JP3223522B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3223522B2
JP3223522B2 JP11517091A JP11517091A JP3223522B2 JP 3223522 B2 JP3223522 B2 JP 3223522B2 JP 11517091 A JP11517091 A JP 11517091A JP 11517091 A JP11517091 A JP 11517091A JP 3223522 B2 JP3223522 B2 JP 3223522B2
Authority
JP
Japan
Prior art keywords
film
silicate glass
glass film
semiconductor device
plasma treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11517091A
Other languages
Japanese (ja)
Other versions
JPH04343431A (en
Inventor
明徳 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11517091A priority Critical patent/JP3223522B2/en
Publication of JPH04343431A publication Critical patent/JPH04343431A/en
Application granted granted Critical
Publication of JP3223522B2 publication Critical patent/JP3223522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に層間絶縁膜として有機シリケートガラス膜を
形成する工程を備えた半導体装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device including a step of forming an organic silicate glass film as an interlayer insulating film.

【0002】[0002]

【従来の技術】半導体素子の高集積化,多層化に伴い、
配線層間の絶縁膜の平坦化は、きわめて重要な課題とな
っている。塗布法による有機シリケートガラス膜は厚膜
を容易に形成でき、すぐれた平坦性を有することから、
金属多層配線の層間絶縁膜の一部として用いられること
が多い。一般に、この種の層間絶縁膜は、第一の酸化
膜,有機シリケートガラス膜,第二の酸化膜から成る三
層構造が多く用いられる。
2. Description of the Related Art As semiconductor devices become more highly integrated and multi-layered,
Flattening an insulating film between wiring layers has become a very important issue. Since the organic silicate glass film by the coating method can easily form a thick film and has excellent flatness,
It is often used as a part of an interlayer insulating film of a metal multilayer wiring. Generally, a three-layer structure composed of a first oxide film, an organic silicate glass film, and a second oxide film is often used as this kind of interlayer insulating film.

【0003】ところが、有機シリケートガラス膜上にそ
のまま第二の酸化膜を形成すると、有機シリケートガラ
ス膜と酸化膜との密着性がきわめて悪く、第二の酸化膜
にはがれを生じる。そこで密着性を良好にするため酸素
プラズマ処理を施し有機シリケートガラス膜表面を無機
化する方法がある。
However, if the second oxide film is formed on the organic silicate glass film as it is, the adhesion between the organic silicate glass film and the oxide film is extremely poor, and the second oxide film peels off. Therefore, there is a method in which oxygen plasma treatment is performed to make the surface of the organic silicate glass film inorganic to improve the adhesion.

【0004】従来の形成方法を図面を用いて説明する。
図4は従来の形成方法の一例の縦断面図である。
A conventional forming method will be described with reference to the drawings.
FIG. 4 is a longitudinal sectional view of an example of a conventional forming method.

【0005】図4(a)は、半導体基盤41表面の絶縁
膜42上に形成されたアルミニウム配線43上に層間絶
縁膜として第一の酸化膜44が形成され、その表面に有
機シリケートガラス膜45を塗布法により形成したもの
である。有機シリケートガラス膜中の溶剤を除去するた
め熱処理が施される。次いで、シリケートガラス膜45
中に酸素プラズマ処理を施す。これにより有機シリケー
トガラス膜45中の有機成分が除去されて図4(b)に
示すように無機化されたシリケートガラス膜層46を生
じる。
FIG. 4A shows that a first oxide film 44 is formed as an interlayer insulating film on an aluminum wiring 43 formed on an insulating film 42 on the surface of a semiconductor substrate 41, and an organic silicate glass film 45 is formed on the surface thereof. Is formed by a coating method. Heat treatment is performed to remove the solvent in the organic silicate glass film. Next, the silicate glass film 45
The inside is subjected to oxygen plasma treatment. As a result, the organic components in the organic silicate glass film 45 are removed, and the inorganic silicate glass film layer 46 is produced as shown in FIG.

