なる中間材料を成形できる。また、特許文献1の成形装置は、金型を収容する密閉空間を備えており、密閉空間を減圧して真空状態で加硫成形を行う。 In the molding apparatus of Patent Document 1, each of the heating zone, the cooling zone, and the heating / cooling zone of the upper mold heating plate and the lower mold heating plate is a rectangular metal member provided with a tube for passing a heat medium or a refrigerant. Consists of. There is a gap or heat insulating material between each zone. The metal member constituting the heating / cooling zone is divided into a plurality of sections, and each section is provided with a pipe for passing a heat medium or a refrigerant. Therefore, since it is possible to change to which section the heat medium and the refrigerant flow, it is possible to mold intermediate materials having different lengths of the vulcanized portions. Further, the molding apparatus of Patent Document 1 is provided with a closed space for accommodating a mold, and vulcanization molding is performed in a vacuum state by reducing the pressure in the closed space.

特開2002−172628号公報JP-A-2002-172628

特許文献1のように、金型に熱盤を接触させて加熱・冷却を行う構造では、熱盤を構成する金属部材が温度によって収縮・膨張することによって加熱区画と冷却区画に寸法差ができてしまうので、冷却区画を金型に密着させることができないおそれがある。例えば、加熱区画と冷却区画が一体でなく別部品で構成されている場合には、加熱区画と冷却区画の境界に段差ができるため、冷却区画と金型との間に隙間ができてしまう。その結果、加熱区画と冷却区画との境界で金型を効果的に冷却できず、未加硫にすべき部位まで加硫が部分的に進行して、未加硫部分と加硫部分とが切り替わる遷移領域が拡大する。そのため、未加硫部分の位置精度が低下する。 In a structure in which a hot plate is brought into contact with a mold to heat and cool as in Patent Document 1, the metal member constituting the hot plate shrinks and expands depending on the temperature, so that a dimensional difference can be formed between the heating section and the cooling section. Therefore, there is a possibility that the cooling section cannot be brought into close contact with the mold. For example, when the heating section and the cooling section are not integrated but are composed of separate parts, a step is formed at the boundary between the heating section and the cooling section, so that a gap is formed between the cooling section and the mold. As a result, the mold could not be effectively cooled at the boundary between the heating section and the cooling section, and vulcanization partially proceeded to the part to be unvulcanized, and the unvulcanized part and the vulcanized part were separated. The transition area to be switched is expanded. Therefore, the position accuracy of the unvulcanized portion is lowered.

中間材料の端部同士を接合して長尺あるいはリング状のエラストマー製品を製造する場合に、接合部位に歪みや接合不良が発生すると不良品になってしまう。特に、シール部材を製造する場合には、わずかな歪みや曲がりで機能不全を生じてしまう。中間材料における未加硫部分の位置精度にばらつきがあると、加硫が進行した部位で接合してしまうことによって接合不良が発生し、不良品が発生する。 When the ends of intermediate materials are joined to each other to manufacture a long or ring-shaped elastomer product, if distortion or poor joining occurs at the joining site, the product becomes defective. In particular, in the case of manufacturing a seal member, a slight distortion or bending causes a malfunction. If there are variations in the positional accuracy of the unvulcanized portion of the intermediate material, bonding defects will occur due to bonding at the site where vulcanization has progressed, resulting in defective products.

また、冷却ゾーンにおける冷却効率が低いと、未加硫部分と加硫部分とが切り替わる遷
移領域の長さを短くできないため、加硫部分の有効長さを大きくとることができない。そのため、長尺あるいは大型のエラストマー製品を製造する際に、接合回数を削減できない。また、遷移領域の長さを短くできないため、中間材料の端部同士を接合する工程で使用する金型を小型化・軽量化することができない。
Further, if the cooling efficiency in the cooling zone is low, the length of the transition region where the unvulcanized portion and the vulcanized portion are switched cannot be shortened, so that the effective length of the vulcanized portion cannot be increased. Therefore, when manufacturing a long or large elastomer product, the number of joinings cannot be reduced. Further, since the length of the transition region cannot be shortened, it is not possible to reduce the size and weight of the mold used in the process of joining the ends of the intermediate materials.

本考案の課題は、このような点に鑑みて、送り焼き成形に使用するための、端部が未加硫状態の中間材料を製造する場合に、未加硫部分の位置精度を高めることにある。 In view of these points, an object of the present invention is to improve the positional accuracy of the unvulcanized portion when producing an intermediate material having an unvulcanized end portion for use in feed-baking molding. is there.

上記の課題を解決するために、本考案の成形装置は、成形材料が充填される金型と、前記金型の表面に接する熱盤と、を有し、前記熱盤は、前記表面に沿って配列される複数の熱伝達部材と、前記複数の熱伝達部材のうちの一部を前記表面に向けて付勢する付勢機構と、を備え、前記複数の熱伝達部材は、冷媒が供給される流路を備える冷却用熱伝達部材、および、熱媒が供給される流路を備える加熱用熱伝達部材を含み、前記冷却用熱伝達部材は、前記付勢機構によって前記表面に向けて付勢されることを特徴とする。 In order to solve the above problems, the molding apparatus of the present invention includes a mold filled with a molding material and a heat plate in contact with the surface of the mold, and the heat plate is along the surface. The plurality of heat transfer members are provided with a plurality of heat transfer members and an urging mechanism for urging a part of the plurality of heat transfer members toward the surface, and the plurality of heat transfer members are supplied with a refrigerant. The cooling heat transfer member includes a cooling heat transfer member including a flow path to be provided, and a heating heat transfer member including a flow path to which a heat medium is supplied, and the cooling heat transfer member is directed toward the surface by the urging mechanism. It is characterized by being urged.

本考案によれば、金型の表面に接する熱盤を構成する複数の熱伝達部材のうち、冷媒等によって冷却される冷却用熱伝達部材は、付勢機構によって金型の表面に向けて付勢される。従って、加熱用熱伝達部材と冷却用熱伝達部材の温度差によって冷却用熱伝達部材の寸法が加熱用熱伝達部材よりも小さくなった状態でも、付勢機構の付勢力によって、加熱用熱伝達部材に隣り合う冷却用熱伝達部材を金型に確実に接触させることができる。従って、金型の一部を冷却用熱伝達部材によって冷却して未加硫部分を成形し、金型の他の部分を加熱用熱伝達部材によって加熱して加硫部分を成形する場合に、未加硫部分の冷却効率を高めて加硫の進行を抑制できる。よって、加硫部分と未加硫部分とが切り替わる遷移領域を短くすることができ、未加硫部分の位置精度を高めることができる。 According to the present invention, among the plurality of heat transfer members constituting the heat plate in contact with the surface of the mold, the heat transfer member for cooling cooled by the refrigerant or the like is attached to the surface of the mold by the urging mechanism. Be forced. Therefore, even when the size of the cooling heat transfer member is smaller than that of the heating heat transfer member due to the temperature difference between the heating heat transfer member and the cooling heat transfer member, the heating heat transfer is performed by the urging force of the urging mechanism. The cooling heat transfer member adjacent to the member can be reliably brought into contact with the mold. Therefore, when a part of the mold is cooled by a cooling heat transfer member to form an unvulcanized part and the other part of the mold is heated by a heating heat transfer member to form a vulcanized part, The cooling efficiency of the unvulcanized portion can be increased to suppress the progress of vulcanization. Therefore, the transition region where the vulcanized portion and the unvulcanized portion are switched can be shortened, and the position accuracy of the unvulcanized portion can be improved.

本考案において、前記金型は、下型および上型を備え、前記熱盤は、前記下型に前記上型とは反対側から接する第1熱盤、および、前記上型に前記下型とは反対側から接する第2熱盤を備え、前記第1熱盤および前記第2熱盤のそれぞれは、前記冷却用熱伝達部材および前記加熱用熱伝達部材を含んでおり一列に配列される複数の前記熱伝達部材、および、前記冷却用熱伝達部材を付勢する前記付勢機構を備え、前記第1熱盤の前記冷却用熱伝達部材と、前記第2熱盤の前記冷却用熱伝達部材とは、前記下型および前記上型を挟んで対向することが好ましい。このようにすると、金型を上下方向の両側から加熱・冷却することができるので、加熱・冷却効率が高い。また、冷却用熱伝達部材は上下方向の両側から金型に確実に接触するので、狙った部位を確実に冷却できる。従って、未加硫部分の位置精度を高めることができる。 In the present invention, the mold includes a lower mold and an upper mold, and the heat plate includes a first heat plate that contacts the lower mold from the side opposite to the upper mold, and the upper mold with the lower mold. A plurality of heat plates that are in contact with each other from the opposite side, and each of the first heat plate and the second heat plate includes the cooling heat transfer member and the heating heat transfer member and is arranged in a row. The cooling heat transfer member of the first heat plate and the cooling heat transfer of the second heat plate are provided with the heat transfer member and the urging mechanism for urging the cooling heat transfer member. It is preferable that the member faces the lower mold and the upper mold with the upper mold in between. In this way, the mold can be heated and cooled from both sides in the vertical direction, so that the heating and cooling efficiency is high. Further, since the cooling heat transfer member reliably contacts the mold from both sides in the vertical direction, the target portion can be reliably cooled. Therefore, the position accuracy of the unvulcanized portion can be improved.

本考案において、前記第1熱盤を前記下型とは反対側から支持する第1支持板と、前記第2熱盤を前記上型とは反対側から支持する第2支持板と、前記第1支持板と前記第2支持板の一方を他方に向けて押圧する押圧機構と、を有し、前記第1熱盤に設けられた前記付勢機構は、前記第1支持板と前記冷却用熱伝達部材との間に介在する第1弾性体を備え、前記第2熱盤に設けられた前記付勢機構は、前記第2支持板と前記冷却用熱伝達部材との間に介在する第2弾性体を備えることが好ましい。このようにすると、金型を型締めするときには、押圧機構の押圧力によって加熱用熱伝達部材が金型に押し付けられるので、加硫部分に対しては押圧機構の押圧が加わる。一方で、未加硫部分に対しては、支持板と熱盤との間に弾性体が介在しているために押圧機構の押圧力がそのまま作用せずに押圧力が低減される。よって、型締め用の押圧機構の押圧力によって未加硫部分の加硫反応が進行することを回避できる。 In the present invention, the first support plate that supports the first heat plate from the side opposite to the lower mold, the second support plate that supports the second heat plate from the side opposite to the upper mold, and the first. The urging mechanism provided on the first heating plate has a pressing mechanism for pressing one of the support plate and the second support plate toward the other, and the urging mechanism is provided for the first support plate and the cooling. A first elastic body is provided between the heat transfer member, and the urging mechanism provided on the second heat plate is interposed between the second support plate and the cooling heat transfer member. It is preferable to have two elastic bodies. In this way, when the mold is fastened, the heat transfer member for heating is pressed against the mold by the pressing pressure of the pressing mechanism, so that the pressing mechanism is pressed against the vulcanized portion. On the other hand, since the elastic body is interposed between the support plate and the hot plate for the unvulcanized portion, the pressing force of the pressing mechanism does not act as it is and the pressing force is reduced. Therefore, it is possible to prevent the vulcanization reaction of the unvulcanized portion from proceeding due to the pressing force of the pressing mechanism for mold clamping.

