JPH11211846A - Snow depth meter - Google Patents

Snow depth meter

Info

Publication number
JPH11211846A
JPH11211846A JP10010421A JP1042198A JPH11211846A JP H11211846 A JPH11211846 A JP H11211846A JP 10010421 A JP10010421 A JP 10010421A JP 1042198 A JP1042198 A JP 1042198A JP H11211846 A JPH11211846 A JP H11211846A
Authority
JP
Japan
Prior art keywords
snow
density
correlation data
echo wave
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10010421A
Other languages
Japanese (ja)
Inventor
Eiji Hayashi
榮二 林
Kazuo Maruyama
一夫 丸山
Yoshinori Ishii
義則 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP10010421A priority Critical patent/JPH11211846A/en
Publication of JPH11211846A publication Critical patent/JPH11211846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure density of snow in simple constitution by transmitting an ultrasonic wave toward the surface of fallen snow, measuring the degree of attenuation of echo wave, and comparing it with previously housed correlation data. SOLUTION: A transducer 3 provided on the position of known distance L from the surface of fallen snow transmits an ultrasonic wave toward the surface 4 of the snow, and receives echo wave from the surface 4. An echo wave signal is A/D-converted through an amplifier 5 and a rectifier circuit 6 to be input to a level computing part 8, and the depth of snow is computed. A density computing part 9 computes the density of the snow 1 from the converted signal of the A/D converter 7. A data memory means 91 houses correlation data showing the changing degree of attenuation of echo wave by the distance L between the transducer 3 and the fallen snow surface. A density computing means 93 compares the degree of attenuation of the echo wave measured by a measuring means 92 with the correlation data stored in the data memory means 91, and density of the snow is computed from the comparison result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超音波式の積雪深
計に雪の密度を測定する機能をもたせるための工夫に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for providing an ultrasonic snow depth gauge with a function of measuring snow density.

【0002】[0002]

【従来の技術】一般に、粉雪は水分が少なくさらさらと
していて密度が小さい。これに対して、湿り雪は水分を
多く含み密度が大きい。路上に雪が積もったときに、雪
の種類に応じて除雪量が異なるため、一定の判断を必要
とする。すなわち、粉雪が積もったときは、除雪量が少
なく、湿り雪が積もったときは除雪量が多いと判断す
る。このようなことから、除雪量を判断するにあたっ
て、雪の密度は重要なポイントになる。例えば、路面に
雪が積もったときに、除雪車を出動させるかどうかにつ
いて判断するときに、積もった雪の密度が判断のファク
ターとなる。
2. Description of the Related Art In general, powdered snow has a small amount of moisture and is dry and has a low density. On the other hand, wet snow contains a lot of moisture and has a high density. When snow accumulates on the road, the amount of snow removal varies depending on the type of snow, so a certain judgment is required. That is, it is determined that the amount of snow removal is small when powdered snow is accumulated, and is large when wet snow is accumulated. For this reason, the density of snow is an important point in determining the amount of snow removal. For example, when it is determined whether a snowplow is to be dispatched when snow is piled up on the road surface, the density of the piled snow is a factor of the determination.

【0003】従来より、積雪面上に積もった雪の表面に
向けて送受波器から超音波を発信し、雪の表面で反射し
たエコー波を送受波器で受信し、超音波を発信してから
エコー波が返ってくるまでに要した時間をもとに積雪の
深さを検出するいわゆる超音波式の積雪深計があった。
しかし、従来における超音波式の積雪深計は雪の密度を
検出する機能までは備えていなかった。従って、雪の密
度は次のようにして測っていた。図3は雪の密度の測り
かたを示した説明図である。図3で、積雪面Gに雪Sが
積もっている。雪Sを縦a、横b、高さhの直方体に切
り取り、切り取った雪の重さを測る。測った重さをMと
する。雪の密度σを次式から求める。 σ=M/a×b×h
[0003] Conventionally, ultrasonic waves are transmitted from a transmitter / receiver toward a snow surface piled up on a snow-covered surface, echo waves reflected on the snow surface are received by a transmitter / receiver, and ultrasonic waves are transmitted. There is a so-called ultrasonic snow depth gauge that detects the depth of the snow based on the time required for the echo wave to return from the snow.
However, the conventional ultrasonic snow depth meter did not have the function of detecting the density of snow. Therefore, the snow density was measured as follows. FIG. 3 is an explanatory diagram showing how to measure the density of snow. In FIG. 3, snow S is piled on the snow surface G. The snow S is cut into a rectangular parallelepiped of length a, width b, and height h, and the weight of the cut snow is measured. Let M be the measured weight. The snow density σ is obtained from the following equation. σ = M / a × b × h

