JP3231567B2 - Wire electric discharge machining method - Google Patents

Wire electric discharge machining method

Info

Publication number
JP3231567B2
JP3231567B2 JP33470494A JP33470494A JP3231567B2 JP 3231567 B2 JP3231567 B2 JP 3231567B2 JP 33470494 A JP33470494 A JP 33470494A JP 33470494 A JP33470494 A JP 33470494A JP 3231567 B2 JP3231567 B2 JP 3231567B2
Authority
JP
Japan
Prior art keywords
machining
voltage
processing
discharge
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33470494A
Other languages
Japanese (ja)
Other versions
JPH08155744A (en
Inventor
雄二 金子
竜生 豊永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP33470494A priority Critical patent/JP3231567B2/en
Publication of JPH08155744A publication Critical patent/JPH08155744A/en
Application granted granted Critical
Publication of JP3231567B2 publication Critical patent/JP3231567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ワイヤ放電加工方法、
特に該ワイヤ放電加工による荒加工(ファーストカット
加工)から、所望の仕上げ加工まで、かつ優れた加工面
粗さ(より小さい加工面粗さ)の、又更には所定の寸法
・形状精度に仕上げることができる加工方法、及び該加
工方法の実施に好適な加工送りのサーボ制御方式並びに
その切換え使用に関する。
The present invention relates to a wire electric discharge machining method,
In particular, finishing from the rough machining (first cut machining) by wire electric discharge machining to the desired finishing machining, and with excellent machined surface roughness (smaller machined surface roughness), or even with the specified dimensions and shape accuracy The present invention relates to a machining method capable of performing the machining method, a machining feed servo control method suitable for carrying out the machining method, and a switching use thereof.

【0002】[0002]

【従来の技術】本発明者等は、荒加工から仕上げ加工ま
での一連のワイヤ放電加工の加工効率を向上させるため
に、特に仕上げ加工用の電源として、後述するような或
る特定の高周波交流電圧源を用いたり、荒加工(ファー
ストカット加工)後の仕上げ加工のために、被加工体の
寸法・形状精度出し及び所定面粗度改善のセカンドカッ
ト加工、またはセカンドカット及びサードカット加工等
の所望複数段の加工の際に、加工送りサーボ制御方式
を、前記ファーストカットの加工工程ではサーボ基準電
圧に対する放電間隙電圧の偏差零のとき送り速度が零と
なり送り方向が反転する所謂ゼロメソッドサーボ制御方
式を選定使用するのに対し、前記セカンドカット加工工
程以後の前記仕上げ加工を含む加工工程では、送り速度
が放電加工間隙電圧に比例し、サーボ基準電圧に対する
放電間隙の電圧偏差零のとき設定加工条件(主として加
工電圧又は放電パルス等の条件)による加工速度に符合
する実験値の加工送り速度が設定される減速サーボ制御
方式に選定切換えて加工を行なうこと等を下記の特許出
願で提案した。 [出願日] 平成6年3月23日 [出願番号] 平成6年特許願第92836号 [発明の名称] ワイヤ放電加工方法及びワイヤ
放電加工用電源回路
In order to improve the machining efficiency of a series of wire electric discharge machining operations from rough machining to finishing machining, the present inventors have, as a power source for finishing machining in particular, a specific high-frequency AC as described later. For the finishing work after roughing (first cut processing) using a voltage source, the second cut processing, or the second cut and third cut processing, to obtain the dimensional and shape accuracy of the workpiece and improve the predetermined surface roughness In the machining of a desired plurality of stages, the machining feed servo control method is a so-called zero method servo control in which the feed speed is zero and the feed direction is reversed when the deviation of the discharge gap voltage with respect to the servo reference voltage is zero in the first cut machining process. On the other hand, in the machining process including the finish machining after the second cut machining process, the feed rate is set to the electric discharge machining gap voltage. In the deceleration servo control method, when the voltage deviation of the discharge gap with respect to the servo reference voltage is zero, the machining feed rate is set to an experimental value that matches the machining speed according to the set machining conditions (mainly conditions such as machining voltage or discharge pulse). It is proposed in the following patent application to perform processing by switching selection. [Application Date] March 23, 1994 [Application Number] 1994 Patent Application No. 92828 [Title of Invention] Wire electric discharge machining method and power supply circuit for wire electric discharge machining

【0003】[0003]

【発明が解決しようとする課題】而して、上記発明後、
電源やサーボ送りの設定や調整、及び加工方法に付き改
良を重ね来たが、後で詳しく説明する上記減速サーボ制
御方式を加工送りの制御方式として採用しているファー
ストカット加工工程後のセカンドカット等の寸法・形状
精度出し及び加工面粗度出しの直流電源をスイッチ素子
のオン・オフすることにより得られる休止時間を置いた
間歇的な電圧パルスを加工電源とする加工工程と、前記
寸法・形状精度出しと加工面粗度を所望に仕上げる高周
波交流電圧源による仕上げ又は最終仕上げ加工とでは、
加工送りのサーボ制御方式として同じ減速サーボ制御方
式を採用していても、加工条件、特に水系加工液の特性
に変化があると整合せず、上記セカンドカット等の加工
工程迄で、所定の形状・寸法精度及び加工面粗度出しが
行われていても、次の仕上げ又は最終仕上げ加工でかえ
って寸法・形状精度を損なうと言うことが少なくなかっ
た。
However, after the above invention,
Although the setting and adjustment of the power supply and the servo feed and the processing method have been repeatedly improved, the second cut after the first cut processing step adopts the deceleration servo control method described in detail later as the control method of the processing feed. A machining step in which an intermittent voltage pulse with a pause time obtained by turning on and off a switch element of a DC power supply for obtaining the size / shape accuracy and processing surface roughness of the processing power is used as a processing power source; In the finishing or final finishing by high-frequency AC voltage source to achieve the desired shape accuracy and the finished surface roughness,
Even if the same deceleration servo control method is used as the processing feed servo control method, the processing conditions, especially the characteristics of the aqueous processing fluid, do not match if they change, and a predetermined shape is obtained until the processing step such as the second cut.・ Even if the dimensional accuracy and the roughness of the machined surface were obtained, the dimensional and shape accuracy was often impaired by the next finishing or final finishing.

【0004】特に、当該ワイヤ放電加工に常用の上記水
系加工液に於ける、例えばイオン交換樹脂の寿命等によ
る水質(特に比抵抗値、又は伝導度)の変化や加工間隙
部分に於ける加工液流通の不整等による加工屑濃度の部
分的な変化等が加工間隙内加工液の部分的比抵抗変化と
して作用するようになると、加工電源、即ち高周波交流
電圧源の出力による放電間隙の無負荷電圧に変動が生
じ、放電間隙に接続した検出回路からの検出サーボデー
タ又は信号に、前記設定されている実験値に準処したデ
ータ又は信号とズレを生じ、加工状態が変化して加工の
寸法・形状精度を大きく損なうと言う欠点があった。
In particular, in the above-mentioned aqueous machining fluid commonly used for the wire electric discharge machining, for example, a change in water quality (particularly, specific resistance value or conductivity) due to the life of the ion exchange resin or the like, and a machining fluid in a machining gap portion. When a partial change in the concentration of machining chips due to irregular flow or the like acts as a partial change in the specific resistance of the machining fluid in the machining gap, the no-load voltage in the discharge gap due to the output of the machining power supply, that is, the high-frequency AC voltage source. And the detected servo data or signal from the detection circuit connected to the discharge gap deviates from the data or signal corresponding to the set experimental value. There is a disadvantage that shape accuracy is greatly impaired.

【0005】例えば、前記高周波交流電圧源による仕上
げ加工時に、加工液の比抵抗値が所定値よりも低下する
変化が生じていると放電間隙の電圧が見掛上低下してい
るので、加工送りのサーボ制御方式として、前段のセカ
ンドカット加工等の寸法・形状精度出しの中仕上げの加
工の際に用いた前述の送り速度が放電間隙電圧に比例
し、サーボ基準電圧に対する放電間隙の電圧偏差零のと
きほぼ設定加工条件による加工速度に符合する実験値の
加工送り速度が設定される減速サーボ制御方式のものを
そのまま用いると、加工送り速度が極端に低下するのに
対し、加工量(加工速度又は加工電源の加工能力)はそ
れ程低下している訳ではないので、加工量過多となり、
ポンチ切抜き加工では寸法・形状が所定値より小さく、
又逆にダイの穴の寸法・形状が所定値よりも大きく加工
されて、所望に仕上がらないと言う結果を招来する。
For example, when the specific resistance value of the machining fluid changes below a predetermined value at the time of finishing with the high-frequency AC voltage source, the voltage of the discharge gap apparently decreases. As the servo control method, the above-mentioned feed rate used in the semi-finishing processing for obtaining the dimensional and shape accuracy such as the second cut processing in the previous stage is proportional to the discharge gap voltage, and the voltage deviation of the discharge gap with respect to the servo reference voltage is zero. When using the deceleration servo control method in which the processing feed speed of the experimental value almost matches the processing speed according to the set processing conditions is used as it is, the processing feed speed decreases extremely, while the processing amount (processing speed Or the processing power of the processing power supply) does not decrease so much,
In punch punching, the dimensions and shape are smaller than specified values,
Conversely, the size and shape of the hole of the die are processed to be larger than a predetermined value, resulting in a result that the desired finish is not obtained.

【0006】又、上記の場合のセカンドカット加工工程
時の減速サーボ制御方式に代えて、従来より仕上げ加工
では多く慣用の一定速度サーボ制御方式(上記減速サー
ボ制御方式の場合の設定加工条件に符合する実験値の加
工送り速度の一定の送り速度として、間隙電圧が上記サ
ーボ電圧よりも充分低い所定値以下、又は間隙短絡で、
短絡又は間隙回復の後退作動をするサーボ制御方式)を
採用すると、加工送り速度が一定であるにもかかわず、
放電間隙に供給される前記高周波交流電圧源による放電
エネルギーが放電間隙の放電部以外の部分へ分流する割
合が多くなっているため、加工量が過少となり、ポンチ
切抜き加工では寸法・形状が所定値よりも大きく、又逆
にダイの加工ではダイの穴の寸法・形状が所定値よりも
小さく加工されて所望に仕上がらないのである。
[0006] Instead of the deceleration servo control method in the second cut processing step in the above case, a conventional constant speed servo control method which has been conventionally used in finishing processing (corresponding to the set processing conditions in the case of the above deceleration servo control method). As a constant feed rate of the processing feed rate of the experimental value, the gap voltage is less than or equal to a predetermined value sufficiently lower than the servo voltage, or with a gap short circuit,
When the servo control method that performs the retraction operation of the short circuit or the gap recovery) is adopted, the machining feed rate is constant,
Since the ratio of the discharge energy supplied by the high-frequency AC voltage source supplied to the discharge gap to be diverted to a portion other than the discharge portion of the discharge gap is large, the machining amount is too small, and the size and shape of the punch cutout have a predetermined value. In the case of die processing, on the contrary, the size and shape of the hole in the die are processed to be smaller than a predetermined value, so that a desired finish cannot be obtained.

【0007】そこで、本発明は、高周波交流電圧源によ
る仕上げ加工又は最終仕上げ加工の際に加工液の比抵抗
等の性状変化等が或る程度生じていても、目的に対して
許容可能な程度に仕上がる加工が可能なサーボ制御方式
を開発すること、及びその開発されたサーボ制御方式に
高周波交流電圧源による仕上げ加工の際に切換える一連
のワイヤ放電加工方法を提供することを目的とする。
Accordingly, the present invention provides a method of fabricating an object which is capable of accepting a certain degree of property change such as a specific resistance of a machining fluid during finishing or final finishing with a high-frequency AC voltage source. It is an object of the present invention to develop a servo control method capable of achieving a finished machining, and to provide a series of wire electric discharge machining methods for switching to the developed servo control method at the time of finishing processing using a high-frequency AC voltage source.