本考案において、前記付勢機構は、前記冷却用熱伝達部材を前記付勢機構の付勢方向に
貫通する貫通穴と、前記貫通穴に通されるストッパーボルトを備え、前記ストッパーボルトは、前記貫通穴の縁に設けられた座ぐり部に収容される頭部と、前記貫通穴から前記頭部とは反対側に突出して前記第1支持板または前記第2支持板にねじ止めされる先端部と、備えることが好ましい。このようにすると、冷却用熱伝達部材をストッパーボルトによって付勢方向に移動可能な状態に保持できる。従って、冷却用熱伝達部材の位置ずれや脱落を防止できる。
In the present invention, the urging mechanism includes a through hole that penetrates the cooling heat transfer member in the urging direction of the urging mechanism, and a stopper bolt that is passed through the through hole. A head house accommodated in a counterbore provided at the edge of the through hole, and a tip protruding from the through hole to the opposite side of the head and screwed to the first support plate or the second support plate. It is preferable to provide a unit. In this way, the cooling heat transfer member can be held in a state where it can be moved in the urging direction by the stopper bolt. Therefore, it is possible to prevent the cooling heat transfer member from being displaced or falling off.

本考案において、前記第1弾性体および前記第2弾性体は、前記冷却用熱伝達部材に設けられた凹部に圧縮状態で配置されるばねである構成、あるいは、前記第1弾性体および前記第2弾性体は、熱硬化性エラストマーである構成を採用できる。 In the present invention, the first elastic body and the second elastic body are a spring that is arranged in a compressed state in a recess provided in the cooling heat transfer member, or the first elastic body and the first elastic body. As the two elastic bodies, a structure that is a thermosetting elastomer can be adopted.

本考案において、前記冷却用熱伝達部材と前記加熱用熱伝達部材との間に空気層もしくは断熱材が介在することが好ましい。このようにすると、加熱用熱伝達部材から冷却用熱伝達部材への熱伝達を低減させることができる。従って、未加硫部分の冷却効率を高めることができる。 In the present invention, it is preferable that an air layer or a heat insulating material is interposed between the cooling heat transfer member and the heating heat transfer member. In this way, the heat transfer from the heating heat transfer member to the cooling heat transfer member can be reduced. Therefore, the cooling efficiency of the unvulcanized portion can be increased.

本考案の成形装置によれば、金型の表面に接する熱盤を構成する複数の熱伝達部材のうち、冷媒が供給される流路を備える冷却用熱伝達部材は、付勢機構によって金型の表面に向けて付勢される。従って、加熱用熱伝達部材と冷却用熱伝達部材の温度差によって冷却用熱伝達部材の寸法が加熱用熱伝達部材よりも小さくなった状態でも、付勢機構の付勢力によって冷却用熱伝達部材を金型に確実に接触させることができる。従って、金型の一部を冷却用熱伝達部材によって冷却して未加硫部分を成形し、金型の他の部分を加熱用熱伝達部材によって加熱して加硫部分を成形する場合に、未加硫部分の冷却効率を高めて加硫の進行を抑制できる。よって、加硫部分と未加硫部分とが切り替わる遷移領域を短くすることができ、未加硫部分の位置精度を高めることができる。 According to the molding apparatus of the present invention, among the plurality of heat transfer members constituting the heat plate in contact with the surface of the mold, the cooling heat transfer member provided with the flow path to which the refrigerant is supplied is the mold by the urging mechanism. Is urged towards the surface of. Therefore, even when the size of the cooling heat transfer member is smaller than that of the heating heat transfer member due to the temperature difference between the heating heat transfer member and the cooling heat transfer member, the cooling heat transfer member is driven by the urging force of the urging mechanism. Can be reliably contacted with the mold. Therefore, when a part of the mold is cooled by a cooling heat transfer member to form an unvulcanized part and the other part of the mold is heated by a heating heat transfer member to form a vulcanized part, The cooling efficiency of the unvulcanized portion can be increased to suppress the progress of vulcanization. Therefore, the transition region where the vulcanized portion and the unvulcanized portion are switched can be shortened, and the position accuracy of the unvulcanized portion can be improved.

中間材料を用いたエラストマー製品の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the elastomer product using the intermediate material. 図1とは異なる中間材料を用いたエラストマー製品の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the elastomer product using the intermediate material different from FIG. 本考案を適用した成形装置の正面図である。It is a front view of the molding apparatus to which this invention is applied. 本考案を適用した成形装置の側面図である。It is a side view of the molding apparatus to which this invention is applied. 図1の中間材料を成形する金型の説明図である。It is explanatory drawing of the mold which molds the intermediate material of FIG. 真空室の説明図である。It is explanatory drawing of a vacuum chamber. 図2の中間材料を成形する金型の説明図である。It is explanatory drawing of the mold which molds the intermediate material of FIG. 図1の中間材料を成形する金型用の熱盤を示す説明図である。It is explanatory drawing which shows the hot disk for the mold which molds the intermediate material of FIG. 図2の中間材料を成形する金型用の熱盤を示す説明図である。It is explanatory drawing which shows the hot disk for the mold which molds the intermediate material of FIG. 図9の熱盤に設けられた付勢機構の説明図である。It is explanatory drawing of the urging mechanism provided in the hot disk of FIG. 変形例1の付勢機構を示す説明図である。It is explanatory drawing which shows the urging mechanism of the modification 1. FIG. 変形例2の付勢機構を示す説明図である。It is explanatory drawing which shows the urging mechanism of the modification 2.

以下に、図面を参照して、本考案を適用した成形装置の実施形態を説明する。 Hereinafter, embodiments of a molding apparatus to which the present invention is applied will be described with reference to the drawings.

(エラストマー製品の製造方法)
図1、図2は、送り焼き成形によるエラストマー製品の製造方法の説明図である。送り焼き成形では、端部が未加硫状態の加硫ゴム等からなる中間材料を成形する第1工程と、中間材料の端部同士を重ね合わせて金型内で加熱して加硫処理することにより接合する第2工程を行う。本考案を適用した成形装置は、第1工程に用いるものである。
(Manufacturing method of elastomer products)
1 and 2 are explanatory views of a method of manufacturing an elastomer product by feed-baking molding. In feed-baking molding, the first step of molding an intermediate material made of vulcanized rubber or the like whose ends are unvulcanized and the ends of the intermediate materials are overlapped with each other and heated in a mold for vulcanization. The second step of joining is performed. The molding apparatus to which the present invention is applied is used in the first step.

本考案を適用した成形装置は、例えば、Oリング、角リング、甲山パッキン、甲丸パッキン等として使用されるエラストマー製品を製造するための、中間材料を製造する。エラストマー製品の断面厚さは、例えば、3〜50mm程度である。また、エラストマー製品の内径は、0.5〜30m程度である。成形材料としては、硫黄加硫系ニトリルゴム(NBR)、ポリオール加硫系フッ素ゴム(FKM)、等を用いることができる。 The molding apparatus to which the present invention is applied manufactures an intermediate material for manufacturing an elastomer product used as, for example, an O-ring, a square ring, an instep packing, an instep packing, and the like. The cross-sectional thickness of the elastomer product is, for example, about 3 to 50 mm. The inner diameter of the elastomer product is about 0.5 to 30 m. As the molding material, sulfur vulcanized nitrile rubber (NBR), polyol vulcanized fluororubber (FKM), and the like can be used.

図1は、中間材料1を用いたエラストマー製品の製造方法の説明図である。図2は、図1とは異なる中間材料6を用いたエラストマー製品の製造方法の説明図である。図1(a)、図2(a)に示すように、中間材料1および中間材料6は、それぞれ、所定長さの加硫部分2と、加硫部分2の両端に形成された未加硫部分3を備える。図1(a)に示す中間材料1は、円弧状部材である。図2(a)に示す中間材料6は、C字状の円弧状部材である。なお、本考案を適用した成形装置で成形される中間材料の形状は、図1、図2と異なる形状でもよく、適宜変更可能である。例えば、直線状であってもよい。 FIG. 1 is an explanatory diagram of a method for manufacturing an elastomer product using the intermediate material 1. FIG. 2 is an explanatory diagram of a method for manufacturing an elastomer product using an intermediate material 6 different from that in FIG. As shown in FIGS. 1 (a) and 2 (a), the intermediate material 1 and the intermediate material 6 have a vulcanized portion 2 having a predetermined length and an unvulcanized portion 2 formed at both ends of the vulcanized portion 2, respectively. The part 3 is provided. The intermediate material 1 shown in FIG. 1A is an arcuate member. The intermediate material 6 shown in FIG. 2A is a C-shaped arcuate member. The shape of the intermediate material molded by the molding apparatus to which the present invention is applied may be different from those in FIGS. 1 and 2, and can be changed as appropriate. For example, it may be linear.

図1(a)に示す中間材料1は、生ゴムなどの原材料に加硫剤を加えて混錬した成形材料を後述する金型10(図5参照)に充填して加熱・冷却することにより成形される。図2(a)に示す中間材料6は、後述する金型10A(図7参照)に成形材料を充填して加熱・冷却することにより成形される。本考案を適用した成形装置は、金型10あるいは金型10A内に充填した成形材料の長手方向の中央部分を加熱しながら成形することによって加硫部分2を成形し、成形材料の端部を冷却しながら成形することによって未加硫部分3を成形する。図1(a)、図2(a)に示すように、中間材料1および中間材料6は、それぞれ、未加硫部分3同士を接合する第2工程を行う前に、未加硫部分3が斜めにカットされる。 The intermediate material 1 shown in FIG. 1A is formed by filling a mold 10 (see FIG. 5), which will be described later, with a molding material obtained by adding a vulcanizing agent to a raw material such as raw rubber and kneading the mixture, and heating and cooling the mixture. Will be done. The intermediate material 6 shown in FIG. 2A is formed by filling a mold 10A (see FIG. 7), which will be described later, with a molding material, and heating and cooling the intermediate material 6. In the molding apparatus to which the present invention is applied, the vulcanized portion 2 is molded by molding while heating the central portion of the molding material filled in the mold 10 or the mold 10A in the longitudinal direction, and the end portion of the molding material is formed. The unvulcanized portion 3 is molded by molding while cooling. As shown in FIGS. 1 (a) and 2 (a), the intermediate material 1 and the intermediate material 6 are respectively subjected to the unvulcanized portion 3 before the second step of joining the unvulcanized portions 3 to each other. It is cut diagonally.