【0006】[0006]

【発明が解決しようとする課題】ところが、従来の方法
では、有機シリケートガラス膜を形成し、熱処理後その
まま酸素プラズマ処理を施すため、有機シリケートガラ
ス膜の表面のみならず、大部分が無機化されてしまう。
このようにして生じた無機化されたシリケートガラス膜
は、多孔質な膜となっている。従来の方法では無機化に
より多孔質化した膜厚が厚くなるため、膜収縮によるク
ラックが生じやすいという大きな欠点を有していた。さ
らに、多孔質な膜は吸湿性が強く、水分を含みやすいた
め、このようなシリケートガラス膜を含んだ層間絶縁膜
にスルーホールを開孔し、上層の配線層を形成した場
合、シリケートガラス中の水分によりスルーホールの電
気的特性がきわめて悪くなるという欠点を有していた。
However, in the conventional method, since an organic silicate glass film is formed and subjected to an oxygen plasma treatment as it is after the heat treatment, not only the surface of the organic silicate glass film but also most of the surface is made inorganic. Would.
The mineralized silicate glass film thus generated is a porous film. The conventional method has a major disadvantage that cracks due to film shrinkage are liable to occur because the thickness of the porous layer is increased by the mineralization. Further, since a porous film has a strong hygroscopic property and easily contains moisture, a through hole is opened in an interlayer insulating film including such a silicate glass film, and when an upper wiring layer is formed, the silicate glass is not immersed. Has the disadvantage that the electrical properties of the through-holes are extremely poor due to the moisture.

【0007】本発明の目的は、従来と同等の酸化膜との
密着性を有しながら、膜収縮がほとんどなく、クラック
の発生を防ぎ、また水分の吸収を低減し、スルーホール
性の劣化を防ぐことができるシリケートガラス膜の形成
方法を提供することにある。
An object of the present invention is to provide a film having almost the same adhesion to an oxide film as the conventional one, with little film shrinkage, preventing the occurrence of cracks, reducing the absorption of moisture, and preventing the deterioration of through-hole properties. An object of the present invention is to provide a method for forming a silicate glass film that can prevent the occurrence of a silicate glass film.

【0008】[0008]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、基板表面上に、シリコンを主成分とする溶液
の塗布法により有機シリケートガラス膜を形成する工程
と、前記有機シリケートガラス膜に不活性ガスによるプ
ラズマ処理を施し前記有機シリケートガラス膜の表面を
ち密化する工程と、続いて前記有機シリケートガラス膜
に酸素プラズマ処理を施すことにより前記有機シリケー
トガラス膜の表面を無機化する工程とを有することを特
徴としている。
According to a method of manufacturing a semiconductor device of the present invention, a step of forming an organic silicate glass film on a substrate surface by applying a solution containing silicon as a main component; Performing a plasma treatment with an inert gas to densify the surface of the organic silicate glass film, and subsequently performing an oxygen plasma treatment on the organic silicate glass film to mineralize the surface of the organic silicate glass film. And characterized in that:

【0009】[0009]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例を説明するために工程順に
示した半導体基板の縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a semiconductor substrate shown in the order of steps for explaining one embodiment of the present invention.

【0010】図1(a)は半導体基板表面11上の絶縁
膜12上に形成された厚さ0.5μのアルミニウム配線
層13上に層間絶縁膜として、第1の酸化膜14が厚さ
0.4μ形成されたものである。
FIG. 1A shows a first oxide film 14 having a thickness of 0 μm as an interlayer insulating film on a 0.5 μm thick aluminum wiring layer 13 formed on an insulating film 12 on a semiconductor substrate surface 11. .4 μm.

【0011】次いで図1(b)に示すように、その表面
に有機シリケートガラス膜15を形成する。この有機シ
リケートガラスは、メチル基(−CH3 ),エチル基
(−C2 5 )等の結合を有する酸化ケイ素であり、適
切な有機溶剤に溶解されて、塗布法により形成される。
形成後溶剤を除去するため、例えば、窒素雰囲気で35
0℃,30分の熱処理を施す。このようにして形成され
た有機シリケートガラス膜15は表面がほぼ平坦にな
り、その膜厚は凸部分上で約0.2μ,それ以外の部分
で約0.7μ程度である。
Next, as shown in FIG. 1B, an organic silicate glass film 15 is formed on the surface. The organosilicate glass is a methyl group (-CH 3), a silicon oxide having a bond such as an ethyl group (-C 2 H 5), is dissolved in a suitable organic solvent, it is formed by a coating method.
In order to remove the solvent after the formation, for example, 35
Heat treatment at 0 ° C. for 30 minutes. The surface of the thus formed organic silicate glass film 15 is substantially flat, and the film thickness is about 0.2 μ on the convex portion and about 0.7 μ on the other portions.

