JPH04343431A - Method for forming silicate glass film - Google Patents

Method for forming silicate glass film

Info

Publication number
JPH04343431A
JPH04343431A JP11517091A JP11517091A JPH04343431A JP H04343431 A JPH04343431 A JP H04343431A JP 11517091 A JP11517091 A JP 11517091A JP 11517091 A JP11517091 A JP 11517091A JP H04343431 A JPH04343431 A JP H04343431A
Authority
JP
Japan
Prior art keywords
film
silicate glass
plasma treatment
glass film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11517091A
Other languages
Japanese (ja)
Other versions
JP3223522B2 (en
Inventor
Akinori Shimizu
清水 明徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11517091A priority Critical patent/JP3223522B2/en
Publication of JPH04343431A publication Critical patent/JPH04343431A/en
Application granted granted Critical
Publication of JP3223522B2 publication Critical patent/JP3223522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To enable film shrinkage to be eliminated while maintaining adhesion property with an oxide film and at the same time prevent generation of cracks and deterioration of through-hole property by forming an organic silicate glass film on a substrate surface, and then performing plasma treatment with an inactive gas and then oxygen-plasma treatment. CONSTITUTION:An organic silicate glass film 15 is formed on a surface where a first oxide film 14 is formed as an interlayer insulation film on an aluminum wiring layer 13 which is formed on an insulation film 12 on a semiconductor substrate surface 11. Then, plasma treatment with argon is performed. Then, oxygen-plasma treatment is performed for enabling adhesion property to be improved when forming an oxide film on an upper layer. In this manner, since a surface of the silicate 91855 film 15 is dense by the argon plasma treatment, only a surface of an organic silicate film can be turned to inorganic even by the oxygen plasma treatment, thus preventing film shrinkage due to heat treatment and preventing cracks from being generated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はシリケートガラス膜の形
成方法に関し、特に半導体基板表面への有機シリケート
ガラス膜の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a silicate glass film, and more particularly to a method for forming an organic silicate glass film on the surface of a semiconductor substrate.

【0002】0002

【従来の技術】半導体素子の高集積化,多層化に伴い、
配線層間の絶縁膜の平坦化は、きわめて重要な課題とな
っている。塗布法による有機シリケートガラス膜は厚膜
を容易に形成でき、すぐれた平坦性を有することから、
金属多層配線の層間絶縁膜の一部として用いられること
が多い。一般に、この種の層間絶縁膜は、第一の酸化膜
,有機シリケートガラス膜,第二の酸化膜から成る三層
構造が多く用いられる。
[Background Art] With the increasing integration and multilayering of semiconductor devices,
Planarization of insulating films between wiring layers has become an extremely important issue. Organic silicate glass films made by coating can be easily formed into thick films and have excellent flatness.
It is often used as part of the interlayer insulating film of metal multilayer wiring. Generally, this type of interlayer insulating film often has a three-layer structure consisting of a first oxide film, an organic silicate glass film, and a second oxide film.

【0003】ところが、有機シリケートガラス膜上にそ
のまま第二の酸化膜を形成すると、有機シリケートガラ
ス膜と酸化膜との密着性がきわめて悪く、第二の酸化膜
にはがれを生じる。そこで密着性を良好にするため酸素
プラズマ処理を施し有機シリケートガラス膜表面を無機
化する方法がある。
However, if the second oxide film is directly formed on the organic silicate glass film, the adhesion between the organic silicate glass film and the oxide film is extremely poor, causing peeling of the second oxide film. Therefore, in order to improve the adhesion, there is a method of performing oxygen plasma treatment to inorganize the surface of the organic silicate glass film.

【0004】従来の形成方法を図面を用いて説明する。 図4は従来の形成方法の一例の縦断面図である。A conventional forming method will be explained with reference to the drawings. FIG. 4 is a longitudinal cross-sectional view of an example of a conventional forming method.