図1(b)、図1(c)に示すように、中間材料1からは、エラストマー製品4A、4Bを製造することができる。図2(b)に示すように、中間材料6からは、エラストマー製品7を製造することができる。エラストマー製品4A、4B、7は、斜めにカットした未加硫部分3同士を重ね合わせて接合した接合部5を備える。図1(b)に示すリング状のエラストマー製品4Aは、1本の中間材料1の両端を接合することにより製造される。また、図1(c)に示す大型のエラストマー製品4Bは、2本の中間材料1の端部同士を接合することに製造される。接合する中間材料1の数を増やすことにより、さらに大型のエラストマー製品を製造できる。また、C字状の中間材料6を複数接合することにより、図2(b)に示す形状のエラストマー製品7を製造できる。 As shown in FIGS. 1 (b) and 1 (c), elastomer products 4A and 4B can be produced from the intermediate material 1. As shown in FIG. 2B, the elastomer product 7 can be produced from the intermediate material 6. The elastomer products 4A, 4B, and 7 include a joint portion 5 in which diagonally cut unvulcanized portions 3 are overlapped and joined. The ring-shaped elastomer product 4A shown in FIG. 1B is manufactured by joining both ends of one intermediate material 1. Further, the large elastomer product 4B shown in FIG. 1C is manufactured by joining the ends of two intermediate materials 1 to each other. By increasing the number of intermediate materials 1 to be joined, a larger elastomer product can be manufactured. Further, by joining a plurality of C-shaped intermediate materials 6, the elastomer product 7 having the shape shown in FIG. 2B can be manufactured.

(成形装置)
図3は、本考案を適用した成形装置100の正面図である。図4は、本考案を適用した成形装置100の側面図である。図3、図4に示す成形装置100は、金型10と、金型10を加熱・冷却する熱盤20を備える。金型10は、上下方向に対向する下型11および上型12を備える。金型10は、同一構成の2つの熱盤20によって上側と下側から加熱・冷却される。2つの熱盤20の一方は、下型11に下側から接する第1熱盤29Aであり、2つの熱盤20の他方は、上型12に上側から接する第2熱盤29B(図6参照)である。熱盤20の構造については後述する。
(Molding equipment)
FIG. 3 is a front view of the molding apparatus 100 to which the present invention is applied. FIG. 4 is a side view of the molding apparatus 100 to which the present invention is applied. The molding apparatus 100 shown in FIGS. 3 and 4 includes a mold 10 and a heating plate 20 for heating and cooling the mold 10. The mold 10 includes a lower mold 11 and an upper mold 12 facing each other in the vertical direction. The mold 10 is heated and cooled from the upper side and the lower side by two heating plates 20 having the same configuration. One of the two heat plates 20 is a first heat plate 29A that contacts the lower mold 11 from below, and the other of the two heat plates 20 is a second heat plate 29B that contacts the upper mold 12 from above (see FIG. 6). ). The structure of the hot plate 20 will be described later.

また、成形装置100は、第1熱盤29Aを介して下型11を下側から支持する第1支持板31と、第2熱盤29Bを介して上型12を上側から支持する第2支持板32と、第1支持板31を第2支持板32に向けて押圧する押圧機構としての油圧シリンダ33を備える。油圧シリンダ33を駆動すると、下型11および第1熱盤29Aは、第1支持板31に載った状態で上下方向に移動する。金型10は、装置幅方向の寸法が奥行方向の寸法よりも長い長方形の平面形状をしている。このように、金型10が横長の形状であるため、成形装置100は、装置幅方向に並ぶ複数の油圧シリンダ33を備える。第1熱盤29
Aと第1支持板31の間、および、第2熱盤29Bと第2支持板32との間には、断熱板9が介在する。
Further, the molding apparatus 100 has a first support plate 31 that supports the lower mold 11 from below via the first heat plate 29A, and a second support that supports the upper mold 12 from above via the second heat plate 29B. A plate 32 and a hydraulic cylinder 33 as a pressing mechanism for pressing the first support plate 31 toward the second support plate 32 are provided. When the hydraulic cylinder 33 is driven, the lower mold 11 and the first hot plate 29A move in the vertical direction while being mounted on the first support plate 31. The mold 10 has a rectangular planar shape in which the dimension in the device width direction is longer than the dimension in the depth direction. As described above, since the mold 10 has a horizontally long shape, the molding apparatus 100 includes a plurality of hydraulic cylinders 33 arranged in the device width direction. 1st hot plate 29
A heat insulating plate 9 is interposed between A and the first support plate 31 and between the second heating plate 29B and the second support plate 32.

図5は、図1の中間材料1を成形する金型10の説明図である。図5(a)は、上型12を下側から見た底面図であり、図5(b)は、下型11を上側から見た平面図である。図5(c)、図5(d)は、金型10の断面図であり、図5(a)、図5(b)のA−A位置で切断した断面図である。図5(c)は、上型12が下型11から離れた状態を示し、図5(d)は、下型11と上型12とを上下に当接させた状態を示す。 FIG. 5 is an explanatory view of a mold 10 for molding the intermediate material 1 of FIG. FIG. 5A is a bottom view of the upper mold 12 viewed from below, and FIG. 5B is a plan view of the lower mold 11 viewed from above. 5 (c) and 5 (d) are cross-sectional views of the mold 10, and are cross-sectional views cut at positions AA of FIGS. 5 (a) and 5 (b). FIG. 5 (c) shows a state in which the upper mold 12 is separated from the lower mold 11, and FIG. 5 (d) shows a state in which the lower mold 11 and the upper mold 12 are in contact with each other up and down.

図5(b)に示すように、下型11は、金型10の長手方向に延びる円弧状の型溝11aを備える。型溝11aは、金型10の長手方向と交差する方向に一定間隔で並んでいる。図5(a)に示すように、上型12は、一定間隔で並ぶ複数の型溝12aを備える。下型11と上型12とを上下に当接させると、図5(d)に示すように、型溝11aと型溝12aによって円形断面の充填空間Cが形成される。下型11において、各型溝11aと隣り合う位置には、喰い切り溝13が形成されている。喰い切り溝13は、充填空間Cから溢れた成形材料を収容する。 As shown in FIG. 5B, the lower mold 11 includes an arc-shaped mold groove 11a extending in the longitudinal direction of the mold 10. The mold grooves 11a are arranged at regular intervals in a direction intersecting the longitudinal direction of the mold 10. As shown in FIG. 5A, the upper mold 12 includes a plurality of mold grooves 12a arranged at regular intervals. When the lower mold 11 and the upper mold 12 are brought into contact with each other vertically, as shown in FIG. 5D, the mold groove 11a and the mold groove 12a form a filling space C having a circular cross section. In the lower mold 11, a bite-cutting groove 13 is formed at a position adjacent to each mold groove 11a. The cutting groove 13 accommodates the molding material overflowing from the filling space C.

下型11は、長手方向の両端に設けられた位置決め穴11bを備える。上型12は、各位置決め穴11bと対向する位置決めピン12bを備える。金型10を閉じるときは、位置決め穴11bに位置決めピン12bが嵌合させることにより、下型11と上型12の位置合わせを行う。なお、位置決め穴11bおよび位置決めピン12bの位置および数は、図5(a)、図5(b)に図示される位置に限定されるものではなく、適宜変更可能である。 The lower mold 11 includes positioning holes 11b provided at both ends in the longitudinal direction. The upper die 12 includes positioning pins 12b facing each positioning hole 11b. When closing the mold 10, the positioning pin 12b is fitted into the positioning hole 11b to align the lower mold 11 and the upper mold 12. The positions and numbers of the positioning holes 11b and the positioning pins 12b are not limited to the positions shown in FIGS. 5A and 5B, and can be changed as appropriate.

成形装置100は、金型10を収容する真空室40を備える。図6は、真空室40の説明図である。図6(a)は、真空室40を開けた状態を示し、図6(b)は、密閉状態の真空室40に金型10が収容されている状態を示す。図6(a)、図6(b)の左半分は真空室40および金型10を装置前面側から見た正面図であり、図6(a)、図6(b)の右半分は真空室40および金型10の断面構成を示す。真空室40は、下型11が内側に嵌め込まれた下型フレーム41と、下型フレーム41に上側から当接する真空枠42と、真空枠42の内側にスライド可能に嵌まる蓋枠43によって構成される。 The molding apparatus 100 includes a vacuum chamber 40 that houses the mold 10. FIG. 6 is an explanatory diagram of the vacuum chamber 40. FIG. 6A shows a state in which the vacuum chamber 40 is opened, and FIG. 6B shows a state in which the mold 10 is housed in the closed vacuum chamber 40. The left half of FIGS. 6 (a) and 6 (b) is a front view of the vacuum chamber 40 and the mold 10 as viewed from the front side of the apparatus, and the right half of FIGS. 6 (a) and 6 (b) is a vacuum. The cross-sectional structure of the chamber 40 and the mold 10 is shown. The vacuum chamber 40 is composed of a lower frame 41 in which the lower mold 11 is fitted inside, a vacuum frame 42 that abuts on the lower frame 41 from above, and a lid frame 43 that is slidably fitted inside the vacuum frame 42. Will be done.

図6(a)、図6(b)に示すように、蓋枠43は第2支持板32の外周縁に固定される。蓋枠43は、断熱板9を介して第2支持板32に固定される第2熱盤29Bの外周側を囲んでいる。図6(b)に示すように、油圧シリンダ44によって真空枠42を下向きに押圧して真空枠42の下端を下型フレーム41に密着させることにより、真空室40が密閉される。この状態で、図示しない真空ポンプ等を用いて真空室40の内部を減圧することにより、金型10の周囲を真空空間とする。 As shown in FIGS. 6A and 6B, the lid frame 43 is fixed to the outer peripheral edge of the second support plate 32. The lid frame 43 surrounds the outer peripheral side of the second heating plate 29B fixed to the second support plate 32 via the heat insulating plate 9. As shown in FIG. 6B, the vacuum chamber 40 is sealed by pressing the vacuum frame 42 downward by the hydraulic cylinder 44 and bringing the lower end of the vacuum frame 42 into close contact with the lower frame 41. In this state, the inside of the vacuum chamber 40 is depressurized using a vacuum pump or the like (not shown) to create a vacuum space around the mold 10.

図3、図4に示すように、成形装置100は、金型10および油圧シリンダ33の幅方向の両側に配置される一対のフレーム34と、一対のフレーム34に支持され金型10の幅方向の両側に配置される一対のガイドレール35と、金型10の下方に配置される引出シリンダ36を備える。図4に示すように、一対のガイドレール35はフレーム34の装置前方側へ延びている。引出シリンダ36を装置前方側へ伸ばすと、ガイドレール35に沿って金型10および下型フレーム41がスライドして金型10が装置前方側へ引き出される(図4参照)。 As shown in FIGS. 3 and 4, the molding apparatus 100 includes a pair of frames 34 arranged on both sides of the mold 10 and the hydraulic cylinder 33 in the width direction, and a pair of frames 34 supported by the pair of frames 34 in the width direction of the mold 10. A pair of guide rails 35 arranged on both sides of the mold 10 and a drawer cylinder 36 arranged below the mold 10 are provided. As shown in FIG. 4, the pair of guide rails 35 extend to the front side of the device of the frame 34. When the drawer cylinder 36 is extended to the front side of the device, the mold 10 and the lower frame 41 slide along the guide rail 35, and the mold 10 is pulled out to the front side of the device (see FIG. 4).