【0008】[0008]

【問題を解決するための手段】一対の間隔を置いて配置
したガイド間に所定の状態に張架したワイヤ電極を軸方
向に更新送り移動せしめつつ前記軸方向と略直角方向か
ら被加工体を微小間隙を介して相対向せしめ、該間隙に
加工液供給介在させた状態で両者間に間歇的な電圧パル
スを印加し発生する放電パルスにより加工を行ない、前
記ワイヤ電極と被加工体間に前記直角方向の平面上にお
ける所定の加工形成すべき輪郭形状に沿う相対的加工送
りを与えるワイヤ放電加工において、前記のワイヤ放電
加工を、(a)前記の電圧パルスとして、直流電圧源に
直列に接続した電子スイッチ素子をオン・オフすること
によって得られる休止時間を有する間歇的な電圧パルス
を用い、使用する加工液、電極、被加工体の材質組合
せ、板厚、及び加工の目的等に応じて設定された加工条
件で、かつ前記加工送りのサーボ制御方式を送り速度が
放電間隙電圧に比例し、設定サーボ基準電圧に対する間
隙電圧の偏差零のとき送り速度が零となって送り方向が
反転するゼロメソッドサーボ制御方式として前記輪郭線
形状の加工溝を最初に加工形成するファーストカット加
工工程と、(b)前記ファーストカット加工後、前記設
定加工条件をセカンドカット、及びサードカット等の1
又は複数の加工工程の加工条件に順次に切換えると共
に、前記加工送りのサーボ制御方式を送り速度が放電間
隙電圧に比例し、設定サーボ基準電圧に対する前記放電
間隙の電圧偏差零のとき設定加工条件の加工速度に応ず
る送り速度が設定される減速サーボ制御方式に切換えて
所定の寸法・形状精度、及び面粗度出しの加工をする中
仕上げ加工工程と、(c)前記中仕上げ加工後、前記電
圧パルスを前記電圧パルス供給源と放電間隙との間に挿
設した高周波結合トランスによる電流パルス→交流電圧
変換によって得られる所定加工条件の高周波交流電圧源
に切換えると共にサーボ制御方式を前記減速サーボ制御
方式に選定し、かつそのサーボ制御の比例ゲインを前記
中仕上げ加工の際の比例ゲインに対して低く切換えて所
定の寸法・形状精度及び面粗度出しの加工をする仕上げ
加工工程と、を順次に行なう一連のワイヤ放電加工加工
方法とすることにより、又、(2)前記(1)に於ける
加工方法に於いて、前記ファーストカット加工工程及び
中仕上げ加工工程における直流電源をスイッチ素子によ
りオン・オフすることにより得られる休止時間を有する
間歇的な電圧パルス源が、直流電圧源をスイッチ素子の
オン・オフにより電圧パルスを形成する直列回路中に所
定の電流制限抵抗を挿設した通常型電圧パルス供給回路
と、直流電圧源をスイッチ素子のオン・オフにより電流
パルスを形成する直列回路中に電流制限抵抗が挿設され
ていない、又は電流検出用等の小抵抗以外の電流制限抵
抗が挿設されていない無抵抗の電流パルス供給回路とを
並設すると共に、該電流パルス供給回路のスイッチ素子
が前記通常型電圧パルス供給回路の放電間隙印加電圧パ
ルスにより放電が開始したのを検出して所定時間幅のオ
ン制御させられる電圧パルス源を用いる放電加工方法と
することにより、そして、又、(3)前記(2)に於け
る加工方法に於いて、前記仕上げ加工工程に於ける高周
波交流電圧源、前記高周波結合トランスの2次巻線から
放電間隙へ高周波交流電圧を出力供給するために、前記
トランスの1次巻線に供給される休止時間を有する間歇
的な電流パルスが前記無抵抗の電流パルス供給回路から
供給されるように切換接続及び制御される高周波交流電
圧源を用いる放電加工方法とすることにより、より良く
達成することができる。
Means for Solving the Problems A wire electrode stretched in a predetermined state between a pair of spaced guides is renewed and moved in the axial direction while moving the workpiece from a direction substantially perpendicular to the axial direction. Work is performed by a discharge pulse generated by applying an intermittent voltage pulse between the two in a state in which a machining liquid is interposed between the wire electrode and the workpiece while the machining liquid supply is interposed between the wire electrodes and the workpiece, and In wire electric discharge machining for providing relative machining feed along a predetermined contour to be formed on a plane in a perpendicular direction, the wire electric discharge machining is connected in series to a DC voltage source as (a) the voltage pulse. Using intermittent voltage pulses with pauses obtained by turning on and off the switched electronic switch elements, the working fluid to be used, the electrodes, the material combination of the workpiece, the plate thickness, and the processing Under the machining conditions set according to the purpose and the like, and the servo control method of the machining feed, the feed rate is proportional to the discharge gap voltage, and the feed rate becomes zero when the gap voltage deviation with respect to the set servo reference voltage is zero. A first-cut machining step of first machining and forming the contour-shaped machining groove as a zero-method servo control method in which a feed direction is reversed; and (b) after the first-cut machining, the set machining conditions are second-cut and third-cut. Etc. 1
Or, while sequentially switching to the machining conditions of a plurality of machining steps, the servo control method of the machining feed is set so that the feed rate is proportional to the discharge gap voltage, and the voltage deviation of the discharge gap with respect to the set servo reference voltage is zero. A semi-finishing processing step of switching to a deceleration servo control method in which a feed rate corresponding to the machining speed is set and performing processing of obtaining predetermined dimensions and shape accuracy and surface roughness; and (c) the voltage after the semi-finishing processing. A pulse is switched from a current pulse by a high-frequency coupling transformer inserted between the voltage pulse supply source and the discharge gap to a high-frequency AC voltage source under predetermined processing conditions obtained by AC voltage conversion, and the servo control method is the deceleration servo control method. And the proportional gain of the servo control is switched to a lower value than the proportional gain at the time of the above-mentioned semi-finishing, and the predetermined dimension and shape accuracy are And a finish machining step for performing surface roughness processing are sequentially performed by a series of wire electric discharge machining methods. (2) In the machining method according to the above (1), An intermittent voltage pulse source having a pause time obtained by turning on and off a DC power supply by a switch element in a cutting process and a semi-finishing process forms a voltage pulse by turning a DC voltage source on and off by a switch element. A normal type voltage pulse supply circuit in which a predetermined current limiting resistor is inserted in a series circuit, and a current limiting resistor is inserted in a series circuit in which a DC voltage source forms a current pulse by turning on / off a switching element. And a non-resistive current pulse supply circuit in which no current limiting resistor other than a small resistor for current detection or the like is inserted. The switch element is a discharge machining method using a voltage pulse source that is turned on for a predetermined time width by detecting that discharge is started by a discharge gap applied voltage pulse of the normal type voltage pulse supply circuit, and (3) In the processing method according to (2), a high-frequency AC voltage is output and supplied from the secondary winding of the high-frequency coupling transformer to the discharge gap in the finishing step. For this purpose, a high-frequency AC voltage source that is switched and controlled so that an intermittent current pulse having a pause time supplied to the primary winding of the transformer is supplied from the resistance-less current pulse supply circuit is used. By using the electric discharge machining method, it is possible to achieve better.

【0009】[0009]

【作用】本発明のワイヤ放電加工方法は、前述の構成及
び手法で行なわれるものであるから、高周波交流電圧源
を加工用電源とする仕上げ加工工程による加工面粗度出
し等の加工が、使用する加工液の比抵抗等の性状変化に
影響されることなく、即ち寸法・形状精度等を損なうこ
となく、再現性ある状態で確実に仕上がるようになっ
た。
Since the wire electric discharge machining method of the present invention is carried out by the above-described configuration and method, it is not necessary to use a high-frequency AC voltage source as a power source for machining, such as a machining process to obtain a roughened surface. The reproducible state can be surely achieved without being affected by the property change of the working fluid such as the specific resistance, that is, without impairing the dimension and shape accuracy.

【0010】[0010]

【実施例】図1及び図2は、本発明加工方法を実施する
装置の全体構成説明図で、前記図1は加工送りのための
サーボ制御回路を主とし、又図2は放電加工のための加
工用電源回路を主として示したものであり、1は一対の
間隔を置いて配置した位置決めガイド2A、2B間を所
定の張力を付与した状態で軸方向に更新送り移動させら
れるワイヤ電極、3は図示しないxyクロステーブルに
載置したワークスタンド4に取り付けられ、ワイヤ電極
軸方向と略直角方向から微小放電間隙を介して相対向せ
しめられる被加工体で、図示しない加工液供給手段によ
る加工液供給介在の下に両者間に印加される間歇的な電
圧パルス等の加工電圧により放電を生ぜしめて加工が行
なわれるものである。そして、通常荒加工のファースト
カット加工工程(第1の加工工程)と、寸法形状精度出
しの少なくともセカンドカットを含む中仕上げの(第2
の)加工工程の加工のための加工電圧、即ち、間歇的な
電圧パルスは、図示した一実施例のワイヤ放電加工用電
圧パルス源5から、給電接続線11A、11Bとしての
同軸又はシールド線を介し、又、後述する電圧パルス源
5と高周波交流電圧源30との切換え開閉スイッチ14
を介し、或いは更に、放電間隙近傍の引き回しリード線
には、好ましくは縒線を利用するが如くにしてワイヤ電
極1と被加工体3間に供給印加される。
1 and 2 are explanatory views of the overall structure of an apparatus for carrying out the machining method of the present invention. FIG. 1 mainly shows a servo control circuit for machining feed, and FIG. 1 mainly shows a processing power supply circuit, and 1 is a wire electrode that can be axially updated and fed while a predetermined tension is applied between a pair of positioning guides 2A and 2B arranged at a distance. Is a workpiece mounted on a work stand 4 mounted on an xy cross table (not shown) and opposed to each other via a minute discharge gap from a direction substantially perpendicular to the axial direction of the wire electrode. Machining is performed by generating an electric discharge by a machining voltage such as an intermittent voltage pulse applied between the two under the supply intervention. Then, the first cut processing step (first processing step) of the rough processing and the semi-finishing (second processing) including at least the second cut for obtaining the dimensional accuracy are performed.
A) The machining voltage for machining in the machining process, that is, the intermittent voltage pulse, is supplied from the voltage pulse source 5 for wire electric discharge machining in the illustrated embodiment to the coaxial or shield wire as the power supply connection lines 11A and 11B. Switching switch 14 for switching between a voltage pulse source 5 and a high-frequency AC voltage source 30 to be described later.
Or further, to the lead wire near the discharge gap, the wire is supplied between the wire electrode 1 and the workpiece 3 preferably by using a twisted wire.

【0011】前記電圧パルス源5は、直流電圧源6Aと
電流容量に応じ複数個が並列に接続されるMOS−FE
Tトランジスタ等の電子スイッチ素子6Bと電流制限抵
抗6C及び逆電圧防止整流器6Dとの直列回路からな
る、従来最も通常の間歇的な電圧パルスの生成供給回路
6が、放電間隙に並列となるように給電接続線11A、
11Bに接続され、前記間歇的な電圧パルスはパルス制
御装置7によるスイッチ素子6Bの制御により所望に生
成される。即ち、制御装置7の前記スイッチ素子6Bの
制御装置部分としては、スイッチ素子6Bを放電間隙の
放電状態検出信号により変更制御をする場合を除き、予
め選択設定した一定のオン時間信号τONとオフ時間信
号τOFFとを規則的に交互に繰り返して電圧パルスを
供給制御する場合と、スイッチ素子6Bのオン時間信号
を放電間隙に電圧パルスの印加開始時より放電間隙で放
電が開始するまでの該放電開始遅延期間の関数とし増大
する、即ち各放電パルスの放電持続時間を設定の一定値
とするよう電圧パルス印加開始後放電間隙での放電開始
時より前記オン時間信号の計測を開始し、計測完了によ
りスイッチ素子6Bをオフとしてオフ時間に移行させる
制御をするもの等があり、以下の説明では、主として前
記後者の場合について説明を加えるが、本発明は何等こ
れに限定されるものではない。
A plurality of voltage pulse sources 5 are connected in parallel with a DC voltage source 6A according to the current capacity.
The most usual conventional intermittent voltage pulse generation / supply circuit 6 comprising a series circuit of an electronic switch element 6B such as a T transistor, a current limiting resistor 6C, and a reverse voltage prevention rectifier 6D is arranged in parallel with the discharge gap. Power supply connection line 11A,
11B, the intermittent voltage pulse is generated as desired by the control of the switch element 6B by the pulse control device 7. That is, the control device portion of the switch device 6B of the control device 7 includes a predetermined ON time signal τ ON and OFF which is selected and set in advance, except when the switch device 6B is changed and controlled by the discharge state detection signal of the discharge gap. The time signal τ OFF is regularly and alternately repeated to control the supply of the voltage pulse, and the ON time signal of the switching element 6B is applied to the discharge gap from the start of application of the voltage pulse to the start of discharge in the discharge gap. The measurement of the on-time signal is started from the start of the discharge in the discharge gap after the start of the application of the voltage pulse so that the discharge duration increases as a function of the discharge start delay period, that is, the discharge duration of each discharge pulse is set to a fixed value, and the measurement is started. There is a control for turning off the switch element 6B upon completion and shifting to the off time. In the following description, mainly the latter case will be described. Obtain, but the present invention is not construed as being limited thereto.