【0004】しかし、上述した従来の測りかたでは次の
問題点があった。 新雪のときは高さhが少ないため、雪を収集するの
が困難である。 手作業で雪を切り取って測っているため、作業が面
倒である。 降りつつある雪の密度をリアルタイムに測定するの
に向いていない。
However, the above-mentioned conventional measuring method has the following problems. In fresh snow, the height h is small, so it is difficult to collect snow. The work is troublesome because the snow is manually cut and measured. It is not suitable for measuring the density of falling snow in real time.

【0005】このようなことから積雪深計に特別な装置
を付加することなく、簡単な構成で雪の密度を測定した
いという要求があった。
[0005] For these reasons, there has been a demand for measuring the snow density with a simple configuration without adding a special device to the snow depth gauge.

【発明が解決しようとする課題】本発明は上述した問題
点を解決するためになされたものであり、雪に超音波を
当てたときのエコー波の減衰の度合いが雪の密度に関連
していることを利用して密度測定を行うことによって、
簡単な構成を付加しただけで雪の密度を測定できる積雪
深計を実現することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and the degree of attenuation of an echo wave when an ultrasonic wave is applied to snow is related to the density of snow. By performing density measurement using
An object of the present invention is to realize a snow depth gauge capable of measuring the density of snow simply by adding a simple configuration.

【0006】[0006]

【課題を解決するための手段】本発明は次のとおりの構
成になった雪の密度計である。
SUMMARY OF THE INVENTION The present invention is a snow densitometer having the following configuration.

【0007】(1)積雪面上に積もった雪の表面に向け
て送受波器から超音波を発信し、雪の表面で反射したエ
コー波を送受波器で受信し、超音波を発信してからエコ
ー波が返ってくるまでに要した時間をもとに積雪の深さ
を検出する積雪深計において、前記エコー波の減衰の度
合いが送受波器と積雪面の距離によってどのように変る
かを示した相関データを格納し、この相関データは雪の
密度をパラメータとして複数種類だけ用意しているデー
タ記憶手段と、送受波器を積雪面から既知の距離にある
位置に設置した状態で、エコー波の減衰の度合いを測定
する測定手段と、この測定手段の測定データと前記デー
タ記憶手段に格納した相関データと比較し、比較結果か
ら雪の密度を算出する密度算出手段と、を具備したこと
を特徴とする積雪深計。
(1) An ultrasonic wave is transmitted from a transmitter / receiver toward a surface of snow piled on a snow surface, an echo wave reflected on the surface of the snow is received by the transmitter / receiver, and an ultrasonic wave is transmitted. In a snow depth meter that detects the depth of the snow based on the time required until the echo wave returns from the sensor, how the degree of attenuation of the echo wave changes depending on the distance between the transducer and the snow surface The correlation data is stored, and the correlation data is a data storage unit that prepares only a plurality of types with the snow density as a parameter, and the transducer is installed at a position at a known distance from the snow surface, Measuring means for measuring the degree of attenuation of the echo wave, and density calculating means for comparing the measurement data of the measuring means with the correlation data stored in the data storage means and calculating the snow density from the comparison result. Characterized by snowfall Total.

【0008】(2)前記密度算出手段は、前記測定デー
タと相関データに内挿演算を行って雪の密度を算出する
ことを特徴とする(1)記載の積雪深計。
(2) The snow depth meter according to (1), wherein the density calculating means calculates the snow density by performing an interpolation operation on the measured data and the correlation data.