成形装置100により中間材料1を成形するときは、引出シリンダ36を駆動して金型10をフレーム34の前方へ引き出した状態で上型12を上方へ開き、金型10の内部に成形材料を入れて上型12を閉じる。上型12の開閉動作は、ガイドレール35に支持さ
れるエジェクトシリンダ37により行う。しかる後に、引出シリンダ36を駆動して金型10を油圧シリンダ33の上方へ戻し、真空室40を密閉し減圧する。そして、油圧シリンダ33を駆動して真空室40内で金型10を押圧しながら、熱盤20に熱媒および冷媒を供給して加硫成形を行う。成形後は、再び金型10を装置前方側へ引き出して開き、成形品を取り出す。
When the intermediate material 1 is molded by the molding apparatus 100, the upper mold 12 is opened upward with the drawer cylinder 36 being driven to pull out the mold 10 to the front of the frame 34, and the molding material is placed inside the mold 10. Insert and close the upper mold 12. The opening and closing operation of the upper die 12 is performed by the eject cylinder 37 supported by the guide rail 35. After that, the drawer cylinder 36 is driven to return the mold 10 to the upper side of the hydraulic cylinder 33, and the vacuum chamber 40 is sealed and the pressure is reduced. Then, while driving the hydraulic cylinder 33 and pressing the mold 10 in the vacuum chamber 40, the heat medium and the refrigerant are supplied to the hot plate 20 to perform vulcanization molding. After molding, the mold 10 is pulled out to the front side of the apparatus again to open, and the molded product is taken out.

(金型の別の例)
図7は、図2の中間材料6を成形する金型10Aの説明図である。金型10Aの平面形状はドーナツ形(環状)である。金型10Aは、上下方向に対向する環状の下型14および上型15を備える。図7(a)は、上型15を下側から見た底面図であり、図7(b)は、下型14を上側から見た平面図である。図7(b)に示すように、下型14は、環状の型溝14aを備える。図7(a)に示すように、上型15は、型溝14aと対向する環状の型溝15aを備える。下型14と上型15とを上下に当接させると、型溝14aと型溝15aによって円形断面の充填空間Cが形成される。下型14は、型溝14aの内周側および外周側に形成された喰い切り溝16を備える。また、上記の金型10と同様に、下型14と上型15の一方は図示しない位置決め穴を備え、他方は図示しない位置決めピンを備える。
(Another example of mold)
FIG. 7 is an explanatory view of a mold 10A for molding the intermediate material 6 of FIG. The planar shape of the mold 10A is a donut shape (annular). The mold 10A includes an annular lower mold 14 and an upper mold 15 facing each other in the vertical direction. FIG. 7A is a bottom view of the upper mold 15 viewed from below, and FIG. 7B is a plan view of the lower mold 14 viewed from above. As shown in FIG. 7B, the lower mold 14 includes an annular mold groove 14a. As shown in FIG. 7A, the upper mold 15 includes an annular mold groove 15a facing the mold groove 14a. When the lower mold 14 and the upper mold 15 are brought into contact with each other vertically, the filling space C having a circular cross section is formed by the mold groove 14a and the mold groove 15a. The lower mold 14 includes a cutting groove 16 formed on the inner peripheral side and the outer peripheral side of the mold groove 14a. Further, similarly to the above-mentioned mold 10, one of the lower mold 14 and the upper mold 15 is provided with a positioning hole (not shown), and the other is provided with a positioning pin (not shown).

本考案を適用した成形装置100は、図5の金型10に代えて、図7の金型10Aを用いて加硫成形を行う構成に変更可能である。この場合、熱盤20および真空室40は、金型10Aに対応する形状に変更する。例えば、熱盤20は、金型10Aに対応する形状の熱盤20A(図9参照)に変更する。また、真空室40は、下型14に下側から接する熱盤20Aの外周側を囲む真空枠と、上型15に上側から接する熱盤20Aの外周側を囲む真空枠とを密着させて金型10Aの周囲に真空空間を構成する構成とする。また、他の構成についても、適宜、金型10Aおよび熱盤20Aに対応する形状に変更する。例えば、金型10Aを加圧する油圧シリンダ33は一本のみとする。 The molding apparatus 100 to which the present invention is applied can be changed to a configuration in which vulcanization molding is performed using the mold 10A of FIG. 7 instead of the mold 10 of FIG. In this case, the hot plate 20 and the vacuum chamber 40 are changed to the shapes corresponding to the mold 10A. For example, the hot plate 20 is changed to a hot plate 20A (see FIG. 9) having a shape corresponding to the mold 10A. Further, in the vacuum chamber 40, the vacuum frame surrounding the outer peripheral side of the heat plate 20A in contact with the lower mold 14 from below and the vacuum frame surrounding the outer peripheral side of the heat plate 20A in contact with the upper mold 15 from above are brought into close contact with each other. A vacuum space is formed around the mold 10A. Further, the other configurations are appropriately changed to the shapes corresponding to the mold 10A and the hot plate 20A. For example, only one hydraulic cylinder 33 pressurizes the mold 10A.

(熱盤)
図8は、図1の中間材料1を成形する金型10用の熱盤20を示す説明図である。図8(a)は、熱盤20の平面図であり、図8(b)は、熱盤20の正面図である。金型10に下側から接する第1熱盤29Aと、金型10に上側から接する第2熱盤29Bは、いずれも図8に示す熱盤20からなる。熱盤20は、加熱部21、冷却部22、および加熱・冷却部23を備える。これらは、冷却部22、加熱部21、加熱・冷却部23の順で金型10の長手方向に一列に配列される。
(Hot plate)
FIG. 8 is an explanatory view showing a heating plate 20 for a mold 10 for molding the intermediate material 1 of FIG. 8 (a) is a plan view of the hot plate 20 and FIG. 8 (b) is a front view of the hot plate 20. The first heat plate 29A in contact with the mold 10 from below and the second heat plate 29B in contact with the mold 10 from above are both composed of the heat plates 20 shown in FIG. The hot plate 20 includes a heating unit 21, a cooling unit 22, and a heating / cooling unit 23. These are arranged in a row in the longitudinal direction of the mold 10 in the order of the cooling unit 22, the heating unit 21, and the heating / cooling unit 23.

冷却部22、加熱部21、および加熱・冷却部23のそれぞれは、金属等からなる熱伝達部材であり、内部に熱媒あるいは冷媒を流す流路24を備えている。各流路24は、図示しない熱媒・冷媒供給源に接続される。冷却部22は、U字状の流路24が1本設けられた1つの熱伝達部材22a(冷却用熱伝達部材)からなり、金型10の長手方向の一方側の端部に配置される。冷却部22は、中間材料1における一方側の端部の未加硫部分3を成形する。 Each of the cooling unit 22, the heating unit 21, and the heating / cooling unit 23 is a heat transfer member made of metal or the like, and includes a flow path 24 through which a heat medium or a refrigerant flows. Each flow path 24 is connected to a heat medium / refrigerant supply source (not shown). The cooling unit 22 is composed of one heat transfer member 22a (cooling heat transfer member) provided with one U-shaped flow path 24, and is arranged at one end of the mold 10 in the longitudinal direction. .. The cooling unit 22 forms the unvulcanized portion 3 at one end of the intermediate material 1.

加熱部21は、U字状の流路24が複数本設けられた1つの熱伝達部材21a(加熱用熱伝達部材)からなり、金型10の長手方向の中間部分に配置される。加熱部21を構成する熱伝達部材21aは、冷却部22を構成する熱伝達部材22aよりも装置幅方向の寸法が長い。加熱部21に設けられた流路24は、金型10の長手方向に一定間隔で並んでいる。加熱部21は、中間材料1における加硫部分2の一部あるいは全部を成形する。 The heating portion 21 is composed of one heat transfer member 21a (heat transfer member for heating) provided with a plurality of U-shaped flow paths 24, and is arranged in an intermediate portion in the longitudinal direction of the mold 10. The heat transfer member 21a constituting the heating unit 21 has a longer dimension in the device width direction than the heat transfer member 22a constituting the cooling unit 22. The flow paths 24 provided in the heating unit 21 are arranged at regular intervals in the longitudinal direction of the mold 10. The heating unit 21 molds a part or all of the vulcanized portion 2 in the intermediate material 1.

加熱・冷却部23は、冷却部22と同一形状の複数の熱伝達部材からなる。以下、本明細書では、加熱・冷却部23を構成するn個の熱伝達部材を第1部材23(1)、第2部
材23(2)、第3部材23(3)・・・第n部材23(n)とする。第1部材23(1)は加熱部21に隣り合う位置に配置される。第1部材23(1)、第2部材23(2)、第3部材23(3)・・・第n部材23(n)は、この順で金型10の長手方向の他方側の端部(すなわち、冷却部22が配置される端部とは反対側の端部)に向かって一列に配列される。
The heating / cooling unit 23 is composed of a plurality of heat transfer members having the same shape as the cooling unit 22. Hereinafter, in the present specification, the n heat transfer members constituting the heating / cooling unit 23 are referred to as the first member 23 (1), the second member 23 (2), the third member 23 (3) ... n. Let it be member 23 (n). The first member 23 (1) is arranged at a position adjacent to the heating unit 21. The first member 23 (1), the second member 23 (2), the third member 23 (3) ... The nth member 23 (n) is the other end portion of the mold 10 in the longitudinal direction in this order. (That is, the end portion opposite to the end portion on which the cooling portion 22 is arranged) is arranged in a row.

熱盤20では、隣り合う熱伝達部材の間に隙間25が設けられている。本形態では、各隙間25に断熱材(図示省略)を配置することもできる。より詳細には、加熱部21を構成する熱伝達部材21aと、冷却部22を構成する熱伝達部材22aの間には隙間25が設けられている。また、加熱・冷却部23の端部に配置される第1部材23(1)と熱伝達部材21aとの間には隙間25が設けられている。そして、加熱・冷却部23を構成するn個の熱伝達部材は、隣り合う熱伝達部材の間に隙間25が設けられている。なお、隙間25に断熱材を配置せず、隣り合う熱伝達部材の間に空気層が介在している構成としてもよい。 In the heat plate 20, a gap 25 is provided between adjacent heat transfer members. In this embodiment, a heat insulating material (not shown) can be arranged in each gap 25. More specifically, a gap 25 is provided between the heat transfer member 21a constituting the heating unit 21 and the heat transfer member 22a constituting the cooling unit 22. Further, a gap 25 is provided between the first member 23 (1) arranged at the end of the heating / cooling unit 23 and the heat transfer member 21a. The n heat transfer members constituting the heating / cooling unit 23 are provided with a gap 25 between adjacent heat transfer members. The heat insulating material may not be arranged in the gap 25, and an air layer may be interposed between adjacent heat transfer members.