【0012】次いで、本発明では、図1(c)に示すよ
うに、アルゴン(Ar)によるプラズマ処理を施す。こ
のプラズマ処理は例えば、図2に示すような、平行平板
型プラズマ処理装置にて行えばよい。すなわち真空排気
された処理室21内の高周波電極22上に半導体基板2
3が配され、接地された対向電極24よりアルゴンガス
が流され、半導体基板23に高周波が印加される。ここ
で、高周波電力600Wにて20分のアルゴンプラズマ
処理を行うと、有機シリケートガラス膜15の表面がち
密化される。次いで、図1(d)に示すように、上層に
酸化膜を形成する場合の密着性を良好にするため、酸素
プラズマ処理を施す。このプラズマ処理は前述した図2
のプラズマ処理装置にて連続的に行ってよい。この場合
300W,30分のプラズマ処理を施す。または、バレ
ル型のプラズマ処理装置を用いてもよい。
Next, in the present invention, as shown in FIG. 1C, a plasma treatment with argon (Ar) is performed. This plasma processing may be performed by, for example, a parallel plate type plasma processing apparatus as shown in FIG. That is, the semiconductor substrate 2 is placed on the high-frequency electrode 22 in the evacuated processing chamber 21.
Argon gas is supplied from the grounded counter electrode 24 to apply a high frequency to the semiconductor substrate 23. Here, when argon plasma processing is performed at a high frequency power of 600 W for 20 minutes, the surface of the organic silicate glass film 15 is densified. Next, as shown in FIG. 1D, an oxygen plasma treatment is performed to improve the adhesion when an oxide film is formed as an upper layer. This plasma treatment is performed in the same manner as in FIG.
May be performed continuously by the plasma processing apparatus. In this case, plasma treatment is performed at 300 W for 30 minutes. Alternatively, a barrel-type plasma processing apparatus may be used.

【0013】本発明では、従来方法と異なり、アルゴン
プラズマ処理により有機シリケートガラス膜15の表面
がち密化されているため、酸素プラズマ処理においても
有機シリケート膜の表面約0.05μしか無機化されな
い。そのため、多孔質化された層は表面約0.05μ程
度のため、熱処理での膜収縮がほとんどなく、クラック
の発生を防ぐことができる。また水分の吸収もほとんど
なく、水分によるスルーホール性の劣化を防ぐことがで
きる。
In the present invention, unlike the conventional method, since the surface of the organic silicate glass film 15 is densified by the argon plasma treatment, only about 0.05 μm of the surface of the organic silicate film is made inorganic even in the oxygen plasma treatment. Therefore, since the surface of the porous layer is about 0.05 μm, there is almost no film shrinkage due to the heat treatment, and the occurrence of cracks can be prevented. Further, there is almost no absorption of moisture, and deterioration of the through-hole property due to moisture can be prevented.

【0014】この後シリケートガラス膜表面上に第2の
酸化膜17を形成する。これは、通常シラン(S
4 ),亜酸化窒素(N2 O)を用いたプラズマCVD
法により形成されるが、シリケートガラス膜の表面16
は無機シリケートガラス膜となっているため、良好な密
着性を得ることができ、第2の酸化膜17にはがれを生
じることはない。
Thereafter, a second oxide film 17 is formed on the surface of the silicate glass film. This is usually the silane (S
H 4 ), plasma CVD using nitrous oxide (N 2 O)
Formed by the method, the surface 16 of the silicate glass film
Is an inorganic silicate glass film, so that good adhesion can be obtained, and the second oxide film 17 does not peel off.

