JP3219383B2 - Automatic snow depth measurement system - Google Patents

Automatic snow depth measurement system

Info

Publication number
JP3219383B2
JP3219383B2 JP29496997A JP29496997A JP3219383B2 JP 3219383 B2 JP3219383 B2 JP 3219383B2 JP 29496997 A JP29496997 A JP 29496997A JP 29496997 A JP29496997 A JP 29496997A JP 3219383 B2 JP3219383 B2 JP 3219383B2
Authority
JP
Japan
Prior art keywords
snow
layer
depth
snowfall
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29496997A
Other languages
Japanese (ja)
Other versions
JPH11118947A (en
Inventor
八十一 遠藤
裕志 小南
昭二 庭野
修一 潮田
智司 小澤
庄造 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaijo Corp
Original Assignee
Kaijo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaijo Corp filed Critical Kaijo Corp
Priority to JP29496997A priority Critical patent/JP3219383B2/en
Publication of JPH11118947A publication Critical patent/JPH11118947A/en
Application granted granted Critical
Publication of JP3219383B2 publication Critical patent/JP3219383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、道路などの除雪作
業や消雪装置や融雪装置の運転制御などに利用される降
雪自動計測システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic snowfall measurement system used for snow removal work on roads and the like and operation control of a snow removal device and a snow melting device.

【0002】[0002]

【従来の技術】ある時間内に降り積もった雪の鉛直方向
の深さ、降雪深(新積雪深とも言う)は、道路等の除雪
作業や消・融雪装置の運転制御、雪崩等の防災対策には
不可欠な情報で、これらをリアルタイムに計測・収集す
るシステムの開発が望まれている。
2. Description of the Related Art The vertical depth and snow depth (also referred to as new snow depth) of snow that has accumulated in a certain period of time can be used for snow removal work on roads, operation control of snow removal and snow melting equipment, and disaster prevention measures such as avalanches. Is essential information, and the development of a system to measure and collect these in real time is desired.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、降雪深
を自動計測する装置は現在のところ実用化されておら
ず、普通、降雪深は積雪板と呼ばれる白い板を雪面にお
き、その上に積もった雪の深さを測定し求められる。従
って、本発明の目的は、降雪深を自動計測するシステム
を提供することにある。
However, an apparatus for automatically measuring the snowfall depth has not been put into practical use at present, and the snowfall depth is usually set by placing a white board called a snowboard on the snow surface and stacking on it. Measured by measuring snow depth. Accordingly, it is an object of the present invention to provide a system for automatically measuring the snowfall depth.

【0004】上記従来技術の課題を解決する本発明の降
雪深自動測定システムは、積雪を圧縮粘性流体と想定
し、その粘性係数ηをその乾き密度ρのべき関数、η=
Cρa、C,aは定数、で表現し、単位時間Δt内に形
成された厚さ(h)の各積雪層に生じた圧縮量(−Δ
h)と、この圧縮量の総和である最上層の積雪層の沈降
量とを上部積雪層の荷重から式σ=η(−Δh/(h・
Δt))に従って算定する手段と;積雪層の最上層の単
位時間内の高さの変化量(積雪深差)と単位時間内の降
雪水量とを実測する手段とを備えた降雪自動計測システ
ムにおいて、上記実測した積雪深差から上記算定した沈
降量を減算した値を指標Dとおき、この指標Dが負の場
合、これに前記圧縮量(−Δh)から推定した密度を乗
算することにより融雪量を算定し、この算定した融雪量
を各積雪層に配分することにより各積雪層の含水率を算
定し、この算定した各層ごとの含水率をグラフ表示する
算定・表示手段を備えている。
[0004] The automatic snow depth measurement system of the present invention that solves the above-mentioned problems of the prior art assumes that snow is a compressed viscous fluid, and its viscosity coefficient η is a power function of its dry density ρ, η =
a , C, and a are expressed as constants, and the amount of compression (−Δ) generated in each snow layer having a thickness (h) formed within a unit time Δt.
h) and the subsidence amount of the uppermost snow layer, which is the sum of the compression amounts, is calculated from the load of the upper snow layer by the equation σ = η (−Δh / (h ·
Δt)); and an automatic snowfall measurement system comprising: means for measuring a height change (snow depth difference) of the uppermost layer of the snow layer per unit time and a snowfall water amount per unit time. A value obtained by subtracting the calculated settling amount from the actually measured snow depth difference is set as an index D. When the index D is negative, the value is multiplied by the density estimated from the compression amount (-Δh) to melt snow. It is provided with a calculation / display means for calculating the water content, calculating the water content of each snow layer by distributing the calculated amount of snowmelt to each snow layer, and displaying the calculated water content of each layer in a graph.

【0005】[0005]

【発明の実施の形態】本発明の実施の形態によれば、上
記定数C,aを変更しながら上記算定を反復することに
より、実測結果に適合した定数C,aの最適値を得るよ
うに構成されている。
According to the embodiment of the present invention, by repeating the above calculation while changing the above constants C and a, the optimum values of the constants C and a suitable for the actual measurement results can be obtained. It is configured.

【0006】[0006]

【本発明の原理】まず、本発明の原理について説明す
る。地面に積もった積雪は、自身の重みとその上に積も
った積雪の荷重によって圧縮されるので、積雪を構成す
る各雪粒子は常に下方に変位(沈降)し続ける。このた
め、ある時刻tn ー1から適宜な単位時間Δt経過後の現
在の時刻tn までに積もった降雪の深さと、その間の積
雪深(地面に積もった積雪の鉛直方向の深さ) の増加量
は一致しない。その間の降雪深は、現在tn の積雪深
と、時刻tn ー1における雪面の現在tn の地上高の差と
して与えられるが、時刻tn ー1の雪面の現在tn の地上
高は時刻tn ー1の積雪深と同じではなく、積雪の沈降分
だけ低くなっている。従って、降雪深はその間の積雪深
の差に時刻tn ー1の雪面の沈降量を加えたものとして与
えられる。
First, the principle of the present invention will be described. Since the snow on the ground is compressed by its own weight and the load of the snow on it, each snow particle constituting the snow keeps displacing downward (settling down) at all times. For this reason, the depth of the snowfall accumulated from a certain time t n-1 to the current time t n after an appropriate unit time Δt has elapsed, and the snow depth during that time (the vertical depth of the snow accumulated on the ground) The increments do not match. Snowfall depth therebetween, the snow depth of the current t n, but is given as the difference between the ground clearance of the current t n snow surface at time t n-1, the ground current t n snow surface at time t n-1 The height is not the same as the snow depth at time t n-1 , but is lower by the amount of snowfall. Accordingly, the snowfall depth is given as the sum of the difference in the snow depth between the snowfall and the snowfall at time tn -1 .

【0007】小島(1957,1958,1967) は、積雪を構成す
る各積雪層の密度の時間変化を詳細に調べ、各層の密度
の増加や厚さの減少は積雪の粘性圧縮によって起こるこ
とを明らかにし、密度0.07〜0.50 g・cm ー3 の乾いた
積雪の圧縮粘性係数ηは、密度ρの指数関数としてη=
ηo・exp(kρ)で表せることを示した。そうし
て、この式を用いて密度の垂直分布や積雪深の時間変化
などが、降雪水量の時間変化により推定できることを示
した。本山、小島(1985)も同様の方法で積雪深の変化
を推定している。一方、遠藤他(1990) は、密度0.04〜
0.30g ・cm ー3の乾いた新雪としまり雪に関しては、圧
縮粘性係数ηが密度ρのべき関数としてρ=C・ρa
表せることを示した。そして、この式を用いることによ
り、積雪深や密度の計算が容易になることを示し、表層
雪崩の発生予測にも利用している(遠藤,1993) 。
Kojima (1957, 1958, 1967) examined in detail the time-dependent changes in the density of each snow layer constituting snow, and found that an increase in the density and a decrease in thickness of each layer occurred due to the viscous compression of the snow. And the compressive viscosity coefficient η of dry snow with a density of 0.07 to 0.50 g · cm -3 is η = exponential function of density ρ
It was shown that it can be expressed by ηo · exp (kρ). Then, it was shown that the vertical distribution of the density and the temporal change of the snow depth can be estimated by the temporal change of the amount of snowfall water using this equation. Motoyama and Kojima (1985) also estimate changes in snow depth using the same method. On the other hand, Endo et al. (1990) reported that
For fresh snow and dry snow of 0.30 g · cm -3 , it was shown that the compression viscosity coefficient η can be expressed as ρ = C · ρ a as a power function of the density ρ. It is shown that the use of this formula makes it easy to calculate the snow depth and density, and it is also used to predict the occurrence of surface avalanches (Endo, 1993).