加熱・冷却部23を構成する複数の熱伝達部材の流路24には、中間材料1における加硫部分2の長さに応じて熱媒または冷媒が供給される。すなわち、加熱・冷却部23を構成する複数の熱伝達部材は、冷媒が供給される冷却用熱伝達部材と、熱媒が供給される熱却用熱伝達部材の両方の態様で使用することが可能である。これにより、加熱・冷却部23は、中間材料1における加硫部分2の一部と未加硫部分3を形成でき、その際、長さの異なる加硫部分2を成形できる。あるいは、未加硫部分3のみを成形することもできる。 A heat medium or a refrigerant is supplied to the flow paths 24 of the plurality of heat transfer members constituting the heating / cooling unit 23 according to the length of the vulcanized portion 2 in the intermediate material 1. That is, the plurality of heat transfer members constituting the heating / cooling unit 23 can be used in both aspects of a cooling heat transfer member to which a refrigerant is supplied and a heat transfer member for heat rejection to which a heat medium is supplied. It is possible. As a result, the heating / cooling unit 23 can form a part of the vulcanized portion 2 and the unvulcanized portion 3 of the intermediate material 1, and at that time, the vulcanized portion 2 having a different length can be formed. Alternatively, only the unvulcanized portion 3 can be molded.

図8(c)は、中間材料1の正面図であり、図8(d)は、図8(c)の中間材料1を製造するときの熱盤20の使用態様を示す図である。図8(d)に示す使用態様では、加熱・冷却部23は、第1部材23(1)に熱媒を供給して加硫部分2の一部を成形し、第1部材23(2)に冷媒を供給して未加硫部分3を成形し、第3部材23(3)・・・第n部材23(n)は未使用とする。これにより、図8(c)に示す長さの中間材料1が成形される。 FIG. 8 (c) is a front view of the intermediate material 1, and FIG. 8 (d) is a diagram showing a mode of use of the heating plate 20 when manufacturing the intermediate material 1 of FIG. 8 (c). In the usage mode shown in FIG. 8D, the heating / cooling unit 23 supplies a heat medium to the first member 23 (1) to form a part of the vulcanized portion 2, and the first member 23 (2). The unvulcanized portion 3 is formed by supplying a refrigerant to the third member 23 (3) ... The nth member 23 (n) is unused. As a result, the intermediate material 1 having the length shown in FIG. 8C is formed.

図8(e)は、図8(c)とは長さが異なる中間材料1の正面図であり、図8(f)は、図8(e)の中間材料1を製造するときの熱盤20の仕様態様を示す図である。図8(f)に示す使用態様では、加熱・冷却部23は、第1部材23(1)から第n−3部材23(n−3)までの範囲に熱媒を供給して加硫部分2の一部を成形し、第n−3部材23(n−2)に冷媒を供給して未加硫部分3を成形し、第n−1部材23(n−1)と第n部材23(n)は未使用とする。これにより、図8(e)に示す長さの中間材料1が成形される。 8 (e) is a front view of the intermediate material 1 having a length different from that of FIG. 8 (c), and FIG. 8 (f) is a hot plate for manufacturing the intermediate material 1 of FIG. 8 (e). It is a figure which shows the specification aspect of 20. In the usage mode shown in FIG. 8 (f), the heating / cooling unit 23 supplies a heat medium to the range from the first member 23 (1) to the n-3 member 23 (n-3) to provide a vulcanized portion. Part 2 is molded, and a refrigerant is supplied to the n-3 member 23 (n-2) to form the unvulcanized portion 3, and the n-1 member 23 (n-1) and the nth member 23 are formed. (N) is unused. As a result, the intermediate material 1 having the length shown in FIG. 8 (e) is formed.

金型10に下側から接する第1熱盤29Aと、金型10に上側から接する第2熱盤29Bは、同一態様で使用される。従って、第1熱盤29Aと第2熱盤29Bは、冷媒が供給される冷却用熱伝達部材が金型10を挟んで上下に対向する態様で使用される。また、熱媒が供給される熱却用熱伝達部材が金型10を挟んで上下に対向する態様で使用される。従って、金型10は、上下方向の両側から加熱・冷却される。 The first heat plate 29A that contacts the mold 10 from below and the second heat plate 29B that contacts the mold 10 from above are used in the same embodiment. Therefore, the first heat plate 29A and the second heat plate 29B are used in such a manner that the cooling heat transfer members to which the refrigerant is supplied face each other vertically with the mold 10 interposed therebetween. Further, the heat transfer member for heat rejection to which the heat medium is supplied is used in such a manner that the heat transfer member faces up and down with the mold 10 interposed therebetween. Therefore, the mold 10 is heated and cooled from both sides in the vertical direction.

(熱盤の別の例)
図9は、図2の中間材料6を成形する金型10A用の熱盤20Aを示す説明図である。図9(a)は、熱盤20Aの平面図であり、図9(b)は、熱盤20Aの正面図である。金型10Aには、上側と下側からそれぞれ、同一構成の熱盤20Aが接している。下側から接する熱盤20Aを第1熱盤とし、上側から接する熱盤20Aを第2熱盤とする。図9に示すように、熱盤20Aは、加熱部26および冷却部27を備える。加熱部26および冷却部27は、金属等からなる熱伝達部材であり、内部に熱媒あるいは冷媒を流す流路2
4を備えている。
(Another example of a hot plate)
FIG. 9 is an explanatory view showing a heating plate 20A for a mold 10A for molding the intermediate material 6 of FIG. 9 (a) is a plan view of the hot plate 20A, and FIG. 9 (b) is a front view of the hot plate 20A. A heating plate 20A having the same configuration is in contact with the mold 10A from the upper side and the lower side, respectively. The heat plate 20A in contact from the lower side is referred to as a first heat plate, and the heat plate 20A in contact from the upper side is referred to as a second heat plate. As shown in FIG. 9, the heating plate 20A includes a heating unit 26 and a cooling unit 27. The heating unit 26 and the cooling unit 27 are heat transfer members made of metal or the like, and a flow path 2 through which a heat medium or a refrigerant flows inside.
It has 4.

より詳細には、冷却部27は、U字状の流路24が1本設けられた1つの熱伝達部材27a(冷却用熱伝達部材)からなる。また、加熱部26は、U字状の流路24が複数本設けられた1つの熱伝達部材26a(加熱用熱伝達部材)からなる。熱伝達部材26aと熱伝達部材27aの間には隙間25が設けられ、隙間25には断熱材(図示省略)が配置される。なお、隙間25に断熱材を配置せず、空気層としておいてもよい。 More specifically, the cooling unit 27 includes one heat transfer member 27a (cooling heat transfer member) provided with one U-shaped flow path 24. Further, the heating unit 26 is composed of one heat transfer member 26a (heat transfer member for heating) provided with a plurality of U-shaped flow paths 24. A gap 25 is provided between the heat transfer member 26a and the heat transfer member 27a, and a heat insulating material (not shown) is arranged in the gap 25. The heat insulating material may not be arranged in the gap 25 and may be used as an air layer.

図9(c)は、金型10Aに設けられた環状の充填空間Cと、加熱部26および冷却部27の配置を示す平面図である。加熱部26を構成する熱伝達部材26aは、冷却部27を構成する熱伝達部材27aよりも装置幅方向の寸法が長い。従って、図9(c)に示すように、加熱部26は、半円よりも大きいC字状の範囲で充填空間Cと重なる。一方、冷却部22Aは、加熱部26と重なるC字状の範囲の両端において充填空間Cと重なる。従って、加熱部26に熱媒を供給して加熱しながら成形することにより、図2(a)に示すようなC字状の加硫部分2が成形される。そして、冷却部27に冷媒を供給して冷却しながら成形することにより、加硫部分2の両端に未加硫部分3が成形される。 FIG. 9C is a plan view showing the arrangement of the annular filling space C provided in the mold 10A, the heating unit 26, and the cooling unit 27. The heat transfer member 26a constituting the heating unit 26 has a longer dimension in the device width direction than the heat transfer member 27a constituting the cooling unit 27. Therefore, as shown in FIG. 9C, the heating portion 26 overlaps with the filling space C in a C-shaped range larger than a semicircle. On the other hand, the cooling unit 22A overlaps the filling space C at both ends of the C-shaped range that overlaps with the heating unit 26. Therefore, the C-shaped vulcanized portion 2 as shown in FIG. 2A is formed by supplying a heat medium to the heating portion 26 and molding while heating. Then, the unvulcanized portion 3 is molded at both ends of the vulcanized portion 2 by supplying the refrigerant to the cooling portion 27 and molding while cooling.

(付勢機構)
金型10用の熱盤20、および、金型10A用の熱盤20Aは、冷却用熱伝達部材を金型に向けて付勢して金型の表面に密着させる付勢機構50を備える。以下、金型10A用の熱盤20Aを例にとって、付勢機構50の具体的構成を説明する。
(Agitation mechanism)
The heat plate 20 for the mold 10 and the heat plate 20A for the mold 10A include an urging mechanism 50 that urges the cooling heat transfer member toward the mold to bring it into close contact with the surface of the mold. Hereinafter, the specific configuration of the urging mechanism 50 will be described by taking the heating plate 20A for the mold 10A as an example.

図10は、図9の熱盤20Aに設けられた付勢機構50の説明図であり、図9(a)のB−B位置で切断した断面構成を示す。図10に示す例は、下型14(下型)に下側から接する熱盤20A(すなわち、第1熱盤)の例である。図10に示すように、熱盤20Aは、断熱板9を介して第1支持板31により下側から支持される。熱盤20Aの加熱部26は、断熱板9を介して第1支持板31に固定される。一方、熱盤20Aの冷却部27は、熱伝達部材27aが断熱板9および第1支持板31に対して上下方向に移動可能に支持される。図10(a)は、熱伝達部材27aが付勢機構50の付勢力によって熱伝達部材26aよりも上方(すなわち、金型10A側)に飛び出した状態を示す。図10(b)は、熱伝達部材27aが付勢機構50の付勢力に逆らって押し下げられた状態を示す。 FIG. 10 is an explanatory view of the urging mechanism 50 provided on the heating plate 20A of FIG. 9, and shows a cross-sectional configuration cut at the position BB of FIG. 9A. The example shown in FIG. 10 is an example of a heating plate 20A (that is, a first heating plate) that is in contact with the lower mold 14 (lower mold) from the lower side. As shown in FIG. 10, the heat plate 20A is supported from below by the first support plate 31 via the heat insulating plate 9. The heating portion 26 of the heating plate 20A is fixed to the first support plate 31 via the heat insulating plate 9. On the other hand, in the cooling portion 27 of the hot plate 20A, the heat transfer member 27a is supported so as to be movable in the vertical direction with respect to the heat insulating plate 9 and the first support plate 31. FIG. 10A shows a state in which the heat transfer member 27a protrudes above the heat transfer member 26a (that is, on the mold 10A side) due to the urging force of the urging mechanism 50. FIG. 10B shows a state in which the heat transfer member 27a is pushed down against the urging force of the urging mechanism 50.