【0005】図4(a)は、半導体基盤41表面の絶縁
膜42上に形成されたアルミニウム配線43上に層間絶
縁膜として第一の酸化膜44が形成され、その表面に有
機シリケートガラス膜45を塗布法により形成したもの
である。有機シリケートガラス膜中の溶剤を除去するた
め熱処理が施される。次いで、シリケートガラス膜45
中に酸素プラズマ処理を施す。これにより有機シリケー
トガラス膜45中の有機成分が除去されて図4(b)に
示すように無機化されたシリケートガラス膜層46を生
じる。
In FIG. 4A, a first oxide film 44 is formed as an interlayer insulating film on an aluminum wiring 43 formed on an insulating film 42 on the surface of a semiconductor substrate 41, and an organic silicate glass film 45 is formed on the surface of the first oxide film 44. It is formed by a coating method. Heat treatment is performed to remove the solvent in the organic silicate glass film. Next, a silicate glass film 45
Oxygen plasma treatment is applied inside. As a result, the organic components in the organic silicate glass film 45 are removed, resulting in a mineralized silicate glass film layer 46 as shown in FIG. 4(b).

【0006】[0006]

【発明が解決しようとする課題】ところが、従来の方法
では、有機シリケートガラス膜を形成し、熱処理後その
まま酸素プラズマ処理を施すため、有機シリケートガラ
ス膜の表面のみならず、大部分が無機化されてしまう。 このようにして生じた無機化されたシリケートガラス膜
は、多孔質な膜となっている。従来の方法では無機化に
より多孔質化した膜厚が厚くなるため、膜収縮によるク
ラックが生じやすいという大きな欠点を有していた。さ
らに、多孔質な膜は吸湿性が強く、水分を含みやすいた
め、このようなシリケートガラス膜を含んだ層間絶縁膜
にスルーホールを開孔し、上層の配線層を形成した場合
、シリケートガラス中の水分によりスルーホールの電気
的特性がきわめて悪くなるという欠点を有していた。
[Problems to be Solved by the Invention] However, in the conventional method, an organic silicate glass film is formed and then subjected to oxygen plasma treatment directly after heat treatment, so that not only the surface but also most of the organic silicate glass film is inorganized. It ends up. The mineralized silicate glass membrane thus produced is a porous membrane. The conventional method had a major drawback in that cracks were likely to occur due to membrane shrinkage because the thickness of the porous membrane increased due to mineralization. Furthermore, porous films are highly hygroscopic and easily contain water, so if a through hole is formed in an interlayer insulating film containing such a silicate glass film and an upper wiring layer is formed, the silicate glass will absorb moisture. The disadvantage is that the electrical properties of the through-holes are extremely deteriorated by moisture.

【0007】本発明の目的は、従来と同等の酸化膜との
密着性を有しながら、膜収縮がほとんどなく、クラック
の発生を防ぎ、また水分の吸収を低減し、スルーホール
性の劣化を防ぐことができるシリケートガラス膜の形成
方法を提供することにある。
The purpose of the present invention is to maintain adhesion to the oxide film equivalent to that of the conventional film, but with almost no film shrinkage, to prevent the occurrence of cracks, to reduce moisture absorption, and to prevent deterioration of through-hole properties. An object of the present invention is to provide a method for forming a silicate glass film that can prevent the above problems.

【0008】[0008]

【課題を解決するための手段】本発明のシリケートガラ
ス膜の形成方法は、基板表面上に、シリコンを主成分と
する溶液の塗布形成によるシリケートガラスを形成する
工程と、前記シリケートガラス膜に不活性ガスによるプ
ラズマ処理を施す工程と、不活性ガスによるプラズマ処
理を施した前記シリケートガラス膜に酸素プラズマ処理
を施す工程とを有している。
[Means for Solving the Problems] The method for forming a silicate glass film of the present invention includes a step of forming a silicate glass by coating a solution containing silicon as a main component on the surface of a substrate, and a step of forming a silicate glass on the surface of a substrate. The method includes a step of performing plasma treatment using an active gas, and a step of performing oxygen plasma treatment on the silicate glass film that has been subjected to the plasma treatment using an inert gas.

【0009】[0009]

【実施例】次に本発明について図面を参照して説明する
。図1は本発明の一実施例を説明するために工程順に示
した半導体基板の縦断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings. FIG. 1 is a vertical cross-sectional view of a semiconductor substrate shown in order of steps to explain an embodiment of the present invention.