【0012】前記電圧パルス源5には、前記スイッチ素
子6Bのオン・オフによる加工電圧パルス供給回路6に
加えて、該回路6による放電パルスの放電電流振幅Ip
を増大し、延ては加工平均電流を増大させて、加工速度
を一段と増加させるためのパルス電流増幅回路または電
流パルス供給回路8が、可変直流電圧源8Aとスイッチ
素子8Bと逆電圧防止整流器8Cとから成る直列回路と
して回路6と並列に設けられている。この電流パルス供
給回路8は制御装置7によるスイッチ素子8Bのオン時
に急峻な立ち上がりの高電流を出力するように、所謂電
流制限抵抗がその直列回路中にない無抵抗回路、乃至は
スイッチ素子8Bの破損防止のために制御装置7に設け
られているスイッチ素子8Bの電流制御器7Aの作動の
ための微小な検出抵抗の他には電流制限抵抗が挿入され
てない回路8であって、スイッチ素子6Bのオン時間信
号又は前記放電開始よりのオン時間信号は、ワイヤ放電
加工に於いては、大きくても数10μS以内、通常数μ
S以内であるから、スイッチ素子8Bを回路6による印
加電圧パルスにより間隙での放電開始を検出して作動す
るオン時間信号の間オンさせるようにしても、スイッチ
素子8B又は、少なくとも回路8の飽和領域動作への移
行時間等の関係から該回路8に電流制限抵抗が設けられ
ていなくても破損を免れ得る場合があるが、上記スイッ
チ素子8Bの動作領域を不飽和領域と又は、少なくとも
回路8の電流がスイッチ素子8Bの飽和電流値よりも充
分小さい(通常数分の一)範囲が動作領域となるように
条件設定すれば、該スイッチ素子8Bの破損の問題はな
く、かつ該スイッチ素子8B乃至は回路8の電流オフ切
れ特性が鋭く、急峻となるから好ましいものである。
The voltage pulse source 5 includes, in addition to a machining voltage pulse supply circuit 6 for turning on and off the switch element 6B, a discharge current amplitude Ip of a discharge pulse from the circuit 6
And a pulse current amplification circuit or current pulse supply circuit 8 for further increasing the processing speed by increasing the processing average current, comprises a variable DC voltage source 8A, a switch element 8B, and a reverse voltage prevention rectifier 8C. And is provided in parallel with the circuit 6. The current pulse supply circuit 8 outputs a steep rising high current when the control device 7 turns on the switch element 8B so that a so-called resistance-free circuit having no so-called current limiting resistor in the series circuit or the switch element 8B. A circuit 8 in which a current limiting resistor is not inserted in addition to a minute detection resistor for operating a current controller 7A of a switch element 8B provided in a control device 7 for preventing damage, In the wire electric discharge machining, the on-time signal of 6B or the on-time signal from the start of the discharge is within several tens μS at most, and usually several μS.
Since it is within S, even if the switch element 8B is turned on during the on-time signal that operates by detecting the start of discharge in the gap by the voltage pulse applied by the circuit 6, even if the switch element 8B or at least the circuit 8 is saturated. Although the circuit 8 may not be damaged even if the current limiting resistor is not provided in the circuit 8 due to the transition time to the region operation or the like, the operation region of the switch element 8B is referred to as an unsaturated region or at least the circuit 8. Is set such that the range in which the current is sufficiently smaller than the saturation current value of the switching element 8B (usually a fraction) is the operating region, there is no problem of damage to the switching element 8B and the switching element 8B This is preferable because the current off-off characteristic of the circuit 8 becomes sharp and steep.

【0013】前述の電流パルス供給回路8は、電圧パル
ス供給回路6と共に電圧パルス源5として、被加工体3
に最初に加工溝を形成する荒加工、即ちファーストカッ
ト加工工程と、該ファーストカット加工工程後の加工の
寸法・形状精度出し加工を行なうセカンドカット加工工
程等の1又は複数の加工工程の中仕上げ加工工程迄、即
ち前記第1及び第2の加工工程まで加工電圧として間歇
的な電圧パルスが用いられるもので、ゲート入力は切換
えスイッチ8Eにより制御装置7に接続されていて、例
えば前述のような回路6との関連制御が行われるもので
あるが、該中仕上げ加工工程の加工の終了後、第3の加
工工程である高周波交流電圧を用いる加工面粗度出し加
工の1乃至複数回の仕上げ加工工程に移行するに際し、
電圧パルス供給回路6を必要に応じ開閉スイッチ49で
切り離すと共に、前記切換えスイッチ8Eを高周波の間
歇パルスのゲート信号回路8D側に切換えて、電流パル
ス供給回路8を高周波電流パルス発生回路として機能せ
しめるものである。
The above-mentioned current pulse supply circuit 8 serves as the voltage pulse source 5 together with the voltage pulse supply circuit 6 as the workpiece 3
Semi-finishing of one or more processing steps such as rough processing for forming a processing groove first, that is, a first cut processing step, and a second cut processing step for performing processing for obtaining dimensional and shape precision of the processing after the first cut processing step An intermittent voltage pulse is used as a processing voltage until the processing step, that is, up to the first and second processing steps, and the gate input is connected to the control device 7 by the changeover switch 8E. The control related to the circuit 6 is performed, but after the completion of the semi-finishing processing step, one or more times of finishing of a processing surface roughness processing using a high-frequency AC voltage as a third processing step When moving to the machining process,
The voltage pulse supply circuit 6 is separated by an open / close switch 49 if necessary, and the changeover switch 8E is switched to the high-frequency intermittent pulse gate signal circuit 8D side so that the current pulse supply circuit 8 functions as a high-frequency current pulse generation circuit. It is.

【0014】而して、前述の電圧パルス源5を加工用電
源としてファーストカットの加工工程と、該ファースト
カット加工後のセカンドカット、及びサードカット等の
1又は複数の加工工程から成る所定の寸法・形状精度及
び面粗度出しの中仕上げ加工の加工工程の実行の際に
は、図1及び図2中の全ての切換えスイッチ8E、1
4、48、及び49は、図示とは逆の接続状態で稼働し
ており、加工のためのサーボ送り制御回路に放電間隙の
放電状態を検出供給する回路31〜37が作動する。
A predetermined dimension comprising a first cut processing step using the above-described voltage pulse source 5 as a processing power source and one or more processing steps such as a second cut and a third cut after the first cut processing. When executing the machining step of the semi-finishing processing for obtaining the shape accuracy and the surface roughness, all the changeover switches 8E, 1 in FIG. 1 and FIG.
The circuits 4, 48, and 49 are operated in the connection state opposite to that shown in the figure, and the circuits 31 to 37 that detect and supply the discharge state of the discharge gap to the servo feed control circuit for machining operate.

【0015】即ち、31は放電間隙電圧検出用分圧回
路、32は検出分圧電圧を,必要に応じ半波又は全波増
幅する演算増幅器から成る反転増幅回路、33は増幅電
圧を整流積分する積分回路、34は積分電圧の反転増幅
回路で可変抵抗34Aの調整によりサーボゲイン(利
得)を調整する利得調整回路、35は利得が調整された
増幅電圧のサンプルホールド増幅器、36はサンプルホ
ールドされた増幅電圧をデジタル信号に変換するA/D
変換器、37は変換デジタル信号の次段のNC装置への
入出力回路であって、発光素子と受光素子とから成る回
路絶縁用のフォトカプラ、38は同時2軸以上の4軸又
は3軸の制御が可能な放電加工用NC制御装置やマイク
ロコンピュータ等を内蔵する制御装置、39はモータド
ライバ、40はXY2軸、Z軸、あるいはさらにテーパ
加工用UV2軸のサーボモータである。
That is, 31 is a voltage dividing circuit for detecting a discharge gap voltage, 32 is an inverting amplifying circuit comprising an operational amplifier for amplifying the detected divided voltage by half-wave or full-wave as required, and 33 is rectifying and integrating the amplified voltage. An integrating circuit, 34 is an inverting amplifying circuit for an integrated voltage, a gain adjusting circuit for adjusting a servo gain (gain) by adjusting a variable resistor 34A, 35 is a sample-hold amplifier for an amplified voltage whose gain has been adjusted, and 36 is a sample-hold amplifier. A / D to convert amplified voltage to digital signal
A converter 37 is an input / output circuit of the converted digital signal to the NC device at the next stage, and a photocoupler for circuit insulation composed of a light emitting element and a light receiving element, and 38 is a 4-axis or 3-axis having two or more axes simultaneously Is an NC controller for electric discharge machining or a control device incorporating a microcomputer or the like capable of controlling the motor, 39 is a motor driver, and 40 is a servo motor for XY 2-axis, Z-axis, or further UV 2-axis for taper machining.

【0016】而して、前述のような仕上げ加工や、該仕
上げ加工に到る迄の最初の荒加工又はファーストカット
加工、次段のセカンドカット加工、あるいはさらにサー
ドカット加工等の中仕上げ加工工程に於ける加工のため
のサーボ送り制御の放電間隙の放電状態検出回路又は検
出調整回路としては多種多様な物があるが、その1例
は、前述図1の31〜37の如き構成のものであり、検
出放電間隙電圧は、分圧回路31からA/D変換回路3
6迄で、所望ゲインに応じたデジタル信号に変換され、
フォトカプラ37を介し制御装置38に送られて演算さ
れ、制御装置38内のNC装置に入力設定手段38Aに
より、加工の目的等に応じ、作業者により入力された所
望設定電圧又はサーボ基準電圧との偏差に応じ、通常は
前記ファーストカットの加工工程では偏差零で、送り速
度が零で、その送り方向が反転するゼロメソッドサーボ
制御方式を、又前記中仕上げの加工工程では前記偏差零
で設定加工条件の加工速度に応じた送り速度が設定され
る所定の減速サーボのサーボ制御方式の各加工送りとな
るように切換えてサーボモータ40のドライバ39にド
ライブ制御信号が供給される。
[0016] Thus, the above-mentioned finishing processing, the first rough processing or first cut processing leading to the finishing processing, the second cutting processing of the next stage, or the third finishing processing, etc. There are various types of discharge state detection circuits or detection adjustment circuits in the discharge gap of the servo feed control for machining in the above-mentioned example, and one example thereof has a configuration as shown in FIG. The detected discharge gap voltage is supplied from the voltage dividing circuit 31 to the A / D conversion circuit 3.
Up to 6, it is converted into a digital signal according to the desired gain,
A desired setting voltage or a servo reference voltage input by an operator according to the purpose of processing and the like is sent to the NC device in the control device 38 by the input setting means 38A, where the desired setting voltage or servo reference voltage is sent to the control device 38 via the photocoupler 37 and calculated. Normally, a zero method servo control system in which the deviation is zero in the first cut processing step, the feed speed is zero, and the feed direction is reversed in the first cut processing step, and the zero deviation servo processing method is set in the semi-finishing processing step. A drive control signal is supplied to the driver 39 of the servomotor 40 by switching so as to be each processing feed of a predetermined deceleration servo servo control method in which a feed rate according to the processing speed of the processing condition is set.

【0017】ところで、斯種高周波交流電圧源による仕
上げ加工には、前記高周波電流パルス供給回路8と放電
間隙間に設けられた高周波結合トランス13と、前記寸
法・形状精度出しの中仕上げの加工工程から加工面粗度
出しの仕上げ加工工程に移行する際の回路切換え開閉ス
イッチ14とから成る函体状のボックスに収納された回
路装置12とにより構成される高周波交流電圧源30
は、以下の如き構成、及び切換え使用されるものであ
る。高周波結合トランス13は、前記高周波電流パルス
供給回路8が出力する間歇的な高周波電流パルス1個、
1個を1サイクルの高周波交流電圧に変換するもので、
高周波用フェライト等から成る高透磁率のリングコア1
3Aに1次巻線13Bと2次巻線13Cとが、巻線比が
1:1〜3、好ましくは1:1〜2、捲回数が1次巻線
1〜5ターン、好ましくは1〜2ターン、2次巻線1〜
12ターン、好ましくは1〜4ターンの如く、高周波数
応答可能に何れも少ない巻数で、かつどちらかと言えば
電圧が高くて電流が小さい仕上げ加工用の高周波交流電
圧を得る目的から、1次巻線よりも2次巻線の捲回数が
同一以上となるように捲回してあるものである。
In the finishing processing using such a high-frequency AC voltage source, a high-frequency coupling transformer 13 provided between the high-frequency current pulse supply circuit 8 and the discharge gap, and a semi-finishing processing step for obtaining the dimensional and shape accuracy are performed. A high-frequency AC voltage source 30 constituted by a circuit device 12 housed in a box-shaped box comprising
Are used and switched as described below. The high-frequency coupling transformer 13 includes one intermittent high-frequency current pulse output from the high-frequency current pulse supply circuit 8,
One is converted into one cycle of high-frequency AC voltage,
High permeability ring core 1 made of high frequency ferrite etc.
3A, the primary winding 13B and the secondary winding 13C have a turn ratio of 1: 1 to 3, preferably 1: 1 to 2, and the number of turns is 1 to 5 turns of the primary winding, preferably 1 to 3. 2 turns, secondary winding 1
For the purpose of obtaining a high-frequency AC voltage for finishing processing, which has a small number of turns for enabling high-frequency response such as 12 turns, preferably 1 to 4 turns, and is rather high in voltage and small in current, the primary winding The secondary winding is wound so that the number of turns of the secondary winding is equal to or greater than that of the wire.