図10に示すように、付勢機構50は、熱伝達部材27aを上下方向に貫通する貫通穴51と、貫通穴51に通されたストッパーボルト52と、熱伝達部材27aの底面に設けられた凹部53に圧縮状態で配置されるばね54を備える。ストッパーボルト52は、貫通穴51に圧入された鍔付きブッシュ55によって上下方向にスライド可能に支持されている。鍔付きブッシュ55の鍔部とストッパーボルト52の頭部52aは、貫通穴51の上端側の開口部の縁に設けられた座ぐり部51aに収容される。ストッパーボルト52の先端部52bは、断熱板9を貫通して第1支持板31にねじ止めされる。従って、熱伝達部材27aは、ストッパーボルト52によって上下方向に移動可能な状態で第1支持板31に連結されている。 As shown in FIG. 10, the urging mechanism 50 is provided with a through hole 51 that penetrates the heat transfer member 27a in the vertical direction, a stopper bolt 52 that is passed through the through hole 51, and a bottom surface of the heat transfer member 27a. A spring 54 is provided in the recess 53 so as to be arranged in a compressed state. The stopper bolt 52 is slidably supported in the vertical direction by a flanged bush 55 press-fitted into the through hole 51. The flange portion of the flanged bush 55 and the head portion 52a of the stopper bolt 52 are housed in a counterbore portion 51a provided at the edge of the opening on the upper end side of the through hole 51. The tip portion 52b of the stopper bolt 52 penetrates the heat insulating plate 9 and is screwed to the first support plate 31. Therefore, the heat transfer member 27a is connected to the first support plate 31 in a state where it can be moved in the vertical direction by the stopper bolt 52.

中間材料6を成形する工程を行うとき、冷却部27に冷媒が流れることによって熱伝達部材27aが低温になって収縮する。そのため、熱伝達部材27aの上下方向の高さが熱伝達部材26aの上下方向の高さよりも小さくなるが、熱伝達部材27aは付勢機構50のばね54によって上方(すなわち、金型10A側)に付勢されているため、熱伝達部材27aの上端面27bが熱伝達部材26aの上端面26bと面一になり、上端面27bが金型10Aに確実に密着する。 When the step of molding the intermediate material 6 is performed, the heat transfer member 27a becomes low in temperature and contracts due to the flow of the refrigerant through the cooling unit 27. Therefore, the vertical height of the heat transfer member 27a is smaller than the vertical height of the heat transfer member 26a, but the heat transfer member 27a is moved upward (that is, on the mold 10A side) by the spring 54 of the urging mechanism 50. The upper end surface 27b of the heat transfer member 27a is flush with the upper end surface 26b of the heat transfer member 26a, and the upper end surface 27b is surely brought into close contact with the mold 10A.

図示を省略するが、金型10用の熱盤20において、冷却部22には、図10に示す付
勢機構50と同一の機構が設けられている。従って、冷却部22の熱伝達部材22aが金型10の表面に確実に密着する。また、加熱・冷却部23は、複数の熱伝達部材(第1部材23(1)・・・第n部材23(n))のそれぞれに付勢機構50が設けられている。従って、熱伝達部材(第1部材23(1)・・・第n部材23(n))のうちの1つに冷媒が流れたとき、当該熱伝達部材が金型10の表面に確実に密着する。
Although not shown, in the heating plate 20 for the mold 10, the cooling unit 22 is provided with the same mechanism as the urging mechanism 50 shown in FIG. Therefore, the heat transfer member 22a of the cooling unit 22 is surely brought into close contact with the surface of the mold 10. Further, the heating / cooling unit 23 is provided with an urging mechanism 50 for each of a plurality of heat transfer members (first member 23 (1) ... nth member 23 (n)). Therefore, when the refrigerant flows through one of the heat transfer members (first member 23 (1) ... nth member 23 (n)), the heat transfer member is surely adhered to the surface of the mold 10. To do.

(本形態の主な作用効果)
以上のように、本形態の成形装置100は、成形材料が充填される金型10と、金型10の表面に接する熱盤20を有する。熱盤20は、金型10の表面に沿って配列される複数の熱伝達部材(熱伝達部材21a、22a、23(1)・・・23(n))と、複数の熱伝達部材のうちの一部(熱伝達部材22a、23(1)・・・23(n))を表面に向けて付勢する付勢機構50を備える。複数の熱伝達部材のうち、熱伝達部材22aと、熱伝達部材(第1部材23(1)・・・第n部材23(n))のうちの1つは、冷媒が供給される流路24を備える冷却用熱伝達部材として使用される。冷却用熱伝達部材は、付勢機構50によって金型10の表面に向けて付勢される。
(Main action and effect of this form)
As described above, the molding apparatus 100 of the present embodiment has a mold 10 filled with a molding material and a heating plate 20 in contact with the surface of the mold 10. The heat plate 20 includes a plurality of heat transfer members (heat transfer members 21a, 22a, 23 (1) ... 23 (n)) arranged along the surface of the mold 10 and a plurality of heat transfer members. A urging mechanism 50 for urging a part of the above (heat transfer members 22a, 23 (1) ... 23 (n)) toward the surface is provided. Of the plurality of heat transfer members, one of the heat transfer member 22a and the heat transfer member (first member 23 (1) ... nth member 23 (n)) is a flow path to which the refrigerant is supplied. It is used as a cooling heat transfer member including 24. The cooling heat transfer member is urged toward the surface of the mold 10 by the urging mechanism 50.

本考案によれば、冷媒が供給されて冷却用熱伝達部材として使用される2個の熱伝達部材は、加熱用熱伝達部材に隣り合う位置において、付勢機構50によって金型10の表面に向けて付勢される。従って、熱媒が供給される加熱用熱伝達部材と冷却用熱伝達部材の温度差によって冷却用熱伝達部材の寸法が加熱用熱伝達部材よりも小さくなった状態でも、付勢機構50の付勢力によって、加熱用熱伝達部材に隣り合う冷却用熱伝達部材を金型10に確実に接触させることができる。これにより、金型10の一部を冷却用熱伝達部材によって冷却して未加硫部分3を成形し、金型10の他の部分を加熱用熱伝達部材によって加熱して加硫部分2を成形して中間材料1を製造する場合に、未加硫部分3の冷却効率を高めて加硫の進行を抑制できる。よって、加硫部分2と未加硫部分3とが切り替わる遷移領域を短くすることができ、未加硫部分3の位置精度を高めることができる。 According to the present invention, the two heat transfer members to which the refrigerant is supplied and used as the heat transfer members for cooling are placed on the surface of the mold 10 by the urging mechanism 50 at positions adjacent to the heat transfer members for heating. Be urged towards. Therefore, even when the size of the cooling heat transfer member is smaller than that of the heating heat transfer member due to the temperature difference between the heating heat transfer member to which the heat medium is supplied and the cooling heat transfer member, the urging mechanism 50 is attached. By the force, the cooling heat transfer member adjacent to the heating heat transfer member can be surely brought into contact with the mold 10. As a result, a part of the mold 10 is cooled by the cooling heat transfer member to form the unvulcanized portion 3, and the other part of the mold 10 is heated by the heating heat transfer member to heat the vulcanized portion 2. When the intermediate material 1 is manufactured by molding, the cooling efficiency of the unvulcanized portion 3 can be increased and the progress of vulcanization can be suppressed. Therefore, the transition region where the vulcanized portion 2 and the unvulcanized portion 3 are switched can be shortened, and the position accuracy of the unvulcanized portion 3 can be improved.

同様に、金型10Aに接する熱盤20Aを構成する複数の熱伝達部材(熱伝達部材26a、27a)のうち、冷媒が供給される冷却用熱伝達部材(熱伝達部材27a)は、付勢機構50によって金型10の表面に向けて付勢される。従って、未加硫部分3と加硫部分2を備える中間材料6を製造する場合に、未加硫部分3の冷却効率を高めて加硫の進行を抑制できる。よって、加硫部分2と未加硫部分3とが切り替わる遷移領域を短くすることができ、未加硫部分3の位置精度を高めることができる。 Similarly, of the plurality of heat transfer members (heat transfer members 26a, 27a) constituting the heat plate 20A in contact with the mold 10A, the cooling heat transfer member (heat transfer member 27a) to which the refrigerant is supplied is urged. The mechanism 50 urges the mold 10 toward the surface. Therefore, when the intermediate material 6 including the unvulcanized portion 3 and the vulcanized portion 2 is manufactured, the cooling efficiency of the unvulcanized portion 3 can be increased and the progress of vulcanization can be suppressed. Therefore, the transition region where the vulcanized portion 2 and the unvulcanized portion 3 are switched can be shortened, and the position accuracy of the unvulcanized portion 3 can be improved.

送り焼き成形に用いる中間材料の未加硫部分3の位置精度が高まれば、未加硫部分同士を接合してエラストマー製品を製造する際に、加硫が進行した部位で接合してしまうことによる歪みや曲がりを避けることができ、接合不良を避けることができる。また、加硫部分2の長さ精度、および、接合部5の長さ精度が向上するため、最終製品であるエラストマー製品の寸法精度が向上する。従って、不良品の発生を少なくすることができる。 If the position accuracy of the unvulcanized portion 3 of the intermediate material used for feed baking is improved, the unvulcanized portions will be joined to each other to produce an elastomer product, and the unvulcanized parts will be joined at the portion where vulcanization has progressed. Distortion and bending can be avoided, and poor joining can be avoided. Further, since the length accuracy of the vulcanized portion 2 and the length accuracy of the joint portion 5 are improved, the dimensional accuracy of the final product, the elastomer product, is improved. Therefore, the occurrence of defective products can be reduced.

また、未加硫部分3と加硫部分2とが切り替わる遷移領域の長さを短くできれば、加硫部分2の有効長さを大きくとることができるので、長尺あるいは大型のエラストマー製品を製造するときに接合回数を少なくすることができる。また、遷移領域の長さを短くできれば、未加硫部分同士を接合した接合部5の長さを短くすることができる。よって、中間材料を接合する工程で使用する金型および熱盤を小型化・軽量化することができる。金型を小型化・軽量化できれば、中間材料を接合する工程の作業性が向上する。例えば、金型を開閉する作業が容易になる。また、押圧機構を小型化できるので、装置コストを下げることができる。 Further, if the length of the transition region where the unvulcanized portion 3 and the vulcanized portion 2 are switched can be shortened, the effective length of the vulcanized portion 2 can be increased, so that a long or large elastomer product is manufactured. Sometimes the number of joints can be reduced. Further, if the length of the transition region can be shortened, the length of the joint portion 5 in which the unvulcanized portions are joined can be shortened. Therefore, it is possible to reduce the size and weight of the mold and the hot plate used in the process of joining the intermediate materials. If the mold can be made smaller and lighter, the workability of the process of joining intermediate materials will be improved. For example, the work of opening and closing the mold becomes easy. Further, since the pressing mechanism can be miniaturized, the cost of the device can be reduced.