【0010】図1(a)は半導体基板表面11上の絶縁
膜12上に形成された厚さ0.5μのアルミニウム配線
層13上に層間絶縁膜として、第1の酸化膜14が厚さ
0.4μ形成されたものである。
In FIG. 1A, a first oxide film 14 is formed as an interlayer insulating film on an aluminum wiring layer 13 with a thickness of 0.5 μm formed on an insulating film 12 on a semiconductor substrate surface 11. .4μ was formed.

【0011】次いで図1(b)に示すように、その表面
に有機シリケートガラス膜15を形成する。この有機シ
リケートガラスは、メチル基(−CH3 ),エチル基
(−C2 H5 )等の結合を有する酸化ケイ素であり
、適切な有機溶剤に溶解されて、塗布法により形成され
る。 形成後溶剤を除去するため、例えば、窒素雰囲気で35
0℃,30分の熱処理を施す。このようにして形成され
た有機シリケートガラス膜15は表面がほぼ平坦になり
、その膜厚は凸部分上で約0.2μ,それ以外の部分で
約0.7μ程度である。
Next, as shown in FIG. 1(b), an organic silicate glass film 15 is formed on the surface. This organic silicate glass is silicon oxide having bonds such as methyl groups (-CH3) and ethyl groups (-C2 H5), and is formed by dissolving it in an appropriate organic solvent and applying a coating method. To remove the solvent after formation, e.g.
Heat treatment is performed at 0°C for 30 minutes. The surface of the organic silicate glass film 15 formed in this manner is approximately flat, and the film thickness is approximately 0.2 μm on the convex portions and approximately 0.7 μm on the other portions.

【0012】次いで、本発明では、図1(c)に示すよ
うに、アルゴン(Ar)によるプラズマ処理を施す。こ
のプラズマ処理は例えば、図2に示すような、平行平板
型プラズマ処理装置にて行えばよい。すなわち真空排気
された処理室21内の高周波電極22上に半導体基板2
3が配され、接地された対向電極24よりアルゴンガス
が流され、半導体基板23に高周波が印加される。ここ
で、高周波電力600Wにて20分のアルゴンプラズマ
処理を行うと、有機シリケートガラス膜15の表面がち
密化される。次いで、図1(d)に示すように、上層に
酸化膜を形成する場合の密着性を良好にするため、酸素
プラズマ処理を施す。このプラズマ処理は前述した図2
のプラズマ処理装置にて連続的に行ってよい。この場合
300W,30分のプラズマ処理を施す。または、バレ
ル型のプラズマ処理装置を用いてもよい。
Next, in the present invention, plasma treatment using argon (Ar) is performed as shown in FIG. 1(c). This plasma treatment may be performed, for example, in a parallel plate type plasma treatment apparatus as shown in FIG. That is, the semiconductor substrate 2 is placed on the high frequency electrode 22 in the evacuated processing chamber 21.
Argon gas is flowed from the grounded counter electrode 24, and high frequency waves are applied to the semiconductor substrate 23. Here, when argon plasma treatment is performed for 20 minutes at a high frequency power of 600 W, the surface of the organic silicate glass film 15 becomes dense. Next, as shown in FIG. 1(d), oxygen plasma treatment is performed to improve adhesion when forming an oxide film on the upper layer. This plasma treatment is shown in Figure 2 above.
It may be carried out continuously using a plasma processing apparatus. In this case, plasma treatment is performed at 300 W for 30 minutes. Alternatively, a barrel-type plasma processing apparatus may be used.

【0013】本発明では、従来方法と異なり、アルゴン
プラズマ処理により有機シリケートガラス膜15の表面
がち密化されているため、酸素プラズマ処理においても
有機シリケート膜の表面約0.05μしか無機化されな
い。そのため、多孔質化された層は表面約0.05μ程
度のため、熱処理での膜収縮がほとんどなく、クラック
の発生を防ぐことができる。また水分の吸収もほとんど
なく、水分によるスルーホール性の劣化を防ぐことがで
きる。
In the present invention, unlike the conventional method, since the surface of the organic silicate glass film 15 is made dense by the argon plasma treatment, only about 0.05 μm of the surface of the organic silicate film is mineralized even in the oxygen plasma treatment. Therefore, since the porous layer has a surface of about 0.05 μm, there is almost no film shrinkage during heat treatment, and the occurrence of cracks can be prevented. Furthermore, it absorbs almost no moisture, and can prevent deterioration of through-hole properties due to moisture.