【0018】次に、前記高周波電流パルス供給回路8の
出力と、前記ワイヤ電極1・被加工体3から成る放電間
隙間の給電接続線11A、11Bと前記回路装置12の
接続と切換え構成に付き説明すると、1次巻線13Bを
高周波電流パルス供給回路8の出力と接離する開閉スイ
ッチと2次巻線13Cを放電間隙と接離する開閉スイッ
チとは、前記高周波電流パルス供給回路8の出力両端と
放電間隙のワイヤ電極1と被加工体3夫々の間に接続さ
れる給電接続線11A、11Bの回路部分に設けられる
給電回路開閉スイッチ14A、14Bと、1次巻線の入
力両端を前記給電回路開閉スイッチ14A、14Bより
も高周波電流パルス発生回路8側でその出力線の両方に
接続する間の一方又は両方の接続回路に挿設した1次巻
線開閉スイッチ14Cと、及び2次巻線の出力両端を前
記給電回路開閉スイッチ14A、14Bよりも放電間隙
側でワイヤ電極1と被加工体3の両方に接続する間の一
方又は両方の接続回路に挿設した2次巻線開閉スイッチ
14Dとから成り、前記2つの給電回路開閉スイッチ1
4A、14Bと、1次巻線及び2次巻線開閉スイッチ1
4C、14Dとは、前者の開閉スイッチ14A、14B
がオンのとき、後者の開閉スイッチ14C、14Dがオ
フとなるように互いに逆に開閉せしめられることにより
その目的を達成するものであり、前記給電回路開閉スイ
ッチ14A、14Bがオフで、1次及び2次巻線開閉ス
イッチ14C、14Dがオンのとき、本発明の目的とす
る高周波交流電圧による仕上げ加工用電源回路が構成さ
れることになる。なお、、図示では1次巻線及び2次巻
線の各開閉スイッチとして、夫々各1個が設けられた場
合で、かつ設けられる切換えスイッチの数を最も少ない
数として構成した場合であるが、スイッチの数により種
々の切換え回路構成と為し得ることは当然である。
Next, the output of the high-frequency current pulse supply circuit 8, the connection between the power supply connection lines 11A and 11B between the discharge gap formed by the wire electrode 1 and the workpiece 3, and the circuit device 12 are switched. Explaining this, an open / close switch that connects / disconnects the primary winding 13B to / from the output of the high-frequency current pulse supply circuit 8 and an open / close switch that connects / disconnects the secondary winding 13C to / from the discharge gap are output from the high-frequency current pulse supply circuit 8. The power supply circuit on / off switches 14A and 14B provided in the circuit portions of the power supply connection lines 11A and 11B connected between the wire electrode 1 and the workpiece 3 at both ends and the discharge gap, respectively, and the input ends of the primary winding are connected to each other. The primary winding on / off switch 1 inserted in one or both connection circuits during connection to both of its output lines on the high frequency current pulse generation circuit 8 side of the power supply circuit on / off switches 14A and 14B C, and both ends of the output of the secondary winding are connected to one or both of the connection circuits during connection to both the wire electrode 1 and the workpiece 3 on the discharge gap side of the power supply circuit on / off switches 14A and 14B. And a secondary winding on / off switch 14D.
4A, 14B, primary and secondary winding on / off switch 1
4C and 14D are the former open / close switches 14A and 14B
Is turned on, the latter on / off switches 14C and 14D are opened and closed in opposite directions so as to be turned off, and the power supply circuit on / off switches 14A and 14B are off and the primary and When the secondary winding on / off switches 14C and 14D are turned on, a power supply circuit for finishing by the high-frequency AC voltage, which is an object of the present invention, is formed. It should be noted that the drawing shows a case in which one open / close switch is provided for each of the primary winding and the secondary winding, and a case where the number of changeover switches provided is the smallest. It goes without saying that various switching circuit configurations can be achieved depending on the number of switches.

【0019】図3は、図2の加工電源回路を前述の仕上
げ加工用電源回路として、即ち、開閉スイッチ49をオ
フ、切換えスイッチ8Eによりゲート信号回路8Dをオ
ンにして高周波電流パルス供給回路8を機能させ、給電
回路開閉スイッチ14A、14Bをオフ、トランス1次
及び2次巻線開閉スイッチ14C、14Dを夫々オンと
して作動させた場合のタイミングチャートを2サイクル
分、ほぼ理想的な波形として示したもので、aは前記間
歇パルスのゲート信号回路8Dから出力してスイッチ素
子8Bをオン・オフさせる高周波のゲート信号、bは前
記ゲート信号に基づき高周波電流パルス供給回路8が出
力し、トランス13の1次巻線13Bに供給する電流パ
ルス、cは前記パルス電流に基づき2次巻線13Cに誘
起され放電間隙に印加される高周波交流電圧と該高周波
交流電圧印加に基づき放電間隙で放電が発生した場合の
放電間隙電圧波形、dは同放電間隙の放電電流の例であ
る。そしてこのような電流パルス供給回路8と結合トラ
ンス13との組合わせによる発生高周波交流電圧の波形
成形(通常、急崚で滑らかな正弦波状化、または更にA
OFF=0の連続波化等)には、2次巻線13Cと放
電間隙の放電回路に直列に所望のインダクタンスを挿入
することが有効で、そのための手法としては、所定のイ
ンダクタンスを有するコイルを直列に接続するとと、電
極1又はガイド2A,2B部に於いてワイヤ電極1を囲
繞するように高透磁率の磁気コアを設けるようにしても
良い。
FIG. 3 shows the processing power supply circuit of FIG. 2 as the above-mentioned power supply circuit for finishing processing, that is, the open / close switch 49 is turned off, the gate signal circuit 8D is turned on by the changeover switch 8E, and the high-frequency current pulse supply circuit 8 is turned on. The timing chart when the power supply circuit on / off switches 14A and 14B are turned off and the transformer primary and secondary winding on / off switches 14C and 14D are respectively turned on is shown as an almost ideal waveform for two cycles. A is a high-frequency gate signal output from the intermittent pulse gate signal circuit 8D to turn on / off the switch element 8B; b is output from the high-frequency current pulse supply circuit 8 based on the gate signal; The current pulse c supplied to the primary winding 13B is induced in the secondary winding 13C based on the pulse current and is generated in the discharge gap. Discharge gap voltage waveform when the discharge occurs in the discharge gap based on the high-frequency AC voltage and said high-frequency AC voltage applying to be pressurized, d is an example of the discharge current of the discharge gap. Then, the waveform shaping of the generated high-frequency AC voltage by the combination of the current pulse supply circuit 8 and the coupling transformer 13 (usually, a sharp and smooth sinusoidal waveform, or A
It is effective to insert a desired inductance in series with the secondary winding 13C and the discharge circuit in the discharge gap in order to form a continuous wave of T OFF = 0). Are connected in series, a magnetic core having high magnetic permeability may be provided so as to surround the wire electrode 1 in the electrode 1 or the guides 2A and 2B.

【0020】前記ゲート信号回路8Dから出力する間歇
的なパルスのゲート信号は、本発明の仕上げ加工に於い
ては、図示ではTON=100nS、TOFF=1.0
μSで、大凡約TON=50nS〜1000nS程度の
μSオーダ以下で、TOFF=500nS〜10μs又
は数10μS程度であり、cの交流電圧が相互に繋がる
のを限度として、好ましくはATOFF≧0となるよう
条件設定をするものである。又、前記高周波電流パルス
発生回路10の出力電流パルス波形bは、スイッチ素子
8Bが、又は少なくとも回路8の電流がスイッチ素子8
Bの飽和電流値よりも充分小さい立上がり電流の飽和領
域作動状態となる前にゲート信号aがオフとなり、スイ
ッチ素子8B、又は回路8の電流切れが高速で行われた
ものとして示されている。
In the finishing processing of the present invention, the gate signal of the intermittent pulse output from the gate signal circuit 8D is T ON = 100 ns and T OFF = 1.0 in the drawing.
In μS, T ON is about 50 nS to about 1000 nS or less, on the order of μS, and T OFF is about 500 nS to 10 μs or about several tens of μS, and it is preferable that AT OFF ≧ 0 as long as the AC voltage of c is mutually connected. The condition is set so that Further, the output current pulse waveform b of the high-frequency current pulse generation circuit 10 has a switch element 8B or at least a current of the circuit 8
It is shown that the gate signal a is turned off before the saturation region operation state in which the rising current is sufficiently smaller than the saturation current value of B and the switching element 8B or the circuit 8 is cut off at high speed.

【0021】又、前記c図の2次巻線13Cの高周波交
流電圧は、近時のテストに依れば、外径約55mmφ、
内径約30mmφの、高透磁率Mn−Znフェライト
や、Ni−Znフェライト等のフェライトトロイダルコ
ア(例えば、TDK製PC50[又はPC30]T40
×16×24)を2重積したコア13Aに、断面約3.
5mmのテフロン系樹脂被覆導線を1次巻線13B:
1ターン、2次巻線13C:2ターンとしたとき、直流
電圧源8Aの出力約60Vで正負に夫々約150〜17
0V、電圧源8Aの出力約25Vで正負に夫々約60〜
65Vで、前述加工面粗度改善の仕上げ加工に適用可能
な、好適に高電圧の高周波交流電圧が得られ、放電電流
波形dに示す如く、交流電圧1サイクルの初めの半波で
放電が発生すると、次の逆極性の半波に於いては続いて
放電が起こることになるが、平均加工電流が1A前後程
度より小さい値で仕上げ加工を進行させることができる
ようになる。
According to a recent test, the high-frequency AC voltage of the secondary winding 13C shown in FIG.
Ferrite toroidal core such as high permeability Mn-Zn ferrite or Ni-Zn ferrite having an inner diameter of about 30 mmφ (for example, PC50 [or PC30] T40 manufactured by TDK)
× 16 × 24) on the core 13A which is a double product of about 3.
A 5 mm 2 Teflon-based resin-coated conductor is connected to the primary winding 13 </ b > B:
When one turn and the secondary winding 13C are set to two turns, the output of the DC voltage source 8A is about 60V and the output is about 150 to 17
0 V, the output of the voltage source 8A is about 25 V,
At 65 V, a suitably high-frequency high-frequency AC voltage that can be applied to the finishing process for improving the above-described machined surface roughness can be obtained, and a discharge occurs in the first half wave of one cycle of the AC voltage as shown in a discharge current waveform d. Then, in the next half-wave of the opposite polarity, electric discharge occurs continuously. However, the finish machining can be advanced with an average machining current smaller than about 1 A.

【0022】ところで、斯種高周波交流電圧源による仕
上げ加工には、放電間隙、及び該放電間隙廻りの構造物
や加工用電圧源給電回路部分等が有する浮遊静電容量の
値を仕上げ加工の目的に従い相応に小さくしないと、浮
遊容量の充放電による高い放電ピーク電流の放電が混じ
ることになり、該高ピークの放電が混じると、加工面が
荒れ、目的とする加工面粗度(約3.5〜1μmRma
x、又はそれ以上)に仕上がらないものである。又、前
記のように浮遊容量が充分小さくないと、加えた高周波
交流電圧が減衰し、そうでなくても加工効率がよくない
乃至は加工効率が容易に著しく低下することがある高周
波交流電圧源による面粗度改善の仕上げ加工の加工効率
を低下させることになる。
By the way, in finishing with such a high-frequency AC voltage source, the value of the discharge gap and the floating capacitance of the structure around the discharge gap and the power supply circuit portion for machining is determined by the purpose of the finishing. If the discharge is not made correspondingly small, a discharge of a high discharge peak current due to the charging and discharging of the floating capacity will be mixed, and if the discharge of the high peak is mixed, the processed surface will be roughened, and the target processed surface roughness (about 3. 5-1 μmRma
x or more). Also, as described above, if the stray capacitance is not sufficiently small, the applied high-frequency AC voltage is attenuated, otherwise the processing efficiency is poor or the processing efficiency is easily reduced significantly. The processing efficiency of the finishing processing for improving the surface roughness is reduced.

【0023】このため、前記図1の従来例のサーボ送り
制御の放電状態検出回路31〜37を備えた仕上げ加工
回路は、電極・被加工体間の放電間隙及びその廻りと、
高周波交流電圧源30、及び該電圧源30から放電間隙
迄の給電回路等の浮遊静電容量を工夫等して所望に低減
せしめ得たとしても、前記放電間隙には加工送りのため
のサーボ制御用放電状態検出回路として、前記分圧回路
31からA/D変換回路36迄の、通常電源装置のボッ
クス内にある電子回路が接続されていて、該電子回路は
勿論、その回路構成や構造等によるものの、大凡約10
0〜1000PF前後の浮遊容量を有しており、該検出
回路部分の浮遊容量は、前述した高周波交流電圧源30
による加工面粗度改善の仕上げ加工に際しての障害とな
るものである。
For this reason, the finishing circuit provided with the discharge state detecting circuits 31 to 37 of the servo feed control of the conventional example shown in FIG. 1 employs a discharge gap between the electrode and the workpiece and its surroundings.
Even if the stray capacitance of the high-frequency AC voltage source 30 and the power supply circuit from the voltage source 30 to the discharge gap can be reduced as desired by devising, etc., the discharge gap has servo control for machining feed. As a discharge state detecting circuit for use, an electronic circuit in a box of a normal power supply unit from the voltage dividing circuit 31 to the A / D conversion circuit 36 is connected, and not only the electronic circuit but also its circuit configuration and structure are used. Approximately 10
The detection circuit portion has a stray capacitance of about 0 to 1000 PF, and the stray capacitance of the detection circuit portion corresponds to the high-frequency AC voltage source 30 described above.
This is an obstacle to the finish processing for improving the roughness of the machined surface.