本形態では、金型10に接する熱盤20として、下型11に下側(上型12とは反対側
)から接する第1熱盤29A、および、上型12に上側(下型11とは反対側)から接する第2熱盤29Bを用いており、第1熱盤29Aの冷却部22と、第2熱盤29Bの冷却部22とが金型10を挟んで上下に対向する。このようにすると、冷却用熱伝達部材と加熱用熱伝達部材が上下方向の両側から金型10に確実に接触する。従って、加熱・冷却効率が高い。特に、冷却用熱伝達部材は上下方向の両側から金型10に確実に接触するので、狙った部位を確実に冷却できる。従って、未加硫部分3の位置精度を高めることができる。また、金型10Aに接する熱盤20Aにおいても同様の構成を備えているので、同様の作用効果を得ることができる。
In this embodiment, as the heat plate 20 in contact with the mold 10, the first heat plate 29A in contact with the lower mold 11 from the lower side (opposite to the upper mold 12) and the upper side of the upper mold 12 (the lower mold 11 is). A second hot plate 29B that comes into contact with the other side) is used, and the cooling portion 22 of the first hot plate 29A and the cooling portion 22 of the second hot plate 29B face each other vertically with the mold 10 interposed therebetween. In this way, the cooling heat transfer member and the heating heat transfer member are surely in contact with the mold 10 from both sides in the vertical direction. Therefore, the heating / cooling efficiency is high. In particular, since the cooling heat transfer member reliably contacts the mold 10 from both sides in the vertical direction, the target portion can be reliably cooled. Therefore, the position accuracy of the unvulcanized portion 3 can be improved. Further, since the heating plate 20A in contact with the mold 10A has the same configuration, the same effect can be obtained.

本形態では、第1熱盤29Aを下型11とは反対側から支持する第1支持板31と、第2熱盤29Bを上型12とは反対側から支持する第2支持板32と、第1支持板31と第2支持板32の一方を他方に向けて押圧する油圧シリンダ33(押圧機構)を有する。第1熱盤29Aに設けられた付勢機構50では、第1支持板31と熱伝達部材22a(冷却用熱伝達部材)との間にばね54(第1弾性体)が介在し、第2熱盤29Bに設けられた付勢機構50では、第2支持板32と熱伝達部材22a(冷却用熱伝達部材)との間にばね54(第2弾性体)が介在する。従って、金型10を型締めするときには、油圧シリンダ33の押圧力によって加熱部21の熱伝達部材21aが金型10に押し付けられるので、加硫部分2は油圧シリンダ33の押圧力で加圧される。一方で、未加硫部分3に対しては、第1支持板31と熱伝達部材22aとの間、および、第2支持板32と熱伝達部材22aとの間にいずれも弾性体であるばね54が介在しているため、油圧シリンダ33の押圧力が金型10にそのまま作用することはなく、熱伝達部材22aは金型10の表面に接触している程度である。従って、未加硫部分3に加わる圧力が低減されるため、型締め用の油圧シリンダ33の押圧力によって未加硫部分3の加硫反応が進んでしまうことを回避できる。金型10Aに接する熱盤20Aにおいても同様の構成を備えているので、同様の作用効果を得ることができる。 In this embodiment, the first support plate 31 that supports the first hot plate 29A from the side opposite to the lower mold 11 and the second support plate 32 that supports the second hot plate 29B from the side opposite to the upper mold 12 It has a hydraulic cylinder 33 (pressing mechanism) that presses one of the first support plate 31 and the second support plate 32 toward the other. In the urging mechanism 50 provided on the first heat plate 29A, a spring 54 (first elastic body) is interposed between the first support plate 31 and the heat transfer member 22a (cooling heat transfer member), and the second In the urging mechanism 50 provided on the heat plate 29B, a spring 54 (second elastic body) is interposed between the second support plate 32 and the heat transfer member 22a (cooling heat transfer member). Therefore, when the mold 10 is compacted, the heat transfer member 21a of the heating unit 21 is pressed against the mold 10 by the pressing force of the hydraulic cylinder 33, so that the vulcanized portion 2 is pressurized by the pressing force of the hydraulic cylinder 33. To. On the other hand, for the unvulcanized portion 3, a spring that is an elastic body both between the first support plate 31 and the heat transfer member 22a and between the second support plate 32 and the heat transfer member 22a. Since the 54 is interposed, the pressing force of the hydraulic cylinder 33 does not act on the mold 10 as it is, and the heat transfer member 22a is only in contact with the surface of the mold 10. Therefore, since the pressure applied to the unvulcanized portion 3 is reduced, it is possible to prevent the vulcanization reaction of the unvulcanized portion 3 from proceeding due to the pressing force of the hydraulic cylinder 33 for mold clamping. Since the heating plate 20A in contact with the mold 10A has the same configuration, the same effect can be obtained.

本形態では、付勢機構50は、冷却用熱伝達部材を付勢機構50の付勢方向に貫通する貫通穴51と、貫通穴51に通されるストッパーボルト52を備える。ストッパーボルト52は、貫通穴51の縁に設けられた座ぐり部51aに収容される頭部52aと、貫通穴51から頭部52aとは反対側に突出して第1支持板31または第2支持板32にねじ止めされる先端部52bを備える。このような構成により、付勢機構50は、冷却用熱伝達部材をストッパーボルト52によって付勢方向に移動可能な状態に保持できる。従って、冷却用熱伝達部材の位置ずれや脱落を防止できる。 In the present embodiment, the urging mechanism 50 includes a through hole 51 that penetrates the cooling heat transfer member in the urging direction of the urging mechanism 50, and a stopper bolt 52 that is passed through the through hole 51. The stopper bolt 52 has a head 52a housed in a counterbore portion 51a provided on the edge of the through hole 51, and projects from the through hole 51 to the opposite side of the head 52a to support the first support plate 31 or the second support. A tip portion 52b screwed to the plate 32 is provided. With such a configuration, the urging mechanism 50 can hold the cooling heat transfer member in a state where it can be moved in the urging direction by the stopper bolt 52. Therefore, it is possible to prevent the cooling heat transfer member from being displaced or falling off.

本形態の熱盤20および熱盤20Aでは、冷却用熱伝達部材と加熱用熱伝達部材との間に隙間25に設けられ、隙間25に配置される断熱材(図示せず)が冷却用熱伝達部材と加熱用熱伝達部材に介在する。従って、加熱用熱伝達部材から冷却用熱伝達部材への熱伝達を低減させることができる。従って、未加硫部分の冷却効率を高めることができる。なお、断熱材を配置せずに隙間25に空気層が介在するだけでもよく、空気層により、加熱用熱伝達部材から冷却用熱伝達部材への熱伝達を低減させることもできる。 In the heat plate 20 and the heat plate 20A of the present embodiment, the heat insulating material (not shown) provided in the gap 25 between the cooling heat transfer member and the heating heat transfer member and arranged in the gap 25 is the cooling heat. It intervenes between the transfer member and the heat transfer member for heating. Therefore, the heat transfer from the heating heat transfer member to the cooling heat transfer member can be reduced. Therefore, the cooling efficiency of the unvulcanized portion can be increased. The air layer may be interposed in the gap 25 without arranging the heat insulating material, and the air layer can reduce the heat transfer from the heating heat transfer member to the cooling heat transfer member.

本形態の成形装置100は、金型10を収容する真空室40を備えており、真空雰囲気中で成形品を製造する。従って、成形品内に気泡ができることを抑制でき、成形品質を向上させることができる。 The molding apparatus 100 of this embodiment includes a vacuum chamber 40 for accommodating the mold 10, and manufactures a molded product in a vacuum atmosphere. Therefore, it is possible to suppress the formation of air bubbles in the molded product, and it is possible to improve the molding quality.

(変形例1)
図11は、変形例1の付勢機構50Aを示す説明図である。図10に示す付勢機構50は、弾性体としてばね54を用いる構成であったが、弾性体はばねに限定されるものではない。図11に示す付勢機構50Aは、熱硬化性エラストマーからなる弾性体54Aを備える。弾性体54Aは、熱伝達部材27aの下端面と断熱板9との間に挟まれた板状の部
材である。図11(a)は、熱伝達部材27aが付勢機構50Aの付勢力により金型側に飛び出した状態を示す。図11(b)は、熱伝達部材27aが金型に密着することによって付勢機構50Aの付勢力に逆らって押し下げられた状態を示す。このような付勢機構50Aにより、上記形態と同様の作用効果を得ることができる。
(Modification example 1)
FIG. 11 is an explanatory view showing the urging mechanism 50A of the first modification. The urging mechanism 50 shown in FIG. 10 has a configuration in which a spring 54 is used as the elastic body, but the elastic body is not limited to the spring. The urging mechanism 50A shown in FIG. 11 includes an elastic body 54A made of a thermosetting elastomer. The elastic body 54A is a plate-shaped member sandwiched between the lower end surface of the heat transfer member 27a and the heat insulating plate 9. FIG. 11A shows a state in which the heat transfer member 27a protrudes toward the mold due to the urging force of the urging mechanism 50A. FIG. 11B shows a state in which the heat transfer member 27a is pushed down against the urging force of the urging mechanism 50A by being brought into close contact with the mold. With such an urging mechanism 50A, it is possible to obtain the same effect as the above-described embodiment.

(変形例2)
図12は、変形例2の付勢機構50Bを示す説明図である。図10に示す付勢機構50は、弾性体として複数のばね54を用いる構成であったが、弾性体の数や配置は図10に示す形態に限定されるものではない。図12に示す付勢機構50Bは、ストッパーボルト52と同軸に配置される1個のばね54Bを備える。ばね54Bは、貫通穴51の下端に設けられた凹部53Bに配置され、ストッパーボルト52は、ばね54Bの中心に通されている。図12(a)は、熱伝達部材27aが付勢機構50Bの付勢力により金型側に飛び出した状態を示す。図12(b)は、熱伝達部材27aが金型に密着することによって付勢機構50Bの付勢力に逆らって押し下げられた状態を示す。このような構成により、上記形態と同様の作用効果を得ることができる。
(Modification 2)
FIG. 12 is an explanatory view showing the urging mechanism 50B of the modified example 2. The urging mechanism 50 shown in FIG. 10 has a configuration in which a plurality of springs 54 are used as the elastic bodies, but the number and arrangement of the elastic bodies are not limited to the form shown in FIG. The urging mechanism 50B shown in FIG. 12 includes one spring 54B arranged coaxially with the stopper bolt 52. The spring 54B is arranged in the recess 53B provided at the lower end of the through hole 51, and the stopper bolt 52 is passed through the center of the spring 54B. FIG. 12A shows a state in which the heat transfer member 27a protrudes toward the mold due to the urging force of the urging mechanism 50B. FIG. 12B shows a state in which the heat transfer member 27a is pushed down against the urging force of the urging mechanism 50B by being brought into close contact with the mold. With such a configuration, the same action and effect as the above-mentioned form can be obtained.