【0009】[0009]

【発明の実施の形態】以下図面を用いて本発明を詳しく
説明する。図1は本発明の一実施例を示す構成図であ
る。図1で、検出対象となる雪1は積雪面2上に積もっ
ている。送受波器3は、積雪面2から既知の距離Lにあ
る位置に設置されていて、雪の表面4に向けて超音波を
発信し、表面4で反射されたエコー波を受信する。送受
波器3は受信したエコー波の信号を出力する。この出力
信号をエコー信号とする。アンプ5はエコー信号を増幅
する。整流回路6はアンプ5の増幅信号を同期積分して
エコー信号の中から信号成分を取り出す。A/D変換器
7は同期積分信号をアナログ・デジタル変換する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of the present invention. In FIG. 1, a snow 1 to be detected is piled on a snow surface 2. The transducer 3 is installed at a position at a known distance L from the snow-covered surface 2, transmits ultrasonic waves toward the snow surface 4, and receives echo waves reflected by the surface 4. The transducer 3 outputs the received echo wave signal. This output signal is used as an echo signal. The amplifier 5 amplifies the echo signal. The rectifier circuit 6 synchronously integrates the amplified signal of the amplifier 5 and extracts a signal component from the echo signal. The A / D converter 7 converts the synchronous integration signal from analog to digital.

【0010】レベル演算部8はA/D変換器7の変換信
号をもとに雪1の深さを算出する。上述した構成により
超音波式の積雪深計が構成される。本発明では、以下の
構成手段を付加することにより雪の密度を検出する機能
が追加される。
The level calculator 8 calculates the depth of the snow 1 based on the converted signal of the A / D converter 7. The above-described configuration constitutes an ultrasonic snow depth gauge. In the present invention, a function of detecting the density of snow is added by adding the following constituent means.

【0011】密度演算部9はA/D変換器7の変換信号
から雪1の密度を算出する。密度演算部9で、データ記
憶手段91は、エコー波の減衰の度合いが送受波器3と
積雪面の距離Lによってどのように変るかを示した相関
データを格納し、この相関データは雪の密度をパラメー
タとして複数種類だけ用意している。相関データは実測
により予め求められたデータである。測定手段92は、
既知の距離Lの位置に送受波器3を設置した状態で、エ
コー波の減衰の度合いを測定する。密度算出手段93
は、測定手段92の測定データとデータ記憶手段91に
格納した相関データと比較し、比較結果から雪の密度を
算出する。必要に応じて密度算出手段93は、測定デー
タと相関データに内挿演算を行って雪の密度を算出す
る。
The density calculator 9 calculates the density of the snow 1 from the converted signal of the A / D converter 7. In the density calculation unit 9, the data storage unit 91 stores correlation data indicating how the degree of attenuation of the echo wave changes depending on the distance L between the transmitter / receiver 3 and the snow-covered surface. Only a plurality of types are prepared using density as a parameter. The correlation data is data obtained in advance by actual measurement. The measuring means 92
The degree of attenuation of the echo wave is measured with the transmitter / receiver 3 installed at a position at a known distance L. Density calculating means 93
Compares the measurement data of the measurement means 92 with the correlation data stored in the data storage means 91, and calculates the snow density from the comparison result. If necessary, the density calculation means 93 calculates the density of snow by performing an interpolation operation on the measurement data and the correlation data.

【0012】図1の装置の動作を説明する。図2はデー
タ記憶手段91に格納された相関データの一例を示した
図である。この相関データはグラフ形式になっている。
なお、相関データはグラフ形式に限らずテーブル形式で
あってもよい。
The operation of the apparatus shown in FIG. 1 will be described. FIG. 2 is a diagram showing an example of the correlation data stored in the data storage means 91. This correlation data is in the form of a graph.
Note that the correlation data is not limited to the graph format but may be a table format.