【0014】この後シリケートガラス膜表面上に第2の
酸化膜17を形成する。これは、通常シラン(SH4 
),亜酸化窒素(N2 O)を用いたプラズマCVD法
により形成されるが、シリケートガラス膜の表面16は
無機シリケートガラス膜となっているため、良好な密着
性を得ることができ、第2の酸化膜17にはがれを生じ
ることはない。
Thereafter, a second oxide film 17 is formed on the surface of the silicate glass film. This is usually silane (SH4
), is formed by a plasma CVD method using nitrous oxide (N2O), but since the surface 16 of the silicate glass film is an inorganic silicate glass film, good adhesion can be obtained, and the second The oxide film 17 will not peel off.

【0015】第2の実施例では、有機シリケートガラス
膜に不活性ガスによるプラズマ処理を施した後、酸素プ
ラズマ処理を図3に示すような、プラズマCVD装置を
用いて行う。すなわち、真空に排気された処理室31内
の接地された電極32上に半導体基板33が配され、対
向して配置された高周波電極34より酸素ガスが長され
る。
In the second embodiment, after the organic silicate glass film is subjected to plasma treatment using an inert gas, oxygen plasma treatment is performed using a plasma CVD apparatus as shown in FIG. That is, the semiconductor substrate 33 is placed on the grounded electrode 32 in the evacuated processing chamber 31, and the oxygen gas is extended from the high frequency electrode 34 placed opposite to it.

【0016】本実施例の特徴は、酸素プラズマ処理後第
2の酸化膜の形成を、同一処理装置で連続的に行えるこ
とである。そのため酸素プラズマ処理後大気にさらすこ
とがないためより水分の吸収を防ぐことができる。
A feature of this embodiment is that the second oxide film can be formed continuously after the oxygen plasma treatment using the same processing apparatus. Therefore, since it is not exposed to the atmosphere after the oxygen plasma treatment, moisture absorption can be further prevented.

【0017】[0017]

【発明の効果】以上説明したように本発明は、基板表面
に有機シリケートガラス膜を形成後、不活性ガスによる
プラズマ処理を施して、しかる後に酸素プラズマ処理を
施すことにより、多孔質化した無機シリケートガラス層
の形成を表面のみにおさえることができるため、従来と
同等の酸化膜との密着性を有しながら、膜収縮がほとん
どなく、クラックの発生を防ぎ、また水分の吸収を低減
しスルーホール性の劣化を防ぐことができるという効果
を有する。
Effects of the Invention As explained above, the present invention provides a porous inorganic glass film by forming an organic silicate glass film on the surface of a substrate, performing plasma treatment with an inert gas, and then performing an oxygen plasma treatment. Since the formation of the silicate glass layer can be suppressed only on the surface, it maintains the same adhesion with the oxide film as before, but has almost no film shrinkage, prevents cracking, and reduces moisture absorption, making it possible to reduce throughput. This has the effect of preventing deterioration of hole properties.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を説明するために工程順に示
した半導体基板の断面図である。
FIG. 1 is a cross-sectional view of a semiconductor substrate shown in order of steps to explain an embodiment of the present invention.

【図2】本発明の一実施例に用いるプラズマ処理装置の
概略断面図である。
FIG. 2 is a schematic cross-sectional view of a plasma processing apparatus used in an embodiment of the present invention.

【図3】本発明の第2の実施例に用いるプラズマCVD
装置の概略断面図である。
FIG. 3: Plasma CVD used in the second embodiment of the present invention
FIG. 2 is a schematic cross-sectional view of the device.

【図4】従来のシリケートガラス膜の形成方法を説明す
るために工程順に示した半導体基板の断面図である。
FIG. 4 is a cross-sectional view of a semiconductor substrate shown in order of steps to explain a conventional method of forming a silicate glass film.

【符号の説明】[Explanation of symbols]

11,41    半導体基板 12,42    絶縁膜 13,43    アルミニウム配線層14,44  
第1の酸化膜 15,45    有機シリケートガラス膜16,46
    無気化されたシリケートガラス膜17,47 
   第2の酸化膜 18    アルゴンプラズマ 19  49    酸素プラズマ 21    処理室 22    高周波電極 23    半導体基板 24    対向電極 25    真空ポンプ 31    処理室 32    接地された電極 33    半導体基板 34    高周波電極 35    真空ポンプ
11, 41 Semiconductor substrate 12, 42 Insulating film 13, 43 Aluminum wiring layer 14, 44
First oxide film 15, 45 Organic silicate glass film 16, 46
Aerated silicate glass membrane 17, 47
Second oxide film 18 Argon plasma 19 49 Oxygen plasma 21 Processing chamber 22 High frequency electrode 23 Semiconductor substrate 24 Counter electrode 25 Vacuum pump 31 Processing chamber 32 Grounded electrode 33 Semiconductor substrate 34 High frequency electrode 35 Vacuum pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  基板表面上に、シリコンを主成分とす
る溶液の塗布形成によるシリケートガラスを形成する工
程と、前記シリケートガラス膜に不活性ガスによるプラ
ズマ処理を施す工程と、不活性ガスによるプラズマ処理
を施した前記シリケートガラス膜に酸素プラズマ処理を
施す工程とを有することを特徴とするシリケートガラス
膜の形成方法。
1. A step of forming silicate glass on a substrate surface by coating a solution containing silicon as a main component, a step of subjecting the silicate glass film to plasma treatment with an inert gas, and a step of applying plasma treatment with an inert gas to the silicate glass film. A method for forming a silicate glass film, comprising the step of subjecting the treated silicate glass film to oxygen plasma treatment.
JP11517091A 1991-05-21 1991-05-21 Method for manufacturing semiconductor device Expired - Fee Related JP3223522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11517091A JP3223522B2 (en) 1991-05-21 1991-05-21 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11517091A JP3223522B2 (en) 1991-05-21 1991-05-21 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04343431A true JPH04343431A (en) 1992-11-30
JP3223522B2 JP3223522B2 (en) 2001-10-29

Family

ID=14656081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11517091A Expired - Fee Related JP3223522B2 (en) 1991-05-21 1991-05-21 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3223522B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199495A (en) * 1995-12-29 1997-07-31 Hyundai Electron Ind Co Ltd Sog film forming method of semiconductor device
US7858418B2 (en) 2006-10-18 2010-12-28 Sony Corporation Light emitting device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199495A (en) * 1995-12-29 1997-07-31 Hyundai Electron Ind Co Ltd Sog film forming method of semiconductor device
US7858418B2 (en) 2006-10-18 2010-12-28 Sony Corporation Light emitting device and method of manufacturing the same

Also Published As

Publication number Publication date
JP3223522B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
JPH0729897A (en) Manufacture of semiconductor device
JP2001223267A (en) Manufacturing method for semiconductor device
JP2000286254A5 (en)
JP2632879B2 (en) Method of forming silicone coating
TWI362703B (en)
JPH09237783A (en) Manufacture of semiconductor device
KR0138853B1 (en) Curing method of spin-on glass by plasma process
JPH04343431A (en) Method for forming silicate glass film
JPH08213386A (en) Manufacture of semiconductor device
JPH06216116A (en) Insulation film formation method by silicone resin
JP3877472B2 (en) Method for forming interlayer insulating film
JPH01319942A (en) Forming method for insulating film
JPH10209275A (en) Manufacture of semiconductor device
JPH08306681A (en) Formation of flattened coat insulating film
JP3363614B2 (en) Method for manufacturing semiconductor device
JP2000221699A (en) Treatment of film
JP3204041B2 (en) Method of forming insulating film
JPS6366237A (en) Surface treating method for silicone based film
JP2636715B2 (en) Method for manufacturing semiconductor device
JPH0950993A (en) Formation of insulating film and semiconductor device
JPH09205086A (en) Method and system for fabricating semiconductor device
JP3008996B2 (en) Method of forming insulating film
KR970052822A (en) Method of forming interlayer insulating film of semiconductor device
JPH07221176A (en) Method of manufacturing semiconductor device
JPS6245697B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010724

LAPS Cancellation because of no payment of annual fees