【0015】第2の実施例では、有機シリケートガラス
膜に不活性ガスによるプラズマ処理を施した後、酸素プ
ラズマ処理を図3に示すような、プラズマCVD装置を
用いて行う。すなわち、真空に排気された処理室31内
の接地された電極32上に半導体基板33が配され、対
向して配置された高周波電極34より酸素ガスが長され
る。
In the second embodiment, after an organic silicate glass film is subjected to a plasma treatment using an inert gas, an oxygen plasma treatment is performed using a plasma CVD apparatus as shown in FIG. That is, the semiconductor substrate 33 is arranged on the grounded electrode 32 in the processing chamber 31 evacuated to vacuum, and the oxygen gas is made longer than the high-frequency electrode 34 arranged opposite.

【0016】本実施例の特徴は、酸素プラズマ処理後第
2の酸化膜の形成を、同一処理装置で連続的に行えるこ
とである。そのため酸素プラズマ処理後大気にさらすこ
とがないためより水分の吸収を防ぐことができる。
The feature of the present embodiment is that the formation of the second oxide film after the oxygen plasma processing can be continuously performed by the same processing apparatus. Therefore, since it is not exposed to the atmosphere after the oxygen plasma treatment, absorption of moisture can be prevented more.

【0017】[0017]

【発明の効果】以上説明したように本発明は、基板表面
に有機シリケートガラス膜を形成後、不活性ガスによる
プラズマ処理を施して、しかる後に酸素プラズマ処理を
施すことにより、多孔質化した無機シリケートガラス層
の形成を表面のみにおさえることができるため、従来と
同等の酸化膜との密着性を有しながら、膜収縮がほとん
どなく、クラックの発生を防ぎ、また水分の吸収を低減
しスルーホール性の劣化を防ぐことができるという効果
を有する。
As described above, according to the present invention, a porous inorganic silicate glass film is formed on a substrate surface, plasma treatment is performed with an inert gas, and then oxygen plasma treatment is performed. Since the formation of the silicate glass layer can be suppressed only on the surface, it has almost the same adhesion to the oxide film as before, but there is almost no film shrinkage, cracks are prevented, moisture absorption is reduced and through This has the effect that deterioration of the hole property can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を説明するために工程順に示
した半導体基板の断面図である。
FIG. 1 is a sectional view of a semiconductor substrate shown in the order of steps for explaining an embodiment of the present invention.

【図2】本発明の一実施例に用いるプラズマ処理装置の
概略断面図である。
FIG. 2 is a schematic sectional view of a plasma processing apparatus used in one embodiment of the present invention.

【図3】本発明の第2の実施例に用いるプラズマCVD
装置の概略断面図である。
FIG. 3 shows a plasma CVD used in a second embodiment of the present invention.
It is a schematic sectional drawing of an apparatus.

【図4】従来のシリケートガラス膜の形成方法を説明す
るために工程順に示した半導体基板の断面図である。
FIG. 4 is a cross-sectional view of a semiconductor substrate shown in a process order for explaining a conventional method of forming a silicate glass film.

【符号の説明】[Explanation of symbols]

11,41 半導体基板 12,42 絶縁膜 13,43 アルミニウム配線層 14,44 第1の酸化膜 15,45 有機シリケートガラス膜 16,46 無気化されたシリケートガラス膜 17,47 第2の酸化膜 18 アルゴンプラズマ 19 49 酸素プラズマ 21 処理室 22 高周波電極 23 半導体基板 24 対向電極 25 真空ポンプ 31 処理室 32 接地された電極 33 半導体基板 34 高周波電極 35 真空ポンプ 11, 41 Semiconductor substrate 12, 42 Insulating film 13, 43 Aluminum wiring layer 14, 44 First oxide film 15, 45 Organic silicate glass film 16, 46 Vaporized silicate glass film 17, 47 Second oxide film 18 Argon plasma 19 49 Oxygen plasma 21 Processing chamber 22 High frequency electrode 23 Semiconductor substrate 24 Counter electrode 25 Vacuum pump 31 Processing chamber 32 Grounded electrode 33 Semiconductor substrate 34 High frequency electrode 35 Vacuum pump