【0013】図2のグラフは、横軸には距離Lをとり、
縦軸には(エコー波のレベル)/(発信波のレベル)の
デシベル(dB)値をとっている。図2では、雪の密度
をパラメータにして7種類のグラフg1〜g7が用意さ
れている。グラフg1,g2,g3,g4,g5,g
6,g7はそれぞれ密度が0.5,0.4,0.3,
0.2,0.1,0.07,0.05[g/立方センチ
メートル]のときのグラフである。密度測定にあたっ
て、グラフg1〜g7をデータ記憶手段91に予め用意
しておく。
In the graph of FIG. 2, the horizontal axis represents the distance L,
The vertical axis indicates the decibel (dB) value of (level of the echo wave) / (level of the transmitted wave). In FIG. 2, seven types of graphs g1 to g7 are prepared using the density of snow as a parameter. Graph g1, g2, g3, g4, g5, g
6, g7 have densities of 0.5, 0.4, 0.3,
It is a graph at the time of 0.2, 0.1, 0.07, 0.05 [g / cubic centimeter]. In measuring the density, the graphs g1 to g7 are prepared in the data storage unit 91 in advance.

【0014】測定にあたって、既知の距離Lの位置に送
受波器3を設置する。測定手段92はエコー波の減衰の
度合いを測定する。この測定データと図2に示すグラフ
とを比較し、測定データと近い値になったグラフを選択
し、選択したグラフのパラメータを雪の密度とする。測
定データのグラフ上の座標は、既知の距離Lと測定手段
92によって得たエコー波の減衰の度合いから与えられ
る。
In the measurement, the transducer 3 is set at a position of a known distance L. The measuring means 92 measures the degree of attenuation of the echo wave. The measured data is compared with the graph shown in FIG. 2, and a graph having a value close to the measured data is selected, and the parameter of the selected graph is defined as the density of snow. The coordinates of the measured data on the graph are given from the known distance L and the degree of attenuation of the echo wave obtained by the measuring means 92.

【0015】測定データと近い値のグラフがないときは
内挿演算により雪の密度を算出する。例えば、測定デー
タが図2のX1のようになり、距離d1及びd2が、d
1:d2=4:1であるとする。このときは、次式の内
挿演算を行って密度を算出する。 (0.2×4+0.3×1)/(1+4)=0.22
[g/立方センチメートル] このようにして雪の密度を測定する。
If there is no graph having a value close to the measured data, the density of snow is calculated by interpolation. For example, the measurement data becomes X1 in FIG. 2, and the distances d1 and d2 are d1
1: Let d2 = 4: 1. At this time, the density is calculated by performing the interpolation operation of the following equation. (0.2 × 4 + 0.3 × 1) / (1 + 4) = 0.22
[G / cubic centimeter] In this way, the density of snow is measured.

【0016】なお、外気の温度、外気の湿度等に応じて
密度演算に補正を加えてもよい。
The density calculation may be corrected according to the temperature of the outside air, the humidity of the outside air, and the like.

【0017】[0017]

【発明の効果】本発明によれば次の効果が得られる。According to the present invention, the following effects can be obtained.

【0018】請求項1によれば、エコー波の減衰の度
合いが送受波器と積雪面の距離によってどのように変る
かを示した相関データを雪の密度をパラメータとして複
数種類だけ用意し、この相関データを用いて雪の密度を
検出している。これによって、従来の積雪深計に簡単な
構成手段を付加するだけで雪の密度を検出する機能を追
加できる。
According to the first aspect, only a plurality of types of correlation data indicating how the degree of attenuation of the echo wave varies depending on the distance between the transducer and the snow-covered surface are prepared using the snow density as a parameter. The density of snow is detected using the correlation data. This makes it possible to add a function of detecting the density of snow by simply adding a simple component to the conventional snow depth gauge.

【0019】請求項2によれば、内挿演算を行って密
度を検出しているため、データ記憶手段に用意しておく
相関データの種類数が少なくても雪の密度を検出するこ
とができる。
According to the second aspect, since the density is detected by performing the interpolation operation, the snow density can be detected even if the number of types of the correlation data prepared in the data storage means is small. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】本発明で用いる相関データの一例を示した図で
ある。
FIG. 2 is a diagram showing an example of correlation data used in the present invention.

【図3】従来における雪の密度の測りかたを示した説明
図である。
FIG. 3 is an explanatory diagram showing a conventional method of measuring snow density.