1…中間材料、2…加硫部分、3…未加硫部分、4A、4B…エラストマー製品、5…接合部、6…中間材料、7…エラストマー製品、9…断熱板、10、10A…金型、11…下型、11a…型溝、11b…位置決め穴、12…上型、12a…型溝、12b…位置決めピン、13…喰い切り溝、14…下型、14a…型溝、15…上型、15a…型溝、16…喰い切り溝、20、20A…熱盤、21…加熱部、21a…熱伝達部材、22、22A…冷却部、22a…熱伝達部材、23…加熱・冷却部、23(1)…第1部材、23(2)…第2部材、23(3)…第3部材、23(n)…第n部材、24…流路、25…隙間、26…加熱部、26a…熱伝達部材、26b…上端面、27…冷却部、27a…熱伝達部材、27b…上端面、29A…第1熱盤、29B…第2熱盤、31…第1支持板、32…第2支持板、33…油圧シリンダ、34…フレーム、35…ガイドレール、36…引出シリンダ、37…エジェクトシリンダ、40…真空室、41…下型フレーム、42…真空枠、43…蓋枠、44…油圧シリンダ、50、50A、50B…付勢機構、51…貫通穴、51a…座ぐり部、52…ストッパーボルト、52a…頭部、52b…先端部、53、53B…凹部、54、54B…ばね、54A…弾性体、55…鍔付きブッシュ、100…成形装置、C…充填空間 1 ... Intermediate material, 2 ... Sulfurized part, 3 ... Unrefined part, 4A, 4B ... Elastomer product, 5 ... Joint, 6 ... Intermediate material, 7 ... Elastomer product, 9 ... Insulation plate, 10, 10A ... Mold, 11 ... Lower mold, 11a ... Mold groove, 11b ... Positioning hole, 12 ... Upper mold, 12a ... Mold groove, 12b ... Positioning pin, 13 ... Cutting groove, 14 ... Lower mold, 14a ... Mold groove, 15 ... Upper mold, 15a ... Die groove, 16 ... Eating groove, 20, 20A ... Heat plate, 21 ... Heating part, 21a ... Heat transfer member, 22, 22A ... Cooling part, 22a ... Heat transfer member, 23 ... Heating / cooling Part, 23 (1) ... 1st member, 23 (2) ... 2nd member, 23 (3) ... 3rd member, 23 (n) ... nth member, 24 ... Flow path, 25 ... Gap, 26 ... Heating Part, 26a ... heat transfer member, 26b ... upper end surface, 27 ... cooling part, 27a ... heat transfer member, 27b ... upper end surface, 29A ... first hot plate, 29B ... second hot plate, 31 ... first support plate, 32 ... 2nd support plate, 33 ... hydraulic cylinder, 34 ... frame, 35 ... guide rail, 36 ... drawer cylinder, 37 ... eject cylinder, 40 ... vacuum chamber, 41 ... lower frame, 42 ... vacuum frame, 43 ... lid Frame, 44 ... hydraulic cylinder, 50, 50A, 50B ... urging mechanism, 51 ... through hole, 51a ... counterbore, 52 ... stopper bolt, 52a ... head, 52b ... tip, 53, 53B ... recess, 54 , 54B ... Spring, 54A ... Elastic body, 55 ... Bush with flange, 100 ... Molding device, C ... Filling space

Claims (7)

成形材料が充填される金型と、
前記金型の表面に接する熱盤と、を有し、
前記熱盤は、
前記表面に沿って配列される複数の熱伝達部材と、
前記複数の熱伝達部材のうちの一部を前記表面に向けて付勢する付勢機構と、を備え、
前記複数の熱伝達部材は、冷媒が供給される流路を備える冷却用熱伝達部材、および、熱媒が供給される流路を備える加熱用熱伝達部材を含み、
前記冷却用熱伝達部材は、前記付勢機構によって前記表面に向けて付勢されることを特徴とする成形装置。
A mold filled with molding material and
It has a heating plate that is in contact with the surface of the mold, and has
The hot plate is
A plurality of heat transfer members arranged along the surface,
It is provided with an urging mechanism that urges a part of the plurality of heat transfer members toward the surface.
The plurality of heat transfer members include a cooling heat transfer member having a flow path to which a refrigerant is supplied, and a heating heat transfer member having a flow path to which a heat medium is supplied.
The molding apparatus, wherein the cooling heat transfer member is urged toward the surface by the urging mechanism.
前記金型は、下型および上型を備え、
前記熱盤は、前記下型に前記上型とは反対側から接する第1熱盤、および、前記上型に前記下型とは反対側から接する第2熱盤を備え、
前記第1熱盤および前記第2熱盤のそれぞれは、
前記冷却用熱伝達部材および前記加熱用熱伝達部材を含んでおり一列に配列される複数の前記熱伝達部材、および、前記冷却用熱伝達部材を付勢する前記付勢機構を備え、
前記第1熱盤の前記冷却用熱伝達部材と、前記第2熱盤の前記冷却用熱伝達部材とは、前記下型および前記上型を挟んで対向することを特徴とする請求項1に記載の成形装置。
The mold comprises a lower mold and an upper mold.
The heat plate includes a first heat plate that contacts the lower mold from the side opposite to the upper mold, and a second heat plate that contacts the upper mold from the side opposite to the lower mold.
Each of the first hot plate and the second hot plate
A plurality of the heat transfer members including the cooling heat transfer member and the heating heat transfer member and arranged in a row, and the urging mechanism for urging the cooling heat transfer member are provided.
The first aspect of claim 1 is characterized in that the cooling heat transfer member of the first hot plate and the cooling heat transfer member of the second hot plate face each other with the lower mold and the upper mold interposed therebetween. The molding apparatus described.
前記第1熱盤を前記下型とは反対側から支持する第1支持板と、
前記第2熱盤を前記上型とは反対側から支持する第2支持板と、
前記第1支持板と前記第2支持板の一方を他方に向けて押圧する押圧機構と、を有し、
前記第1熱盤に設けられた前記付勢機構は、前記第1支持板と前記冷却用熱伝達部材との間に介在する第1弾性体を備え、
前記第2熱盤に設けられた前記付勢機構は、前記第2支持板と前記冷却用熱伝達部材との間に介在する第2弾性体を備えることを特徴とする請求項2に記載の成形装置。
A first support plate that supports the first hot plate from the side opposite to the lower mold, and
A second support plate that supports the second hot plate from the side opposite to the upper mold, and
It has a pressing mechanism that presses one of the first support plate and the second support plate toward the other.
The urging mechanism provided on the first heat plate includes a first elastic body interposed between the first support plate and the cooling heat transfer member.
The second elastic body provided in the second heating plate includes a second elastic body interposed between the second support plate and the cooling heat transfer member, according to claim 2. Molding equipment.
前記付勢機構は、前記冷却用熱伝達部材を前記付勢機構の付勢方向に貫通する貫通穴と、前記貫通穴に通されるストッパーボルトを備え、
前記ストッパーボルトは、前記貫通穴の縁に設けられた座ぐり部に収容される頭部と、前記貫通穴から前記頭部とは反対側に突出して前記第1支持板または前記第2支持板にねじ止めされる先端部と、備えることを特徴とする請求項3に記載の成形装置。
The urging mechanism includes a through hole that penetrates the cooling heat transfer member in the urging direction of the urging mechanism, and a stopper bolt that is passed through the through hole.
The stopper bolt has a head house accommodated in a counterbore portion provided at the edge of the through hole, and the first support plate or the second support plate projecting from the through hole to the side opposite to the head. The molding apparatus according to claim 3, further comprising a tip portion screwed to.
前記第1弾性体および前記第2弾性体は、前記冷却用熱伝達部材に設けられた凹部に圧縮状態で配置されるばねであることを特徴とする請求項3または4に記載の成形装置。 The molding apparatus according to claim 3 or 4, wherein the first elastic body and the second elastic body are springs arranged in a compressed state in a recess provided in the cooling heat transfer member. 前記第1弾性体および前記第2弾性体は、熱硬化性エラストマーであることを特徴とする請求項3または4に記載の成形装置。 The molding apparatus according to claim 3 or 4, wherein the first elastic body and the second elastic body are thermosetting elastomers. 前記冷却用熱伝達部材と前記加熱用熱伝達部材との間に空気層もしくは断熱材が介在することを特徴とする請求項1から6の何れか一項に記載の成形装置。 The molding apparatus according to any one of claims 1 to 6, wherein an air layer or a heat insulating material is interposed between the cooling heat transfer member and the heating heat transfer member.
JP2021000567U 2021-02-22 2021-02-22 Molding equipment Active JP3231889U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000567U JP3231889U (en) 2021-02-22 2021-02-22 Molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021000567U JP3231889U (en) 2021-02-22 2021-02-22 Molding equipment

Publications (1)

Publication Number Publication Date
JP3231889U true JP3231889U (en) 2021-05-06

Family

ID=75709549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000567U Active JP3231889U (en) 2021-02-22 2021-02-22 Molding equipment

Country Status (1)

Country Link
JP (1) JP3231889U (en)

Similar Documents

Publication Publication Date Title
CN101480827B (en) Hot press forming apparatus and metal mold system used for the same
JP6123753B2 (en) Electromagnetic induction heating mold equipment for molding and vulcanization of rubber packing
JP6736117B1 (en) Thermoforming equipment
JP2015112827A (en) Mold tool for press molding, and press molding method using the same
WO2015182444A1 (en) Tire mold and tire mold manufacturing method
JP3231889U (en) Molding equipment
JP4998992B2 (en) Tire manufacturing method
JP2011255617A (en) Tire manufacturing device and tire manufacturing method
US11285675B2 (en) Processing apparatus for elongated structure and manufacturing method for elongated structure
JP6164715B1 (en) Cassette mold equipment
JP5218573B2 (en) Resin molding equipment
WO2017130485A1 (en) Fixed platen for resin molding device, resin molding device, and method for manufacturing fixed platen for resin molding device
US20220395885A1 (en) Mold, apparatus, and method for producing metal-resin composite
KR101324861B1 (en) Hot stamping method and hot stamping appratus
TWI629163B (en) Stamping mechanism, stamping method, compression molding device, and compression molding method
KR20160074247A (en) Mold apparatus of manufacturing hot stamping parts
JP2010274588A (en) Injection mold
JP5128309B2 (en) Electronic component compression molding method and mold
JP6604402B1 (en) Tire vulcanizing apparatus and method
JP2002172628A (en) Manufacturing method and device for rubber product
KR102045629B1 (en) Apparatus for hot press
US20220395883A1 (en) Apparatus and method for producing metal-resin composite
US20190039111A1 (en) Product molding method and apparatus and product
CN107708953B (en) Method for manufacturing rubber crawler
JP2005289016A (en) Die for core manufacture, and core manufacturing method

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3231889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250