【0024】従って、前述の高周波交流電圧源30によ
る仕上げに際しては、加工回路部分の浮遊容量をできる
限り少なくすることが必須で、このためには仕上げ加工
に際して不使用の加工電源回路部分、電圧パルス源5又
は電圧パルス供給回路6を開閉スイッチ49によって切
り離す必要があり、また加工電源の制御や加工のサーボ
送り制御等の信号として用いられる放電間隙9の前記放
電状態検出回路31〜37を、特に、考慮された静電容
量の少ない構成の放電状態検出回路41〜47に開閉ス
イッチ48によって切換える必要があるものである。上
記放電状態検出回路41〜47の一例に付き図1より説
明すると、41は各種発光ダイオード等の発光素子41
Aと、各種光導電素子やフォトダイオード、又はフォト
トランジスタ等の受光素子41Bとからなるフォトセン
サ、フォトカプラ、又は光電変換素子で、発光素子41
Aと受光素子41Bとは電気的に絶縁されており、上記
発光素子41Aは無誘導抵抗等の抵抗41Cと直列に接
続して放電間隙に直接、勿論リード線等を介してである
が、並列に接続される。43Aはフォトカプラ41出力
の積分回路、42は反転増幅回路、44は更に反転増幅
して、可変抵抗44Aの調整によりサーボゲインが調整
される利得調整回路、43Bは積分回路、45はサンプ
ルホールド増幅回路、46はA/D変換器、又47は入
出力回路で、前記回路43Aから回路47の間は前述し
た従来の検出回路32〜37部分と構成上微差がある
が、実質上同一のもので、その検出調整されたデジタル
信号はNC制御装置等を有する制御装置38に入力し
て、入力手段38Aの入力設定信号等と所定演算等処理
され、サーボモータ40のドライバ39にドライブ制御
信号を出力する外、必要に応じ、例えば加工用電源やパ
ルスの条件、又は加工液供給装置の供給条件等の加工条
件を検出信号に応じて制御する制御信号38Bを出力す
る。
Therefore, when finishing with the high-frequency AC voltage source 30 described above, it is essential to reduce the stray capacitance of the machining circuit portion as much as possible. The source 5 or the voltage pulse supply circuit 6 needs to be separated by an open / close switch 49, and the discharge state detection circuits 31 to 37 of the discharge gap 9, which are used as signals for controlling a machining power supply and controlling servo feed of machining, It is necessary to switch to the discharge state detection circuits 41 to 47 having a small capacitance by using the open / close switch 48. FIG. 1 illustrates an example of the discharge state detection circuits 41 to 47. Reference numeral 41 denotes a light emitting element 41 such as various light emitting diodes.
A and a photosensor, a photocoupler, or a photoelectric conversion element including a light-receiving element 41B such as a photoconductive element, a photodiode, or a phototransistor.
A and the light receiving element 41B are electrically insulated, and the light emitting element 41A is connected in series with a resistor 41C such as a non-inductive resistor and is directly connected to a discharge gap, of course, via a lead wire or the like. Connected to. 43A is an integrating circuit for the output of the photocoupler 41, 42 is an inverting amplifier circuit, 44 is a gain adjusting circuit for further inverting and amplifying and adjusting the servo gain by adjusting the variable resistor 44A, 43B is an integrating circuit, and 45 is a sample and hold amplifier. The circuit, 46 is an A / D converter, and 47 is an input / output circuit. Although there is a slight difference in configuration between the circuits 43A to 47 and the conventional detection circuits 32 to 37 described above, they are substantially the same. The detected and adjusted digital signal is input to a control device 38 having an NC control device and the like, is subjected to predetermined processing such as an input setting signal of an input means 38A, and is subjected to a drive control signal to a driver 39 of a servo motor 40. Control signal 38B for controlling processing conditions such as processing power supply and pulse conditions or supply conditions of the processing liquid supply device in accordance with the detection signal, if necessary. To output.

【0025】なお、図に於て発光素子41Aに並列に接
続された素子41Dは整流素子であって、発光素子41
Aが発光ダイオードの場合に同様な発光ダイオードであ
っても良く、発光素子41Aの逆電圧に対する耐圧保護
のためと、加工用電源として高周波交流電圧源を用いた
場合に、該発光ダイオード41A部に於ける正負の電圧
降下と同一にして発光特性を良好に保つためである。
In the drawing, an element 41D connected in parallel to the light emitting element 41A is a rectifying element,
When A is a light-emitting diode, a similar light-emitting diode may be used. In order to protect the light-emitting element 41A against withstand voltage against reverse voltage and to use a high-frequency AC voltage source as a processing power supply, This is because the light emission characteristics are kept good in the same manner as the positive and negative voltage drops.

【0026】以上の構成によれば、仕上げ加工に際して
は、電極1と被加工体3とからなる放電間隙には、仕上
げ加工用電源としての高周波交流電圧源30のみが接続
されているだけで、仕上げ加工工程以前の中仕上げ加工
等の段階まで使用された、通常形の電子スイッチ素子の
制御オン・オフにより休止時間を置いて間歇的に電圧パ
ルスを供給する電圧パルス源5は、機械的開閉スイッチ
49により放電間隙から完全に切り離され、又通常1個
以上複数個が設けられるであろう放電状態検出回路も機
械的開閉スイッチ48により静電容量の小さい放電状態
検出回路のみが接続されているだけで、放電間隙には抵
抗41Cと発光素子41Aとの直列回路のみが並列接続
されている訳であるから、放電間隙廻り、又少なくとも
放電間隙廻り回路網による浮遊静電容量は最も少ない状
態にあるわけで、放電間隙廻り回路網による浮遊静電容
量による高いピーク電流値のある放電や1放電当たりの
放電エネルギが所定値よりも大きくなると言うことは無
く、したがって加工面が荒れたりすることはなく、又逆
に前記浮遊容量が存在して、前記高周波交流電圧や仕上
げ加工パルス等が不測に減衰等されて加工効率を低下さ
せると言うこともなく、他方前記浮遊容量を増加させる
こと無く放電状態が検出できて、当該仕上げ加工の送り
を好適に、又は所望に制御して加工することができれ
ば、被加工体3加工面の太鼓特性や前加工段階までによ
る加工形状のバラツキ等を所望に制御しつつ加工するこ
とができ、所望とする約3.5〜1μmRmaxの加工
面粗度出し仕上げ加工をすることができるはずである。
According to the above configuration, only the high-frequency AC voltage source 30 as a power source for finishing is connected to the discharge gap formed by the electrode 1 and the workpiece 3 during finishing. A voltage pulse source 5 for intermittently supplying a voltage pulse with an idle time by controlling on / off of a normal type electronic switch element used up to a stage such as a semi-finishing process before the finishing process is mechanically opened and closed. Only a discharge state detection circuit having a small capacitance is connected by a mechanical open / close switch 48 to a discharge state detection circuit which is completely separated from the discharge gap by a switch 49 and which is usually provided with one or more plural circuits. Only the series circuit of the resistor 41C and the light emitting element 41A is connected in parallel to the discharge gap. This means that the floating capacitance due to the floating capacitance due to the network around the discharge gap and the discharge energy per discharge will not be greater than the predetermined value. Therefore, the processing surface is not roughened, and conversely, the stray capacitance is present, without saying that the high-frequency AC voltage or the finishing processing pulse is unexpectedly attenuated or the like, thereby lowering the processing efficiency, On the other hand, if the discharge state can be detected without increasing the stray capacitance and the feed of the finishing processing can be suitably or desirably controlled and processed, the drum characteristics of the processed surface of the workpiece 3 and the pre-processing step It is possible to carry out processing while controlling the variation of the processing shape due to the above, etc., and it is possible to carry out the desired surface roughness finish of about 3.5 to 1 μm Rmax. Should be.

【0027】又、従来前述の図1の加工回路に於いて、
放電状態検出回路31〜37を用いるとその浮遊容量の
存在により、加工効率が悪いだけでなく、加工面粗度を
3.5〜1μmRmax、又はそれ以上の面粗度仕上げ
ができず、このため従来約3.5〜1μmRmax、又
はそれ以上の面粗度仕上げのためには、放電状態検出回
路31〜37を機械的スイッチ等により放電間隙から切
り離し、制御装置38のNC装置に設定した或一定速度
(通常、前述設定しようとするサーボ基準電圧に対する
放電間隙の電圧偏差零のとき設定加工条件による加工速
度に応ずる送り速度)で加工するようにしていたもので
あるが、かかるサーボ制御でない一定速度の加工送りの
加工では、被加工体3加工面の太鼓特性や形状のバラッ
キ等を所望に制御する加工とすることができず不具合で
あったものである。
In the conventional processing circuit of FIG.
When the discharge state detection circuits 31 to 37 are used, not only the processing efficiency is poor, but also the processing surface roughness cannot be 3.5 to 1 μmRmax or more due to the presence of the stray capacitance. Conventionally, in order to finish the surface roughness of about 3.5 to 1 μm Rmax or more, the discharge state detection circuits 31 to 37 are separated from the discharge gap by a mechanical switch or the like, and are set in the NC device of the control device 38. The machining is performed at a speed (normally, a feed speed corresponding to the machining speed according to the set machining conditions when the voltage deviation of the discharge gap with respect to the servo reference voltage to be set is zero). In the processing of the processing feed of the above, it was not possible to perform processing for controlling the drum characteristics and the variation in shape of the processed surface of the workpiece 3 as desired, which was a problem.

【0028】よって、ここで本発明の目的である加工送
りサーボ制御方式、そして更にファーストカット加工工
程、セカンドカット等1又は複数の加工工程から成る寸
法・形状精度出し、及び加工面粗度改善の中加工又は中
仕上げ加工工程の各加工工程に対する加工送りサーボ制
御方式に付いて検討することとする。まず、被加工体3
に所望輪郭形状の加工溝を形成して行くファーストカッ
ト(通常荒加工)の加工工程であるが、全ての加工工程
中最大の加工取り量であるから、加工面粗さ及び寸法・
形状精度は次工程以後の加工工程で修正可能な範囲とし
て加工速度をできるだけ早くすることが望まれる訳であ
るり、斯様な加工のサーボ制御制御方式としては、送り
速度が放電間隙(平均)電圧に比例し、設定サーボ基準
電圧に対する間隙電圧の偏差零のとき送り速度が零とな
って送り方向が反転する所謂ゼロメソッドサーボ制御方
式が適合しているものである。
Therefore, the machining feed servo control method, which is the object of the present invention, and the dimensional / shape accuracy including one or more machining steps such as a first cut machining step and a second cut, and an improvement in the roughness of the machined surface. The machining feed servo control method for each processing step of the medium processing or the medium finishing processing step will be examined. First, the workpiece 3
This is the first cut (usually rough machining) machining step in which a machining groove with a desired contour shape is formed in the first step. However, since this is the largest machining amount in all machining steps, the machining surface roughness and dimensions /
It is desirable to increase the machining speed as much as possible within a range in which the shape accuracy can be corrected in the machining process after the next process. In such a machining servo control method, the feed speed is set to the discharge gap (average). A so-called zero-method servo control system in which the feed speed becomes zero and the feed direction is reversed when the deviation of the gap voltage from the set servo reference voltage is zero in proportion to the voltage is suitable.

【0029】図4は、かかるゼロメソッドサーボ制御方
式の実施例特性曲線の説明図で、縦軸に送り速度F(m
m/min)、横軸に間隙電圧(加工平均電圧)V
(V)を取り、或る設定加工条件の時の設定サーボ基
準電圧SV、正転加工送りと逆転後退送りの最高速度±
として、利得特性が間隙電圧との偏差の大きさによ
って異なるA、B2種類の特性曲線を示しているが、曲
線A、Bとも全体として送り速度が間隙電圧に比例する
が、設定サーボ基準電圧SVに対する間隙電圧の偏差零
のとき送り速度が零となり、かつ該サーボ基準電圧SV
を境いとして間隙電圧が高いときは正転加工送りと、逆
に間隙電圧が低いとき逆転後退送りとなるように送り方
向が反転する特性となっているものである。
FIG. 4 is an explanatory view of a characteristic curve of the embodiment of the zero-method servo control system.
m / min), the gap voltage (average processing voltage) V on the horizontal axis
G (V) is taken, the set servo reference voltage SV under certain set processing conditions, and the maximum speed of forward and backward reversing feeds ±
As F P, the gain characteristic shows a different A, B2 type of characteristic curve the magnitude of the difference between the gap voltage, curve A, but the feed rate as a whole and also B is proportional to the gap voltage, setting servo reference When the deviation of the gap voltage from the voltage SV is zero, the feed speed becomes zero, and the servo reference voltage SV
When the gap voltage is high, the feed direction is reversed so that forward feed is performed when the gap voltage is high, and conversely, reverse feed is performed when the gap voltage is low.

【0030】ところで、図5は縦軸に加工速度(時間当
りの加工送り速度)MS、横軸に放電間隙電圧(平均加
工電圧)Vを取った平均加工電圧に対する加工速度の
特性曲線図を示すもので、間隙電圧VGOの時加工速度
最大は、放電間隙に所定の設定された休止時間τOFF
を置いて供給されるパルス幅τONの電圧パルスの印加
開始と同時に少しの遅延もなく放電を開始し、設定加工
パルス条件通りの放電を1つの無放電もなく次々とした
場合を想定して示したものである。そして従来の加工条
件の選択設定方式によれば、間隙電圧が上記電圧VGO
よりも低い領域は間隙が短絡状態の領域で、この電圧V
GOの前後の領域で間隙はアーク放電状態であり、サー
ボ基準電圧SVは前記放電間隙へ供給される電圧パルス
が平均的に、例えば約70%前後が放電する間隙長が維
持される電圧値にSVが設定される訳である。而して、
加工速度を大きくするには、サーボ基準電圧SVを低く
し、電圧VGOに近づけ、放電間隙長を狭くして加工を
しようとする訳であるが、設定サーボ基準電圧SVが電
圧VGOに近い設定で、サーボの利得を大きくすると、
慣性による送り過ぎる等もあってショートやハンチング
が起こり易く不安定となるから、放電間隙電圧(平均加
工電圧)Vがサーボ基準電圧SVに対する偏差零のと
き送り速度が零となるゼロメソッドサーボ制御方式が、
ファーストカット加工工程のサーボ制御方式として合致
しているものである。
By the way, FIG. 5 is the machining speed on the vertical axis (machining feed rate per time) MS, the characteristic curve of the working speed to the average machining voltage in the horizontal axis took discharge gap voltage (average machining voltage) V G view the The maximum machining speed when the gap voltage V GO is equal to the predetermined set pause time τ OFF in the discharge gap.
The discharge is started without any delay at the same time as the start of the application of the voltage pulse having the pulse width τ ON , which is supplied with a delay, and the discharge according to the set processing pulse condition is performed one after another without any discharge. It is shown. According to the conventional setting method of processing conditions, the gap voltage is set to the voltage V GO.
The lower region is a region where the gap is short-circuited, and this voltage V
In the area before and after GO , the gap is in an arc discharge state, and the servo reference voltage SV is set to a voltage value at which the gap length at which the voltage pulse supplied to the discharge gap averages, for example, about 70% is discharged is maintained. That is, the SV is set. Thus,
In order to increase the machining speed, the servo reference voltage SV is lowered to approach the voltage V GO , and the discharge gap length is reduced to perform machining. However, the set servo reference voltage SV is close to the voltage V GO . If you increase the servo gain in the settings,
Since the short circuit or hunting occurs easily unstable partly like too feed due to inertia, the zero method servo control feed rate becomes zero when the deviation zero discharge gap voltage (average machining voltage) V G is to servo reference voltage SV The method is
This is compatible with the servo control method of the first cut processing step.