【0008】このように、積雪の粘性圧縮に関する研究
は、主に乾き雪についてなされて来た。ぬれ雪の粘性係
数は、水を含んだ積雪の密度が同じ場合、乾き雪に比べ
一般に小さいが(木下,1963) 、重量含水率5 %以下の
ぬれ雪については、粘性係数と乾き密度 (水を除いた氷
の部分の積雪の密度) との関係が 0o C の乾いたしまり
雪に対する関係とほぼ同じである( 小島,1967)ことなど
が得られている。しかし、融雪や急激な雪質の変化のた
めにぬれ雪の粘性係数の測定は困難であり、系統だった
研究はなく、その詳細は明らかではない。
As described above, studies on the viscous compression of snow cover have been mainly made on dry snow. The viscosity coefficient of wet snow is generally smaller than that of dry snow when the density of snow containing water is the same (Kinoshita, 1963). However, for wet snow with a water content of 5% or less, the viscosity coefficient and dry density (water relationship between the density of snow parts of ice except) is approximately the same as the relationship to dry interference snow 0 o C (Kojima, 1967) have been obtained like that. However, it is difficult to measure the viscosity of wet snow due to snow melting and rapid changes in snow quality, and there are no systematic studies and the details are not clear.

【0009】そのため、ここでは計算の便を考え、ぬれ
雪の粘性係数η( gf・hr/ cm2 )は、その雪の乾き密
度ρdry ( g ・cm ー3 )のべき乗に比例すると仮定し
て、 η=C (ρdry ) a (1) とおき、粘性圧縮による各積雪層の厚さの変化を考察す
る。ここで、Cとaとは定数である。
Therefore, here, for convenience of calculation, it is assumed that the viscosity coefficient η (gf · hr / cm 2 ) of wet snow is proportional to the power of the dry density ρdry (g · cm −3 ) of the snow. , Η = C (ρdry) a (1), and consider the change in thickness of each snow layer due to viscous compression. Here, C and a are constants.

【0010】ここで、図3と図4に示すように、積雪の
内部に時刻tn ー1からtn までに積もった雪の層、ti
層(i=1,2,・・・・n)を考え、時刻t(>
i )におけるti 層の厚さをhi (t) (cm)、重量をw
i (t) (g/ cm2 )、その中に含まれる水の重量(含水
量)をqi (t) (g/ cm2 )とすると、ti 層の重量含
水率αi (t) は、 αi (t) =qi (t) / wi (t) (2) で表され、乾き密度〔ρi (t) 〕dry は、 〔ρi (t) 〕dry =〔1−αi (t) 〕wi (t) / hi (t) (3) で与えられる。なお、ti 層のぬれ密度はρi(t)=wi(t)
/hi(t)である。
Here, as shown in FIG. 3 and FIG. 4, a layer of snow t i accumulated from time t n-1 to t n inside the snow cover.
Considering the layer (i = 1, 2,... N), the time t (>
In t i ), the thickness of the t i layer is h i (t) (cm), and the weight is w
Assuming that i (t) (g / cm 2 ) and the weight (water content) of water contained therein is q i (t) (g / cm 2 ), the weight water content α i (t) of the t i layer is represented by α i (t) = q i (t) / w i (t) (2), dry density [ρ i (t)] dry is [ρ i (t)] dry = [1- given by α i (t)] w i (t) / h i (t) (3). The wetting density of the ti layer is ρi (t) = wi (t)
/ hi (t).

【0011】そうして、ti 層上に作用する時刻tの積
雪の圧力をσi(t)(gf/cm2)とし、この圧力によって、時
刻t から時刻t+dtまでの微小時間で、ti 層の厚さhi
(t) がdhi(t)だけ縮んだとものとする。粘性圧縮の場合
これらの間には次の関係が成り立つ。 σi(t) =η(t)[ -dhi(t)/[hi(t)・dt]] (4) (4)式に (1)式と (3)式を代入すると次式になる。 σi(t)・dt=[ -c [{1-αi(t)}wi(t) ] a / { hi
(t)}a+1]・dhi(t)
The snow pressure at time t acting on the ti layer at time t is defined as σi (t) (gf / cm 2 ). With this pressure, ti is defined as a small time from time t to time t + dt. Layer thickness hi
It is assumed that (t) is reduced by dhi (t). In the case of viscous compression, the following relationship holds between them. σi (t) = η (t) [-dhi (t) / [hi (t) · dt]] (4) By substituting equations (1) and (3) into equation (4), the following equation is obtained. σi (t) · dt = [-c [{1-αi (t)} wi (t)] a / {hi
(t)} a + 1 ] ・ dhi (t)

【0012】上式では、着目するti 層の氷の部分の重
量{1−αi(t) }wi(t) が時間的に変化しない場合は
積分可能で、両辺を時刻tn-1からtnの区間で積分する
と、粘性圧縮によるti 層の時刻tnの厚さh'i(tn)(cm)
は次式で与えられる。 h'i(tn) = hi(tn-1) *[ 1+(a/c)hi(tn-1)a Qi(tn-1,tn)/[ {1-αi(tn-1) }wi(tn-1) ]a ] ー1/a (5)
In the above equation, if the weight {1-αi (t)} wi (t) of the ice portion of the ti layer of interest does not change with time, integration is possible, and both sides can be measured from time tn-1 to time tn. When integrated over the interval, the thickness h'i (tn) (cm) at time tn of the ti layer by viscous compression
Is given by the following equation. h'i (tn) = hi (tn-1) * [1+ (a / c) hi (tn-1) a Qi (tn-1, tn) / [{1-αi (tn-1)} wi (tn-1)] a ] -1 / a (5)

【0013】ここで、粘性圧縮によるti 層の時刻tnの
厚さをh'i(tn) としたのは、融解による厚さの変化と区
別するためである。以後、粘性圧縮によるti 層におけ
る厚さをh'i(tn) 、粘性圧縮と融解の結果としてのti
層の厚さをhi(tn)で表すことにする。また、hi(tn-1)、
wi(tn-1)、αi(tn-1) は、ti 層の時刻tn-1 の厚さ、
重量、含水率である。また、Qi(tn-1,tn)(gf・hr/cm2)
は、ti 層に作用した圧力の時刻tn-1から現在時刻tnま
での積算値で、その時間間隔Δt(=tn-tn-1)が短い場
合、次式で与えられる。 Qi(tn-1,tn) = tn-1tnσi(s)・ds=(1/2){σi(tn-1)+σi(tn) }Δ
t ただし、記号tn-1tnは、tn-1からtnまでの区間の積分
を意味する。
Here, the thickness of the ti layer at the time tn due to viscous compression is defined as h'i (tn) in order to distinguish it from the change in thickness due to melting. Hereafter, the thickness in the ti layer by viscous compression is denoted by h'i (tn), and ti as the result of viscous compression and melting
Let the thickness of the layer be represented by hi (tn). Also, hi (tn-1),
wi (tn-1) and αi (tn-1) are the thickness of the ti layer at time tn-1;
Weight and moisture content. Qi (tn-1, tn) (gfhr / cm 2 )
Is the integrated value of the pressure applied to the ti layer from time tn-1 to the current time tn, and is given by the following equation when the time interval Δt (= tn-tn-1) is short. Qi (tn-1, tn) = tn-1tn σi (s) ・ ds = (1/2) {σi (tn-1) + σi (tn)} Δ
t However, the symbol tn-1tn means integration in the section from tn-1 to tn.

【0014】ここで、図3に示すように、σi(tn-1) と
σi (tn)はそれぞれti 層に作用する時刻tn-1と時刻tn
の圧力である。この図3から分かるように、この式は、
時刻tn-1のti 層上の各層の重量wi(tn-1)が時刻tnまで
変化しない場合には、次式となる。 Qi(tn-1,tn)={wi(tn-1)/2+ i+1Σn-1wi(tn-1) +p(tn)/2 }Δt (6) ここで、wi(tn-1)/2はti 層の圧縮についてti 層の自
重の寄与する割合が1/2 であることを考慮して加えたも
のである。 p(tn)(g/cm2) は時刻tn-1からtnまでの降水
量で、新しく積もったtn層の重量wn(tn)に等しい。
Here, as shown in FIG. 3, σi (tn-1) and σi (tn) are time tn-1 and time tn acting on the ti layer, respectively.
Pressure. As can be seen from FIG.
If the weight wi (tn-1) of each layer on the ti layer at the time tn-1 does not change until the time tn, the following equation is obtained. Qi (tn-1, tn) = {wi (tn-1) / 2 + i + 1Σn -1 wi (tn-1) + p (tn) / 2} Δt (6) where wi (tn-1 ) / 2 is added in consideration of the fact that the contribution of the weight of the ti layer to the compression of the ti layer is 1/2. p (tn) (g / cm 2 ) is the precipitation from time tn-1 to tn, and is equal to the weight wn (tn) of the newly accumulated tn layer.