【符号の説明】[Explanation of symbols]

1 雪 2 積雪面 3 送受波器 4 表面 8 レベル演算部 9 密度演算部 91 データ記憶手段 92 測定手段 93 密度算出手段 DESCRIPTION OF SYMBOLS 1 Snow 2 Snow-covered surface 3 Transceiver 4 Surface 8 Level operation part 9 Density operation part 91 Data storage means 92 Measurement means 93 Density calculation means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 義則 東京都中央区新川1丁目5番13号 横河ウ ェザック株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshinori Ishii 1-5-13 Shinkawa, Chuo-ku, Tokyo Inside Yokogawa Wezak Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 積雪面上に積もった雪の表面に向けて送
受波器から超音波を発信し、雪の表面で反射したエコー
波を送受波器で受信し、超音波を発信してからエコー波
が返ってくるまでに要した時間をもとに積雪の深さを検
出する積雪深計において、前記エコー波の減衰の度合い
が送受波器と積雪面の距離によってどのように変るかを
示した相関データを格納し、この相関データは雪の密度
をパラメータとして複数種類だけ用意しているデータ記
憶手段と、送受波器を積雪面から既知の距離にある位置
に設置した状態で、エコー波の減衰の度合いを測定する
測定手段と、この測定手段の測定データと前記データ記
憶手段に格納した相関データと比較し、比較結果から雪
の密度を算出する密度算出手段と、を具備したことを特
徴とする積雪深計。
An ultrasonic wave is transmitted from a transmitter / receiver toward a snow surface piled up on a snow surface, an echo wave reflected on the snow surface is received by the transmitter / receiver, and the ultrasonic wave is transmitted. In a snow depth meter that detects the depth of snow based on the time required for the echo wave to return, how the degree of attenuation of the echo wave changes depending on the distance between the transducer and the snow surface. The correlation data shown is stored, and the correlation data is stored in a plurality of types using the snow density as a parameter, and when the transducer is installed at a position at a known distance from the snow-covered surface, Measuring means for measuring the degree of wave attenuation, and density calculating means for comparing the measurement data of the measuring means with the correlation data stored in the data storage means, and calculating the snow density from the comparison result. Snow depth gauge.
【請求項2】 前記密度算出手段は、前記測定データと
相関データに内挿演算を行って雪の密度を算出すること
を特徴とする請求項1記載の積雪深計。
2. The snow depth gauge according to claim 1, wherein said density calculating means calculates the snow density by performing an interpolation operation on said measurement data and correlation data.
JP10010421A 1998-01-22 1998-01-22 Snow depth meter Pending JPH11211846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10010421A JPH11211846A (en) 1998-01-22 1998-01-22 Snow depth meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10010421A JPH11211846A (en) 1998-01-22 1998-01-22 Snow depth meter

Publications (1)

Publication Number Publication Date
JPH11211846A true JPH11211846A (en) 1999-08-06

Family

ID=11749696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10010421A Pending JPH11211846A (en) 1998-01-22 1998-01-22 Snow depth meter

Country Status (1)

Country Link
JP (1) JPH11211846A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240866A (en) * 2002-02-20 2003-08-27 Natl Inst For Land & Infrastructure Management Mlit Road surface condition determination method
US6957593B1 (en) * 2001-12-31 2005-10-25 Burns Ian F Devices, systems, and methods for analyzing snow stability
JP2011133281A (en) * 2009-12-24 2011-07-07 Public Works Research Institute Simple snow density measuring instrument
CN113009595A (en) * 2021-02-09 2021-06-22 海南省气象科学研究所 Rainfall monitoring method based on vehicle-mounted sensor and related device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239337Y2 (en) * 1981-03-04 1987-10-07
JPS63191985A (en) * 1987-02-05 1988-08-09 Mitsubishi Electric Corp Snow cover depth meter
JPH0627874B2 (en) * 1990-12-27 1994-04-13 中浅測器株式会社 Snow cover
JPH079469B2 (en) * 1987-07-10 1995-02-01 小糸工業株式会社 Snow depth measuring device
JPH07113877A (en) * 1993-10-14 1995-05-02 Furukawa Electric Co Ltd:The Detecting method for amount of snowmelt
JPH0875711A (en) * 1994-09-02 1996-03-22 Azuma Shokai:Kk Road surface condition detecting method
JPH09218033A (en) * 1996-02-08 1997-08-19 Nagoya Denki Kogyo Kk Method for measuring depth of snowfall
JPH1114434A (en) * 1997-06-24 1999-01-22 Wall Natsuto:Kk Method and instrument for measuring deposit and method and instrument for measuring fallen snow
JP3219383B2 (en) * 1997-10-13 2001-10-15 林野庁森林総合研究所長 Automatic snow depth measurement system
JP3296985B2 (en) * 1996-12-27 2002-07-02 名古屋電機工業株式会社 Ultrasonic snow gauge