【0031】次に、セカンドカット及びサードカット加
工等の1又は複数加工工程の寸法・形状精度出し、及び
加工面粗度改善の中加工又は中仕上げ加工に於いては、
ファーストカット加工で加工形成された一方の加工面に
対する一種の面取加工である所から、加工取り量は少な
く、設定される電気的条件は相違するが、ファーストカ
ット加工工程で使用した同一型式の加工用電源、即ち休
止時間を有する間歇的な電圧パルスの発生供給方式の電
源を用いると、セカンドカット加工工程の所要加工取り
量に対し、加工電源の設定された加工条件では加工エネ
ルギ、加工能力、加工速度的には余裕がある状態にあ
る。
Next, in one or a plurality of processing steps such as second cut and third cut processing, the dimensional / shape precision is obtained, and in the middle processing or semi-finishing processing for improving the roughness of the processed surface,
Since it is a kind of chamfering for one of the processing surfaces formed by the first cut processing, the amount of processing is small and the electrical conditions set are different, but the same model used in the first cut processing step When a power supply for processing, that is, a power supply of an intermittent voltage pulse generation and supply method having a pause time is used, the processing energy and the processing capacity under the processing conditions set by the processing power supply with respect to the required processing amount of the second cut processing step. However, there is room for the processing speed.

【0032】所で、このセカンドカット加工等の中仕上
げ加工工程は、加工面粗度の改善もさることながら、太
鼓量の調整及び修正を含む寸法・形状精度を出す加工の
ためには、加工平均電圧が常に一定となる加工状態を確
保することが必要となる。即ち前後のファートカットの
加工工程により加工形成された加工面は部分的にランダ
ムに寸法・形状誤差があり、従って加工の進行経路の加
工部に於いて加工の取り量に変化が有る訳であるが、こ
の加工取り量に変化があっても平均加工電圧(=放電繰
返し周波数)を一定とするためには、送り速度が変り得
るサーボ制御特性とする必要があるものである。
In the meantime, the semi-finishing process such as the second cut process is not only a process for improving the surface roughness, but also a process for obtaining dimensional and shape accuracy including adjustment and correction of the drum amount. It is necessary to ensure a processing state in which the average voltage is always constant. In other words, the processing surface formed by the front and rear fart-cut processing steps partially has a random size and shape error, and therefore, the amount of processing at the processing portion of the processing path changes. However, in order to keep the average machining voltage (= discharge repetition frequency) constant even if the machining amount changes, it is necessary to have a servo control characteristic that can change the feed rate.

【0033】従って、一般的に加工エネルギ的に余裕が
あり、そして余程のことがない限り、加工送り速度が零
になるとか、後退送りが生ずることがなく、或る速度
(通常設定された電気的加工条件の加工速に従う送り速
度)で送り続けながら加工が進行する表面加工の中仕上
げ及び仕上げ加工では、サーボ制御方式として、前記ゼ
ロメソッドサーボ制御方式に替え、送り速度が放電間隙
電圧に比例し、設定サーボ基準電圧に対する放電間隙電
圧の電圧偏差零のとき設定加工条件の加工送り速度に応
ずる送り速度が設定される減速サーボ制御方式を採用す
ることが加工精度向上に必要となるが、そのサーボ制御
の特性として、加工取り量に応じて送り速度が変化し、
平均加工電圧が一定になるように作動することが好まし
く必要となるものである。
Therefore, in general, there is a margin in machining energy, and unless there is a margin, the machining feed speed does not become zero or the backward feed does not occur, and a certain speed (usually set at a predetermined value) is not obtained. In semi-finishing and finishing of surface processing, in which the processing proceeds while continuing to feed at a feed rate according to the processing speed of the electrical processing conditions, the feed rate is changed to the discharge gap voltage in place of the zero method servo control method as the servo control method. In order to improve machining accuracy, it is necessary to adopt a deceleration servo control method in which a feed rate corresponding to the machining feed rate of the set machining condition is set when the voltage deviation of the discharge gap voltage with respect to the set servo reference voltage is zero in proportion to the set servo reference voltage, As a characteristic of the servo control, the feed rate changes according to the machining amount,
It is desirable and necessary to operate so that the average machining voltage is constant.

【0034】図6は、前述図4と同様な座標図中に或る
種の特性の減速サーボ特性曲線C及びEと、一定速度送
りの特性曲線図Dを示した説明図で、設定サーボ基準電
圧SVに対する間隙電圧の偏差零のとき、加工しようと
する中仕上げ又は仕上げ加工時の設定加工条件に応ずる
加工速度と、その加工での加工取り量に応じた送り速度
FSが設定され、減速サーボ制御方式の特性曲線C及び
Eはこのサーボ基準電圧SVと設定送り速度FSとの交
点を通る右肩上り、即ち送り速度が間隙電圧(平均加工
電圧)Vに比例する加工送り特性で、その右肩上りの
角度、又は前記比例定数が調整又は選択設定の可能なサ
ーボ利得(又はゲイン)である。そしてこの減速サーボ
制御方式の場合、間隙電圧がサーボ基準電圧SVより或
る程度以上低くなると送り速度は零となって加工送りが
停止し、そして更に間隙電圧Vが低下して間隙短絡又
は予め定めた後退電圧Vに達すると送り方向が反転し
て後退するものである。そして、前記セカンドカット加
工等のファーストカット加工工程後の寸法・形状精度出
し、及び加工面粗度改善の1又は複数の加工工程の中仕
上げ加工工程に於いては、その減速送りのサーボ制御は
加工取り量が或る程度変化しても、送り速度が迅速に対
応変化して平均加工電圧が一定となることが必要なもの
であるから、右肩上りの角度が大で、比例定数大の大き
な利得特性の減速サーボ制御特性曲線Cを選択設定し
て、その中仕上げ加工を実行することにより被加工体の
寸法・形状精度が迅速確実に仕上がるものである。
FIG. 6 is an explanatory diagram showing deceleration servo characteristic curves C and E of certain characteristics and a characteristic curve diagram D for constant speed feed in a coordinate diagram similar to that of FIG. When the deviation of the gap voltage with respect to the voltage SV is zero, a processing speed corresponding to the set processing conditions at the time of semi-finishing or finishing processing to be processed and a feed speed FS corresponding to a processing amount in the processing are set, and the deceleration servo is performed. characteristic curves C and E of the control system in the working feeding characteristics rightward up through the intersection between the set feed speed FS this servo reference voltage SV, i.e. the feed rate is proportional to the gap voltage (average machining voltage) V G, the The upward-sloping angle or the proportionality constant is a servo gain (or gain) that can be adjusted or selected and set. And in the case of the deceleration servo control system, feed rate machining feed is stopped becomes zero when the gap voltage is lower than a certain degree than the servo reference voltage SV, and further the gap short or advance reduces the gap voltage V G feed direction reaches the backward voltage V B that defines is one that retracts inverted. Then, in the semi-finishing step of one or more processing steps for improving the dimension and shape accuracy after the first cut processing step such as the second cut processing, and the improvement of the processing surface roughness, the servo control of the deceleration feed is performed. Even if the machining amount changes to a certain extent, it is necessary that the feed rate changes quickly and the average machining voltage must be constant, so that the angle of rising to the right is large and the proportional constant is large. By selectively setting the deceleration servo control characteristic curve C having a large gain characteristic and executing the semi-finishing processing, the size and shape accuracy of the workpiece can be quickly and reliably finished.

【0035】之に対し、上記中仕上げ加工後の高周波交
流電圧源30を加工用電源とする主として加工面粗度出
しの仕上げ加工工程に於いては、前記高周波交流電圧源
30から成る加工用電源は一般的に加工エネルギ的に又
加工能力的にあまり余裕はなく丁度程度に設定されてい
て、前述の如く加工回路部分の浮遊容量が充分小さくな
るように加工電圧パルス回路を切り離したり、放電間隙
状態検出回路を切換えること等が必要となる丈でなく加
工条件、特に水系加工液の特性変化等間隙条件の変化に
よって種々大きな影響を受けるものである。そしてこの
点に付いても、先に説明したように、加工液供給系の不
調により加工液の比抵抗が所定値よりも低下したり、加
工屑濃度の不整による加工間隙の抵抗変化が生ずると、
高周波交流電圧が加えられる放電間隙の電圧は見掛け上
低下し、このため加工送りのサーボ制御方式として、上
述セカンドカット等の中仕上げ加工工程に好適な曲線C
の減速サーボ制御を採用すると加工送り速度が容易に遅
くなり過ぎたり又は停止等して加工量過多となり、例え
ばポンチ切抜き加工では、加工面粗度はほぼ仕上がると
しても寸法・形状が所定値より小さく、寸法精度を損な
うことが少なくないのである。
On the other hand, in the finishing process for obtaining a roughened surface mainly by using the high-frequency AC voltage source 30 after the above-mentioned semi-finishing processing as a power source for processing, the power source for processing comprising the high-frequency AC voltage source 30 is used. In general, there is not much margin in terms of machining energy and machining capacity, and it is set to just about the same. As described above, the machining voltage pulse circuit is separated so that the stray capacitance of the machining circuit portion is sufficiently small, and the discharge gap is set. It is not the length required to switch the state detection circuit, etc., but is affected greatly by the processing conditions, in particular, changes in gap conditions such as changes in the characteristics of the aqueous processing fluid. As described above, if the specific resistance of the machining fluid drops below a predetermined value due to malfunction of the machining fluid supply system, or a change in the resistance of the machining gap due to irregularity in the concentration of machining chips, as described above. ,
The voltage of the discharge gap to which the high-frequency AC voltage is applied apparently decreases, and therefore, as a servo control method for machining feed, a curve C suitable for the semi-finishing process such as the second cut described above is used.
When the deceleration servo control is adopted, the machining feed speed becomes too slow or stops, and the machining amount becomes excessive.For example, in punch punching, the machining surface roughness is almost finished, but the dimensions and shape are smaller than predetermined values. In many cases, the dimensional accuracy is impaired.

【0036】[0036]

【表1】 [Table 1]

【0037】この点に付き更に説明すると、表1に比抵
抗値が異なる加工液を用い、加工送りのサーボ制御方式
及びその利得等の特性として前記図6の中仕上げ加工に
用いて好適な利得特性の減速サーボ制御方式C、従来よ
り仕上げ加工の際に用いられることが多かった一定速度
のサーボ制御方式D、そして後に説明する本発明に採用
された利得特性の減速サーボ制御方式Eの各加工送り方
式により高周波交流電圧源30を用いて仕上げ加工を行
なった寸法誤差(各値は所定寸法値に対する誤差の10
点平均値)を示している。表1の加工データによれば、
Cの減速サーボ制御方式の場合には、前述指摘のように
の加工液の比抵抗値の相違による加工の寸法誤差の振れ
が大きく、特に比抵抗値の低下時の前述加工量過多には
寸法精度の変化の幅が大きく、之に対しDの一定速度サ
ーボ制御方式によれば、概して傾向的には似ているもの
の可成り寸法精度は高いが、比抵抗値低下時の前述加工
量過少現象により加工精度は可成り低下している。
To further explain this point, Table 1 shows that the machining fluids having different specific resistance values are used, and the servo control method of the machining feed and the characteristics such as the gain thereof are suitable for the semi-finishing of FIG. Each processing of the deceleration servo control method C having a characteristic, the servo control method D having a constant speed which has been often used in the finishing processing, and the deceleration servo control method E having a gain characteristic adopted in the present invention described later. A dimensional error in which the finishing process is performed using the high-frequency AC voltage source 30 by the feeding method (each value is an error of 10% with respect to a predetermined dimensional value).
Point average). According to the processing data in Table 1,
In the case of the deceleration servo control method C, the dimensional error in machining due to the difference in the resistivity of the machining fluid as described above is large, and especially when the machining amount is excessive when the resistivity is lowered, the dimension is too large. In contrast, according to the constant speed servo control method of D, the dimensional accuracy is large although the tendency is generally similar, but the processing amount is too small when the specific resistance value decreases. As a result, the processing accuracy is considerably reduced.