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板表面上に、シリコンを主成分とする
溶液の塗布法により有機シリケートガラスを形成する
工程と、前記有機シリケートガラス膜に不活性ガスによ
るプラズマ処理を施し前記有機シリケートガラス膜の表
面をち密化する工程と、続いて前記有機シリケートガラ
ス膜に酸素プラズマ処理を施すことにより前記有機シリ
ケートガラス膜の表面を無機化する工程とを有すること
を特徴とする半導体装置の製造方法
To 1. A substrate surface, forming an organosilicate glass film by a coating method of a solution composed mainly of silicon, the organosilicate glass facilities plasma treatment with inert gas into the organosilicate glass film Membrane table
A step of densification of the surface, followed by the organic silicon by subjecting the oxygen plasma treatment on the organosilicate glass film
The method of manufacturing a semiconductor device characterized by a step of mineralizing a surface of the questionnaire glass membrane.
【請求項2】前記不活性ガスはアルゴンガスであること2. The inert gas is an argon gas.
を特徴とする請求項1に記載の半導体装置の製造方法。The method for manufacturing a semiconductor device according to claim 1, wherein:
【請求項3】表面が無機化された前記有機シリケートガ3. The organic silicate gas whose surface is mineralized.
ラス膜上に酸化膜を形成する工程をさらに有することをForming an oxide film on the glass film.
特徴とする請求項1または2に記載の半導体装置の製造3. The manufacturing of the semiconductor device according to claim 1, wherein
方法。Method.
JP11517091A 1991-05-21 1991-05-21 Method for manufacturing semiconductor device Expired - Fee Related JP3223522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11517091A JP3223522B2 (en) 1991-05-21 1991-05-21 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11517091A JP3223522B2 (en) 1991-05-21 1991-05-21 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04343431A JPH04343431A (en) 1992-11-30
JP3223522B2 true JP3223522B2 (en) 2001-10-29

Family

ID=14656081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11517091A Expired - Fee Related JP3223522B2 (en) 1991-05-21 1991-05-21 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3223522B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199495A (en) * 1995-12-29 1997-07-31 Hyundai Electron Ind Co Ltd Sog film forming method of semiconductor device
JP4172515B2 (en) 2006-10-18 2008-10-29 ソニー株式会社 Method for manufacturing light emitting device

Also Published As

Publication number Publication date
JPH04343431A (en) 1992-11-30

Similar Documents

Publication Publication Date Title
KR880001029A (en) Integrated Circuit Multilayer Interconnect Device and Method
KR20010075566A (en) Semiconductor device and method for manufacturing the same
JP3223522B2 (en) Method for manufacturing semiconductor device
US6248958B1 (en) Resistivity control of CIC material
KR0138853B1 (en) Curing method of spin-on glass by plasma process
JPH0936117A (en) Multilayer wiring forming method
JPH01319942A (en) Forming method for insulating film
JP3877472B2 (en) Method for forming interlayer insulating film
JPH06216116A (en) Insulation film formation method by silicone resin
JPH10209275A (en) Manufacture of semiconductor device
JP3363614B2 (en) Method for manufacturing semiconductor device
JPH08306681A (en) Formation of flattened coat insulating film
JPS6046036A (en) Manufacture of semiconductor device
JP2636715B2 (en) Method for manufacturing semiconductor device
JPH0950993A (en) Formation of insulating film and semiconductor device
GB2301224A (en) Method of forming a SOG film in a semiconductor device
JPH025551A (en) Semiconductor device
JPS6091632A (en) Thin film forming process
JPH08213456A (en) Semiconductor device
KR100287893B1 (en) Method for manufacturing semiconductor device
KR920010892A (en) Surface flattening method of semiconductor device
JPS63275118A (en) Manufacture of semiconductor device
JPH0547759A (en) Manufacture of semiconductor device
JPS63226946A (en) Semiconductor device
JPH09199495A (en) Sog film forming method of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010724

LAPS Cancellation because of no payment of annual fees