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239337Y2 (en) * 1981-03-04 1987-10-07
JPS63191985A (en) * 1987-02-05 1988-08-09 Mitsubishi Electric Corp Snow cover depth meter
JPH079469B2 (en) * 1987-07-10 1995-02-01 小糸工業株式会社 Snow depth measuring device
JPH0627874B2 (en) * 1990-12-27 1994-04-13 中浅測器株式会社 Snow cover
JPH07113877A (en) * 1993-10-14 1995-05-02 Furukawa Electric Co Ltd:The Detecting method for amount of snowmelt
JPH0875711A (en) * 1994-09-02 1996-03-22 Azuma Shokai:Kk Road surface condition detecting method
JPH09218033A (en) * 1996-02-08 1997-08-19 Nagoya Denki Kogyo Kk Method for measuring depth of snowfall
JP3296985B2 (en) * 1996-12-27 2002-07-02 名古屋電機工業株式会社 Ultrasonic snow gauge
JPH1114434A (en) * 1997-06-24 1999-01-22 Wall Natsuto:Kk Method and instrument for measuring deposit and method and instrument for measuring fallen snow
JP3219383B2 (en) * 1997-10-13 2001-10-15 林野庁森林総合研究所長 Automatic snow depth measurement system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6957593B1 (en) * 2001-12-31 2005-10-25 Burns Ian F Devices, systems, and methods for analyzing snow stability
JP2003240866A (en) * 2002-02-20 2003-08-27 Natl Inst For Land & Infrastructure Management Mlit Road surface condition determination method
JP2011133281A (en) * 2009-12-24 2011-07-07 Public Works Research Institute Simple snow density measuring instrument
CN113009595A (en) * 2021-02-09 2021-06-22 海南省气象科学研究所 Rainfall monitoring method based on vehicle-mounted sensor and related device
CN113009595B (en) * 2021-02-09 2023-05-02 海南省气象科学研究所 Rainfall monitoring method and related device based on vehicle-mounted sensor

Similar Documents

Publication Publication Date Title
US4470299A (en) Ultrasonic liquid level meter
KR20000057568A (en) Method and device for ultrasonic ranging
Kartashov et al. Principles of construction and assessment of technical characteristics of multi-frequency atmospheric sodar in the humidity measurement mode
KR101238387B1 (en) Towing tank using ultrasonic measurement of ice thickness measurement system and method
CN112782701A (en) Visibility perception method, system and equipment based on radar
JPH11211846A (en) Snow depth meter
US3555499A (en) Method and system for determining reflectivity of the ocean bottom
Benet et al. An intelligent ultrasonic sensor for ranging in an industrial distributed control system
JP2779563B2 (en) Transmitter and receiver for Doppler acoustic radar
JPH0228116B2 (en)
JPH06186124A (en) Method and apparatus for calibrating ultrasonic- wave-type leaking-position measurement
JPS6311673Y2 (en)
JP3296985B2 (en) Ultrasonic snow gauge
JPH08271322A (en) Ultrasonic liquid level measuring method
JPH0367195A (en) Method and instrument for measuring temperature and humidity of atmospheric air by utilizing wave propagation
JP3006270B2 (en) Ultrasonic position measuring device
JP3362936B2 (en) Ultrasonic level measuring device
JPH0627874B2 (en) Snow cover
KR101021685B1 (en) Method for Distance Measurement of Porous Media and Measuring Device Thereof
JPH01305393A (en) System for measuring amount of rainfall
JPH11194166A (en) Pulse compression radar system
JP5298388B2 (en) Temperature measuring method and temperature measuring apparatus using ultrasonic waves
JP2000035478A (en) Ultrasonic measuring device
JP3038871B2 (en) Gas leak detector
JPS6017378A (en) Ultrasonic measuring device