【0038】而して、上記Dの一定速度サーボ制御方式
のサーボ利得を一応零と看做し、その時の最大寸法差約
5μmに対し、Cの減速サーボ制御方式のサーボ利得を
或る間隙電圧の時の送り速度の差lとし、その時の最
大の寸法差約24μmを対比し、寸法差の比5:24=
1:5からCの減速サーボ制御方式のサーボ利得l
(=41mm/min)の約1/5のサーボ利得l
(=8mm/min)の特性の減速サーボ制御方式Eを
構成設定して加工を行なった所、前述表1に示すよう
に、加工液の比抵抗値が或る程度変化、低下しても寸法
精度があまり変化せず高精度の加工が行われるようにな
った。なお、多くの実験によれば上記Eの減速サーボ制
御方式のサーボ利得lは上述の比率が利得零の一定速
度を基準としたものであるためか上述の場合よりも大き
い(l:l=4:1に近い)設定の方が加工データ
がよかった。
The servo gain of the constant speed servo control method D is regarded as zero for the moment, and the servo gain of the deceleration servo control method C is set to a certain gap voltage with respect to the maximum dimensional difference of about 5 μm. a difference l 1 feed speed when the, compared to the maximum size difference of about 24μm at that time, the ratio of the dimensional difference 5:24 =
Servo gain l of deceleration servo control method from 1: 5 to C
1 (= 41 mm / min) about 1/5 servo gain l 2
(= 8 mm / min), the machining was performed by setting the deceleration servo control method E, and as shown in Table 1, even if the specific resistance value of the machining fluid changed or decreased to some extent, the dimensions were reduced. High-precision machining has come to be performed with little change in accuracy. Incidentally, greater than often above or for the servo gain l 2 of the deceleration servo control system of the E according to the experiments in which the ratio described above with reference to the constant rate of gain zero (l 1: l 2 = 4: 1) was better for the processed data.

【0039】図7は、前述Eの減速サーボ制御方式の加
工送りを実行するための放電状態検出回路の実施例の部
分図で、前述図1に於いて切換えスイッチ48、49が
高周波交流電圧源30の側及び放電検出回路41〜47
の側に切換えられて、中仕上げ加工面に対し加工面粗度
出しの仕上げ加工をする際の前記サーボ制御回路41〜
47中の反転増幅及びサーボゲイン調整の利得調整回路
44部分を拡大したもので、前述ボリューム可変抵抗4
4Aに対し、抵抗44B−1〜nと該抵抗を切換選択す
るスイッチ44C−1〜nを設けて増幅度を切換え、所
望の利得特性が容易に選択設定できるようにしたもので
ある。なお複数の電圧源44D−1〜nとその選択切換
スイッチ44E−1〜nは、当該利得切換設定の演算増
幅器部分でサーボ基準電圧データが切換え設定できるよ
うに構成した例を示したものである。
FIG. 7 is a partial view of an embodiment of a discharge state detecting circuit for executing the machining feed of the aforementioned deceleration servo control method. In FIG. 7, the changeover switches 48 and 49 in FIG. 30 and discharge detection circuits 41 to 47
And the servo control circuits 41 to 41 when the finishing process is performed on the semi-finished processing surface to obtain the surface roughness.
47 is an enlarged view of a gain adjustment circuit 44 for inverting amplification and servo gain adjustment in the volume variable resistor 4.
4A, resistors 44B-1 to 44B-n and switches 44C-1 to 44C for switching and selecting the resistors are provided to switch the degree of amplification so that a desired gain characteristic can be easily selected and set. Note that the plurality of voltage sources 44D-1 to 44-n and the selection changeover switches 44E-1 to 44E-n show an example in which the servo reference voltage data can be switched and set in the operational amplifier portion of the gain switching setting. .

【0040】又、図8は前述Eの特性の減速サーボ制御
方式の加工送りを実行するためのサーボ制御を前記図1
中のNC制御装置等を有する制御装置38部分で行なう
ように構成したブロックダイアグラムの説明図で、前記
制御装置38は前述ファーストカット加工工程の際に選
択設定により用いられるゼロメソッドサーボ制御方式の
制御信号を入力サーボ基準電圧データ38Aと放電状態
検出回路31〜37による放電間隙データとから演算し
て制御信号を出力するゼロメソッド・演算器38C−
1、同じくセカンドカット等1又は複数加工工程の中仕
上げ加工工程に於いて、サーボ基準電圧データ38Aと
放電状態検出回路31〜37による放電間隙検出データ
とから演算して利得特性の高い、又はサーボゲインの大
きい減速サーボ制御方式の制御信号を出力する減速サー
ボ演算器38C−2、及び仕上げ加工工程に於いてサ
ーボ基準電圧データ38Aと放電状態検出回路41〜4
7による放電間隙検出データとから演算して利得特性の
低い、又は低いサーボゲインの減速サーボ制御方式の制
御信号を出力する減速サーボ演算器38C−3とを備
え、該各演算器38C−1〜3は、前述各加工工程毎の
開閉スイッチ8E、14、48、49と共に切換手段3
8Dにより切換え選択され、所定の制御信号をモータド
ライバ39に出力する。
FIG. 8 shows the servo control for executing the machining feed of the deceleration servo control method having the characteristic E described above in FIG.
FIG. 4 is an explanatory diagram of a block diagram configured to be performed by a control device 38 having an NC control device and the like therein. The control device 38 controls a zero-method servo control method used by selection setting in the above-described first cut processing step. A zero method / calculator 38C- which calculates a signal from the input servo reference voltage data 38A and the discharge gap data from the discharge state detection circuits 31 to 37 and outputs a control signal.
1. Similarly, in a semi-finishing step of one or more processing steps such as a second cut, etc., a high gain characteristic is obtained by calculating from the servo reference voltage data 38A and the discharge gap detection data by the discharge state detection circuits 31 to 37, or A deceleration servo calculator 38C-2 that outputs a control signal of a deceleration servo control method having a large gain, and servo reference voltage data 38A and discharge state detection circuits 41 to 4 in the finishing process.
And a deceleration servo computing unit 38C-3 which outputs a control signal of a deceleration servo control method having a low gain characteristic or a low servo gain by calculating from the discharge gap detection data obtained by the computation unit 7C. Reference numeral 3 denotes switching means 3 together with the open / close switches 8E, 14, 48, and 49 for each of the processing steps.
Switching is selected by 8D, and a predetermined control signal is output to the motor driver 39.

【0041】以上、本発明の放電加工装置に付き、図示
した実施例により説明を加えたが、本発明は特許請求の
範囲に記載する本発明の精神を逸脱しない範囲で各部に
各種の変更を加えて実施し得るものである。例えば、図
2に於いて、電流パルス供給回路8が設けられていない
形式のワイヤ放電加工用電源回路の場合は、間歇電圧パ
ルス発生回路6の電流制限抵抗6Dを短絡等させる抵抗
低減回路を付設し、スイッチ素子6Bのゲート信号回路
にゲート信号回路8Dを切換え接続する構成としても良
く、又ゲート信号回路8Dは、パルス制御装置7内にそ
の一部の構成として内設構成し得るだけだなく、さらに
制御装置7内に於いて、記憶した切換制御データ読み出
す等してソフト的に切換え作動せしめ得るものであり、
又更に、仕上げ加工用高周波交流電圧の更なる高周波
化、例えば2MHzとするために、例えば電流パルス供
給回路8を2組並列に設け、例えば夫々をτON=10
0nsで、τOFF=900nsの1MHzの高周波
(電流)パルス発生回路の2組を約180°(π)位相
差を有せしめて、高周波交流電圧の1サイクルが約50
0ns以内で終了するように調整すればよく、又更に前
記高周波交流電圧源としても、これを通常の例えば、ト
ランジスタインバータ方式の高周波交流電圧源とし、之
を整合回路を介して放電間隙に接続する方式のものも用
い得るものであり、又更に、加工用電源を開閉スイッチ
49による切換えにより間歇的な電圧パルス源5に切換
えて、荒加工とか中加工等を使用とする場合、前記電圧
パルス源5の電源形式等にもよるが、その場合は図示の
如く放電状態検出回路を開閉スイッチ48により従来の
検出回路31〜37に切換える場合の外、放電状態検出
回路41〜47をそのまま使用するとか、或いは又該回
路41〜47が荒加工等の加工の障害とはならないか
ら、該回路41〜47はそのまま接続した状態としてお
いて、従来の検出回路31〜37を稼働させる接続構成
としても良くかかる構成変更は本発明の各部に於いて可
能なものである。
As described above, the electric discharge machining apparatus of the present invention has been described with reference to the illustrated embodiment. However, the present invention is not limited to the above-described embodiments, and various modifications may be made to each part without departing from the spirit of the present invention. In addition, it can be implemented. For example, in FIG. 2, in the case of a power supply circuit for wire electric discharge machining in which the current pulse supply circuit 8 is not provided, a resistance reduction circuit for short-circuiting the current limiting resistor 6D of the intermittent voltage pulse generation circuit 6 is provided. Alternatively, the gate signal circuit 8D may be switched and connected to the gate signal circuit of the switch element 6B. The gate signal circuit 8D can be provided not only as a part of the pulse control device 7 but also internally. Further, in the control device 7, the stored switching control data can be read out or the like to perform the switching operation by software,
Furthermore, in order to further increase the high-frequency AC voltage for finishing processing, for example, to 2 MHz, two sets of current pulse supply circuits 8 are provided in parallel, for example, each having τ ON = 10.
At 0 ns, two sets of 1 MHz high frequency (current) pulse generating circuits of τ OFF = 900 ns have a phase difference of about 180 ° (π), and one cycle of the high frequency AC voltage is about 50
It may be adjusted so as to be completed within 0 ns. Further, as the high-frequency AC voltage source, a normal, for example, transistor-inverter-type high-frequency AC voltage source is used, and this is connected to the discharge gap via a matching circuit. In the case where rough machining or medium machining is used by switching the machining power supply to the intermittent voltage pulse source 5 by switching with the open / close switch 49, the voltage pulse source may be used. In this case, the discharge state detection circuit is switched to the conventional detection circuits 31 to 37 by the open / close switch 48 as shown in the drawing, but the discharge state detection circuits 41 to 47 are used as they are. Alternatively, since the circuits 41 to 47 do not become an obstacle to processing such as roughing, the circuits 41 to 47 are kept connected as they are and the conventional detection circuit is not used. Even better this configuration change as a connection structure to run a 31 to 37 is capable at the respective portions of the present invention.

【0042】[0042]

【発明の効果】本発明のワイヤ放電加工方法は、上述の
ような構成であるから、高周波交流電圧源を加工用電源
とする仕上げ加工に際し、該加工用電源と共にサーボ制
御等の放電状態検出回路が切換えられ、又加工送り速度
が前記検出回路による間隙電圧検出信号に比例し、設定
サーボ基準電圧に対する放電間隙の電圧偏差零のとき設
定加工条件の加工速度に応ずる送り速度が設定される減
速サーボ制御方式で、かつそのサーボ制御の比例ゲイン
を中仕上げ加工工程のそれよりも低い値に切換え設定し
て行なうようにしたから、加工液の比抵抗等の性状変化
に影響されることなく、寸法・形状精度を損なわないで
目的とする面粗度出しの仕上げ加工を確実に行なえるよ
うになった。
Since the wire electric discharge machining method of the present invention has the above-described configuration, when finishing using a high-frequency AC voltage source as a machining power supply, a discharge state detection circuit such as a servo control is used together with the machining power supply. And the machining feed rate is proportional to the gap voltage detection signal by the detection circuit, and when the voltage deviation of the discharge gap with respect to the set servo reference voltage is zero, the feed rate corresponding to the machining speed of the set machining condition is set. The control method is used, and the proportional gain of the servo control is switched to a value lower than that of the semi-finishing processing step, so that the dimensions are not affected by changes in properties such as the specific resistance of the machining fluid.・ The finishing process to achieve the desired surface roughness can be performed reliably without impairing the shape accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のワイヤ放電加工方法の各加工工程に於
いて用いる放電状態検出回路部分を主として示した一実
施例の放電加工回路図。
FIG. 1 is an electric discharge machining circuit diagram of an embodiment mainly showing a discharge state detection circuit portion used in each machining step of the wire electric discharge machining method of the present invention.

【図2】本発明のワイヤ放電加工方法の各加工工程に於
いて用いる加工用電源回路部分を主として示した実施例
の放電加工回路図。
FIG. 2 is an electric discharge machining circuit diagram of an embodiment mainly showing a power supply circuit portion for machining used in each machining step of the wire electric discharge machining method of the present invention.

【図3】図2の回路を仕上げ加工用電源回路として作動
させたときの加工用高周波交流電圧のタイミングチャー
ト図。
FIG. 3 is a timing chart of a high-frequency AC voltage for processing when the circuit in FIG. 2 is operated as a power supply circuit for finishing processing.

【図4】ゼロメソッド方式のサーボ制御送り特性説明用
特性曲線図。
FIG. 4 is a characteristic curve diagram for explaining servo control feed characteristics of a zero method method.

【図5】ゼロメソッドサーボ制御のサーボ基準電圧設定
を説明する加工速度の特性曲線図。
FIG. 5 is a characteristic curve diagram of a processing speed for explaining a servo reference voltage setting for zero method servo control.

【図6】減速サーボ制御方式のサーボ制御送りの特性説
明用特性曲線図。
FIG. 6 is a characteristic curve diagram for explaining characteristics of servo control feed of a deceleration servo control method.

【図7】減速サーボ制御方式のサーボ利得の切換設定を
放電状態検出回路部分で行なう一実施例の回路部分図。
FIG. 7 is a circuit partial view of an embodiment in which the switching setting of the servo gain in the deceleration servo control method is performed in the discharge state detection circuit portion.