【0015】(6)式は融雪や融雪水・雨水の浸透により
各雪層の重量が変化する場合には成り立たないが、時間
間隔Δt を適切に短くとれば、近似値として使用できる
と考えられる。そこで、ここでは、時刻tn-1からtnの
間、融雪や融雪水・雨水の浸透は起こらず、 (5),(6)
式で与えられる粘性圧縮が起こった後に、以下に述べる
方法で融雪や融雪水・雨水の浸透は起こると考えること
にする。そうすると、一つ前の時間ステップの各積雪層
の厚さ、重量、含水率、及びその間の降水量p (tn)が分
かれば、 (5),(6) 式より粘性圧縮による各雪層の厚さ
h'i (tn)が与えられることになる。
Equation (6) does not hold when the weight of each snow layer changes due to snowmelt or snowmelt water / rainwater permeation, but can be used as an approximate value if the time interval Δt is appropriately shortened. . Therefore, here, between time tn-1 and tn, no snowmelt or snowmelt water / rainwater infiltration occurs, and (5), (6)
After the viscous compression given by the equation has occurred, it is assumed that snowmelt and snowmelt water / rainwater infiltration will occur in the following manner. Then, if the thickness, weight, moisture content, and precipitation p (tn) of each snow layer in the previous time step are known, the snow layer of each snow layer by viscous compression can be obtained from Eqs. (5) and (6). thickness
h'i (tn) will be given.

【0016】指標D (tn)と融雪水の取扱いここで、図4
に示したように、現在の時刻tnの積雪深をH (tn)、粘性
圧縮による時刻tnにおける各雪層の厚さをh'i (tn)、時
刻tn-1からtnの間に積雪底面で融ける雪の厚さをg (tn)
とし、次式の指標D(tn)(cm)を考える。 D(tn)=H(tn)+g(tn)− i=1Σn-1 h'i(tn) g(tn) は通常0.1cm/day 以下なので、ここでは無視する
と、上式は D(tn)≒H(tn) − i=1Σn-1 h'i(tn) (7) ={H(tn)-H(tn-1) }+ {H(tn-1) − i=1Σn-1h'i(tn)} (7') となる。
Index D (tn) and handling of snowmelt water Here, FIG.
As shown in the figure, the snow depth at the current time tn is H (tn), the thickness of each snow layer at time tn by viscous compression is h'i (tn), and the snow bottom is between time tn-1 and tn. G (tn)
And an index D (tn) (cm) in the following equation is considered. D (tn) = H (tn) + g (tn) − i = 1 Σ n-1 h'i (tn) g (tn) is usually 0.1 cm / day or less. (tn) ≒ H (tn) − i = 1 Σ n-1 h'i (tn) (7) = {H (tn) -H (tn-1)} + {H (tn-1) − i = 1 Σ n-1 h'i (tn)} (7 ').

【0017】(7) と(7')式から分かるように、指標D(t
n)は、次の積雪深から、粘性圧縮より予測される時刻tn
-1の雪面の時刻tnにおける地上高を引いたもの((7)式)
、または時刻tn-1とtnの積雪深差に、時刻tn-1の雪面
の時刻tnに予測される沈降量を加えたもの((7') 式) で
ある。
As can be seen from equations (7) and (7 '), the index D (t
n) is the time tn predicted from viscous compression from the next snow depth
-1 minus the height of the snow surface at time tn (Equation (7))
Or the sum of the snow depth difference between time tn-1 and time tn plus the amount of sedimentation predicted at time tn of the snow surface at time tn-1 (formula (7 ')).

【0018】ここで、時刻tn-1からtnまでの間、雪面で
の融雪は起こらず降雪のみがあった場合を考えると、指
標D(tn)は正で、その値が新しく積もったtn層の厚さ(
その間の降雪深) hn(tn)となる。逆に、降雪がなく融雪
のみが生じた場合は、指標D(tn)は負で、その値が雪面
から融けた雪の深さ( 以後簡単のために融雪深と呼ぶ)
を示すことになる。時間間隔Δt が大きい場合には、そ
の間に融雪と降雪の両方が起こる場合があるが、、Δt
を適当に短くとればその確率は少なく、指標D(tn)はこ
の間の正確な降雪深または融雪深を示す指標となる。
Here, considering that there is only snowfall without snow melting on the snow surface from time tn-1 to time tn, the index D (tn) is positive, and the value of the index D (tn) is newly accumulated. Layer thickness (
The snowfall during that time) is hn (tn). Conversely, when only snowmelt occurs without snowfall, the index D (tn) is negative, and its value is the depth of snow melted from the snow surface (hereinafter referred to as snowmelt depth for simplicity).
Will be shown. If the time interval Δt is large, both snow melting and snowfall may occur during that time.
Is small, the probability is small, and the index D (tn) is an index indicating the exact snowfall or snowmelt depth during this time.

【0019】そこで、この明細書ではΔt を1時間と短
くとり、次のような手法で、時刻tnの各積雪層の厚さ、
重量、含水率を求めた。 1)粘性圧縮による各積雪層の厚さh'i (tn)を(5)(6)式よ
り計算し、指標D(tn)を求める。 2)指標D(tn)が正の場合には、その値を新積雪層( tn
層) の厚さhn(tn)として雪面上に加え、D(tn)が負の場
合には、その値に対応する積雪層を雪面から除去する。 3)降水量p (tn)は、指標D(tn)が正の場合雪として降っ
たと考え、p (tn)をtn層の重量wn(tn)とする。指標D(t
n)が負の場合は、雨として取扱い、雪面で融けた融雪水
とともに下層に浸透させる。 4)雨水や融雪水の浸透による融雪は起こらないと考え
る。浸透水の下層への浸透は、簡単なタンクモデルを適
応し、積雪層の含水率がある与えられた最大含水率αma
x を越えた場合にのみ移動するとし、全層が最大含水率
αmaxで飽和した場合、過飽和の水分は最下層から地中
に流す。 このように取り扱うと、各積雪層の厚さ、重量、含水率
は次のように与えられる。
Therefore, in this specification, Δt is set as short as one hour, and the thickness of each snow layer at time tn is calculated by the following method.
The weight and water content were determined. 1) The thickness h'i (tn) of each snow layer by viscous compression is calculated from the equations (5) and (6), and the index D (tn) is obtained. 2) When the index D (tn) is positive, the value is calculated as the new snow layer (tn).
When D (tn) is negative in addition to the thickness hn (tn) of the layer on the snow surface, the snow layer corresponding to that value is removed from the snow surface. 3) When the index D (tn) is positive, it is considered that snowfall has occurred as the snowfall p (tn), and p (tn) is set as the weight wn (tn) of the tn layer. Index D (t
If n) is negative, treat it as rain and infiltrate the lower layer with snowmelt water melted on the snow surface. 4) It is considered that snowmelt due to infiltration of rainwater and snowmelt does not occur. Infiltration into the lower layer of seepage water adapts a simple tank model, given the maximum moisture content αma with the moisture content of the snow layer
If it moves only when x is exceeded and all layers are saturated at the maximum water content αmax, supersaturated water flows from the bottom layer into the ground. When handled in this manner, the thickness, weight, and moisture content of each snow layer are given as follows.

【0020】D(tn)が正の場合の各積雪層の厚さ、重
量、含水率 指標D(tn)≧0 の場合、時刻tn-1からtnまでに積もった
tn層の厚さhn(tn)はD(tn)与えられ、この間の降水量p
(tn)がtn層の重量wn(tn)となる。降雪の含水率は不明な
ため、これを0と仮定すると、新しく積もったtn層の厚
さ、重量、含水率はそれぞれ次式で与えられる。 hn(tn)=D(tn) wn(tn)=p(tn) αn(tn)=0
When D (tn) is positive, the thickness, weight, and moisture content of each snow layer When D (tn) ≧ 0, the snow layers are piled up from time tn-1 to time tn.
The thickness hn (tn) of the tn layer is given by D (tn), and the precipitation p
(tn) is the weight wn (tn) of the tn layer. Since the water content of snowfall is unknown, assuming this to be 0, the thickness, weight, and water content of the newly deposited tn layer are given by the following equations, respectively. hn (tn) = D (tn) wn (tn) = p (tn) αn (tn) = 0

【0021】指標D(tn)が正の場合には、降雪のみで融
雪は起こらないと考えているので、tn層以外の各層の厚
さは粘性圧縮による厚さh'(tn)に等しく、重量と含水率
は時刻tn-1の値に等しい。従って、他の各層の値は次の
ようになる。 hn(tn)=h'n(tn) (i=n-1,n-2, …,1) wi(tn)=wi(tn-1) (i=n-1,n-2, …,1) αi(tn)=αi(tn-1) (i=n-1,n-2, …,1)
When the index D (tn) is positive, it is considered that only snowfall does not cause snow melting, so the thickness of each layer other than the tn layer is equal to the thickness h '(tn) by viscous compression. The weight and moisture content are equal to the value at time tn-1. Therefore, the values of the other layers are as follows. hn (tn) = h'n (tn) (i = n-1, n-2,…, 1) wi (tn) = wi (tn-1) (i = n-1, n-2,…, 1) αi (tn) = αi (tn-1) (i = n-1, n-2,…, 1)

【0022】D(tn)が負の場合の各積雪層の厚さ、重
量、含水率 指標D(tn)<0 の場合には、降雪はなく、( hn(tn)=0)
雪面から深さ−D(tn)までの積雪層が融解したと判断さ
れる。融雪によって失われる層は、 i=kΣn-1 h'i(tn) ≦D(tn) <i=k-1 Σn-1 h'i(tn) (8) を満たすk(<n)によって与えられ、tn-1層からtk層まで
は完全に融解し、tk-1が一部融解することとなる。
When D (tn) is negative, the thickness, weight, and moisture content of each snow layer When index D (tn) <0, there is no snowfall and (hn (tn) = 0).
It is determined that the snow layer from the snow surface to the depth -D (tn) has melted. The layer lost by snowmelt is i ( k Σ n-1 h'i (tn) ≤ D (tn) < i = k-1 Σ n-1 h'i (tn) (8) ), From the tn-1 layer to the tk layer are completely melted, and tk-1 is partially melted.

【0023】従って、各積雪層の厚さは次式で与えられ
る。 hi(tn)=0 ( i=n-1,n-2,…,k ) hk-1(tn)=i=k-1 Σn-1h'i(tn)+Dn-1(tn) hi(tn)=h'i(tn) ( i=k-2,…,1 ) また、雪面で融ける雪( 水を含む) の重量m(tn)(g/cm2)
は m(tn) = i=kΣn-1 wi(tn-1)+ [ 1- hk-1(tn)/h'k-1(tn)]wk-1(tn-1) (9) で与えられ、m (tn)と降水料p (tn)の水が、前述のタン
クモデルに従って下層に浸透する。
Therefore, the thickness of each snow layer is given by the following equation. hi (tn) = 0 (i = n-1, n-2, ..., k) hk-1 (tn) = i = k-1 Σ n-1 h'i (tn) + Dn-1 (tn) hi (tn) = h'i (tn) (i = k-2,…, 1) Weight of snow (including water) melting on the snow surface m (tn) (g / cm 2 )
Is m (tn) = i = k Σ n-1 wi (tn-1) + [1- hk-1 (tn) / h'k-1 (tn)] wk-1 (tn-1) (9) And water of m (tn) and precipitation p (tn) penetrates into the lower layer according to the tank model described above.

【0024】その結果、tk-1層からtj層(j<k)までの含
水率が最大含水率αmax になったとすると、各雪層の重
量は、 wi(tn)=0 (i=n-1,n-2, …,k) wk-1(tn)= [hk-1(tn)/h'k-1(tn)][[1- αk-1(tn-1)]/[1-αmax]]*wk-1(tn-1) wi(tn)=[[1-αi(tn-1)]/[1-αmax]]wi(tn-1) (i=k-2 …,j) wj-1(tn) =wj-1(tn-1)+ p(tn)+m(tn) - [hk-1(tn)/h'k-1(tn)][[αmax-αk-1(tn-1)]/[1-αmax ]]wk-1(tn-1) - i=j ΣK-2 [[αmax-αi(tn-1)]/[1-αmax]] wi(tn-1) wi(tn)=wi(tn-1) (i=j-2, …,1)
As a result, assuming that the water content from the tk-1 layer to the tj layer (j <k) reaches the maximum water content αmax, the weight of each snow layer becomes wi (tn) = 0 (i = n− 1, n-2,…, k) wk-1 (tn) = [hk-1 (tn) / h'k-1 (tn)] [[1-αk-1 (tn-1)] / [1 -αmax]] * wk-1 (tn-1) wi (tn) = [[1-αi (tn-1)] / [1-αmax]] wi (tn-1) (i = k-2…, j) wj-1 (tn) = wj-1 (tn-1) + p (tn) + m (tn)-[hk-1 (tn) / h'k-1 (tn)] [(αmax-αk -1 (tn-1)] / [1-αmax]] wk-1 (tn-1) -i = j Σ K-2 [[αmax-αi (tn-1)] / [1-αmax]] wi (tn-1) wi (tn) = wi (tn-1) (i = j-2,…, 1)

【0025】各雪層の含水率は、 αi(tn)=0 (i=n,n-1…,k) αi(tn)=αmax (i=k-1 …,j) αj-1(tn)=1-{wj-1(tn-1)-qj-1(tn-1)/wj-1(tn)} αi(tn)=αi(tn-1) (i-j-2, …,1) となる。The moisture content of each snow layer is αi (tn) = 0 (i = n, n−1..., K) αi (tn) = αmax (i = k−1..., J) αj−1 (tn ) = 1- {wj-1 (tn-1) -qj-1 (tn-1) / wj-1 (tn)} αi (tn) = αi (tn-1) (ij-2,…, 1) Becomes

【0026】ここで、含水率αmax を持つtj層は次式を
満たすj によって与えられる。 [ hk-1(tn)/h'k-1(tn)][[ αmax-αk-1(tn-1)]/[1-maxt]]wk-1(tn-1) + i=j Σk-2 [ αmax - αi(tn-1)]/[1-αmax] wi(tn-1) <m(tn)+p(tn) <[hk-1(tn)/h'k-1(tn)][[αmax - αk-1(tn-1)]/[1-αmax]*wk-1(tn-1) + i=j-1 Σk-2 [[αmax - αi(tn-1)]/[1-αmax]] wi(tn-1) (11)
Here, the tj layer having the water content αmax is given by j satisfying the following equation. [hk-1 (tn) / h'k-1 (tn)] [[αmax-αk-1 (tn-1)] / [1-maxt]] wk-1 (tn-1) + i = j Σ k-2 [αmax-αi (tn-1)] / [1-αmax] wi (tn-1) <m (tn) + p (tn) <[hk-1 (tn) / h'k-1 ( tn)] [[αmax-αk-1 (tn-1)] / [1-αmax] * wk-1 (tn-1) + i = j-1 Σ k-2 [(αmax-αi (tn-1 )] / [1-αmax]] wi (tn-1) (11)

【0027】以上のことから分かるように、時刻tnの各
層の厚さ、重量、含水率は、一つ前の時間ステップtn-1
のこれらの値と時刻tnの積雪深及び降水量の測定値があ
れば、求められる。従って、時刻t1より順次計算し、そ
の結果を次の時間ステップの計算に用いれば、各時刻の
積雪深と降水量より積雪各層の厚さ、重量、含水率が推
定できることになる。本実施例ではΔt を1時間にとっ
ているので、時刻tnの時間降雪新はhn(tn)、時刻tnまで
の日降雪深は、日降雪深= i=n-23Σn hi(tn)で与えられ
る。図5に演算処理のフローチャートを示した。
As can be seen from the above, the thickness, weight, and water content of each layer at time tn are determined by the immediately preceding time step tn-1.
If there are these values of and the measured values of snow depth and precipitation at time tn, they can be obtained. Therefore, if the calculation is performed sequentially from time t1 and the result is used for the calculation of the next time step, the thickness, weight, and water content of each layer of snow can be estimated from the snow depth and precipitation at each time. Since in this embodiment taking Δt to 1 hour, the time of snowfall New time tn is given by hn (tn), day snowfall depth up to time tn, day snowfall depth = i = n-23 Σ n hi (tn) Can be FIG. 5 shows a flowchart of the arithmetic processing.

【0028】[0028]

【実施例】上記の方法で、日降雪深などの値を算定する
ために、図1に示す構成の降雪深自動測定システムを作
成した。1は積雪深計を構成する超音波送受波器、2は
雨雪量計を構成する雨量計感部、3は積雪深計変換部、
4は雨量計変換部、5と6は観測局舎内に設置される演
算部とモデム、7は電話線である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to calculate values such as daily snow depth by the above method, an automatic snow depth measuring system having the structure shown in FIG. 1 was prepared. 1 is an ultrasonic transducer that constitutes a snow depth gauge, 2 is a rain gauge sensing unit that constitutes a snow depth gauge, 3 is a snow depth gauge conversion unit,
Reference numeral 4 denotes a rain gauge converter, 5 and 6 denote arithmetic units and modems installed in the observation station building, and 7 denotes a telephone line.

【0029】超音波送受波器1は、下方の雪面に超音波
を送信したのち雪面による反射波を受信し、送受信の経
過時間から雪面までの距離を測定し、この測定結果をケ
ーブルと積雪深計変換部3とを通して演算部5に通知す
る。雨雪量計感部2は、雨やヒーターで溶かした雪の重
量を測定することにより、単位時間当たりの降水量を測
定しケーブルと変換部4とを通して演算部5に通知す
る。観測局舎内に設置された演算部5は、自動計測され
た積雪深と降水量の値を毎正時に取り込み、1 時間単位
で区切られた各積雪層の厚さ、重量、含水率等を計算
し、毎朝9時に前日9時からの日降雪深をリアルタイム
に計測し、これらの計測値を電話線を通して遠隔の記録
装置に送信する。
The ultrasonic transducer 1 transmits an ultrasonic wave to a snow surface below, receives a reflected wave from the snow surface, measures the distance from the elapsed time of transmission / reception to the snow surface, and transmits the measurement result to a cable. And to the arithmetic unit 5 via the snow depth gauge conversion unit 3. The rain / snow gauge unit 2 measures the weight of rain or snow melted by the heater to measure the amount of precipitation per unit time and notifies the arithmetic unit 5 through the cable and the converter 4. The arithmetic unit 5 installed in the observation station fetches the automatically measured values of snow depth and precipitation every hour, and calculates the thickness, weight, water content, etc. of each snow layer divided in hourly units. Calculate and measure the daily snow depth from 9:00 each day at 9:00 in the morning in real time, and transmit these measured values to a remote recording device through a telephone line.

【0030】積雪深計としては (株) カイジョーの超音
波式積雪深計SL-143( 感度1cm) またはSL-340( 感度1m
m)を使用し、雨雪量計としては溢水式雨雪計(感度0.5m
m)を使用した。計算に用いるパラメーターは、次節で述
べるように降雪深の実測値との誤差が最小になるように
決めることとし、それまでは暫定値を使用した。
As a snow depth gauge, Kaijo Co., Ltd.'s ultrasonic snow depth meter SL-143 (1 cm sensitivity) or SL-340 (1 m sensitivity)
m), and a flood-type rain gauge (sensitivity 0.5m)
m) was used. As described in the next section, the parameters used in the calculation were determined so that the error from the actual measured snow depth was minimized. Until then, provisional values were used.

【0031】図2は、各降雪層と厚みとその含水率の大
きさを各降雪層と厚みとこれらに付された濃度によって
示す表示画面の一例である。この表示画面によれば、積
雪構造内の含水率の分布の状態が一目瞭然となり、これ
を温度や風速などの観測結果と組合わせることにより、
雪崩の発生のおそれなどを判定できる。また、含水率の
代わりに各積雪層の重量を重量に応じた濃度によって画
面表示することもできる。
FIG. 2 is an example of a display screen showing each snowfall layer, its thickness, and the magnitude of its water content, by each snowfall layer, its thickness, and the concentration attached thereto. According to this display screen, the state of the distribution of the moisture content in the snow structure becomes clear at a glance, and by combining this with observation results such as temperature and wind speed,
It is possible to determine the possibility of an avalanche. Also, instead of the water content, the weight of each snow layer can be displayed on the screen by a concentration corresponding to the weight.

【0032】この降雪深自動計測システムによる降雪深
の計測実験は、森林総合研究所十日町試験地(新潟県十
日町市)内の積雪観測露場で行った。実験期間は1992-9
3 年冬から94-95 年冬の3冬季で、ほぼ正常に作動し
た。また、こうして得られた降雪深の推定値を評価する
ため、同試験地露場の雪面上に積雪板を用意し、朝9時
から翌朝9時までにその上に積もった降雪の深さを毎朝
測定し、これを実測値とした。
The experiment for measuring the snow depth by the automatic snow depth measurement system was performed in a snow observation observatory at the Tokamachi test site of the Forestry and Forest Products Research Institute (Tokamachi City, Niigata Prefecture). Experiment period is 1992-9
In three winters, from winter 3 to winter 94-95, operation was almost normal. In addition, to evaluate the estimated value of the snowfall obtained in this way, a snowboard was prepared on the snow surface of the dew field of the test site, and the depth of the snowfall piled on it from 9 am to 9 am the following morning Was measured every morning, and this was used as an actually measured value.

【0033】観測を行った3冬期間の十日町試験地の気
象状況については、月平均気温が12月 3.2℃, 1月 0.5
℃,2月 0.9℃,3月 2.8℃で厳冬期でも月平均気温は
プラスであった。平均風速は1.1m 程度と穏やかであ
る。各冬の最大積雪深は、1992-93 年冬172cm 、93-94
年冬163 cm、94-95 年冬226 cmであった。
Regarding the weather conditions at the Tokamachi test site during the three winter periods when the observations were made, the average monthly temperature was 3.2 ° C in December and 0.5 in January.
℃, February 0.9 ℃, March 2.8 ℃, the monthly average temperature was positive even in severe winter. The average wind speed is moderate, about 1.1m. The maximum snow depth in each winter is 172 cm in winter 1992-93, 93-94
Winter 163 cm, winter 94-95 226 cm.

【0034】本手法に用いる(1) 式のCとaの値や、最
大含水率αmax の値は明らかではない。そこで、 C=1.11*106 gf ・hr・cm-2・(g・cm-3) -a αmax = 0.15 と推定し、aの値を種々変化させた場合の日降雪深を計
算し、実測値と比較した。
The values of C and a in equation (1) used in the present method and the value of the maximum water content αmax are not clear. Therefore, C = 1.11 * 10 6 gf ・ hr ・ cm -2・ (g ・ cm -3 ) -a αmax = 0.15, and the daily snow depth when the value of a was changed variously was calculated and measured. Value.

【0035】表1は、3冬期の各推定値の標準誤差を示
したもので、標準誤差δは、
Table 1 shows the standard errors of the respective estimated values in the three winter seasons.

【表1】 δ=[{Σ(推定値−実施値)2 }/測定数]1/2 から求めた。表1から分かるように、a =3.6 の場合に
標準誤差は最も小さく、その値はδ=1.71cmである。そ
こで、図6に、a =3.6 とした場合の日降雪深の推定値
3冬期分を実測値に対してプロットした。
[Table 1] δ = [{Σ (estimated value−implemented value) 2 } / number of measurements] 1/2 . As can be seen from Table 1, when a = 3.6, the standard error is the smallest, and its value is δ = 1.71 cm. Therefore, FIG. 6 plots the estimated values of daily snowfall for three winter seasons when a = 3.6 with respect to the actually measured values.

【0036】図6から分かるように、推定値と実測値は
良く一致しており、その最大誤差は±5cm程度である。
それゆえ、本手法においては、a=3.6 を用いるのが最
も精度が良く妥当なものと考えられた。例として図7に
3冬期の1月各日の日降雪深の実施値とa =3.6 の場合
の推定値を示した。
As can be seen from FIG. 6, the estimated value and the measured value are in good agreement, and the maximum error is about ± 5 cm.
Therefore, in this method, it was considered that the use of a = 3.6 was the most accurate and appropriate. As an example, FIG. 7 shows the actual values of the daily snow depth for each day of January in the three winter seasons and the estimated values when a = 3.6.

【0037】[0037]

【発明の効果】日降雪深を知る目安として、日積雪深と
積雪深差日計が知られている。日積雪深差はある時刻の
積雪深から1日前の同時刻の積雪深を差し引いたもので
あり、積雪深差日計は毎正時に測定した積雪深の1時間
毎の差のうちプラスの値を合計したものである。そこ
で、本発明の効果を検証するために、日積雪深差を日降
雪深とした場合( これを日積雪深差法と呼ぶ) と、積雪
深差日計を日降雪深とした場合( 積雪深差日計法) の誤
差を調べ、本発明の粘性圧縮モデル法による誤差と比較
してみた。日積雪深差と積雪深差日計の算出に必要な積
雪深データ、並びにこれらと対比する日降雪深(実施
値) データは、粘性圧縮モデル法で用いたデータと同じ
ものを使用し、図8に日積雪深差と日降雪の関係、図9
に積雪深差日計と日降雪深の関係を示した。
As a guide to know the daily snowfall depth, a daily snow depth and a snow depth difference daily meter are known. The daily snow depth difference is the snow depth at a certain time minus the snow depth at the same time one day before, and the snow depth difference daily meter is the positive value of the hourly difference in snow depth measured at every hour. Is the sum of Therefore, in order to verify the effect of the present invention, when the daily snow depth difference is set as the daily snow depth (this is called the daily snow depth difference method), when the daily snow depth difference is set as the daily snow depth ( The error of the depth difference day meter method was examined and compared with the error of the viscous compression model method of the present invention. The snow depth data necessary for calculating the daily snow depth difference and the snow depth difference daily meter, and the daily snow depth data (conducted values) that are compared with these data are the same as those used in the viscous compression model method. Fig. 8 shows the relationship between daily snow depth and daily snowfall, Fig. 9
Shows the relationship between the daily snow depth difference and the daily snowfall.

【0038】図8によると、日積雪深差を日積雪深とし
た場合、その誤差は一般に負で、その最大値は-23 cm、
標準誤差δは9.72cmであった。この様な大きな負の誤差
は、積雪の沈降と融雪とによるもので、この誤差原因を
補正したのが、ここに示した粘性圧縮モデル法と考えら
れる。
According to FIG. 8, when the daily snow depth difference is the daily snow depth, the error is generally negative, and the maximum value is -23 cm.
The standard error δ was 9.72 cm. Such a large negative error is caused by the settling of snow and the melting of snow, and it is considered that the cause of this error is corrected by the viscous compression model method shown here.

【0039】積雪深差日計法は、前述の日積雪深差法に
よる大きな負の誤差を補正するために、積雪深の減少を
積雪の沈降と融雪とによるものと見なし、1時間毎の積
雪深差日の負の値を取り除き正の値のみを加えたものと
解釈される。この補正のため、図9に示したように積雪
深差日計と日降雪深の関係は、1対1の対応を示す実線
の周りほぼ均等に分布しているが、誤差の最大値は±15
cm程度、標準誤差は4.52cmであった。
In order to correct a large negative error caused by the above-mentioned daily snow depth difference method, the snow depth difference daily measurement method regards a decrease in the snow depth as being caused by the subsidence of snow and the melting of snow, and performs the snow accumulation every hour. This is interpreted as removing the negative value of the depth difference day and adding only the positive value. For this correction, as shown in FIG. 9, the relationship between the snow depth difference daily meter and the daily snowfall is distributed almost evenly around the solid line indicating the one-to-one correspondence, but the maximum value of the error is ± Fifteen
cm and the standard error was 4.52 cm.

【0040】本発明の降雪自動計測システムによれば、
粘性圧縮モデル法の最大誤差は±約5 cm、標準誤差は1.
71cmであり、このことから、本発明の降雪自動計測シス
テムが採用する粘性圧縮モデル法の精度は、日降雪深法
や積雪深差日計法に比べ著しく高いことを示している。
According to the automatic snowfall measurement system of the present invention,
The maximum error of the viscous compression model method is ± 5 cm, and the standard error is 1.
This is 71 cm, which indicates that the accuracy of the viscous compression model method employed by the automatic snowfall measurement system of the present invention is significantly higher than the daily snowfall depth method and the snow depth difference daily measurement method.

【0041】なお、日降雪深の推定精度を高めるため
に、日降雪深法や積雪深差日計法の他に、重回帰分析に
よる推定方法が幾つか提案されている。吉田他(1991)
は、当日と前日の平均気温がプラスかマイナスかで四つ
に区分し、日降雪深を目的変数、当日と前日の積雪深差
日計と当日の降水量を説明変数として求めた重回帰式を
日降雪深の推定式として提案している。そして、この推
定式に十日町試験地の1983/84 年冬から87/88 冬までの
5 冬期分の気象データを代入して求めた標準誤差は4.29
cmで、同じデータを用いて算出した積雪深差日計法によ
る標準誤差は7.29cmであったと報告している。
In order to improve the accuracy of estimating the daily snow depth, several estimation methods based on multiple regression analysis have been proposed in addition to the daily snow depth method and the snow depth difference daily measurement method. Yoshida et al. (1991)
Is a multiple regression formula that divides the average temperature of the day and the previous day into four categories depending on whether it is plus or minus, and calculates the daily snow depth as the objective variable, the snow depth difference between the day and the previous day, and the precipitation on the day as the explanatory variables. Is proposed as an equation for estimating daily snowfall. Then, from this estimation formula, the winter of 1983/84 to the winter of 87/88 at Tokamachi
5 The standard error obtained by substituting weather data for winter is 4.29.
In cm, the standard error calculated by using the same data for the snow depth difference daily method was 7.29 cm.

【0042】これに対し、前述したように、1992-1993
年冬から94-95 年冬までの3冬期分のデータにより求め
た粘性圧縮モデル法による標準誤差は1.71cm、同じデー
タを用いた積雪深差日計法による標準誤差は4.52cmであ
った。使用したデータが異なるため正確な比較は出来な
いが、積雪深差日計の誤差を基準に考えると、吉田の推
定式の誤差は積雪深差日計法による誤差59%であるのに
対して、粘性圧縮モデル法の誤差は積雪深差日計法の誤
差38%であり、粘性圧縮モデル法の方が精度が高いと考
えられる。
On the other hand, as described above, 1992-1993
The standard error obtained by the viscous compression model method obtained from the data for the three winter seasons from the winter of 1994 to the winter of 1994-95 was 1.71 cm, and the standard error by the snow depth difference date method using the same data was 4.52 cm. Accurate comparison is not possible due to the different data used, but based on the error of the snow depth difference date meter, the error of Yoshida's estimation formula is 59% by the snow depth difference date measurement method, The error of the viscous compression model method is 38% of the error of the snow depth difference date measurement method, and it is considered that the viscous compression model method has higher accuracy.

【0043】なお、圧縮粘性係数と乾き密度の関係式
(1) の係数C とa の値は、前に述べたように、C=1.11*1
06 gf ・hr・cm-2・(g・cm-3) -a , a=3.6 が最も妥当
なものと考えられた。この結果は、真冬でもほとんどが
ぬれ雪で構成されている十日町の積雪について得られた
ものであるが、(1) 式はぬれ雪にも乾き雪にも適応でき
る式として仮定されている。このCとaを、降水量が0
で気温が0°C以下の時に、指標Dが0となるように決
定すれば、一層好適である。
The relational expression between the compression viscosity coefficient and the dry density
The coefficient C and the value of a in (1) are, as described earlier, C = 1.11 * 1
0 6 gf · hr · cm− 2 · (g · cm −3 ) -a , a = 3.6 was considered to be the most appropriate. This result was obtained for snow covered in Tokamachi, which is mostly composed of wet snow even in the middle of winter. Equation (1) is assumed to be applicable to both wet and dry snow. When C and a are set to 0
It is more preferable that the index D be determined to be 0 when the temperature is 0 ° C. or less.

【0044】そこで、比較のため、本発明で使用した圧
縮粘性係数と乾き密度の関係式と、氷点下の乾いた新雪
としまり雪について得られた従来の測定結果(kojima,19
67;Shinojima,1967;Nakamura,1988;遠藤他,1990;
梶川・小野,1990) を図10の両対数グラフ上にプロット
した。図10の実線が前者、破線が後者の結果である。図
10から分かるように、全体として見ると理論値である実
線と実験データである破線とは比較的よい一致を示して
いる。しかしながら、詳細に見ると、理論値の粘性係数
は、ρ<0.3g/cm3 の領域では実際の粘性係数より大きめ
に、また、ρ>0.3g/cm3 では小さめに評価されている。
このことから、雪層の密度範囲に応じて係数C とa の値
を変えることにより、一層正確な降雪深が計算できるこ
とが分かる。
Therefore, for comparison, the relational expression between the compression viscosity coefficient and the dry density used in the present invention and the conventional measurement results obtained for dry fresh snow and frozen snow below the freezing point (Kojima, 19
67; Shinojima, 1967; Nakamura, 1988; Endo et al., 1990;
Kajikawa and Ono, 1990) are plotted on the log-log graph in Fig. 10. The solid line in FIG. 10 is the result of the former, and the broken line is the result of the latter. Figure
As can be seen from FIG. 10, as a whole, the solid line, which is the theoretical value, and the broken line, which is the experimental data, show relatively good agreement. However, when viewed in detail, the viscosity coefficient of the theoretical value, [rho <a larger than the actual viscosity in the region of 0.3 g / cm 3, also, ρ> 0.3g / cm 3 are in is evaluated to be smaller.
From this, it can be seen that by changing the values of the coefficients C and a according to the density range of the snow layer, a more accurate snowfall depth can be calculated.

【0045】また、本発明によれば、積雪深と降雪量の
データから雪面での融雪量も推定可能であり、各積雪層
の沈降曲線を推定し表示できるだけでなく、積雪層内部
の密度や、含水率などの鉛直分布を濃淡によって画面表
示できる。
Further, according to the present invention, it is possible to estimate the amount of snowmelt on the snow surface from the data of the snow depth and the amount of snowfall, and it is possible not only to estimate and display the settling curve of each snow layer, but also to estimate the density inside the snow layer. Also, the vertical distribution of the water content and the like can be displayed on the screen by shading.

【0046】参考文献 遠藤 八十一・大関義男・庭野昭二, 1990: 低密度の雪
の圧縮粘性係数と密度の関係. 雪氷,52,267-274. 遠藤 八十一, 1993: 降雪強度による乾雪表層雪崩の発
生予測. 雪氷,55,113-120. 梶川正弘・小野 昇,1990:新積雪の圧縮粘性係数と降
雪粒子の結晶形との関係 雪氷,52,283-287 . 小島賢治,1957:積雪層の粘性圧縮III.低温科学, 物理
編,16,167-196. 小島賢治,1958:積雪層の粘性圧縮IV. 低温科学, 物理
編,17,53-64. Kojima,k.,1967:Densification of seasonal snow cov
er.physics of snow andice,ed.H.Oura, The Institute
of Low Temperature Science,Hokkaido Univ .,929-95
2. 本山秀明・小島賢治,1985:積雪深変化の推定法( 乾雪の
場合).低温科学, 物理編.44,15-25. Nakamura H.1988:Studies on the settlement force of
snow as a generation mechanism.Report of the Nati
onal Research Center for Disaster Prevention,41,36
1-385. 林野庁,1988: 大規模表層なだれの総合的対策に関する
調査報告書. 昭和63年国土総合開発事業調整費による報
告,55-60. Shinojima,k.,1967:Study on the visco clastic defor
mation of depositedsnow.physics of snow and ice,e
d.H.Oura,The Institute of Low Temterature Science,
Hokkaido Univ.,875-907. 山田 穣,1993:時間気象データに基づく新積雪深の推定
法についてI 雨雪量計法と重回帰分析法. 防災 科学
技術研究所研究報告,52,69-79. 吉田順雄・高見晋一・遠藤八十一,1991:アメダス観測値
から降雪深を推定する方法について. 平成3 年度日本氷
学会全国大会講演予稿集,135.
References Y.ichi Endo, Y.Ozeki, S.Niwano, 1990: Relationship between compression viscosity coefficient and density of low-density snow. Snow and ice, 52, 267-274. Y.ichi Endo, 1993: Dry snow surface due to snowfall intensity. Prediction of avalanche occurrence. Snow and ice, 55, 113-120. Masahiro Kajikawa and Noboru Ono, 1990: Relationship between compression viscosity coefficient of new snow cover and crystal form of snowfall snow and ice, 52, 283-287. Kojima, K., 1957: Viscous compression of snow layer III. Low temperature science, physics, 16, 167-196. Kojima, 1958: Viscous compression of snow layer IV. Low temperature science, physics, 17, 53-64. Kojima, k. , 1967: Densification of seasonal snow cov
er.physics of snow andice, ed.H.Oura, The Institute
of Low Temperature Science, Hokkaido Univ., 929-95
2. Motoyama, H. and Kojima, K., 1985: Estimation of snow depth change (in case of dry snow). Low temperature science, Physics. 44, 15-25. Nakamura H. 1988: Studies on the settlement force of
snow as a generation mechanism.Report of the Nati
onal Research Center for Disaster Prevention, 41,36
1-385. Forestry Agency, 1988: Investigation report on comprehensive countermeasures for large-scale surface avalanches. Report on Adjustment Costs for the Comprehensive Land Development Project in 1988, 55-60. Shinojima, k.
mation of depositedsnow.physics of snow and ice, e
dHOura, The Institute of Low Temterature Science,
Hokkaido Univ., 875-907. Yamada, J., 1993: Estimation of New Snow Depth Based on Temporal Meteorological Data. I Rainfall and Snowfall Meter Method and Multiple Regression Analysis. Y. Yoshida, S. Takami and Y. Endo, 1991: A method for estimating snowfall depth from AMeDAS observations. Proceedings of the 19th National Convention of the Ice Society of Japan, 135.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係わる降雪自動計測システ
ムの構成を示す機能ブロック図である。
FIG. 1 is a functional block diagram showing a configuration of an automatic snowfall measurement system according to an embodiment of the present invention.

【図2】各降雪層の厚みと含水率の大きさを各降雪層の
厚みとこれらに付された濃度によって示す積雪層内部モ
ニター表示画面の一例である。
FIG. 2 is an example of a snow layer internal monitor display screen showing the thickness of each snow layer and the magnitude of the water content by the thickness of each snow layer and the concentration applied thereto.

【図3】本発明の原理を説明するための概念図である。FIG. 3 is a conceptual diagram for explaining the principle of the present invention.

【図4】本発明の原理を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining the principle of the present invention.

【図5】本発明の原理による演算処理の手順を説明する
ためのフローチャートである。
FIG. 5 is a flowchart illustrating a procedure of a calculation process according to the principle of the present invention.

【図6】降雪深の算定値と観測値との関係を示す実験デ
ータである。
FIG. 6 is experimental data showing a relationship between a calculated value of snow depth and an observed value.

【図7】降雪深の算定値の日変化と観測値との関係を示
す実験データである。
FIG. 7 is experimental data showing a relationship between a daily change in a calculated value of snow depth and an observed value.

【図8】日積雪深差と日降雪深との関係を示す実験デー
タである。
FIG. 8 is experimental data showing the relationship between the daily snow depth difference and the daily snowfall depth.

【図9】日積雪深差日計と日降雪深の関係を示す実験デ
ータである。
FIG. 9 is experimental data showing a relationship between a daily snow depth difference daily meter and a daily snowfall depth.

【図10】圧縮粘性係数と乾き密度との関係を示す実験デ
ータである。
FIG. 10 is experimental data showing a relationship between a compression viscosity coefficient and a dry density.

【符号の説明】[Explanation of symbols]

1 積雪深計を構成する超音波送受波器 2 雨雪量計を構成する感部 3 積雪深計変換部 4 雨量計変換部 5 演算部 6 モデム 7 電話線 DESCRIPTION OF SYMBOLS 1 Ultrasonic transducer which comprises a snow depth gauge 2 Sensing part which constitutes a snowfall gauge 3 Snow depth gauge conversion part 4 Rainfall gauge conversion part 5 Operation part 6 Modem 7 Telephone line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 庭野 昭二 茨城県稲敷郡茎崎町松の里1 林野庁 森林総 研究所内 (72)発明者 潮田 修一 東京都羽村市栄町3丁目1番地の5 株 式会社 カイジョー内 (72)発明者 小澤 智司 東京都羽村市栄町3丁目1番地の5 株 式会社 カイジョー内 (72)発明者 酒井 庄造 東京都羽村市栄町3丁目1番地の5 株 式会社 カイジョー内 (56)参考文献 特開 平5−2084(JP,A) 特開 平7−113877(JP,A) 特開 平9−143947(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01W 1/14 G01B 21/18 G01F 23/28 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Shoji Niwano 1 Matsunosato, Kusazaki-cho, Inashiki-gun, Ibaraki Pref. Forestry Agency, Forestry Research Institute (72) Inventor Shuichi Shioda Kaiyo in 5-5, Sakaemachi, Hamura-shi, Tokyo (72) Inventor Tomoji Ozawa 3-1-1 Kaijo, Sakaemachi, Hamura-shi, Tokyo Tokyo, Japan (72) Inventor Shozo Sakai Kaijo, 5-share Company 5-1-1, Sakaemachi, Hamura-shi, Tokyo (56) Reference Document JP-A-5-2084 (JP, A) JP-A-7-113877 (JP, A) JP-A-9-143947 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01W 1/14 G01B 21/18 G01F 23/28

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】積雪を圧縮粘性流体と想定し、その粘性係
数ηをその乾き密度ρのべき関数、η=Cρa 、C,a
は定数、で表現し、単位時間Δt内に形成された厚さ
(h)の各積雪層に生じた圧縮量(−Δh)と、この圧
縮量の総和である最上層の積雪層の沈降量とを上部積雪
層の荷重から式σ=η(−Δh/(h・Δt))に従っ
て算定する手段と;積雪層の最上層の単位時間内の高さ
の変化量(積雪深差)と単位時間内の降雪水量とを実測
する手段とを備えた降雪深自動計測システムにおいて
前記実測した積雪深差から前記算定した沈降量を減算し
た値を指標Dとおき、この指標Dが負の場合、これに前
記圧縮量(−Δh)から推定した密度を乗算することに
より融雪量を算定し、この算定した融雪量を各積雪層に
配分することにより各積雪層の含水率を算定し、この算
定した各積雪層ごとの含水率を画面表示する算定・表示
手段を備えたことを特徴とする降雪深自動計測システ
ム。
Assuming that snow is a compressed viscous fluid, its viscosity coefficient η is a power function of its dry density ρ, η = Cρ a , C, a
Is expressed as a constant, and the amount of compression (−Δh) generated in each snow layer having the thickness (h) formed within the unit time Δt, and the amount of settling of the uppermost snow layer which is the sum of the amounts of compression. From the load of the upper snow layer according to the formula σ = η (−Δh / (h · Δt)); the height change (snow depth difference) and the unit of the uppermost layer of the snow layer in a unit time. And a means for measuring the amount of snowfall in time.
A value obtained by subtracting the calculated settling amount from the actually measured snow depth difference is set as an index D. When the index D is negative, the value is multiplied by the density estimated from the compression amount (−Δh) to obtain a snowmelt amount. Calculation and display means for calculating the water content of each snow layer by distributing the calculated amount of snowmelt to each snow layer, and displaying the calculated water content of each snow layer on a screen. An automatic snow depth measurement system.
【請求項2】請求項1において、 前記算定・表示手段による含水率の画面表示は、算定さ
れた厚みを持って積層される各積雪層に付された色彩の
濃度によって画面表示されることを特徴とする降雪深自
動計測システム。
2. The method according to claim 1, wherein the screen display of the water content by the calculating / displaying means is performed based on the density of the color applied to each snow layer stacked with the calculated thickness. The feature is an automatic snow depth measurement system.
【請求項3】請求項1又は2において、 前記算定・表示手段は、前記各積雪層の重量と乾き密度
を画面表示する手段を更に備えたことを特徴とする降雪
深自動計測システム。
3. The automatic snowfall depth measuring system according to claim 1, wherein said calculating / displaying means further comprises means for displaying the weight and dry density of each snow layer on a screen.
【請求項4】請求項1乃至3のそれぞれにおいて、 前記定数Cとaを変更しながら前記算定を反復すること
により、実測結果に適合した前記定数Cとaの最適値を
得ることを特徴とする降雪深自動計測システム。
4. The method according to claim 1, wherein the calculation is repeated while changing the constants C and a to obtain the optimum values of the constants C and a that are suitable for the actual measurement result. Automatic snow depth measurement system.
【請求項5】 請求項4において、 前記実測結果に適した定数Cとaの最適値は、降水量が
0で気温が0°C以下の降雪も融雪も起こらない時に前
記指標Dが0になるように得られることを特徴とする降
雪深自動計測システム。
5. The method according to claim 4, wherein the optimum values of the constants C and a suitable for the actual measurement result are such that the index D becomes 0 when precipitation is 0 and temperature does not fall below 0 ° C. An automatic snowfall depth measurement system characterized by being obtained as follows.
【請求項6】 請求項1又は2において前記定数Cは1.
11*106 gf・hr・cm-2・(g・cm-3) -aに設定され、前記
定数aは3.6 に設定されることを特徴とする降雪深自動
計測システム。
6. The method according to claim 1, wherein the constant C is 1.
11 * 10 6 gf · hr · cm −2 · (g · cm −3 ) -a and the constant a is set to 3.6.
【請求項7】 請求項1又は2において前記定数Cとa
は、積雪層の乾き密度、含水率に応じて異なる値に設定
されることを特徴とする降雪深自動計測システム。
7. The method according to claim 1, wherein the constants C and a
Is an automatic snow depth measurement system, wherein different values are set according to the dry density and water content of the snow layer.
JP29496997A 1997-10-13 1997-10-13 Automatic snow depth measurement system Expired - Lifetime JP3219383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29496997A JP3219383B2 (en) 1997-10-13 1997-10-13 Automatic snow depth measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29496997A JP3219383B2 (en) 1997-10-13 1997-10-13 Automatic snow depth measurement system

Publications (2)

Publication Number Publication Date
JPH11118947A JPH11118947A (en) 1999-04-30
JP3219383B2 true JP3219383B2 (en) 2001-10-15

Family

ID=17814658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29496997A Expired - Lifetime JP3219383B2 (en) 1997-10-13 1997-10-13 Automatic snow depth measurement system

Country Status (1)

Country Link
JP (1) JP3219383B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211846A (en) * 1998-01-22 1999-08-06 Yokogawa Electric Corp Snow depth meter
JP2003240866A (en) * 2002-02-20 2003-08-27 Natl Inst For Land & Infrastructure Management Mlit Road surface condition determination method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4776434B2 (en) * 2006-05-24 2011-09-21 株式会社東芝 Snow melting water amount prediction device
JP4701222B2 (en) * 2007-09-25 2011-06-15 新潟電機株式会社 Snowfall intensity measuring method and snowfall intensity measuring apparatus
JP4637216B2 (en) * 2008-07-29 2011-02-23 独立行政法人水資源機構 Snow depth observation apparatus and snow depth observation method
JP7012305B2 (en) * 2018-02-16 2022-01-28 国立研究開発法人防災科学技術研究所 Snowfall information provision system and snowfall information provision method
JP7067306B2 (en) * 2018-06-21 2022-05-16 中国電力株式会社 Snow cover prediction device, snow cover prediction method
WO2020087787A1 (en) * 2018-11-02 2020-05-07 北京讯腾智慧科技股份有限公司 Snow layer thickness monitoring method and system employing beidou system and multiple sensors
CN109387143B (en) * 2018-11-02 2019-08-16 北京讯腾智慧科技股份有限公司 A kind of snow thickness safety monitoring method and system based on Beidou and multisensor
WO2022120624A1 (en) * 2020-12-09 2022-06-16 中国科学院声学研究所南海研究站 Ultrasonic rainfall measurement system capable of automatic triggering and self-calibration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211846A (en) * 1998-01-22 1999-08-06 Yokogawa Electric Corp Snow depth meter
JP2003240866A (en) * 2002-02-20 2003-08-27 Natl Inst For Land & Infrastructure Management Mlit Road surface condition determination method

Also Published As

Publication number Publication date
JPH11118947A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
US11237148B2 (en) Flood disaster prediction
Bellaire et al. Forcing the snow-cover model SNOWPACK with forecasted weather data
JP3219383B2 (en) Automatic snow depth measurement system
Moore et al. Mass balance and streamflow variability at Place Glacier, Canada, in relation to recent climate fluctuations
Kirkham et al. Near real-time measurement of snow water equivalent in the Nepal Himalayas
Reinfelds et al. Hydrospatial assessment of streamflow yields and effects of climate change: Snowy Mountains, Australia
Gugerli et al. Continuous and autonomous snow water equivalent measurements by a cosmic ray sensor on an alpine glacier
US11774634B2 (en) Systems and methods for determining snowpack characteristics
JP2008184838A (en) Dam inflow amount predicting device, dam inflow amount predicting method, and dam inflow amount predicting program
He et al. Standardization of raw wind speed data under complex terrain conditions: A data-driven scheme
Tani An approach to annual water balance for small mountainous catchments with wide spatial distributions of rainfall and snow water equivalent
Collier et al. A case study of the measurement of snowfall by radar: An assessment of accuracy
Archer Severe snowmelt runoff in north-east England and its implications.
JP2002196085A (en) System for predicting road surface condition
Janowicz et al. Measuring winter precipitation and snow on the ground in northern polar regions
Xie et al. The statistics of blowing snow occurrences from multi-year autonomous snow flux measurements in the French Alps
Kominami et al. Viscous compression model for estimating the depth of new snow
JPH0734036B2 (en) Automatic snow depth measurement method
Rácz Application of Correction Procedures for Some Systematic Measurement Errors to Rainfall Intensity Data of a Rain Gauge in Budapest
Kattelmann Variability of liquid water content in an alpine snowpack
SHISHIDO et al. A Simplified Method for Estimating Outflow from the Bottom of Snowpack
Font et al. Drifting-snow acoustic detector: experimental tests in La Molina, Spanish Pyrenees
Wilcock et al. An experimental measurement of potential evapotranspiration at Coleraine, County Derry
Miller et al. Comparison of Three Degree-Day Models for Application of Spring Load Restrictions on Low-Volume Roads
McClean River-Flow Records

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040426

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140810

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term