【図8】減速サーボ制御方式のサーボ利得の切換設定を
サーボ制御方式の切換え設定と共に行なう一実施例のブ
ロックダイアグラム部分図。
FIG. 8 is a partial block diagram of an embodiment in which the switching setting of the servo gain of the deceleration servo control method is performed together with the switching setting of the servo control method.

【符合の説明】[Description of sign]

1,ワイヤ電極、加工用電極 2A,2B,位置決ガイド 3,被加工体 4,ワークスタンド 5,ワイヤ放電加工用電圧パルス源 6,電圧パルスの生成供給回路 6A,直流電圧源 6B,電子スイッチ素子 6C,電流制限抵抗 6D,逆電圧防止整流器 7,パルス制御装置 8,電流パルス供給回路 8A,可変直流電圧源 8B,電子スイッチ素子 8C,逆電圧防止整流器 8D,ゲート信号回路 8E,切換えスイッチ 11A,11B,給電接続線 12,回路装置 13,高周波結合トランス 13A,リングコア 13B,1次巻線 13C,2次巻線 14A,14B,14C,14D,開閉スイッチ 30,仕上げ加工用電源 31,放電間隙電圧検出用分圧回路 32,42,反転増幅回路 33,43A,43B,積分回路 34,44,利得調整回路 35,45,サンプルホールド増幅器 36,46,A/D変換器 37,41,47,フォトカプラ 38,制御装置 38C−1〜3,サーボ演算器 38D,切換手段 39,モータドライバ 40,サーボモータ 41A,発光素子 41B,受光素子 41C,抵抗 41D,整流器 44B−1〜n,利得抵抗 44C−1〜n,利得選択スイッチ 44D−1〜n,サーボ基準データ電圧源 44E−1〜n,基準データ切換スイッチ 48,49,開閉スイッチ 1, wire electrode, machining electrode 2A, 2B, positioning guide 3, workpiece 4, work stand 5, voltage pulse source for wire electric discharge machining 6, voltage pulse generation and supply circuit 6A, DC voltage source 6B, electronic switch Element 6C, current limiting resistor 6D, reverse voltage prevention rectifier 7, pulse control device 8, current pulse supply circuit 8A, variable DC voltage source 8B, electronic switch element 8C, reverse voltage prevention rectifier 8D, gate signal circuit 8E, changeover switch 11A , 11B, power supply connection line 12, circuit device 13, high-frequency coupling transformer 13A, ring core 13B, primary winding 13C, secondary winding 14A, 14B, 14C, 14D, on / off switch 30, finishing power supply 31, discharge gap Voltage detecting voltage dividing circuits 32 and 42, inverting amplifying circuits 33, 43A and 43B, integrating circuits 34 and 44, gain adjustment Circuits 35 and 45, sample and hold amplifiers 36 and 46, A / D converters 37, 41 and 47, photocouplers 38, control devices 38C-1 to 38C, servo calculators 38D, switching means 39, motor drivers 40, servo motors 41A, light emitting element 41B, light receiving element 41C, resistor 41D, rectifier 44B-1 to n, gain resistor 44C-1 to n, gain selection switch 44D-1 to n, servo reference data voltage source 44E-1 to n, reference data Changeover switch 48, 49, open / close switch

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B23H 7/06 B23H 7/02 B23H 1/02 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B23H 7/06 B23H 7/02 B23H 1/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一対の間隔を置いて配置したガイド間に
所定の状態に張架したワイヤ電極を軸方向に更新送り移
動せしめつつ前記軸方向と略直角方向から被加工体を微
小間隙を介して相対向せしめ、該間隙に加工液を供給介
在させた状態で両者間に間歇的な電圧パルスを印加し発
生する放電パルスにより加工を行ない、前記ワイヤ電極
と被加工体間に前記直角方向の平面上における所定の加
工形成すべき輪郭形状に沿う相対的加工送りを与えるワ
イヤ放電加工において、 前記のワイヤ放電加工を、(a)前記の電圧パルスとし
て、直流電圧源に直列に接続した電子スイッチ素子をオ
ン・オフすることによって得られる休止時間を有する間
歇的な電圧パルスを用い、使用する加工液、電極、被加
工体の材質組合せ、板厚、及び加工の目的等に応じて設
定された加工条件で、かつ前記加工送りのサーボ制御方
式を送り速度が放電間隙電圧に比例し、設定サーボ基準
電圧に対する間隙電圧の偏差零のとき送り速度が零とな
って送り方向が反転するゼロメソッドサーボ制御方式と
して前記輪郭線形状の加工溝を最初に加工形成するファ
ーストカット加工工程と、(b)前記ファーストカット
加工後、前記設定加工条件をセカンドカット、及びサー
ドカット等の1又は複数の加工工程の加工条件に順次に
切換えると共に、前記加工送りのサーボ制御方式を送り
速度が放電間隙電圧に比例し、設定サーボ基準電圧に対
する前記放電間隙の電圧偏差零のとき設定加工条件の加
工速度に応ずる送り速度が設定される減速サーボ制御方
式に切換えて所定の寸法・形状精度、及び面粗度出しの
加工をする中仕上げ加工工程と、(c)前記中仕上げ加
工後、前記電圧パルスを前記電圧パルス供給源と放電間
隙との間に挿設した高周波結合トランスによる電流パル
ス→交流電圧変換によって得られる所定加工条件の高周
波交流電圧源に切換えると共にサーボ制御方式を前記減
速サーボ制御方式に選定し、かつそのサーボ制御の比例
ゲインを前記中仕上げ加工の際の比例ゲインに対して低
く切換えて所定の寸法・形状精度及び面粗度出しの加工
をする仕上げ加工工程と、を順次に行なうようにしたこ
とを特徴とするワイヤ放電加工方法。
1. A workpiece which is stretched in a predetermined state between a pair of guides spaced apart from each other and is reciprocated in an axial direction while moving the workpiece from a direction substantially perpendicular to the axial direction via a minute gap. In the state where a machining fluid is supplied and interposed between the gaps, machining is performed by applying an intermittent voltage pulse between the two to perform machining with a discharge pulse generated, and the wire electrode and the workpiece are cut in the perpendicular direction. In a wire electric discharge machining for providing a relative machining feed along a predetermined contour to be formed on a plane, (a) an electronic switch in which the wire electric discharge machining is connected in series to a DC voltage source as the voltage pulse. The intermittent voltage pulse having a pause time obtained by turning on and off the element is used to meet the machining fluid, electrode, material combination of workpiece, plate thickness, and the purpose of machining. The feed rate is proportional to the discharge gap voltage and the feed rate is zero when the gap voltage deviation from the set servo reference voltage is zero. A first cut processing step of first forming the processing groove having the contour line shape as a zero method servo control method, and (b) setting the processing conditions after the first cut processing to one or more of a second cut and a third cut. While sequentially switching to the machining conditions of a plurality of machining steps, machining of the machining control is performed when the feed rate is proportional to the discharge gap voltage and the voltage deviation of the discharge gap with respect to the set servo reference voltage is zero. Switching to the deceleration servo control method in which the feed rate is set according to the speed, while processing to obtain the specified dimensions, shape accuracy, and surface roughness A finishing processing step, and (c) after the intermediate finishing processing, a predetermined processing condition obtained by current pulse → AC voltage conversion by a high frequency coupling transformer inserted between the voltage pulse supply source and the discharge gap after the intermediate finishing processing. Switching to a high-frequency AC voltage source and selecting the servo control method as the deceleration servo control method, and switching the proportional gain of the servo control to be lower than the proportional gain at the time of the semi-finishing processing to obtain a predetermined dimensional / shape accuracy and A wire electric discharge machining method characterized by sequentially performing a finishing process step of performing surface roughness processing.
【請求項2】 前記ファーストカット加工工程及び中仕
上げ加工工程における直流電源をスイッチ素子によりオ
ン・オフすることにより得られる休止時間を有する間歇
的な電圧パルス源が、直流電圧源をスイッチ素子のオン
・オフにより電圧パルスを形成する直列回路中に所定の
電流制限抵抗を挿設した通常型電圧パルス供給回路と、
直流電圧源をスイッチ素子のオン・オフにより電流パル
スを形成する直列回路中に電流制限抵抗が挿設されてい
ない、又は電流検出用等の小抵抗以外の電流制限抵抗が
挿設されていない無抵抗の電流パルス供給回路とを並設
すると共に、該電流パルス供給回路のスイッチ素子が前
記通常型電圧パルス供給回路の放電間隙印加電圧パルス
により放電が開始したのを検出して所定時間幅のオン制
御させられるものであることを特徴とする前記請求項1
に記載のワイヤ放電加工方法。
2. An intermittent voltage pulse source having a downtime obtained by turning on and off a DC power supply by a switch element in the first cut processing step and the semi-finishing processing step, and switches the DC voltage source to an on / off state of the switch element. A normal voltage pulse supply circuit in which a predetermined current limiting resistor is inserted in a series circuit that forms a voltage pulse when turned off,
No current limiting resistor is inserted in the DC voltage source in a series circuit that forms a current pulse by turning on / off the switching element, or no current limiting resistor other than a small resistor for current detection is inserted. A resistor current pulse supply circuit is juxtaposed, and the switch element of the current pulse supply circuit detects that discharge has started by the discharge gap application voltage pulse of the normal type voltage pulse supply circuit, and turns on for a predetermined time width. 2. The method according to claim 1, wherein the control is performed.
2. The wire electric discharge machining method according to 1.
【請求項3】 前記高周波結合トランスの2次巻線から
放電間隙へ高周波交流電圧を出力供給するために、前記
トランスの1次巻線に供給される休止時間を有する間歇
的な電流パルスが前記無抵抗の電流パルス供給回路から
供給されるように切換接続及び制御されるものであるこ
とを特徴とする前記請求項2に記載のワイヤ放電加工方
法。
3. An intermittent current pulse having a pause time supplied to a primary winding of the transformer to supply a high-frequency AC voltage from a secondary winding of the high-frequency coupling transformer to a discharge gap. 3. The wire electric discharge machining method according to claim 2, wherein the connection is switched and controlled so as to be supplied from a resistance-less current pulse supply circuit.
JP33470494A 1994-12-07 1994-12-07 Wire electric discharge machining method Expired - Fee Related JP3231567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33470494A JP3231567B2 (en) 1994-12-07 1994-12-07 Wire electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33470494A JP3231567B2 (en) 1994-12-07 1994-12-07 Wire electric discharge machining method

Publications (2)

Publication Number Publication Date
JPH08155744A JPH08155744A (en) 1996-06-18
JP3231567B2 true JP3231567B2 (en) 2001-11-26

Family

ID=18280289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33470494A Expired - Fee Related JP3231567B2 (en) 1994-12-07 1994-12-07 Wire electric discharge machining method

Country Status (1)

Country Link
JP (1) JP3231567B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1765555B (en) * 2004-10-28 2010-05-05 发那科株式会社 Controller for wire electric discharge machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH699826B8 (en) * 2001-01-23 2010-07-30 Mitsubishi Electric Corp Power unit for wire erosion machining and wire erosion machining method.
JP4551384B2 (en) * 2006-10-17 2010-09-29 株式会社ミツトヨ EDM flushing method
JP5307696B2 (en) * 2009-11-19 2013-10-02 株式会社ソディック Wire cut electric discharge machining method and wire cut electric discharge machining apparatus
JP5722290B2 (en) * 2012-09-20 2015-05-20 ファナック株式会社 Wire electric discharge machine with axis feed control method discrimination function
CN107332459B (en) * 2017-08-19 2023-05-05 万江华 Nanosecond pulse power supply system for wire-cut electric discharge machining and control method
CN113770462B (en) * 2021-08-03 2023-10-31 华锠永晟智能科技(昆山)有限公司 Wire feeding equipment for wire electric discharge machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1765555B (en) * 2004-10-28 2010-05-05 发那科株式会社 Controller for wire electric discharge machine

Also Published As

Publication number Publication date
JPH08155744A (en) 1996-06-18

Similar Documents

Publication Publication Date Title
JP2983139B2 (en) Power supply circuit for electric discharge machining and electric discharge machine
DE2810437C3 (en) Device for a spark erosion cutting machine
US4504721A (en) 3D EDM method and apparatus utilizing a magnetic field
US3654116A (en) Adaptive ion-control system for electrochemical machining
JP2007038400A (en) Method and generator for electrical discharge machining
US4659894A (en) Capacitor-type HF power supply for electrical machining
JP3231567B2 (en) Wire electric discharge machining method
JPH07227718A (en) Power source circuit for wire electric discharge machining and circuit device for power source
JP3331077B2 (en) Power supply unit for electric discharge finishing
JP2682310B2 (en) Wire electric discharge machining method and apparatus
JP5013392B2 (en) Machining power supply device for wire electric discharge machine
JPS597523A (en) Wire-cut electric discharge machine
JP3519149B2 (en) Power supply unit for wire electric discharge finishing
JP3311530B2 (en) Electric discharge machine
JP2002160128A (en) Electric discharge machining device
JPH059209B2 (en)
JP3164964B2 (en) Wire electric discharge machining method and power supply circuit for wire electric discharge machining
SU1301594A1 (en) Method of extremum control of electro-erosion process
JP2984664B2 (en) Electric discharge machine
JPH1043951A (en) Wire electric discharge machining device
US4891486A (en) Device for feed control of electrode-tool in spark erosion machines
JPH0230422A (en) Electric discharge machining device
JPS60146624A (en) Method of electric discharge machining and device therefor
JPH0120012B2 (en)
JPS59134621A (en) Electric discharge machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees